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Issues

Real

world

Image

Analysis Description of the

image object(s) :

models, measurements, classes

Processing

Acquisition

• imitate the human vision system
• a priori knowledge is important for high-level processes
• no generic solution but a set of solutions for specific

problems



Difficult cases...



Examples

• Satellite imagery

• Document image analysis

• Content based image retrieval

• Aid in medical diagnosis

• Nondestructive test
Control of a trajectory



Image analysis subfields I

• Segmentation / Reconstruction
• Pattern recognition :

Assign a category to (a part of) an image

preprocessing → features extraction → classifying

• 3D Vision
Shape from shading : Retrieve a 3D shape from a 2D
image (depth from color variations)

Stereovision (Shape from stereo) : Retrieve the points
depth from two projections of the scene (different points of
view)



Image analysis subfields II

• image matching
• reconstruction

M

Md

Og Od

Mg

• Motion analysis



Course outline I

1 Image segmentation
- region based approach : split, merge, split and merge
- contour based approach
- other approaches : watersheds, Mumford Shah, deformable

models, level sets

2 Digital geometry applied to image analysis
- curves and surfaces / regions
- algorithms for tracing region boundaries
- representing a 2D/3D partition
- digital lines and planes, recognition algorithms
- digital distances, distance transform, skeletonization



Course outline II

3 Geometric and topologic characterization
- region features : geometric moments, convexity, topologic

features
- geometric features of a curve/surface : length/area, normal

and curvature at a point, salient points



Bibliography I
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• Digital Geometry : Geometric Methods for Digital Image
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• Image Processing, Analysis and Machine Vision - M.
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Image segmentation methods I
• segmentation : cut an image into meaningful regions, the

image "objects" =⇒ pixels/voxels labeling.
easy for humans : prior knowledge, global point of view on
an image, inference (e.g. hidden boundaries)

• Methods :
• region-based : gather similar pixels/voxels⇒homogeneous

regions
• edge-based : look for dissimilar pixels/voxels⇒interface

between different zones



Image segmentation : example 1
Labeling into 4 components
(Region based approach : Markov field)



Image segmentation : example 2

3D reconstruction of the cerebral cortex
(edge based approach : deformable model)

3D Images (3 slices) Segmentation 3D Reconstruction



Definitions - Notations I

• pixel/voxel : belongs to X ⊂ Z2 / Z3

• 2D connectivities : 4-connectivity / 8-connectivity

• 3D connectivities : 6-connectivity / 18-connectivity /
26-connectivity

• region R : connected subset of X
• size |R| of R = number of pixels/voxels in R



Definitions - Notations II

• border of a region R : δR = interpixel/intervoxel boundary
of R (set of pixel edges / voxel faces between R and its
complement) |δR| = size of the border (length / area)

• image : function I from X to a set E =

1 {0,1} : binary image
2 {0, . . . ,255} : graylevel image (8 bits)
3 {0, . . . ,216 − 1} : graylevel image (16 bits)
4 {0, . . . ,255}3 : color image (RGB color space)
5 . . .

• histogram h : function from E to Z+ of the occurences of
each value of I

• mean value of a region R : µR = 1
|R|
∑

p∈R I(p).

• variance of a region R : σ2
R = 1

|R|
∑

p∈R(I(p)− µR)2.



Formalising the segmentation problem

Definition [Horowitz75]
X : domain of the image I
P : predicate defined on the set of X subsets, depends on I
segmentation of X : (Si)i=1..n, subsets of X such that

1 X = ∪n
i=1Si and ∀i , j ∈ 1..n, i 6= j ,Si ∩ Sj = ∅

2 ∀i ∈ 1..n, Si is connected et P(Si) = true
3 ∀i , j ∈ 1..n, Si adjacent to Sj and i 6= j ⇒ P(Si ∪ Sj) = false

Examples of homogeneity predicate :
• P(R) = true⇔ σR < 5
• P(R) = true⇔ ∀p ∈ R, |I(p)− µR| < 10



Exercise

Image I =
100 45
55 0

Segmentation of I ?
P(R) = true⇔ ∀p ∈ R, |I(p)− µR| < 30

Difficulties
Unicity ? Stability ? Calculability ?
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3 - Segmentation : region based
approaches

Thresholding / Classification
Split and merge methods
Grouping pixels



Thresholding

• Goal : assign a class to each pixel of a gray-level image.
class = gray-level range

• Idea :
• compute thresholds from the histogram (image/region)
• a pixel p is classified by comparing I(p) to the thresholds



Thresholding and histogram I

• histogram of I in R ⊂ X ≈
distribution of the values in R.

