
Part 2 : Digital Geometry for Image Analysis

Anne Vialard

LaBRI, Université de Bordeaux

Contents

1 Distance Map

2 Squeletonization

3 Digital geometry tools for analyzing object boundaries

4 Geometric features of a digital region

Discrete distance
Definition

A discrete distance is a function d : Zn × Zn → N verifying
∀P,Q,R ∈ Zn

• d(P,Q) ≥ 0 [positive]
• d(P,Q) = 0⇔ P = Q [definite]
• d(P,Q) = d(Q,P) [symmetry]
• d(P,Q) ≤ d(P,R) + d(R,Q) [triangle inequality]

Two discrete distances :
• d1(P,Q) =

∑n−1
i=0 |Pi −Qi |

• d∞(P,Q) = maxi{|Pi −Qi |}
In 2D : d4 and d8
In 3D : d6 and d26
very different from euclidean distance...

Chamfer distances

• An integer value is associated with each elementary move
in a given neighborhood. The elementary moves and their
values (cost) are defined by a mask.

• The distance between two points is the cost of the
minimum cost path linking the two points and composed of
available elementary moves.

Example : d4 vertical and horizontal moves of cost 1

2D chamfer masks

1

1 0 1

1

1 1 1

1 0 1

1 1 1

4 3 4

3 0 3

4 3 4

11 11

11 7 7 11

0

11 11

1111

757

5 5

5

d3,4

d5,7,11

d4 d8

3D chamfer masks

f f
f e d e f

d d
f e d e f

f f

f e d e f
e c b c e
d b a b d
e c b c e
f e d e f

d d
d b a b d

a 0 a
d b a b d

d d
z=-2 / z=2 z=-1 / z=1 z=0

a b c d e f
d1 1
d18 1 1

quasi-euclidean 3× 3 1
√

2
optimal 3× 3 0.92644 1.34065 1.65849

quasi-euclidean 5× 5 1
√

2
√

3
√

5
√

6 3

Distance map : definition

Let R ⊂ Zn be a set of points called reference points. The
corresponding distance map is obtained by associating with
each point its distance to the closest reference point.{

Zn → N
P → min(d(P,Pr),Pr ∈ R)

Sequential computation with
half-masks I

2D chamfer distances

Principle : spread of information

• Initialization : 0 for reference points,∞ elsewhere
• First scan of the image from left to right and from top to

bottom by using the first half mask.
Computation : DM(x , y) = min(DM(x + i , y + j) + mi,j) for
each point (i , j) of the half-mask.

j

i

(i, j) = (−1, 1)

(i, j) = (0, 0)

(i, j) = (1, 1)

0

1 1

1

1 (i, j) = (0, 1)

(i, j) = (−1, 0)

Sequential computation with
half-masks II

2D chamfer distances

• Second scan of the image from right to left and from
bottom to top
same computation with the second half mask.

0 1

111

j

(i, j) = (1, 0)

(i, j) = (−1,−1)
(i, j) = (0,−1)
(i, j) = (1,−1)

(i, j) = (0, 0)

i

Computation example (d8)

Balayage avant Balayage arrière

1 2

1 1 1 2

22222

2

2

2222

3 3 3 3

3

3

4 4 4

4 5 5

3 3 3 2 1

2 2 2 2

1

111

111

1

1 1 1

10

1 2

1 1 1 2

22222

1 2

2

2

111

222

3 3 3 3

3

3

4 4 4

4 5 5

∞
∞
∞
∞
∞ ∞
∞∞ ∞
∞ ∞∞ ∞

1 1

1 0

1

To fill in

Sequential computation with
half-masks

3D chamfer distances

// Forward pass
for (z=0; z < Sz ; z++)

for (y=0; y < Sy ; y++)
for (x=0; x < Sx ; x++)
DM(x, y, z) = min∀i,j,k∈fp (DM(x + i , y + j , z + k) +

m[i , j , k])

// Backward pass
for (z = Sz − 1; z ≥ 0; z-)

for (y= Sy − 1; y ≥ 0; y-)
for (x= Sx − 1; x ≥ 0; x-)
DM(x, y, z) = min∀i,j,k∈bp (DM(x + i , y + j , z + k) +

m[i , j , k])

SED : Danielson Algorithm (2D) I
Question : How to efficiently compute an euclidean distance
map ?

• Initialization : 3 integer values dx , dy and d2 are
associated with each pixel. The vector (dx ,dy) gives the
location of the current point relatively to the closest
reference point known at a given moment. The squared
distance d2 = dx2 + dy2 can also be stored to avoid
recomputation.

