
1

Ordonnancement de processus légers sur
architectures multiprocesseurs hiérarchiques :

BubbleSched, une approche exploitant la
structure du parallélisme des applications

Samuel Thibault

LaBRI

Runtime

2

High-Performance
Computing

● Simulation complements theory and experiments
– Climatology, seismology, astrophysics, nano-sciences,

material chemistry, molecular biology, ...

● Computation needs are always higher
– Faster or better results

3

Irregular applications

● Multi-scale simulation
● Code coupling

Finite Difference Method

Finite Element Method

Irregular applications

● Adaptive Mesh Refinement (AMR)
– Behavior not known a priori

5

Towards more and more
hierarchical computers

● Landscape has changed
– From super-computers to clusters

– With more and more parallelism

Tera10, 8704 coresBlue Gene, 106,496 cores

6

Towards more and more
hierarchical computers

Single processor MP

7

Towards more and more
hierarchical computers

● Simultaneous
MultiThreading

(HyperThreading)

P
M

8

Towards more and more
hierarchical computers

● SMT

(HyperThreading)

● Multi-Core

P P
M

9

Towards more and more
hierarchical computers

● SMT

(HyperThreading)

● Multi-Core
● Symmetric

Multi-Processor

P P P P
M

10

Towards more and more
hierarchical computers

● SMT

(HyperThreading)

● Multi-Core
● SMP
● Non-Uniform Memory

Access (NUMA)

P P P P

P P P P

P P P P

P P P P

M

M

M

M

11

Hagrid, octo-dual-core

M

MM

M

M

M M

M

R seau, disque, etc.￩

P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15
● AMD Opteron
● NUMA factor

1.1-1.5

12

Aragog, dual-quad-core

M

P1 P5 P3 P7

P0 P2P4 P6

● Intel
● Hierarchical cache levels

13

How to run applications
on such machines?

14

How to program
parallel machines?

● By hand
– Tasks, POSIX threads, explicit context switch

● High-level languages
– Processes, task description, OpenMP, HPF,

UPC, ...

● Technically speaking, threads

● How to schedule them efficiently?

15

How to schedule efficiently?

● Performance
– Affinities between threads and memory taken into

account

● Flexibility
– Execution easily guided by applications

● Portability
– Applications adapted to any new machine

16

Predetermined approaches

● Two phases
– Preliminary computation of

● Data placement [Marather, Mueller, 06]
● Thread scheduling

– Execution
● Strictly follows the pre-computation

● Example: PaStiX [Hénon, Ramet, Roman, 00]

✔Excellent performances

✗ Not always sufficient or possible: strongly
irregular problems...

17

Opportunistic approaches

● Various greedy algorithms
– Single / several [Markatos, Leblanc, 94] /

a hierarchy of task lists [Wang, Wang, Chang, 00]

● Used in nowaday's operating systems
– Linux, BSD, Solaris, Windows, ...

✔Good portability

✗ Uneven performances
– No affinity information...

18

Negotiated approaches

● Language extensions
– OpenMP, HPF, UPC, ...

✔Portability (adapts itself to the machine)

✗ Limited expressivity (e.g. no NUMA support)

● Operating System extensions
– NSG, liblgroup, libnuma, ...

✔Freedom for programmers

✗ Static placement, requires rewriting placement
strategies according to the architecture

19

Issues

● Negotiated approach seems promising, but
– Which scheduling strategy?

● Depends on the application

– Which information to take into account?
● Affinities between threads?
● Memory occupation?

– Where does the runtime play a role?

● But there is hope!
– Programmers and compilers do have some clues to give

– Missing piece: structures

20

BubbleSched
Guiding scheduling through bubbles

21

Idea:
Structure to better schedule

Bridging the gap between programmers and
architectures

● Grab the structure of the parallelism
– Express relations between threads, memory, I/O, ...

● Model the architecture in a generic way
– Express the structure of the computation power

● Scheduling is mapping
– As it should just be!

– Completely algorithmic

– Allows all kinds of scheduling approaches

22

Runqueues to model
hierarchical machines

MP P M PP

23

Runqueues to model
hierarchical machines

MP P M PP

24

Runqueues to model
hierarchical machines

MP P M PP

25

Runqueues to model
hierarchical machines

MP P M PP

26

Runqueues to model
hierarchical machines

MP P M PP

27

Runqueues to model
hierarchical machines

MP P M PP

28

Bubbles to model
thread affinities

Keeping the structure of the application in mind
– Data sharing

– Collective operations

– ...

bubble_insert_thread(bubble, thread);
bubble_insert_bubble(bubble, subbubble);

29

Bubbles to model
thread affinities

Keeping the structure of the application in mind
– Data sharing

– Collective operations

– ...

