Part 2 : Digital Geometry for Image Analysis

Anne Vialard

LaBRI, Université de Bordeaux

Contents

- 1 Distance Map
- 2 Squeletonization
- 3 Digital geometry tools for analyzing object boundaries
- 4 Geometric features of a digital region

Discrete distance

A discrete distance is a function $d: \mathbb{Z}^n \times \mathbb{Z}^n \to \mathbb{N}$ verifying $\forall P, Q, R \in \mathbb{Z}^n$

- $d(P, Q) \ge 0$ [positive]
- $d(P,Q) = 0 \Leftrightarrow P = Q$ [definite]
- d(P, Q) = d(Q, P) [symmetry]
- $d(P,Q) \le d(P,R) + d(R,Q)$ [triangle inequality]

Two discrete distances:

•
$$d_1(P,Q) = \sum_{i=0}^{n-1} |P_i - Q_i|$$

•
$$d_{\infty}(P,Q) = \max_i \{|P_i - Q_i|\}$$

In 2D : d_4 and d_8 In 3D : d_6 and d_{26}

very different from euclidean distance...

Chamfer distances

- An integer value is associated with each elementary move in a given neighborhood. The elementary moves and their values (cost) are defined by a mask.
- The distance between two points is the cost of the minimum cost path linking the two points and composed of available elementary moves.

Example: d₄ vertical and horizontal moves of cost 1

2D chamfer masks

	11		11	
11	7	5	7	11
	5	0	5	
11	7	5	7	11
	11		11	

 $d_{5,7,11}$

3D chamfer masks

	f		f	
f	е	d	е	f
	d		d	
f	е	d	е	f
	f		f	

f	е	d	е	f
е	С	b	С	е
d	b	a b		d
е	С	b	С	е
f	е	d	е	f
		4 /		

	d		d	
d	b	а	b	d
	а	0	а	
d	b	а	b	d
	d		d	

$$z=-1 / z=1$$

	а	b	С	d	е	f
d_1	1					
d ₁₈	1	1				
quasi-euclidean 3×3	1	$\sqrt{2}$				
optimal 3×3	0.92644	1.34065	1.65849			
quasi-euclidean 5×5	1	$\sqrt{2}$	$\sqrt{3}$	$\sqrt{5}$	$\sqrt{6}$	3

Distance map: definition

Let $R \subset \mathbb{Z}^n$ be a set of points called reference points. The corresponding *distance map* is obtained by associating with each point its distance to the closest reference point.

$$\left\{ \begin{array}{l} \mathbb{Z}^n \to \mathbb{N} \\ P \to \textit{min}(\textit{d}(P, P_r), P_r \in \textit{R}) \end{array} \right.$$

Sequential computation with half-masks I

2D chamfer distances

Principle: spread of information

- Initialization : 0 for reference points, ∞ elsewhere
- First scan of the image from left to right and from top to bottom by using the first half mask.

Computation: $DM(x, y) = min(DM(x + i, y + j) + m_{i,j})$ for each point (i, j) of the half-mask.

_	 j 🛉			
ı	ı		_	(i,j) = (-1,1)
	i			(i,j) = (0,1)
ŀ	1			(i,j) = (1,1)
	i _		- +	(i,j) = (-1,0)
Į]	i	(i,j) = (0,0)

Sequential computation with half-masks II

2D chamfer distances

 Second scan of the image from right to left and from bottom to top same computation with the second half mask.

Computation example (d_8)

Balayage avant

∞	∞	∞	∞	∞		1	2
∞	∞	∞	∞	1	1	1	2
∞	∞	∞	2	2	2	2	2
∞		1	2	3	3	3	3
1	1	1	2	3	4	4	4
2	2	2	2	3	4	5	5

Balayage arrière

	0	1	
1	1	1	

3	3	3	2	1		1	2
2	2	2	2	1	1	1	2
1	1	1	2	2	2	2	2
1		1	2	3	3	3	3
1	1	1	2	3	4	4	4
2	2	2	2	3	4	5	5

To fill in

Sequential computation with half-masks

3D chamfer distances

```
// Forward pass
for (z=0; z < S_z; z++)
  for (y=0; y < S_v; y++)
    for (x=0; x < S_x; x++)
     DM(x, y, z) = min_{\forall i,j,k \in f_0} (DM(x+i,y+j,z+k) +
m[i,j,k]
// Backward pass
for (z = S_z - 1; z > 0; z -)
  for (y = S_v - 1; y \ge 0; y -)
    for (x = S_x - 1; x \ge 0; x-)
     DM(x, y, z) = min_{\forall i,i,k \in b_0}(DM(x+i,y+j,z+k) +
m[i,j,k]
```

SED: Danielson Algorithm (2D) I

Question: How to efficiently compute an euclidean distance map?