• Top to bottom pass : for each line
- forward pass : comparison with upper point / left point
- backward pass : comparison with right point

• Bottom to top pass : for each line
- backward pass : comparison with lower point / right point
- forward pass : comparison with left point

Problem : the result may be wrong (in rare cases)

SED : Danielson Algorithm (2D) II

void Update (int x, int y, int deltaX, int deltaY)
int d2 = DM[x+deltaX][y+deltaY].d2

+ 2*deltaX*DM[x+deltaX][y+deltaY].dx
+ 2*deltaY*DM[x+deltaX][y+deltaY].dy + 1;

if (d2 < DM[x][y].d2)
DM[x][y].dx = DM[x+deltaX][y+deltaY].dx + deltaX;

DM[x][y].dy = DM[x+deltaX][y+deltaY].dy + deltaY;

DM[x][y].d2 = d2;

SED : 3D Algorithm

x
y

z

zz

y

x x

y

x

z

y
y

z z

y

z
y

x x
y

z

x x

F1 F2

F3F4
B1B2

B3 B4

SED : 3D Algorithm
Detail of a forward sub-step

for (z=0; z < Sz ; z++)
// Forward pass F1

for (y=0; y < Sy ; y++)
for (x=0; x < Sx ; x++)
p=(x, y, z)
pos = argmini ||vec[p + diri] + diri ||
vec[p] = vec[p + dirpos] + dirpos
DM(x, y, z) = ||vec[p]||

// Forward pass F2
...
// Forward pass F3
...
// Forward pass F4
...

2D exact euclidean distance I

DM(i , j) = min{(i − x)2 + (j − y)2 : 0 ≤ x < W ,0 ≤ y <
H, (x , y) reference point }

1 Line processing : for a line j

L(i , j) = minx{|i − x | : 0 ≤ x < W , (x , j) reference point }

2 Column processing

DM(i , j) = miny{L(i , y)2 + (j − y)2 : 0 ≤ y < H}

2D exact euclidean distance II

The second part of the algorithm can be linearized by
computing the inferior envelop of the parabolas
P i

y (j) = L(i , y)2 + (j − y)2

Geodesic distance

Domain : connected region R
Let P ∈ R be the origin point, any other point Q ∈ R is
labeled with its geodesic distance to P, length of shortest
path linking P to Q without leaving R.
Algorithm with a chamfer mask w :
• Data structure : set of queues Fi , all the points in queue Fd

are at distance d from point P.
• Initialization : Add P to F0
• At each step :

- Pull Q out of Fdmin (non empty queue with minimum index)
- For each neighbor N of Q, push N in the queue Fdmin+w(~QN)

Contents

1 Distance Map

2 Squeletonization

3 Digital geometry tools for analyzing object boundaries

4 Geometric features of a digital region

Skeletonization

Aim : shape encoding, simplified representation for shape
analysing, recognition and matching (topology preservation,
size)

2D binary skeleton

Definition (Chassery) :
The skeleton SR of a 2D region R verifies :

1 SR ⊂ R
2 SR has the same number of connected components and

the same number of holes as R
3 SR is minimal for condition 2
4 The elongated parts of R give the curves of SR

5 SR is centered in R
Remark : a binary skeletonization is not reversible

Computation by thinning

"Non-essential" points are removed

• P simple point of R ⇔
number of connected components of R − {P} =
number of connected components of R

and
number of connected components of R ∪ {P} =
number of connected components of R

• P An endpoint of R ⇔ P has only one neighbor in R

⇒ Idea : remove simple points that are not endpoints
The points to be considered belong to the border of the object.

Thome algorithm

Configurations for a point located north of the shape :

0
1 1 1

1

0 0
0 1 1

1

0 0
1 1 0

1

0 0
1 1 0
1 0 0

0 0
0 1 1
0 0 1

1 0 0
1 1 0

0 0

0 0 1
0 1 1
0 0

0 0 0
0 1 0

1 1

0 0 0
0 1 0
1 1

Algorithm :
- Processing of the "north" points : all the points

corresponding to the configurations are marked THEN all
the marked points are removed

- Same processing for South, East and West
- Iterations until no point can be removed

Thome algorithm : example

Pruning algorithms

Simple point : local 2D characterization

Connectivity number (2D) : Tk (P,0) = |CP
k [N∗8(P) ∩O]|

where P discret point, O set of discrete points, CP
k (X) set of

k -connected components of X k -adjacent to P.
(k , k̄) = (8,4) connectivities object/background

Point P is a simple point of the object O if and only if
Tk (P,O) = 1 and Tk̄ (P, Ō) = 1

