...that1
$2^(V)$ denotes the power set of $(V)$, i.e., the set of all the subsets of ${1,...,|V|}$.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

... bits2
bits suffice to store n, d, K, in a self-delimiting way, which is bounded by for n large enough.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

...odd3
The Theorem was unfortunately mistyped in the original paper. Here, we give the correct statement.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

...triangulated4
A plane graph where all the faces are triangles.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

... 5
The original result presented in this article is $2$-$dilation(multi-globe) 1.25D$. However in the construction given in the proof it appears that the number of intervals is 3. To our best knowledge we do not know whether it can be done with 2 intervals only.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

... graph6
I.e., .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.


2000-03-21