• Example : uniform object⇒
histogram ≈ gaussian curve of
low variance

• bimodal histogram : two uniform
objects with different means

• Thresholding : find the threshold(s) which best separate
the two (or more) objects.



Thresholding and histogram II

difficult when the means get closer.

(µ1 = 0.2, σ1 = 0.2) (µ1 = 0.25, σ1 = 0.2) (µ1 = 0.3, σ1 = 0.2)
(µ2 = 0.7, σ2 = 0.3) (µ2 = 0.65, σ2 = 0.3) (µ2 = 0.6, σ2 = 0.3)



Segmentation by thresholding

pixel : (x , y),
gray level : I(x , y)
local property : P(x , y)
threshold used to classify pixel (x , y) : T (x , y)

3 types of thresholding methods :

• global thresholding : T (x , y)
def
= T (I(x , y))

• local thresholding : T (x , y)
def
= T (I(x , y),P(x , y))

• dynamic thresholding : T (x , y)
def
= T (I(x , y),P(x , y), x , y)

If 2 classes, binarization.



Example of global thresholding 1/3
Binarization [Otsu79]

• the histogram h is split so as to minimize the partition error
• Idea : minimize the variance in each class (C1 and C2).

p(n) probability of gray level n, t threshold

p(C1) =
∑t

0 p(n), µC1 =
∑t

0 np(n)
p(C1) , σ2

C1
=

∑t
0(n−µC1

)2p(n)

p(C1)

p(C2) =
∑N

t+1 p(n), µC2 =
∑N

t+1 np(n)

p(C2) , σ2
C2

=
∑N

t+1(n−µC2
)2p(n)

p(C2)

σ2
intra = p(C1)σ2

C1
+ p(C2)σ2

C2

σ2
inter = p(C1)p(C2)(µC1 − µC2)2

To minimize σ2
intra is equivalent to maximize σ2

inter



Example of global thresholding 2/3

seuil = 128 (algorithme de Fischer)seuil = 508 8



Example of global thresholding 3/3

seuil = 130 seuil = 82 (algorithme de Fischer)

inversion N/B

8 8



Example of local thresholding 1/2
Binarization [Sauvola00]

Idea : the threshold is adapted to the local contrast.
T (x , y) = µ(x , y)(1 + k(σ(x ,y)

R − 1)

• µ(x , y) mean of the gray levels in the neighborhood of
(x , y)

• σ(x , y) standard deviation of the gray levels in the
neighborhood of (x , y)

• standard values of the parameters k = 0.5, R = 128

k=0.1, k=0.2, radius of the neighborhood (square) = 15



Example of local thresholding 1/2
Binarization [Bhanu01]

Idea : if a point belongs to Ci , most of its neighbors
(8-connected neighborhood) also belong to Ci .

• P(p) = (PC1(p),PC2(p)) probability vector associated to
pixel p
PCi (p) : probability that pixel p belongs to Ci
PC1(p) + PC2(p) = 1

• Q(p) = (QC1(p),QC2(p)) compatibility vector associated to
pixel p
QCi (p) = 1

8
∑

q∈N8(p) PCi (q)

• To maximize :
∑

image(PC1(p)QC1(p) + PC2(p)QC2(p))



Example of local thresholding 2/2
Binarization [Bhanu01]

Iterative algorithm : µ initial threshold.