bubble_insert_thread(bubble, thread);
bubble_insert_bubble(bubble, subbubble);

Some can be stronger

30

Examples of thread and
bubble repartitions

31

A lot of useful information
linked with bubbles

● From the hardware
– Target machine architecture

– Performance counters

● From the compiler
– Data access pattern

– Data amount

● From the programmer
– Threads and thread / data affinities

– Thread behavior: I/O vs CPU

32

Various applications,
various schedulers

● Various behaviors
– Memory affinity → keep on the same NUMA node

or even same chip

– Memory bandwidth → distribute over chips

– Irregular parallelism → keep threads “up”

➔ Compromises have to be found

➔ No generic scheduler can fit all situations

33

A 3-side Approach

● Application programmer
– Uses high-level language (OpenMP, HPF, UPC, ...)

– Handles application development

● Scheduling programmer
– Uses high-level scheduling primitives

– Handles scheduling algorithms

● Technical programmer
– Implements scheduling primitives

– Handles technical details

34

● Walk the machine
– rq->father, rq->children[]

● Look
– rq_for_each_entry

● Lock
– rq_lock, rq_unlock

– all_lock, all_unlock

● Move
– get_entity, put_entity

Toolbox for distributing
threads and bubbles

35

Toolbox for distributing
threads and bubbles

● Hooks
– Idle

– Timeslice

– Bubble/thread creation

– ...

● Dedicated thread
– « daemon »

36

Understanding performances

● Generate a trace of events during execution
– FxT library, co-developped with UNH

● Convert into Flash animation
● Graphical debugger

37

Click & Play Interface

Quickly test synthetic bubble hierarchies

38

Implemented schedulers

● Full-featured schedulers
– Gang scheduling

– Spread
● Favor load balancing

– Affinity
● Favor affinities (Broquedis)
● Memory aware (Jeuland)

● Reuse and compose
– Work stealing

– Combined schedulers (time, space, etc.)

39

Implementation within Marcel

● User-level thread scheduler
● Efficient, flexible and portable
● No need to patch the kernel

(µs) Creation Execution

Marcel mono 0,60 0,46
Marcel SMP 0,80 0,60
Marcel NUMA 0,85 0,60
Marcel NUMA bubbles 0,85 0,70
Linux 6,4 11,3

Automatic bubble generation

● POSIX compatible, NPTL ABI compatible
– Father-children relationship

● GCC OpenMP backend

pthread_create

41

Building bubbles out of
OpenMP directives

● Create one bubble per parallel section
– Including for nested parallel sections

42

Building bubbles out of
OpenMP directives

● GNU OpenMP port on Marcel threads +
bubbles

● Binary compatibility with existing applications

OpenMP code GNU OpenMP binary

libgomp

pthreads

GOMP threads

Bubble-
Sched

GOMP interface

43

Case studies

44

Case studies

● SuperLU
– Posix

– Task parallelism

● BT-MZ
– OpenMP

– Space-irregular parallelism

● MPU
– OpenMP

– Time-irregular parallelism

45

Task parallelism
SuperLU

● Irregular demand for LU factorization jobs
● Efficient parallel routine (SuperLU)

● Dual-dual core Opteron (hence 4 CPUs)

➔ Gang scheduling

46

A gang scheduler

void *gang_sched(void *param) {
 while(1) {

 rq_lock(&main_rq);
 rq_lock(&nosched_rq);
 rq_for_each_entry(&main_rq, &e) {
 get_entity(e, &main_rq);
 put_entity(e, &nosched_rq);
 }

 if (!rq_empty(&nosched_rq)) {
 e = rq_entry(&nosched_rq);
 get_entity(e, &nosched_rq);
 put_entity(e, &main_rq);
 }
 rq_unlock(&main_rq);
 rq_unlock(&nosched_rq);
 delay(1);
 }
}
start() {
 thread_create(NULL, NULL, gang_sched, NULL);
}

47

Results

 0

 1

 2

 3

 4

 1 2 3 4 5
Nombre de jobs

Bubble-gang

Marcel-shared

Linux

Number of jobs

S
p

e
e

d
u

p

48

● OpenMP Multi-Zone version of NPB (NASA
Parallel Benchmark): BT-MZ

● Two-level parallelism:
– External 16 irregular (x,y) regions

– Internal z regular parallelism

● Load estimation is known

Space-Irregular parallelism
BT-MZ

Extern

Intern

49

A “spread” scheduler

Kind of bin packing
● Sort threads and bubbles by application-

provided computation load estimation
● “Explode” very big bubbles
● Greedily distribute on top-level runqueues
● Recurse into sub-runqueues

● May take into account resource usage
– Memory, bandwidth, ...