- Initialization : 3 integer values dx, dy and d2 are associated with each pixel. The vector (dx, dy) gives the location of the current point relatively to the closest reference point known at a given moment. The squared distance $d2 = dx^2 + dy^2$ can also be stored to avoid recomputation.
- Top to bottom pass: for each line
 - forward pass : comparison with upper point / left point
 - backward pass : comparison with right point
- Bottom to top pass: for each line
 - backward pass : comparison with lower point / right point
 - forward pass : comparison with left point

Problem: the result may be wrong (in rare cases)

SED: Danielson Algorithm (2D) II

```
void Update (int x, int y, int deltaX, int deltaY)
 int d2 = DM[x+deltaX][y+deltaY].d2
        + 2*deltaX*DM[x+deltaX][y+deltaY].dx
        + 2*deltaY*DM[x+deltaX][y+deltaY].dy + 1;
 if (d2 < DM[x][y].d2)
  DM[x][y].dx = DM[x+deltaX][y+deltaY].dx + deltaX;
  DM[x][y].dy = DM[x+deltaX][y+deltaY].dy + deltaY;
  DM[x][y].d2 = d2;
```

SED: 3D Algorithm

SED: 3D Algorithm

Detail of a forward sub-step

```
for (z=0; z < S_z; z++)
// Forward pass F1
   for (y=0; y < S_v; y++)
     for (x=0; x < S_x; x++)
       p=(x, y, z)
       pos = argmin_i || vec[p + dir_i] + dir_i ||
       vec[p] = vec[p + dir_{pos}] + dir_{pos}
       DM(x, y, z) = ||vec[p]||
// Forward pass F2
// Forward pass F3
// Forward pass F4
```

2D exact euclidean distance I

$$DM(i, j) = min\{(i - x)^2 + (j - y)^2 : 0 \le x < W, 0 \le y < H, (x, y) \text{ reference point } \}$$

1 Line processing: for a line j

$$L(i,j) = min_x\{|i-x| : 0 \le x < W, (x,j) \text{ reference point }\}$$

2 Column processing

$$DM(i,j) = min_y \{L(i,y)^2 + (j-y)^2 : 0 \le y < H\}$$

2D exact euclidean distance II

The second part of the algorithm can be linearized by computing the inferior envelop of the parabolas

$$\mathcal{P}_{y}^{i}(j) = L(i, y)^{2} + (j - y)^{2}$$

Geodesic distance

Domain: connected region R

Let $P \in R$ be the origin point, any other point $Q \in R$ is labeled with its *geodesic distance* to P, length of shortest path linking P to Q without leaving R.

Algorithm with a chamfer mask w:

- Data structure: set of queues F_i, all the points in queue F_d
 are at distance d from point P.
- Initialization : Add P to F₀
- At each step :
 - Pull Q out of $F_{d_{min}}$ (non empty queue with minimum index)
 - For each neighbor N of Q, push N in the queue $F_{d_{min}+w(\vec{QN})}$

Contents

- Distance Map
- 2 Squeletonization
- Oigital geometry tools for analyzing object boundaries
- 4 Geometric features of a digital region

Skeletonization

Aim: shape encoding, simplified representation for shape analysing, recognition and matching (topology preservation, size)

2D binary skeleton

Definition (Chassery):

The skeleton S_R of a 2D region R verifies :

- $\mathbf{0}$ $S_R \subset R$
- $2 S_R$ has the same number of connected components and the same number of holes as R
- \odot S_R is minimal for condition 2
- 4 The elongated parts of R give the curves of S_R

Remark: a binary skeletonization is not reversible

Computation by thinning

"Non-essential" points are removed

- P simple point of $R\Leftrightarrow$ number of connected components of $R-\{P\}=$ number of connected components of R and number of connected components of $\overline{R}\cup\{P\}=$ number of connected components of \overline{R}
- P An endpoint of R ⇔ P has only one neighbor in R
- ⇒ Idea : remove simple points that are not endpoints

 The points to be considered belong to the border of the object.

Thome algorithm

Configurations for a point located north of the shape:

	0		0	0			0	0		0	0	0	0	
1	1	1	0	1	1	1	1	0	1	1	0	0	1	1
	1			1			1		1	0	0	0	0	1
1	0	0	0	0	1	0	0	0	0	0	0			
1	1	0	0	1	1	0	1	0	0	1	0			
	^	Λ	\wedge	Λ	i		4	4	4	4				

Algorithm:

- Processing of the "north" points: all the points corresponding to the configurations are marked THEN all the marked points are removed
- Same processing for South, East and West
- Iterations until no point can be removed

Thome algorithm: example

Pruning algorithms

Simple point: local 2D characterization

Connectivity number (2D) : $T_k(P,0) = |C_k^P[N_8^*(P) \cap O]|$ where P discret point, O set of discrete points, $C_k^P(X)$ set of k-connected components of X k-adjacent to P. $(k, \bar{k}) = (8, 4)$ connectivities object/background

Point P is a *simple point* of the object O if and only if $T_k(P, O) = 1$ and $T_{\bar{k}}(P, \bar{O}) = 1$

Other results:

- $T_k(P, O) = 0 \Leftrightarrow P$ is an isolated point
- $T_{\bar{k}}(P,\bar{O}) = 0 \Leftrightarrow P$ is an interior point
- $T_{\bar{k}}(P,\bar{O}) \neq 0 \Leftrightarrow P$ is a boundary point

Thinning: first algorithm I

```
ES = set of simple points of O
Until ES is not empty
     E = empty set
     For each P in ES
          If P is a simple point of O
              Remove P from O
              For each 0 in N(P) \cap O
                   Add O to E
     ES = empty set
     For each Q in E
          If Q is simple for O
              Add O to ES
```


Thinning: directionnal algorithm

```
ES = set of simple points of O
While ES is not empty
     E = empty set
     For t in [North, South, East, West]
          For each P in ES such that type (P) =t
              If P is a simple point of O and
              P is not an end point
                   Remove P from O
                   For each 0 in N(P) \cap 0
                       Add O to E
     ES = empty set
     For each O in E
          If Q is simple for O
              Add O to ES
```

Thinning: algorithm based on a priority function

Repeat

Remove a point P of O such that P is a simple point of O and that $\mathcal{P}\left(\mathbf{P}\right)$ minimum Until no more possible removal

Example of priority function: distance map to the background

Thinning: 3D extension I

Preserve the number of connected components of the object and of its complement set + preserve the tunnels.

3D number of connectivity: similar to 2D

simple point

$$T_6(P, O) = T_{26}(P, \bar{O}) = 1$$

1D isthmus

$$T_6(P, O) = 2$$

2D isthmus

$$T_{26}(P,\bar{O})=2$$

simple point: similar to 2D

Thinning: 3D extension II

- end point : 2 more types
 - 1 extremity of a curve : adjacent to only one object point
 - 2 1D isthmus
 - 3 2D isthmus

Skeletonization: medial axis

- Discrete ball of center P (integer coordinates) and of radius r (integer) for the distance $d: B(P, r) = \{Q \mid d(P, Q) \le r\}$
- Let R be a discrete region and $P \in R$, $r_P = d(P, \overline{R}) 1$
- The medial axis of region R is the set of maximal balls covering R:

$$AM(R) = \{ P \in R \mid \forall Q \in R, B(P, r_P) \not\subset B(Q, r_Q) \}$$

Computation for d_4 and d_8 :

Let DM be the distance map to the background. The medial axis is composed of the points corresponding to the local maxima of $DM: P \in AM(R) \Leftrightarrow \forall Q \in R \cap N_8(P), r_P \geq r_Q$ General algorithm:?

Contents

- Distance Map
- 2 Squeletonization
- 3 Digital geometry tools for analyzing object boundaries
 Regions and their boundaries
 Digital lines and planes
 Geometric features of a digital boundary
- Geometric features of a digital region

3 - Digital geometry tools for analyzing object boundaries

Regions and their boundaries

Digital lines and planes

Geometric features of a digital boundary

2D digital contour : tangent

2D digital contour : length / perimeter

2D digital contour : curvature

3D Extension

Path

- A k-connected path is a sequence of integer points (P₀, P₁, ..., P_n) such as ∀i ∈ 1..n, P_{i-1} and P_i are k-connected.
- Freeman's code: The path $(P_0, ..., P_n)$ is represented by $(P_0, d_0, ..., d_{n-1})$. The direction d_i encodes the elementary move from P_i to P_{i+1} .

Connected component / region

- Connected set: set of integer points E such that $\forall P, Q \in E$, \exists a path $(M_0, ..., M_n)$ verifying $M_i \in E$, $M_0 = P$, $M_n = Q$.
- Connected component of a set of integer points: maximal connected set (or equivalence class for the adjacency relation).
- Example : set composed of one 8-connected component (of two 4-connected components)

2D boundary, first definition I

The *boundary* of an 8-connected (respectively 4-connected) region *R* is the set of points of *R* having at least one 4-neighbor (resp. 8-neighbor) not belonging to *R*.

 \Rightarrow The boundary is composed of 8-connected (resp. 4-connected) paths.

Problems:

2 adjacent region share no boundary points

2D boundary, first definition II

- An 8-connected boundary don't split the 2D grid into two distinct 8-connected components.
- A 4-connected boundary can split the 2D grid into more than two distinct 4-connected components.

2D boundary, inter-pixel definition

Each integer point of the region is considered as a pixel (unitary square of side 1 centered on the point).

The inter-pixel boundary is a *sequence of edges* of pixels on the border of the region. This boundary can be represented by a 4-connected digital path (translated in the half-integer grid).

Tracking an inter-pixel boundary I

8-connected object

Hypothesis: the region is at the left side of the contour.

- Search for the first point (x, y) by scanning the image
- Initialize the result with 23 and the current direction d=3

 Search for the next direction : at each step one or two points are tested

End: reaching the first point.