P0
C1

(p) =

{
I(p)−µ
MaxGl + 0.5 if I(p) > µ

η I(p)−µ
MaxGl + 0.5 else (η coef between 0.5 and 1)

Pn+1
C1

(p) =

{
(1− α1)Pn

C1
(p) + α1 if Qn

C1
(p) > 0.5

(1− α2)Pn
C1

(p) else

• α1, α2 coefs between 0 and 1.
⇒ increases the probability that p belongs to C1 if the

probability that its neighborhood belongs to C1 is high.
• Iterations until 90% of the pixels are well labeled

(PC1(p) > 0.9 or PC2(p) > 0.9)



Example of dynamic thresholding I
Binarization [Chow,Kaneko72]

• The image is split into regular blocks
• A threshold is computed for each block and assigned to the

block center :
Is the block histogram bimodal ?

• If it is, the threshold is computer from the histogram
• If not, the threshold is defined as the mean of the

thresholds of the neighboring blocks.

• The threshold of a pixel is computed by linear interpolation
from the thresholds of the neighboring blocks.

Potential problem : truncated regions



Example of dynamic thresholding II
Binarization [Chow,Kaneko72]



Classification

Idea :
• histogram mode ' image component.
• split the histogram into k classes.
• each pixel is labeled with the number of its

class

How to find k classes from the histogram :
• User
• Finding "valleys" of the histogram
• Gaussian mixture
• "k -means" algorithm . . .



Classification example : k-means
algorithm

Iterative method to split the histogram into k classes (k is fixed).
Algorithm :
• Arbitrary choose k values {c1, . . . , ck} in the histogram
• Until ci are modified in the loop, do

• For each histogram value find the nearest ci value
• The class Ci is the set of values that are closer to ci than to

any other cj .
• Replace ci by the mean of its class Ci

• resulting classes = Ci .



k-means algorithm : example
2 classes

image 1 2 3

4 5 6 result



k-means algorithm : example I
3 classes



k-means algorithm : example II
3 classes



Thresholding / classification
(conclusion)

• fast labeling based on the image histogram
• often used as the initialization of a higher level

segmentation algorithm with take into account the location
of the pixels values

• relaxation filtering of the labels : The new label of a pixel p
is the most frequent label in a neighborhood of p.

• fuzzy classification : each value is given a probability to
belong to a class



3 - Segmentation : region based
approaches

Thresholding / Classification
Split and merge methods
Grouping pixels



Splitting
Top-down approach

Focusing attention : from a coarse scale to small details.

Idea
Initialization = under-segmentation (all the image, a region)
Split non homogeneous regions

Recursive splitting

1 Partition the region, for example from its histogram.
2 For each resulting region, if possible (and necessary) go

back to 1.

Problem : no undo



Quadtree 1/2

The image is coded as a tree - recursive definition :
- root : whole image
- if not homogeneous, the part of the image corresponding

to a node is split into 4 parts⇒ each node has 4 children.

Splitting segmentation method based on a uniformity criterion
(and not on the histogram).



Quadtree 2/2

• a quadtree is a particular case of pyramid (sequence of
graphs representing an image at different resolution levels)

Rigid Pyramid

• drawback : regular decomposition
• can be used as an initial partition for a merging method



Merging
Bottom-up approach

Idea
Initialization = over segmentation into uniform regions
Merge each pair of adjacent regions that verify a
homogeneity criterion.

⇒ to define a predicate Merge(Ri ,Rj) where Ri and Rj are
adjacent regions.
features of a region Ri :

µi : mean of the gray values
σi : standard deviation of the gray values
|Ri | : number of pixels/voxels
δRi contour and its size |δRi |
|δRi ∩ δRj | size of the shared boundary between Ri and Rj



Homogeneity criteria

Simple evaluation of the homogeneity of R = Ri ∪ Rj :
• σ of R is inferior to a threshold
• the amount of pixels of R which gray-level is outside

[µR − σR, µR + σR] is inferior to a threshold
• ?