50

Spread scheduler in action

51

Nested Parallelism
Marcel

NPTL nested: 6.3

52

Nested Parallelism
Marcel with Bubbles

NPTL nested: 6.3
Marcel nested: 8.2

53

Nested Parallelism
Marcel with tuned Bubbles

NPTL nested: 6.3
Marcel nested: 8.2
Bubbles default: 9.4

54

Time-irregular parallelism
MPU

● Surface reconstruction from point set
– Schlick, Boubekeur, Diakhate

● Irregularly recursively parallel
– Don't know where to refine a priori

55

Parallelization of MPU

void Node::compute(){

 computeApprox();

 if(_error > _max_error){
 splitCell();

 #pragma omp parallel for
 for(int i=0; i<8; i++)
 _children[i]->compute();
 }
}

56

Time-irregular parallelism
MPU

57

How to schedule
MPU threads?

● A very large number of threads
● Irregular creation
● No load estimation

➔ Requires dynamic load balancing

58

Affinity scheduler

● Affinity-bound
distribution
– Broquedis

● Affinity and memory
-aware stealing
– Steal locally

– Tear bubbles

– Migrate memory
● Jeuland

✔Suited to dynamic
nested parallelism

59

MPU Results

Optimal

Manual

Marcel + Bubbles

Marcel

Linux

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

A
cc

el
er

at
io

n

Number of processors

60

Conclusion
A new scheduling approach

Structure & conquer!
● Bubbles = simple yet powerful abstractions

– Recursive decomposition schemes
● Divide & Conquer
● OpenMP

● Implement scheduling strategies for hierarchical
machines
– A lot of technical work is saved

● Significant benefits
– 20-40%

Conclusion
A new scheduling approach

● Experimentation platform
– Available for various high-end machines

● Bull Fame2, SGI Altix, AMD Opteron...

– Quickly test existing strategies or combinations
● With action replay feedback

● Visibility
– Used in ANR CIGC projects: PARA, NUMASIS

– OpenMP backend

– http://pm2.gforge.inria.fr/

http://pm2.gforge.inria.fr/

62

Future work

● Information from programmer and/or compiler,
e.g. OpenMP
– Thread-data relationships

– Big application steps
● Initialization, loop boundaries

– François Broquedis PhD thesis

● More abstract languages for bubbles
– ML, Prolog ?

Future work

● Spread the idea
– Other OpenMP compilers

– Linux

– Xen

● Next architecture targets
– 2D meshes

– Heterogeneity (*PUs, NCC-NUMA)

– Sea of cores
● Embarrassingly parallel machines

64

Supplement

65

AMD Quad-Core

...

Shared L3 cache

NUMA factor ~1.1-1.5

M

P P P P

M

P P P P

M

P P P P

66

Intel Quad-Core

Hierarchical cache levels

M

PP PP

PP PP

PP PP

...

67

Work stealing

idle() {
 look_up(self_rq);
}

look_up(rq) {
 if (look_down(rq->father, rq))
 return;
 look_up(rq->rather);
}

look_down(rq, me) {
 if (look(rq))
 return;
 for (i=0; i<rq->arity; i++)
 if (rq->sons[i] != me)
 look_down(rq->sons[i], rq);
}

look(rq) {
 b = find_interesting_
 bubble(rq)));
 if (!b)
 return 0;
 rq_lock(rq);
 get_entity(b);
 rq_unlock(rq);
 rq_lock(self_rq);
 put_entity(b, self_rq);
 rq_unlock(self_rq);
 return 1;
}

68

Thread seeds

● Lazy creation of threads
– Makes creation of a team of threads lightweight

– Fast sequential execution on a single processor

– Suited parallel execution on several processors

● Well suited to irregular nested OpenMP parallel
sections

PP

69

Memory

CPU CPU

Memory

CPU CPU

Network Disks

Mem

CPU

CPU CPU

CPU

Network Disks

Mem

Mem

Mem

Taking NUMA effects into
account during I/O

● Peripherals affinity
– Located on an I/O bus linked with a memory bus

● Closer to some processors and memory banks

70

Parallelization of one job

 0

 1

 2

 3

 4

 1 2 3 4 5 6

S
p
e

e
d
u

p

Nombre de threads

Linux

Marcel-shared

Performant as long as no overloading is used

Number of threads

71

2-way parallelization?

Linux

Bubble-gang2

Marcel-shared

 1 2 3 4 5
Nombre de jobsNumber of jobs

 0

 1

 2

 3

 4

S
p

e
e

d
u

p

72

Gang Scheduling

73

Non-nested Parallelism

74

Nested Parallelism
NPTL (Linux 2.6.17)

NPTL inner: 7.0
NPTL outer: 4.8

7.0

4.8

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74