Other results :
- Tk (P,O) = 0⇔ P is an isolated point
- Tk̄ (P, Ō) = 0⇔ P is an interior point
- Tk̄ (P, Ō) 6= 0⇔ P is a boundary point

Thinning : first algorithm I

ES = set of simple points of O
Until ES is not empty

E = empty set
For each P in ES

If P is a simple point of O
Remove P from O
For each Q in N(P)∩ O

Add Q to E
ES = empty set
For each Q in E

If Q is simple for O
Add Q to ES

Thinning : first algorithm II

Thinning : directionnal algorithm

ES = set of simple points of O
While ES is not empty

E = empty set
For t in [North, South, East, West]

For each P in ES such that type(P)=t
If P is a simple point of O and
P is not an end point

Remove P from O
For each Q in N(P)∩ O

Add Q to E
ES = empty set
For each Q in E

If Q is simple for O
Add Q to ES

Thinning : algorithm based on a priority
function

Repeat
Remove a point P of O such that
P is a simple point of O and that
P(P) minimum

Until no more possible removal

Example of priority function : distance map to the background

Thinning : 3D extension I
Preserve the number of connected components of the object
and of its complement set + preserve the tunnels.

• 3D number of connectivity : similar to 2D

simple point 1D isthmus 2D isthmus
T6(P,O) = T26(P, Ō) = 1 T6(P,O) = 2 T26(P, Ō) = 2

• simple point : similar to 2D

Thinning : 3D extension II

• end point : 2 more types
1 extremity of a curve : adjacent to only one object point
2 1D isthmus
3 2D isthmus

(1) (2) (3)

Skeletonization : medial axis

• Discrete ball of center P (integer coordinates) and of radius
r (integer) for the distance d : B(P, r) = {Q / d(P,Q) ≤ r}

• Let R be a discrete region and P ∈ R, rP = d(P,R)− 1
• The medial axis of region R is the set of maximal balls

covering R :
AM(R) = {P ∈ R / ∀Q ∈ R,B(P, rP) ⊂/ B(Q, rQ)}

Computation for d4 and d8 :
Let DM be the distance map to the background. The medial
axis is composed of the points corresponding to the local
maxima of DM : P ∈ AM(R)⇔ ∀Q ∈ R ∩ N8(P), rP ≥ rQ
General algorithm : ?

Contents

1 Distance Map

2 Squeletonization

3 Digital geometry tools for analyzing object boundaries
Regions and their boundaries
Digital lines and planes
Geometric features of a digital boundary

4 Geometric features of a digital region

3 - Digital geometry tools for analyzing
object boundaries

Regions and their boundaries
Digital lines and planes
Geometric features of a digital boundary

2D digital contour : tangent
2D digital contour : length / perimeter
2D digital contour : curvature
3D Extension

Path
• A k -connected path is a sequence of integer points

(P0,P1, ..,Pn) such as ∀i ∈ 1..n, Pi−1 and Pi are
k -connected.

• Freeman’s code : The path (P0, ..,Pn) is represented by
(P0,d0, . . . ,dn−1). The direction di encodes the elementary
move from Pi to Pi+1.

0

1er quadrant

2

3

0

1

0100112223212323

020134534647

1er octant
123

4

5 6 7

Connected component / region
• Connected set : set of integer points E such that
∀P,Q ∈ E , ∃ a path (M0, ..,Mn) verifying Mi ∈ E , M0 = P,
Mn = Q.

• Connected component of a set of integer points : maximal
connected set (or equivalence class for the adjacency
relation).

• Example : set composed of one 8-connected component
(of two 4-connected components)

2D boundary, first definition I

The boundary of an 8-connected (respectively 4-connected)
region R is the set of points of R having at least one 4-neighbor
(resp. 8-neighbor) not belonging to R.
⇒ The boundary is composed of 8-connected (resp.
4-connected) paths.

Problems :

• 2 adjacent region share no boundary points

2D boundary, first definition II

• An 8-connected boundary don’t split the 2D grid into two
distinct 8-connected components.

• A 4-connected boundary can split the 2D grid into more
than two distinct 4-connected components.

2D boundary, inter-pixel definition

Each integer point of the region is considered as a pixel (unitary
square of side 1 centered on the point).
The inter-pixel boundary is a sequence of edges of pixels on
the border of the region. This boundary can be represented by
a 4-connected digital path (translated in the half-integer grid).

Tracking an inter-pixel boundary I

8-connected object
Hypothesis : the region is at the left side of the contour.

• Search for the first point (x , y) by scanning the image
• Initialize the result with 23 and the current direction d = 3
• Search for the next direction : at each step one or two

points are tested
x

y

? ?