Beveridge criterion

f (Ri ,Rj) = fsim(Ri ,Rj)
√

fsize(Ri ,Rj)fcont (Ri ,Rj)

• Similarity criterion :
fsim(Ri ,Rj) =

|µi−µj |
max(1,σi +σj )

• Size criterion :
fsize(Ri ,Rj) = min(2, min(|Ri |,|Rj |)

Topt
), Topt : fixed according to the

image size

• Shared boundary criterion :

fcont (Ri ,Rj) =


C(Ri ,Rj) if 1

2 ≤ C(Ri ,Rj) ≤ 2
1
2 if C(Ri ,Rj) <

1
2

2 else

C(Ri ,Rj) =
min(|δRi |,|δRj |)

4|δRi∩δRj |)



Data structure for merging : RAG
Region Adjacency Graph : non oriented graph where the nodes
correspond to the image regions
∃ an edge between 2 nodes if and only if the 2 corresponding
regions are adjacent.
Additional need : geometric description of the regions

1

0

3

0

1

4

3
4

Merging adjacent regions = shrinking an edge + (deleting
multiple edges)



Merging with adaptive pyramids 1/3

• hierarchical data structure for a specific merging algorithm :
merging groups of regions instead of regions pairs

• pyramid = linked graphs , each graph represents a partition
of the image (RAG).

Algorithm :

• Base of the pyramid : initial image, 8-connectivity.
• How to compute the next level :

1 Remaining nodes computation
2 Merging



Merging with adaptive pyramids 2/3

1 Remaining nodes computation. Two remaining nodes can’t
be adjacent, a non remaining node is adjacent to at least
one remaining node
Selection criterion (example) : local minimum of variance +
testing the rules

2 Merging. Each non remaining node is merged with a
remaining node (the most similar one)



Merging with adaptive pyramids 3/3

• iterations...

+ : fast reduction of the graph, the result is independent from
the way of traversing the image



Splitting and merging

• Any initial segmentation (for example fixed size blocks)
• Subdivide non uniform regions
∀i ∈ 1..n, P(Ri) false⇒ split Ri

• Merge non maximal regions
Ri adj Rj and Merge(Ri ,Rj) true⇒ merge Ri and Rj

Better results are obtained by alternating splitting and merging



Splitting and merging : example 1

Lenna After splitting After merging



Splitting and merging : example 1

Lenna Region selection Splitting



Splitting and merging : example 2

after splitting after merging



3 - Segmentation : region based
approaches

Thresholding / Classification
Split and merge methods
Grouping pixels



Region growing

• Seeds selection (seed = set of connected pixels in a
homogeneous part of the image)

• Seeds growing by adding similar connected pixels



Region growing
growSeed(seed)
R.init()
R.add(seed)
while R.hasNeighbor()

p = R.getNextNeighbor()
if pred(p, R)

R.add(p)

Example of pred(p,R) : |I(p)−µR |
σR

<= T
Possible to adapt the criterion to the region size :

w(|R|)
T1

|I(p)−µR |
σR

+ (1−w(|R|)
T2

σR∪p <= 1 |R|

w
1

0

Others : geometric criterion, simultaneous region growing



Watershed
Idea

Detection of the "catchment areas" on the norm of the gradient



Watershed
Example

image norm of the gradient elevation map basins



Watershed
Computation by immersion

• seeds : pixels with a low gradient value
• ith step : level↗⇒ new pixels (pi) of higher gradient

If pi is adjacent to an existing basin, add it to the basin
Else pi is a new seed (basin)

init

Gradient

image line



Watershed
Algorithm [Vincent,Soille91]

MASK (distance)0

UNLABELLED

WATERSHED

Label0

Label1

Label2

1

1

1

1

1

1

1

2

2

2

2

2

2

• Sort the pixels by increasing altitude
• Group pixels (pi) of same altitude

• processing order according to the distance to an existing
basin

• the label of each pi depends on its neighborhood

• If pi has no label (new basin), it takes a new label which is
spread to its non labeled neighbors



Watershed
Noise effect

many minima⇒many small regions (smooth the norm of the
gradient value to reduce this problem).



Wateshed
Markers

Avoiding over-segmentation with markers (user interaction)



Watershed
Edge detector

Watershed computed from the Laplacian value
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Edge-based segmentation

Edge detection from the gradient value

Image Gradient norm

Thresholded gradient norm



Gradient (2D image)

Gray-level at pixel (x , y) : I(x , y)

Gradient : ∇I(x , y) = (Gx ,Gy ) = (∂I(x ,y)
∂x , ∂I(x ,y)

∂y )

Gradient Norm : G =
√

G2
x + G2

y

Gradient Orientation : θ = arctan(
Gy
Gx

)