Tracking an inter-pixel boundary II

Algorithm

$$\Delta x = \{1, 0, -1, 0\}$$

$$\Delta y = \{0, -1, 0, 1\}$$
 If $P = \{x + \Delta x[d] + \Delta x[d-1], y + \Delta y[d] + \Delta y[d-1]\}$ point of the object
$$d = d-1$$

$$(x, y) = P$$
 Else if $P = \{x + \Delta x[d], y + \Delta y[d]\}$ point of the object
$$(x, y) = P$$
 Else
$$d = d+1$$

Add d to the result

Tracking the border of a region I

8-connected object

Search for the first point (x, y) by scanning the image, dir = 4Search for the next point :

Add dir to the Freeman's code

$$dir = MAJ[dir]$$
 ($MAJ = \{6, 6, 0, 0, 2, 2, 4, 4\}$)

End: reaching the two first points.

Tracking the border of a region II

Some theory I

- Digital space: (V, W) where V is the set of integer points (pixels in 2D, voxels in 3D) and W an adjacency relation between integer points (represented by pixel edges in 2D, voxel faces or surfels in 3D)
- Surface S: non empty subset of W
 - $II(S) = \{u/\exists v \in V \text{ such that } (u, v) \in S\}$
 - $IE(S) = \{v/\exists u \in V \text{ such that } (u, v) \in S\}$
 - $I(S) = \{ p \in V / \exists \text{ a } W\text{-path from } p \text{ to } II(S) \text{ not intersecting } S \}$
 - $E(S) = \{ p \in V / \exists \text{ a } W\text{-path from } p \text{ to } IE(S) \text{ not intersecting } S \}$
- A surface is almost-Jordan if and only if any W-path from a point of II(S) to a point of IE(S) intersects S.
 ⇔ I(S) ∩ E(S) = ∅
- A surface is $\kappa\lambda$ -Jordan if and only if it is almost-Jordan and its interior is κ -connected and its exterior is λ -connected.

Some theory II

• Boundary of O and Q subsets of V: $\partial(O, Q) = \{(u, v) \in W/u \in O \text{ and } v \in Q\}.$

In a binary image:

- S is a κλ-border if there exists a black κ-connected object O and a white λ-connected object Q such that S = ∂(O, Q).
- Jordan pair :
 - 2D: (8,4), (8,8)
 - 3D: (18,6), (26,6), (14,6)

For a Jordan pair (κ, λ) , any $\kappa\lambda$ -border is $\kappa\lambda$ -Jordan.

3D boundary tracking I

```
Binary image I

Bel : surfel (u, v) such that u is black and v is white Set of the bels of I : B(I)

Initial bel : b_0

Bel adjacency : \beta
```

Algorithm

```
E : set of processed bels Q : queue of bels adjacent to E and to be processed L : result list Put b_0 in Q and in E While Q is non empty Get b out of Q and put it in L For each b' \in \mathcal{B}(I) such that \beta(b,b') If b' \notin E Put b' in E and in Q
```

3D boundary tracking II

3 - Digital geometry tools for analyzing object boundaries

Regions and their boundaries

Digital lines and planes

Geometric features of a digital boundary

2D digital contour : tangent

2D digital contour : length / perimeter

2D digital contour : curvature

3D Extension

Digital line - Definition

Digitization of a continuous line

Rosenfeld's characterization (74)

An 8-connected path C is a digital line segment if and only if it verifies the cord property:

$$\forall P,Q \in \textit{C}, \forall m \in [P,Q], \exists M \in \textit{C}/\textit{max}(|\textit{x}_{\textit{M}} - \textit{x}_{\textit{m}}|,|\textit{y}_{\textit{M}} - \textit{y}_{\textit{m}}|) < 1$$

Freeman's characterization (74)

An 8-connected path is a digital line segment if and only if

- Its Freeman code contains at most 2 different elementary directions which differ by 1 modulo 8.
- If the code is composed of two directions, one of them occurs singly.
- Successive occurrences of the singly occurring direction are as uniformly spaced as possible.

Pattern of a digital line

A digital straight line segment with a rational slope is composed of a repeated pattern

Example : line of slope
$$p = \frac{3}{11} = \frac{1}{3 + \frac{1}{1 + \frac{1}{2}}}$$

Arithmetic definition I

[Réveillès 91]

Line's characteristics : $(a, b, \mu) \in \mathbb{Z}^3$, $\omega \in N$

slope : $\frac{a}{b}$, lower bound : μ , thickness : ω

The line (a, b, μ, ω) is the set of integer points verifying :

$$\mu \leq \mathbf{a}\mathbf{x} - \mathbf{b}\mathbf{y} < \mu + \omega$$

Leaning lines : $ax - by = \mu$ and $ax - by = \mu + \omega - 1$

Leaning points: integer points belonging to the leaning lines.

$$\omega = \max(|a|,|b|) \Rightarrow$$
 8-connected line $\omega = |a| + |b| \Rightarrow$ 4-connected line

Arithmetic definition II

- ___ Upper leaning line
- Lower leaning line
- o Leaning point

Recognition algorithm I

Incremental algorithm for the recognition of a digital straight segment along an 8-connected path [Debled 95]

Idea: The points of the path are added one by one. At each step the characteristics of the recognized segment are updated.