• End : reaching the first point.

Tracking an inter-pixel boundary II

Algorithm

∆x = {1,0,−1,0}
∆y = {0,−1,0,1}

If P = {x + ∆x [d] + ∆x [d − 1], y + ∆y [d] + ∆y [d − 1]} point of
the object

d = d-1
(x, y) = P

Else if P = {x + ∆x [d], y + ∆y [d]} point of the object
(x, y) = P

Else
d = d+1

Add d to the result

Tracking the border of a region I

8-connected object

Search for the first point (x , y) by scanning the image, dir = 4

Search for the next point :

Do
dir = (dir + 1) mod 8

Until the next point (x , y) in the dir
direction be a point of the object.

Add dir to the Freeman’s code

dir = MAJ[dir] (MAJ = {6,6,0,0,2,2,4,4})

End : reaching the two first points.

Tracking the border of a region II

Some theory I

• Digital space : (V ,W) where V is the set of integer points
(pixels in 2D, voxels in 3D) and W an adjacency relation
between integer points (represented by pixel edges in 2D,
voxel faces or surfels in 3D)

• Surface S : non empty subset of W
- II(S) = {u/∃v ∈ V such that (u, v) ∈ S}
- IE(S) = {v/∃u ∈ V such that (u, v) ∈ S}
- I(S) = {p ∈ V/∃ a W -path from p to II(S) not intersecting

S}
- E(S) = {p ∈ V/∃ a W -path from p to IE(S) not intersecting

S}
• A surface is almost-Jordan if and only if any W -path from a

point of II(S) to a point of IE(S) intersects S.
⇔ I(S) ∩ E(S) = ∅

• A surface is κλ-Jordan if and only if it is almost-Jordan and
its interior is κ-connected and its exterior is λ-connected.

Some theory II
• Boundary of O and Q subsets of V :
∂(O,Q) = {(u, v) ∈W/u ∈ O and v ∈ Q}.

In a binary image :
• S is a κλ-border if there exists a black κ-connected object

O and a white λ-connected object Q such that
S = ∂(O,Q).

• Jordan pair :
- 2D : (8,4), (8,8)
- 3D : (18,6), (26,6), (14,6)

For a Jordan pair (κ, λ), any κλ-border is κλ-Jordan.

3D boundary tracking I

Binary image I
Bel : surfel (u, v) such that u is black and v is white
Set of the bels of I : B(I)
Initial bel : b0
Bel adjacency : β

Algorithm

E : set of processed bels
Q : queue of bels adjacent to E and to be processed
L : result list

Put b0 in Q and in E
While Q is non empty

Get b out of Q and put it in L
For each b′ ∈ B(I) such that β(b, b′)

If b′ /∈ E
Put b′ in E and in Q

3D boundary tracking II

3 - Digital geometry tools for analyzing
object boundaries

Regions and their boundaries
Digital lines and planes
Geometric features of a digital boundary

2D digital contour : tangent
2D digital contour : length / perimeter
2D digital contour : curvature
3D Extension

Digital line - Definition
Digitization of a continuous line

Object Boundary
Quantization (OBQ)

Integer part

Best fit

Rosenfeld’s characterization (74)

An 8-connected path C is a digital line segment if and only if it
verifies the cord property :

∀P,Q ∈ C,∀m ∈ [P,Q],∃M ∈ C/max(|xM − xm|, |yM − ym|) < 1

Freeman’s characterization (74)

An 8-connected path is a digital line segment if and only if
• Its Freeman code contains at most 2 different elementary

directions which differ by 1 modulo 8.
• If the code is composed of two directions, one of them

occurs singly.
• Successive occurrences of the singly occurring direction

are as uniformly spaced as possible.

Pattern of a digital line
A digital straight line segment with a rational slope is composed
of a repeated pattern

1 1/2 1/3 2/3

Example : line of slope p =
3

11
=

1
3 + 1

1+ 1
2

pattern 1
4

pattern 1
4

1
4

1
4

2
7

1
3

pattern 1
3

pente 3
11

1
4 < p < 1

3

pattern 2
7

1
3+ 1

1+0

< p < 1
3+ 1

1+1

1
4 < p < 2

7

Arithmetic definition I
[Réveillès 91]

Line’s characteristics : (a,b, µ) ∈ Z3, ω ∈ N

slope : a
b , lower bound : µ, thickness : ω

The line (a,b, µ, ω) is the set of integer points verifying :

µ ≤ ax − by < µ+ ω

Leaning lines : ax − by = µ and ax − by = µ+ ω − 1

Leaning points : integer points belonging to the leaning lines.