Simple computation : Sobel filter

y ↓→x

-1 0 1
-2 0 2
-1 0 1

-1 -2 -1
0 0 0
1 2 1



Gradient (3D image)

Gray-level at pixel (x , y , z) : I(x , y , z)

Gradient :
∇I(x , y , z) = (Gx ,Gy ,Gz) = (∂I(x ,y ,z)

∂x , ∂I(x ,y ,z)
∂y , ∂I(x ,y ,z)

∂z )

Gradient Norm : G =
√

G2
x + G2

y + G2
z

Gradient Orientation : θ = arctan(
Gy
Gx

)φ = arctan(Gx
Gz

)

Sobel mask for computing Gy (slices orthogonal to z)
y ↓
-1 -2 -1
0 0 0
1 2 1

-2 -4 -2
0 0 0
2 4 2

-1 -2 -1
0 0 0
1 2 1



Edge image
Gradient computation

• Simple filters : Prewitt, Sobel
• Canny filter : ∂I

∂x computed by convolution with

x 7→ Axe−
x2

2σ2 (Gaussian derivative). Similar for y .
• Deriche filter : ∂I

∂x computed by convolution with
x 7→ Axe−α|x |. Similar for y .

• Others : Shen-Castan filter...

NB : very similar in practice, direct extension to 3D



Edge image

Idea
local max of the gradient norm⇒ edge point

How to compute an edge image :

1 gradient estimation at each image point
2 extraction of the local maxima of the gradient norm in the

gradient direction
3 selection of the significant local maxima
4 edge closing by following paths on a ridge line in the

gradient norm image



Edge image
Extraction of the local maxima of the gradient norm

P(x, y)

P21

1

P1

gradient

direction

Gr : gradient norm at P
Gr1 : gradient norm at P1
Gr2 : gradient norm at P2

local maximum : Gr > Gr1 and Gr > Gr2

Gr1 and Gr2 are computed by linear interpolation



Edge image
Hysteresis thresholding of local maxima

Goal : limit the contours fragmentation

2 thresholds : Th > Tl

Are kept :
- local maxima with a value greater than Th

- local maxima with a value greater than Tl belonging to a
connected component of local maxima (≥ Tl ) containing at
least one value ≥ Th

Result : a binary image (edge image)



Edge image
Hysteresis thresholding : example 1

initial image local maxima of the gradient



Edge image
Edge closing (2D)

Idea : follow a ridge line in the image of the gradient norm from
each edge extremity

1 Find the extremity points

candidate points

extremity

2 Choice between candidate points to extend the edge :
weighted paths exploration
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5 - Other approaches for segmenting
an image

Deformables models
Level-set method
Segmentation as energy minimization



Deformable models
Idea : variational approach

• set of possible shapes
• an energy (real number) is associated to each shape
• minimum search

E(C) = Einternal(C) + Eexternal(C)

• External energies : correspond to edges in the image, user
interaction, a priori knowledge about the shape, . . .

• Internal energies : stretching and bending, keep the model
smooth during deformation, ease the extraction of a shape
with fuzzy or fragmented contours by filling the missing
information

very generic framework : segmentation, stereo-vision, object
tracking in videos, . . .



Active contours : 2D example

Active contour or Snake : iterative optimization

• initialization : a curve near the contour to extract
• iterations : deformations of the active contour until it

reaches a location with minimum energy.



Active contours : 2D example

"conceptual" shape extraction



Active contours : 3D example



Active contours : 2D formulation [Kass
et al. 87]

Parametric representation of the active contour :
C = {v(s) = (x(s), y(s)); s ∈ [0,1]}

Einternal(C) =

∫ 1

0
α

∣∣∣∣∂v(s)

∂s

∣∣∣∣2 +β

∣∣∣∣∂2v(s)

∂s2

∣∣∣∣2 ds

⇒ the active contour has a low internal energy when it is not
"too" stretched and not "too" bent.

Eimage(C) = λ
∫ 1

0 −|∇I(v(s))|2ds

⇒ the active contour has a low image energy when it is located
on a contour of the image.
=⇒ find the contour that minimizes the sum.