Let $S = (P_0, ..., P_n)$ be a line segment of the 1rst octant and M the point to be added

Is S + M a line segment? If it is, which are its characteristics?

Necessary condition : M is a neighbor of P_n and the elementary direction from P_n to M is compatible with the two directions composing $S \Rightarrow d(P_n, M) = O$ or 1

Recognition algorithm II Case 1 : $\mu \le ax_M - by_M < \mu + b$

M extends S (same characteristics)

U upper leaning point with minimum abscissa *U'* upper leaning point with maximum abscissa *L* lower leaning point with minimum abscissa *L'* lower leaning point with maximum abscissa

Recognition algorithm III

Case 2.1 :
$$ax_M - by_M = \mu - 1$$

S+M is a segment which characteristics are different from S's: the slope of S+M is **greater** than the slope of S.

Recognition algorithm IV

Case 2.2 :
$$ax_{M} - by_{M} = \mu + b$$

S + M is a segment which characteristics are different from S's: the slope of S + M is **lower** than the slope of S.

Recognition algorithm V

Case 3 :
$$ax_M - by_M < \mu - 1$$
 or $ax_M - by_M > \mu + b$

S + M is not a line segment.

Recognition algorithm VI

Adding a point

```
remainder = ax_M - by_M
If (\mu < remainder < \mu + b)
 If (remainder == \mu)
  M is an upper leaning point.
    U' = M
 If (remainder == \mu + b - 1)
  M is a lower leaning point
    I' = M
Else if (remainder == \mu - 1)
  The slope increases
  I = I'
  U' = M
  a = y_M - y_U
  b = x_M - x_H
  \mu = ax_M - by_M
```

Recognition algorithm VII

```
Else if (remainder == \mu + b)

The slope decreases
U = U'
L' = M
a = y_M - y_L
b = x_M - x_L
\mu = ax_M - by_M - b + 1
Else M can not be added to the segment
```

Recognition algorithm VIII

Global algorithm

```
(x, y) = (1, code(0))
(a, b, \mu) = (y, 1, 0)
U = L = (0, 0)
U' = L' = (1, y)
i = 1
Repeat
x = x + 1
y = y + code(i)
i = i + 1
Until add-point(x, y)
```

Direct use: vectorization I

Iterative approach

Remark: loss of information

Other vectorization algorithm I

- iterative approach based on an error measure (distance criterion, angular criterion)
- recursive approach: find the most significant point between 2 contour points (Douglas-Peuker, curvature computation)

4-connected case I

Test if a point M can be added to a line segment:

- (1) M is between the leaning lines: OK
- (2) $ax_M by_M = \mu 1$: M is "above but not too much"

(3) $ax_M - by_M = \mu + a + b$: M is "under but not too much"

Dual space I

Another approach for recognizing a 2D digital line segment

Dual space II

Another approach for recognizing a 2D digital line segment

Digitization OBQ of
$$ax - y + b = 0, 0 \le a < 1$$
: set of the points verifying $0 \le ax - y + b < 1$

A set of points (x_i, y_i) belonging to a digital line is represented in the dual space by the intersection of strips defined by $0 < x_i a + b - y_i < 1$

Segment recognition = verify if a set of linear constraints is valid

Incremental linear algorithm based on this idea

Digital plane I

Arithmetic definition

The *plane of characteristics* $(a, b, c, \mu, \omega) \in \mathbb{Z}^5$ is the set of integer points verifying :

$$0 \le ax + by + cz + \mu < \omega$$

(a, b, c): normal vector

 μ : location in the plane

 ω : thickness

$$\omega = max(|a|, |b|, |c|) \Rightarrow$$
 naive plane (18-connected)

$$\omega = |a| + |b| + |c| \Rightarrow$$
 standard plane (6-connected)

Digital plane II

Example: naive plane (3, 7, 37, 0)

Digital plane: recognition

[Sivignon 04]

V set of voxels containing (0,0,0)

Question: what is the set S of parameters (α, β, γ) , $0 \le \alpha \le \beta < 1$, $0 \le \gamma \le 1$ such that all the voxels of V belong to the OBQ digitization of $\alpha x + \beta y + z + \gamma = 0$?

coordinates space	parameter space
plane	point
point	plane
a voxel of a digital plane	area between 2 parallel planes

Computing S: half-spaces intersection at each voxel addition Result = polyhedron, polygon, line segment or empty set.