ω = max(|a|, |b|)⇒ 8-connected line
ω = |a|+ |b| ⇒ 4-connected line

Arithmetic definition II

(a, b, µ) = (1, 3, -1)

(a, b, µ) = (2, 5, -5)

Upper leaning line

Lower leaning line

Leaning point

O

O

Recognition algorithm I
Incremental algorithm for the recognition of a digital straight
segment along an 8-connected path [Debled 95]

Idea : The points of the path are added one by one. At each
step the characteristics of the recognized segment are
updated.

Let S = (P0, ...,Pn) be a line segment of the 1rst octant and M
the point to be added
Is S + M a line segment ? If it is, which are its characteristics ?

Necessary condition : M is a neighbor of Pn and the elementary
direction from Pn to M is compatible with the two directions
composing S ⇒ d(Pn,M) = O or 1

Recognition algorithm II
Case 1 : µ ≤ axM − byM < µ+ b

M extends S (same characteristics)

U
L’

U’

L

(a, b, µ) = (1, 3, 0)

U upper leaning point with minimum abscissa
U ′ upper leaning point with maximum abscissa
L lower leaning point with minimum abscissa
L′ lower leaning point with maximum abscissa

Recognition algorithm III

Case 2.1 : axM − byM = µ− 1

S + M is a segment which characteristics are different from
S’s : the slope of S + M is greater than the slope of S.

(a, b, µ) = (1, 3, 0)

U’

L’

L

U

(a, b, µ) = (3, 8, 0)

Pivot points

Recognition algorithm IV

Case 2.2 : axM − byM = µ+ b

S + M is a segment which characteristics are different from
S’s : the slope of S + M is lower than the slope of S.

(a, b, µ) = (1, 2, -1) (a, b, µ) = (3, 7, -6)

Points pivots
L’

U’

U

L

Recognition algorithm V

Case 3 : axM − byM < µ− 1 or axM − byM > µ+ b

S + M is not a line segment.

U

L

L’

U’

(a, b, µ) = (1, 3, 0)

Recognition algorithm VI
Adding a point
remainder = axM − byM
If (µ ≤ remainder < µ+ b)
If (remainder == µ)
M is an upper leaning point.

U ′ = M
If (remainder == µ+ b − 1)
M is a lower leaning point

L′ = M
Else if (remainder == µ− 1)

The slope increases
L = L′

U ′ = M
a = yM − yU
b = xM − xU
µ = axM − byM

Recognition algorithm VII

Else if (remainder == µ+ b)
The slope decreases
U = U ′

L′ = M
a = yM − yL
b = xM − xL
µ = axM − byM − b + 1

Else M can not be added to the segment

Recognition algorithm VIII

Global algorithm

(x, y) = (1, code(0))
(a, b, µ) = (y, 1, 0)
U = L = (0, 0)
U’ = L’ = (1, y)
i = 1
Repeat

x = x + 1
y = y + code(i)
i = i + 1

Until add-point(x, y)

Direct use : vectorization I

Iterative approach

Remark : loss of information

Other vectorization algorithm I

• iterative approach based on an error measure (distance
criterion, angular criterion)

• recursive approach : find the most significant point
between 2 contour points (Douglas-Peuker, curvature
computation)

4-connected case I
Test if a point M can be added to a line segment :

(1) M is between the leaning lines : OK

(2) axM − byM = µ− 1 : M is "above but not too much"

y y

x x

(1,−2,−1)

U

U ′
M

L′

L

(2, 3,−1)

U

U ′ =M

L′ = L

(3) axM − byM = µ+ a + b : M is "under but not too much"

Dual space I
Another approach for recognizing a 2D digital line segment

b

a

b

(a, b)

a

ax−y+b=0

y

x

y

x

y

x

(x, y)

b

a

xa+b−y=0

Dual space II
Another approach for recognizing a 2D digital line segment

Digitization OBQ of ax − y + b = 0,0 ≤ a < 1 :
set of the points verifying 0 ≤ ax − y + b < 1

A set of points (xi , yi) belonging to a digital line is represented
in the dual space by the intersection of strips defined by
0 ≤ xia + b − yi < 1

Segment recognition =
verify if a set of linear constraints is valid

Incremental linear algorithm based on this idea

Digital plane I

Arithmetic definition

The plane of characteristics (a,b, c, µ, ω) ∈ Z5 is the set of
integer points verifying :

0 ≤ ax + by + cz + µ < ω

(a,b, c) : normal vector
µ : location in the plane
ω : thickness

ω = max(|a|, |b|, |c|)⇒ naive plane (18-connected)
ω = |a|+ |b|+ |c| ⇒ standard plane (6-connected)

Digital plane II
Example : naive plane (3,7,37,0)

Digital plane : recognition

[Sivignon 04]

V set of voxels containing (0,0,0)
Question : what is the set S of parameters
(α, β, γ),0 ≤ α ≤ β < 1,0 ≤ γ ≤ 1 such that all the voxels of V
belong to the OBQ digitization of αx + βy + z + γ = 0 ?

coordinates space parameter space
plane point
point plane

a voxel of a digital plane area between 2 parallel planes

Computing S : half-spaces intersection at each voxel addition
Result = polyhedron, polygon, line segment or empty set.