Active surfaces : 3D formulation
[Terzopoulos et al. 91]

Parametric representation of the active surface :
S = {v(r , s) = (x(r , s), y(r , s), z(r , s)); (r , s) ∈ [0,1]2}

Einternal(S) =

∫ 1

0

∫ 1

0
αr

∣∣∣∣∂v(r , s)

∂r

∣∣∣∣2 + αs

∣∣∣∣∂v(r , s)

∂s

∣∣∣∣2 +

βrs

∣∣∣∣∂2v(r , s)

∂s∂r

∣∣∣∣2 + βrr

∣∣∣∣∂2v(r , s)

∂r2

∣∣∣∣2 + βss

∣∣∣∣∂2v(r , s)

∂s2

∣∣∣∣2 drds

Eimage(S) = λ
∫ 1

0

∫ 1
0 −|∇I(v(r , s))|2drds



Active contours : how to compute the
2D evolution

1- The contour is digitized in N points :
i = 0..N − 1,X [i] = x( i

N ) or X (ih) with h = 1
N .

X =

 . . .
xi
. . .

 Y =

 . . .
yi
. . .


External energy : forces deriving from the energies

fx (X ,Y ) =

 . . .
∂|∇I|2
∂x (xi , yi)
. . .

 fy (X ,Y ) =

 . . .
∂|∇I|2
∂y (xi , yi)

. . .





Active contours : how to compute the
2D evolution

Minimizing the energy is equivalent to solve (Euler-Lagrange) :
−αx ′′(s) + βx (4)(s) = ∂|∇I(v)|2

∂x

−αy ′′(s) + βy (4)(s) = ∂|∇I(v)|2
∂y

2- Approximation with finite differences :

AX = fx (X ,Y )
AY = fy (X ,Y )

A = 1
h2



6 β

h2 + 2α −4 β

h2 − α
β

h2 0 · · ·

−4 β

h2 − α 6 β

h2 + 2α −4 β

h2 − α
. . .

. . .

β

h2 −4 β

h2 − α 6 β

h2 + 2α
. . .

. . .

0
. . .

. . .
. . .

. . .
...

. . .
. . .

. . .
. . .


.



Active contours : how to compute the
2D evolution

3- Iterative resolution : successive locations of the contour

the parameter γ is the inverse of the time step but can be
interpreted as a friction coefficient.

From the initial location (X0,Y0). Iterations :

Xt = (A + γI)−1(γXt−1 + fx (Xt−1,Yt−1))
Yt = (A + γI)−1(γYt−1 + fy (Xt−1,Yt−1))

The contour is deformed until it reaches an energy minimum.



5 - Other approaches for segmenting
an image

Deformables models
Level-set method
Segmentation as energy minimization



Level-set method : tracking interfaces

• Origin. In physics, modeling of front propagation. Ex :
grass fire

• Model. The evolution of the interface is deduced from the
evolution of the entire environment [Osher and Sethian 88].

⇒ interface = isopotential in a potential field.

• Segmentation. matching model/image [Malladi et al. 93],
[Caselles et al. 93]

• Aim. avoiding topological problems, easy nD extension



Evolving environment : a moving
hyper-surface (I)

• modeling the evolution of a curve C(t) in the plane
• let f (t ,x) : [0,∞[×R2 → R be a scalar function in the

plane, such that f (t ,x) = ±d , with d distance from x to
C(t).
⇒ f is a sort of signed distance map to C(t).

• S(t) = {(x, f (t ,x))} is an (hyper-)surface of R3

f (t , ·) is the elevation map at time t .
• S(t) is cut by the plane z = 0 to obtain C(t).



Evolving environment : a moving
hyper-surface (II)

• C(t) = 0 level of the surface S(t)

$C(t)$ $S(t)$



Evolving environment : a moving
hyper-surface (III)

• The hyper-surface S(t) never changes topology, C(t) can
change topology.



Evolving environment : a moving
hyper-surface (IV)

⇒ Deform S (and thus f ) instead of C.



hyper-surface = distance map to the
contour

• f (t ,x) : altitude at point x according to the time t
= signed distance to the contour C(t)
• process where : evolution of C ⇔ evolution of f



Evolution : principles

• The front inflates or deflates in the direction of its normal
vector.