Polyhedrization I

First approach : split the surface in digital plane pieces + compute a polygonal curve for each border

Other approach : simplify the result of the marching cube algorithm

Polyhedrization II

3 - Digital geometry tools for analyzing object boundaries

Regions and their boundaries Digital lines and planes

Geometric features of a digital boundary

2D digital contour : tangent

2D digital contour : length / perimeter

2D digital contour : curvature

3D Extension

Geometry of a digital boundary I

Issue

An infinite number of shapes have the same digitization ⇒ there is not ONE unique value of the geometric features

Hypothesis on the underlying real boundary: smooth curve with bounded curvature for example

Estimators: length/area, tangent/tangent plane, curvature

Properties:

- asymptotic convergence
- good estimation at low resolution
- preservation of the shape properties (convexity for example)

Tangent: basic definition I

$$C = (P_0, ..., P_n)$$

 $\vec{t_i}$ tangent vector at the ith point of C
 $\hat{\theta_i}$ orientation of $\vec{t_i}$

First approximation : $\vec{t}_i = P_i \vec{P}_{i+1}$

Different possible orientations: 8 if 8-connected contour

Tangent: median filtering I

Window of size m around the current point P_i .

$$\vec{V}_{i,i+j} = P_i \vec{P}_{i+j}$$
 $j = 1..m$

$$\vec{V}_{i,i+j} = \vec{P_{i+j}P_i} \quad j = -1..-m$$

The vectors are sorted according to their angle with the Ox axis. Let θ_k be the orientation of the kth vector in the sorted sequence (numbered from 1 to 2M).

Orientation of the tangent at P_i : $\widehat{\theta_i} = \frac{\theta_M + \theta_{M+1}}{2}$

Approximation of the tangent line by a continuous line I

$$\widehat{\theta_i} = argmin_{\Theta} \{ \sum_{j=-m}^m w(j) d^2(P_{i+j}, I_{\theta}) \}$$

$$w(j)$$
 weight, for example $w(j) = G_{\sigma}(j) = \frac{1}{\sigma\sqrt{2\Pi}}e^{\frac{-j^2}{2\sigma^2}}$

Approximation by a digital line I

Definition: the symmetric digital tangent at point P_i of the digital curve C is the longest part of C centered at P_i being a digital line segment.

Algorithm: addition of pairs of points around P_i , (P_{i-1}, P_{i+1}) .. (P_{i-k}, P_{i+k}) while $(P_{i-k}, ..., P_{i+k})$ is a line segment.

 \Rightarrow adapt the recognition algorithm of a digital line segment so as to allow the extension of a segment in the 1rst octant/quadrant by a point with negative abscissa.

Digital 4-connected tangent I

segment recognition

Add a point M with positive abscissa : see above

Add a point M with negative abscissa

- (1) M is in between the leaning lines: OK
- (2) $ax_M by_M = \mu 1$: M is "above but not too much"

(3) $ax_M - by_M = \mu + a + b$: M is "under but not too much"

$$(-1, 1, -1)$$

$$(-1, 2, -2)$$

$$(-1, 2, -2)$$

$$(-2, 5, -5)$$

Digital tangent: conclusion I

Advantages of a definition based on a digital line segment :

- the size of window adapt to the contour shape
- the algorithm is independent from the way of iterating on the boundary and from the starting point
- quite precise estimation
- similar algorithm in 4 or 8-connectivity

Drawbacks:

- compromise localization/precision
- problem for convexity preservation and convergence
- -> other approaches (weighted mean of the orientations of digital line segments containing the processed point)

Evaluation of the "real" tangent: line in the middle of the two leaning lines.

Length: simple estimators I

The points of the digital curve are classified according to the local configuration (k classes). The length of the curve is estimated by :

$$\hat{L} = \sum_{i=1}^{k} \psi(C_i) N(C_i)$$

where $N(C_i)$ is the number of points of the class C_i and $\psi(C_i)$ the weight associated with this class.

The weights are estimated for line segments with varying slopes \implies implicit vectorization.

The simple estimators are not convergent

Length: simple estimators I

8-connected curve

N number of steps

 $N_{\rm e}$ number of horizontal and vertical steps (even Freeman direction)

 N_o number of diagonal steps (odd Freeman direction) N_c number of corners (between one even and one odd directions)

First estimation of the length of $C: N_e + \sqrt{2}N_o$

Estimators:

$$\hat{L}_1 = 1.1107N$$

$$\hat{L}_K = 0.945N_e + 1.346N_o$$

$$\hat{L}_C = 0.980N_e + 1.406N_o - 0.091N_c$$

Length: simple estimators I

4-connected curve

Rosen-Profitt estimator:

 N_c number of corners (between one even and one odd directions)

 N_n number of junctions between to identical successive directions

$$\hat{L} = \frac{\Pi(\sqrt{2}+1)}{8}N_n + \frac{\Pi(\sqrt{2}+2)}{16}N_c$$

Koplowitz estimator:

N_{c1} nb of corners with at least a non-corner neighbor

N_{c2} nb of corners with two corner neighbors

 N_{n1} nb of points at the center of a linear sequence of 3 points

 N_{n2} nb of points on a linear sequence of more than 3 points

$$\hat{L} = 0.57736N_{c1} + 0.70251N_{c2} + 1.06681N_{n1} + 0.99350N_{n2}$$

Length: explicit vectorization I

Length = size of a polygonal approximation

Vectorization based on digital line segments \implies convergent length estimator

Length: normal integration I

Edge contribution : $\vec{n} \cdot \vec{e}$

 \vec{n} : computed normal vector, \vec{e} : trivial normal

 \implies The tangent computation has to be adapted (definition on an edge).