Polyhedrization I

First approach : split the surface in digital plane pieces +
compute a polygonal curve for each border
Other approach : simplify the result of the marching cube
algorithm

Polyhedrization II

3 - Digital geometry tools for analyzing
object boundaries

Regions and their boundaries
Digital lines and planes
Geometric features of a digital boundary

2D digital contour : tangent
2D digital contour : length / perimeter
2D digital contour : curvature
3D Extension

Geometry of a digital boundary I

Issue

An infinite number of shapes have the same digitization⇒
there is not ONE unique value of the geometric features

Hypothesis on the underlying real boundary : smooth curve
with bounded curvature for example

Estimators : length/area, tangent/tangent plane, curvature

Properties :
- asymptotic convergence
- good estimation at low resolution
- preservation of the shape properties (convexity for

example)

Tangent : basic definition I

C = (P0, ..,Pn)
~ti tangent vector at the ith point of C
θ̂i orientation of ~ti

First approximation : ~ti = ~PiPi+1
Different possible orientations : 8 if 8-connected contour

A
D

C
B

+

A
D

C
B

+

Tangent : median filtering I
Window of size m around the current point Pi .
~Vi,i+j = ~PiPi+j j = 1..m
~Vi,i+j = ~Pi+jPi j = −1..−m
The vectors are sorted according to their angle with the Ox
axis. Let θk be the orientation of the kth vector in the sorted
sequence (numbered from 1 to 2M).

Orientation of the tangent at Pi : θ̂i =
θM +θM+1

2

A
D

C
B

+

AA

Approximation of the tangent line by a
continuous line I

θ̂i = argminΘ{
∑m

j=−m w(j)d2(Pi+j , lθ)}

w(j) weight, for example w(j) = Gσ(j) = 1
σ
√

2Π
e
−j2

2σ2

C

A
D

C
B

+

Approximation by a digital line I

Definition : the symmetric digital tangent at point Pi of the
digital curve C is the longest part of C centered at Pi being a
digital line segment.

Algorithm : addition of pairs of points around Pi , (Pi−1,Pi+1)..
(Pi−k ,Pi+k) while (Pi−k , ..,Pi+k) is a line segment.

⇒ adapt the recognition algorithm of a digital line segment so
as to allow the extension of a segment in the 1rst
octant/quadrant by a point with negative abscissa.

Digital 4-connected tangent I
segment recognition

Add a point M with positive abscissa : see above

Add a point M with negative abscissa

(1) M is in between the leaning lines : OK

(2) axM − byM = µ− 1 : M is "above but not too much"

y

x

y

x

U ′

L

L′

UM

U ′

L = L′

U =M

(1, 1, 0) (2, 3, -1)

(3) axM − byM = µ+ a + b : M is "under but not too much"

4-connected tangent : example

Symmetric tangent around a point

(1)

4-connected tangent : example

Symmetric tangent around a point

(−1, 1,−1)

4-connected tangent : example

Symmetric tangent around a point

(−1, 2,−2)

4-connected tangent : example

Symmetric tangent around a point

(−1, 2,−2)

4-connected tangent : example

Symmetric tangent around a point

(−2, 5,−5)

Digital tangent : conclusion I

Advantages of a definition based on a digital line segment :
- the size of window adapt to the contour shape
- the algorithm is independent from the way of iterating on the
boundary and from the starting point
- quite precise estimation
- similar algorithm in 4 or 8-connectivity

Drawbacks :
- compromise localization/precision
- problem for convexity preservation and convergence
-> other approaches (weighted mean of the orientations of
digital line segments containing the processed point)

Evaluation of the "real" tangent : line in the middle of the two
leaning lines.

Length : simple estimators I

The points of the digital curve are classified according to the
local configuration (k classes). The length of the curve is
estimated by :

L̂ =
∑k

i=1 ψ(Ci)N(Ci)

where N(Ci) is the number of points of the class Ci and
ψ(Ci) the weight associated with this class.