• The hyper-surface S(t) is deformed similarly to the front
C(t).
⇒ Each level of the function f moves similarly to the 0 level

(C(t)).
• The front C(t) tends to fill the holes
⇒ the front evolves faster when its curvature is very negative
⇒ the front is smoothed

• The front slows down when it reached strong edges in the
image
⇒ speed of the front = mix of local curvature and local image

edges



Evolution : equation

∂C
∂t

= A(t)n(t)⇔ ∂f
∂t |x(t)

= −A(t)︸︷︷︸
Â|x(t)

|∇f|x(t)|

• Let x(t) be a front/contour point moving at speed A(t).
• propagation in the direction the front normal vector n(t).
• the point remains on the front : ∀t , f (t ,x(t)) = 0
• By differentiating : df

dt = ∂f
∂t + x′ · ∂f

∂x
• We have x′(t) = A(t)n(t) and ∇f aligned with n at point

x(t).
• Thus df

dt = 0 = ∂f
∂t + A|∇f | at any point x(t).

• Valid equation on all the contour C(t).

∂f
∂t |x(t)

= −A(t)|∇f|x(t)|



Solving the evolution equation
• A is known along all the contour (see below).
• A is extended at any point of the plane : Â.

• Â(x) = A(u) where u is the point of C(t) which is closest to
x.

u

v

C(t)

• Finite differences
• regular grid of nodes ij separated by a distance h.
• f n

ij approaches the solution f (n∆t , ih, jh), ∆t time step.

• We can write :
f n+1
ij −f n

ij

∆t = −Âij

∣∣∣∇ij f n
ij

∣∣∣.
• ∇ij : gradient operator

• The distance function f has to be frequently reinitialized
(the contour is extracted and the distances recomputed).



Front speed

• A(x) = −g(x)(A0 + A1κ(x))
• A0 : constant term (to propagate the front in the

environment)
• A1κ(x) : removes the locations of high curvature.

We have : κ(x) = div ∇f (x)
|∇f (x)| =

fxx f 2
y−2fx fy fxy +fyy fx2

(f 2
x +f 2

y )
3
2

• g(x) : slows the front on the image contours.
Examples : g(x) = 1

1+|∇I|2 , g(x) = 1
1+|∇Gσ?I|2



Example : 2D segmentation

images from D Lingrand (http ://www.polytech.unice.fr/ lingrand)



Example : 3D segmentation

• Thighs segmentation in a RMI (Malladi,Sethian)



Conclusion

• Implicit model
• Easy topology changes
• Link with classical deformable models (contour smoothing,

use of the image edges)
• interesting for 3D images.
• many variants.



Limits

• Costly computation (distance from the whole space to the
interface)
⇒ computation window (narrow band)

• Constant inflation or constant deflation
• End of the evolution not determined
• Not easy to add new constraints (user interaction)



5 - Other approaches for segmenting
an image

Deformables models
Level-set method
Segmentation as energy minimization



Segmentation as energy minimization

Segmentation = minimizing the energy of a partition of the
image
(Ri) set of regions, partition of X

E(∪Ri) =
∑

i

Eintra(Ri)︸ ︷︷ ︸
↘ with homogeneity

+
∑

i,j/Ri adj. Rj

Einter(Ri ,Rj)︸ ︷︷ ︸
↘ with heterogeneity

(1)

• This problem (maximizing intra regions homogeneity and
inter regions heterogeneity) is ill posed.

⇒ Problem regularization by adding constraints : length of the
contours between regions, curvatures along contours,...



Mumford-Shah Model[89] (1/2)

• Idea : approximate the image I by a "smooth" function u.

E(u, Γ) = µ2
∫∫

R
(u − I)2︸ ︷︷ ︸

matching to image data

+

∫∫
R−Γ
‖∇u‖2 + ν|Γ|︸ ︷︷ ︸

regularization

.

(2)

• R : regions, Γ : contours between regions.
• µ, ν tune the terms contributions.
• Simplification : u is piece-wise constant.