Total length : $\hat{L} = \sum \vec{n}_i \cdot \vec{e}_i$

Curvature: simple evaluation I

- **1** Angular variation : $\Delta \theta i$
- 2 Distance ratio : $\frac{d}{D}$ (d = distance along the curve)

$$P_{i-k}$$
 P_{i+k}

Curvature: tangent derivative I

One curvature definition: tangent orientation derivative [Worring 93].

- Computation by finite differences :

$$\kappa_i = \frac{\widehat{\theta}_{i+k} - \widehat{\theta}_{i-k}}{d(P_{i-k}, P_{i+k})} \quad \text{or} \quad \kappa_i = \frac{||\vec{t}_{i+k} - \vec{t}_{i-k}||}{d(P_{i-k}, P_{i+k})}$$

- Smoothed derivative : convolution by the derivative of a Gaussian function.

$$\kappa = \frac{\widehat{\theta} * G'_{\sigma}}{1.1107} \quad G'_{\sigma}(x) = (\frac{-x}{\sigma^3 \sqrt{2\Pi}} e^{\frac{-x^2}{2\sigma^2}})$$

1.1107 : mean distance between two successive points. Size of the computation window : $m=3\sigma,\,\sigma=3$ for example.

Other curvature computation methods: estimation of the radius of the osculating circle,...

Salient points I

The extrema of the curvature profile of a contour correspond to the dominant points of the contour.

Salient points II

3D extension: normal vector I

3D region : set of voxels

Surface of a 3D region : set of voxel faces (surfels)

One surfel ⇒ two 4-connected contours

3D extension: normal vector II

Computation of the tangent along each 2D contour

Directions of the 2 tangents ⇒ normal vector to the surface

Surface area I

Simple estimator [Mullikin 93]

$$\hat{S} = \sum_{i=1}^{6} \psi_i N_i$$

$$\psi_1 = 0.894, \ \psi_2 = 1.3409, \ \psi_3 = 1.5879,$$

$$\psi_4 = 2, \ \psi_5 = \frac{8}{3}, \ \psi_6 = \frac{10}{3}$$

Configurations of a voxel of the boundary (at least one surfel belongs to a background voxel):

Surface area I

Normal integration

Surfel contribution : $\vec{n} \cdot \vec{e}$

 \vec{n} : computed normal vector

 \vec{e} : trivial normal vector

Curvature at a point of a surface I

Integral Invariants

Multigrid Convergent Principal Curvature Estimators in Digital Geometry - D. Coeurjolly, J.-O. Lachaud, J. Levallois - Computer Vision and Image Understanding, 2014

Continuous version:

$$V_R(x) = \int_{B_R(x)} \chi(p) dp$$

estimated mean curvature:

$$\hat{H}_{R}(X,x) = \frac{8}{3R} - \frac{4V_{R}(x)}{\pi R^{4}}$$

Simple digitization

Curvature at a point of a surface II Integral Invariants

Contents

- Distance Map
- 2 Squeletonization
- 3 Digital geometry tools for analyzing object boundaries
- 4 Geometric features of a digital region

Characterizing a shape

Here shape = 2D or 3D digital region

Defining features:

- robust to noise
- discriminative
- (invariant to geometric transforms)
- \rightarrow location, dimensions, orientation, shape descriptors, topological features, contour signatures...

Simple 2D geometric features

The region R is a set of pixels $(x_i, y_i)_{i=1..n}$

Area: number of pixels of *R*. the staircase effect along the contours does not distort the approximation.

Center of mass :
$$G = (\bar{x}, \bar{y}) = (\frac{1}{n} \sum_{i=1}^{n} x_i, \frac{1}{n} \sum_{i=1}^{n} y_i)$$

Diameter:
$$D = max(distance(P, Q)/P, Q ∈ R)$$

Circularity:
$$\frac{4\Pi \operatorname{Area}(R)}{\operatorname{Perimeter}^2(R)}$$
 Elongation: $\frac{\Pi L_g^2(R)}{4\operatorname{Area}(R)}$

Convexity:
$$\frac{Area(R)}{Area(convex hull(R))}$$

Simple 3D geometric features

The region R is a set of voxels $(x_i, y_i, z_i)_{i=1..n}$

Volume: number of voxels of R (if cubic voxels)

Center of mass:

$$G = (\bar{x}, \bar{y}, \bar{z}) = (\frac{1}{n} \sum_{i=1}^{n} x_i, \frac{1}{n} \sum_{i=1}^{n} y_i, \frac{1}{n} \sum_{i=1}^{n} z_i)$$