The weights are estimated for line segments with varying
slopes =⇒ implicit vectorization.

The simple estimators are not convergent

Length : simple estimators I
8-connected curve

N number of steps
Ne number of horizontal and vertical steps (even Freeman
direction)
No number of diagonal steps (odd Freeman direction)
Nc number of corners (between one even and one odd
directions)

First estimation of the length of C : Ne +
√

2No

Estimators :

L̂1 = 1.1107N

L̂K = 0.945Ne + 1.346No

L̂C = 0.980Ne + 1.406No − 0.091Nc

Length : simple estimators I
4-connected curve

Rosen-Profitt estimator :
Nc number of corners (between one even and one odd
directions)
Nn number of junctions between to identical successive
directions

L̂ = Π(
√

2+1)
8 Nn + Π(

√
2+2)

16 Nc

Koplowitz estimator :
Nc1 nb of corners with at least a non-corner neighbor
Nc2 nb of corners with two corner neighbors
Nn1 nb of points at the center of a linear sequence of 3 points
Nn2 nb of points on a linear sequence of more than 3 points

L̂ = 0.57736Nc1 + 0.70251Nc2 + 1.06681Nn1 + 0.99350Nn2

Length : explicit vectorization I

Length = size of a polygonal approximation

Vectorization based on digital line segments =⇒ convergent
length estimator

Length : normal integration I

Edge contribution : ~n · ~e
~n : computed normal vector, ~e : trivial normal

=⇒ The tangent computation has to be adapted (definition on
an edge).

Total length : L̂ =
∑
~ni · ~ei

Convergent tangent estimator =⇒ convergent length estimator

Curvature : simple evaluation I

1 Angular variation : ∆θi

2 Distance ratio : d
D (d = distance along the curve)

Pi−k ∆θiPi+k
Pi

Pi+kPi−k
Pi

D

Curvature : tangent derivative I
One curvature definition : tangent orientation derivative
[Worring 93].

- Computation by finite differences :

κi =
θ̂i+k − θ̂i−k

d(Pi−k ,Pi+k)
or κi =

||~ti+k −~ti−k ||
d(Pi−k ,Pi+k)

- Smoothed derivative : convolution by the derivative of a
Gaussian function.

κ =
θ̂ ∗G′σ
1.1107

G′σ(x) = (
−x

σ3
√

2Π
e
−x2

2σ2)

1.1107 : mean distance between two successive points.
Size of the computation window : m = 3σ, σ = 3 for
example.

Other curvature computation methods : estimation of the radius
of the osculating circle,...

Salient points I
The extrema of the curvature profile of a contour correspond to
the dominant points of the contour.

κ
50 68

90

77

95
84

126 148

0

13 36
62 73

0.1

183155

138

114

110

160

20

20

50

62

68
110

114

138

155

183

160
148

126

95

84

36

77
90 73

13

0

Salient points II

κ

0.1
0

0

3D extension : normal vector I

3D region : set of voxels
Surface of a 3D region : set of voxel faces (surfels)

One surfel⇒ two 4-connected contours

3D extension : normal vector II

Computation of the tangent along each 2D contour

Directions of the 2 tangents⇒ normal vector to the surface

Surface area I
Simple estimator [Mullikin 93]

Ŝ =
∑6

i=1 ψiNi

ψ1 = 0.894, ψ2 = 1.3409, ψ3 = 1.5879,
ψ4 = 2, ψ5 = 8

3 , ψ6 = 10
3

Configurations of a voxel of the boundary (at least one surfel
belongs to a background voxel) :

(7) (8) (9)(5) (6)

(1) (3)(2) (4)

Surface area I
Normal integration

Surfel contribution : ~n · ~e

~n : computed normal vector
~e : trivial normal vector

Curvature at a point of a surface I
Integral Invariants

Multigrid Convergent Principal Curvature Estimators in Digital Geometry - D.
Coeurjolly, J.-O. Lachaud, J. Levallois - Computer Vision and Image
Understanding, 2014

Continuous version :

VR(x) =
∫

BR(x)

χ(p)dp

estimated mean curvature :

ĤR(X , x) =
8

3R
− 4VR(x)

πR4

Simple digitization

Curvature at a point of a surface II
Integral Invariants

Contents

1 Distance Map

2 Squeletonization

3 Digital geometry tools for analyzing object boundaries

4 Geometric features of a digital region

Characterizing a shape

Here shape = 2D or 3D digital region

Defining features :

• robust to noise
• discriminative
• (invariant to geometric transforms)

→ location, dimensions, orientation, shape descriptors,
topological features, contour signatures...