E(u, Γ) =
∑

i

µ2
∑
Ri

( u︸︷︷︸
=µi

−I)2 + ν|Γ| (3)



Mumford-Shah Model[89] (2/2)

• Finding the best contour Γ is difficult.
• Many heuristic approaches. Examples :

• by splitting and merging in quadtrees [Ackahmiezan93]
• by a level-set approach [Chan01]



Segmentation in a graph

• Image domain seen as a graph (V ,A), (usually the grid)
• segmentation = labeling of the graph vertices by

minimizing an energy value E
• E = sum of energies on vertices and edges

E(λ) =
∑
p∈V

Up(λp)

︸ ︷︷ ︸
matching to image data

+
∑
{p,q}∈A

Up,q(λp, λq)

︸ ︷︷ ︸
regularization

.

(4)

with λ a labeling of the graph vertices.



Examples of energies definitions I

• Image binarization : 2 labels (0 and 255) and

Up(λp) = |I(p)− λp|
Up,q(λp, λq) = −β if λp = λq

= β else

β ↗ = increasing regularization

β = 0 β = 5 β = 50



Examples of energies definitions II
• Segmenting into k known classes (µi , σi)

Up(λp) =
(I(p)− µi)

2

2σ2
i

Up,q(λp, λq) = −β if λp = λq

= β else

Example : 3 classes, (µi , σi) = ((0,20), (160,8), (250,10))

β = 0 β = 3 β = 30



Energy optimization

Finding the minimum of E(λ)

• Heuristics : graph cuts [Boykov01]

• Stochastic approaches and link with Markov fields :
algorithms that compute the global minimum (theoretically)



Conclusion

• Application domains : binarization, segmentation,
restoration, video tracking,...

• Applicable to any graphs and not only to adjacency grids of
image points

• Intuitive energy formulation
• But the tuning of energies and parameters for a given

application is difficult.
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A data structure for image
segmentation

How to represent an image partition

Image partition⇒ 2 types of data

• Geometry : region shape
- set of pixels/voxels
- region containing a given pixel/voxel
- boundaries / boundary of a region

• Topology : neighborhood, inclusions
- set of the regions that are adjacent to a given region
- region included in a given region
- including region



Representation of a 2D partition
Inter-pixels boundaries and combinatorial maps

• Partition geometry
- segment : maximum path between 2 regions (shared

boundary).
- node : intersection of segments

The outside of the image is considered as a region.
• Partition topology : planar graph with a matching

node/vertex, segment/edge, region/face

Reminder : a permutation is a bijection from a set E to E(
1 2 3 4 5
3 5 1 2 4

)
cycles : (1,3)(2,5,4)



2D combinatorial map

The partition topology is represented by a combinatorial map :
2 permutations (σ, α)
Remark : each edge of the graph is decomposed into two
half-edges (dart)
Permutation σ represents the vertices (a vertex is encoded as
the sequence of darts encountered when turning around it in
the positive orientation)
Permutation α represents the edges (= adjacency relation
between faces). Let b be a dart, α(b) = −b. Each dart belongs
to only one face (the one at its right).
The cycles of permutation φ = σ ◦ α correspond to the faces. A
function λ labeling the faces is obtained by associating a
constant to each cycle of φ.
λ(b) = face to which belongs b.
λ−1(face) = a dart belonging to the face.



Example of 2D combinatorial map

Topologie
1-2 -1 2

5 -5

-63

-4 64-3

Géométrie

σ = (3,−2,1)(−6,−1,2)(−5,−4,6)(5,−3,4)
σ =(
−6 −5 −4 −3 −2 −1 1 2 3 4 5 6
−1 −4 6 4 1 2 3 −6 −2 5 −3 −5

)
α = (1,−1)(2,−2)(3,−3)...



Example of 2D combinatorial map

1-2 -1 2

5 -5

-63

-4 64-3

F1

F2

F3

F(infini)

φ =

(
−6 −5 −4 −3 −2 −1 1 2 3 4 5 6
−5 −3 5 −2 −6 3 2 1 4 6 −4 −1

)
φ = (−4,5)︸ ︷︷ ︸

f2

(4,6,−1,3)︸ ︷︷ ︸
f1

(1,2)︸ ︷︷ ︸
f∞

(−5,−3,−2,−6)︸ ︷︷ ︸
f3



From 2D to 3D

additional involution : adjacency relation between volumes
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