Sphericity:
$$\frac{36\Pi \text{ Volume}^2(R)}{\text{Area}^3(R)}$$

2D Cartesian moments

General definition:
$$m_{pq} = \sum_{x} \sum_{y} x^{p} y^{q} f(x, y)$$

Binary region
$$R: f(x,y) = 1$$
 if $(x,y) \in R$ else $f(x,y) = 0$

$$\implies m_{pq} = \sum_{(x,y) \in R} x^p y^q$$

Area : *m*₀₀

Center of mass:
$$(\bar{x}, \bar{y}) = (\frac{m_{10}}{m_{00}}, \frac{m_{01}}{m_{00}})$$

Centered moments:
$$\mu_{pq} = \sum_{(x,y) \in R} (x - \bar{x})^p (y - \bar{y})^q$$

Normalized centered moments :
$$\eta_{pq} = \frac{\mu_{pq}}{\frac{p+q}{p+1}+1}$$

Covariance matrix:

$$\frac{1}{m_{00}}\begin{pmatrix} \mu_{20} & \mu_{11} \\ \mu_{11} & \mu_{02} \end{pmatrix}$$

Features invariant to rotation

$$\phi_1 = \eta_{20} + \eta_{02} \qquad \phi_2 = (\eta_{20} - \eta_{02})^2 + 4\eta_{11}^2
\phi_3 = (\eta_{30} - 3\eta_{12})^2 + (3\eta_{21} - \eta_{03})^2$$

Principal axes in 2D I

Principal axes (principal directions): eigen vectors of the covariance matrix of the pixels.

Covariance matrix:

$$M_{C} = \begin{pmatrix} a & c \\ c & b \end{pmatrix} = \begin{pmatrix} \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} & \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y}) \\ \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y}) & \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2} \end{pmatrix}$$

 M_C symmetric \Rightarrow orthogonal eigen vectors

Principal axes in 2D II

$$tg(2\alpha) = \frac{2c}{a-b}$$

$$\alpha$$
 angle between x axis and the first principal direction $a=(\frac{1}{n}\sum_{i=1}^n x_i^2)-\bar{x}^2, \ \ b=(\frac{1}{n}\sum_{i=1}^n y_i^2)-\bar{y}^2, \ \ c=(\frac{1}{n}\sum_{i=1}^n x_iy_i)-\bar{x}\bar{y}$

Remark: a rectangular bounding box of R can be defined from the principal directions.

3D Cartesian moments

Definition (binary region):
$$m_{pqr} = \sum_{(x,y,z) \in R} x^p y^q z^r$$

Volume : *m*₀₀₀

Center of mass :
$$(\bar{x}, \bar{y}, \bar{z}) = (\frac{m_{100}}{m_{000}}, \frac{m_{010}}{m_{000}}, \frac{m_{001}}{m_{000}})$$

Centered moments :
$$\mu_{pqr} = \sum_{(x,y,z) \in R} (x - \bar{x})^p (y - \bar{y})^q (z - \bar{z})^r$$

Centered normalized moments :
$$\eta_{pqr} = \frac{\mu_{pqr}}{\mu_{000}^{\frac{p+q+r}{3}+1}}$$

Covariance matrix:
$$\frac{1}{m_{000}}\begin{pmatrix} \mu_{200} & \mu_{110} & \mu_{101} \\ \mu_{110} & \mu_{020} & \mu_{011} \\ \mu_{101} & \mu_{011} & \mu_{002} \end{pmatrix}$$

eigen vectors \leftrightarrow principal axes of the shape.

Features invariant to rotation

see : Geometric moment invariants, Dong Xu, Pattern Recognition 2008

2D Zernike moments

 $A_{nm} = \frac{n+1}{\Pi} \sum_{x} \sum_{y} f(x,y) [V_{nm}(x,y)]^*$ for $x^2 + y^2 \le 1$, n positive integer, m integer verifying n - |m| even and $|m| \le n$

 $V_{nm}(x, y) = R_{nm}(x, y)e^{imtan^{-1}(\frac{y}{x})}$ basis of complex orthogonal polynomials

$$R_{nm}(x,y) = \sum_{s=0}^{\frac{n-|m|}{2}} \frac{(-1)^s (x^2 + y^2)^{\frac{n}{2} - s} (n-s)!}{s! (\frac{n+|m|}{2} - s)! (\frac{n-|m|}{2} - s)!} \text{ radial polynomial}$$

 $|A_{nm}|$ invariant to rotation: Let A'_{nm} be the Zernike moment computed after an image rotation of angle θ , $A'_{nm} = A_{nm}e^{-im\theta}$

To obtain invariance to translation and resizing, normalization with the Cartesian moments :

$$h(x,y) = f(\frac{x}{a} + \bar{x}, \frac{y}{a} + \bar{y}) \text{ with } a = \sqrt{\frac{\beta}{m_{00}}}$$

Reconstruction : $f(x, y) = \lim_{N \to \infty} \sum_{n=0}^{N} \sum_{m} A_{nm} V_{nm}(x, y)$

homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/SHUTLER3/node11.html