Simple 2D geometric features

The region R is a set of pixels (xi , yi)i=1..n

Area : number of pixels of R. the staircase effect along the
contours does not distort the approximation.

Center of mass : G = (x̄ , ȳ) = (1
n
∑n

i=1 xi ,
1
n
∑n

i=1 yi)

Diameter : D = max(distance(P,Q)/P,Q ∈ R)

Circularity :
4Π Area(R)

Perimeter2(R)
Elongation :

ΠL2
g(R)

4Area(R)

Convexity :
Area(R)

Area(convex hull(R))

Simple 3D geometric features

The region R is a set of voxels (xi , yi , zi)i=1..n

Volume : number of voxels of R (if cubic voxels)

Center of mass :
G = (x̄ , ȳ , z̄) = (1

n
∑n

i=1 xi ,
1
n
∑n

i=1 yi ,
1
n
∑n

i=1 zi)

Sphericity :
36Π Volume2(R)

Area3(R)

2D Cartesian moments

General definition : mpq =
∑

x
∑

y xpyqf (x , y)
Binary region R : f (x , y) = 1 if (x , y) ∈ R else f (x , y) = 0
=⇒ mpq =

∑
(x ,y)∈R xpyq

Area : m00

Center of mass : (x̄ , ȳ) = (m10
m00

, m01
m00

)

Centered moments : µpq =
∑

(x ,y)∈R(x − x̄)p(y − ȳ)q

Normalized centered moments : ηpq =
µpq

µ
p+q

2 +1
00

Covariance matrix :
1

m00

(
µ20 µ11
µ11 µ02

)
Features invariant to rotation
φ1 = η20 + η02 φ2 = (η20 − η02)2 + 4η2

11
φ3 = (η30 − 3η12)2 + (3η21 − η03)2

Principal axes in 2D I

Principal axes (principal directions) : eigen vectors of the
covariance matrix of the pixels.

Covariance matrix :

MC =

(
a c
c b

)
=(1

n

∑n
i=1(xi − x̄)2 1

n

∑n
i=1(xi − x̄)(yi − ȳ)

1
n

∑n
i=1(xi − x̄)(yi − ȳ) 1

n

∑n
i=1(yi − ȳ)2

)
MC symmetric⇒ orthogonal eigen vectors

Principal axes in 2D II

G
α

tg(2α) =
2c

a− b

α angle between x axis and the first principal direction

a = (
1
n

n∑
i=1

x2
i)− x̄2, b = (

1
n

n∑
i=1

y2
i)− ȳ2, c = (

1
n

n∑
i=1

xiyi)− x̄ ȳ

Remark : a rectangular bounding box of R can be defined from
the principal directions.

3D Cartesian moments

Definition (binary region) : mpqr =
∑

(x ,y ,z)∈R xpyqzr

Volume : m000

Center of mass : (x̄ , ȳ , z̄) = (m100
m000

, m010
m000

, m001
m000

)

Centered moments : µpqr =
∑

(x ,y ,z)∈R(x − x̄)p(y − ȳ)q(z − z̄)r

Centered normalized moments : ηpqr =
µpqr

µ
p+q+r

3 +1
000

Covariance matrix : 1
m000

µ200 µ110 µ101
µ110 µ020 µ011
µ101 µ011 µ002


eigen vectors↔ principal axes of the shape.
Features invariant to rotation
see : Geometric moment invariants, Dong Xu, Pattern
Recognition 2008

2D Zernike moments

Anm= n+1
Π

∑
x
∑

y f (x , y)[Vnm(x , y)]∗ for x2 + y2 ≤ 1,
n positive integer, m integer verifying n − |m| even and |m| ≤ n

Vnm(x , y)= Rnm(x , y)eimtan−1(y
x) basis of complex orthogonal

polynomials

Rnm(x , y)=
∑ n−|m|

2
s=0

(−1)s(x2+y2)
n
2−s

(n−s)!

s!(n+|m|
2 −s)!(n−|m|

2 −s)!
radial polynomial

|Anm| invariant to rotation : Let A′nm be the Zernike moment
computed after an image rotation of angle θ, A′nm = Anme−imθ

To obtain invariance to translation and resizing, normalization
with the Cartesian moments :
h(x , y) = f (x

a + x̄ , y
a + ȳ) with a =

√
β

m00

Reconstruction : f (x , y) = limN→∞
∑N

n=0
∑

m AnmVnm(x , y)

homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/SHUTLER3/node11.html

	Distance Map
	Squeletonization
	Digital geometry tools for analyzing object boundaries
	Regions and their boundaries
	Digital lines and planes
	Geometric features of a digital boundary

	Geometric features of a digital region

