Rust, OpenCL, GPU

Philippe Helluy
IRMA Strasbourg, Inria Macaron

June 2024

What is Rust 7

Rust (“rouille” in French) is a programming language created in
2009, using only old (rusty), but robust ideas. Some features,
compared to C, C++ and Python, are:

>

>

v

no memory leak or segfault, generally guaranteed at compile
time [JUKD17];

no unitialized memory, no hidden type conversion (such as int
to float, float32 to float64);

no race conditions, generally guaranteed at compile time;
strict ownership system, fast executable;

Cargo, which replaces cmake, doxygen, ctest, anaconda, etc.
in a single utility.

"most loved programming language" in the Stack Overflow
Developer Survey every year since 2016.

1D solver

Wave equation with unknown u(x, t), x € R, t €]0, T|,

=0, u(x,0)= uo(x), %(X, 0)=0.

ot? Ox?
Leapfrog (“saute-mouton”) scheme
ul ~ u(x;, ty), x;=IiAx, t,= nAt,
uftt = —uf T 4 2(1 =) ul + B2 (ufy + ufyq) (1)

1

where 5 = At/Ax.

Rust code

» Variables are immutable by default.

» An object passed to a function cannot be used anymore: use
reference instead.

» Only one mutable reference or several immutable references
allowed at a time.

» The compiler messages are generally helpful. Cargo clippy
gives hints about what can be improved.

» It is recommended to use iterators for efficient and robust

programs. Use of three different arrays for storing u” 1, u”

; FH
and u,“ :

» Automatic parallelism with the rayon library, without race
condition.

» Source code at https://github.com/phelluy/tutorust

https://github.com/phelluy/tutorust

2D solver

We now consider the 2D case on a square. In 2D the leapfrog
scheme reads:

prit = —plt +2(1 - 26%)pf,
+ B PPy +plapli 1+ pl)- (2)

Boundary conditions:

P(’)’,j = Pf,j- (3)
P41 = PN,- (4)
Plo = Pi1- (5)
Pi'N+1 = PiN- (6)

Code description

» We define a 2D array struct.

» Overloading of the [|[] operator for immutable or mutable
access.

> template <T>.
» 2D plot with Python.

OpenCL wrapper in Rust

C bindings.

Unsafe code.

Memory management.

One example of macro.

Doc and testing with Cargo.

Application to the wave equation on GPU.

vVvvyVvVvVvyyypy

Source code at https://github.com/phelluy/minicl

https://github.com/phelluy/minicl

Application to MHD

MHD equations:

p pu 0
pu puRu+(p+EE)-BeB 0
| @ |+V-| Q+p+B2u—-B-uB |=|0
B U®B—-B®u+yl 0
P cﬁB 0

where the velocity and magnetic field are denoted
u=(up,us,u3)", B=(By, By B3)T, the pressure is given by a
perfect-gas law with a constant polytropic exponent v > 1
p=(-1Q-p% - 5).

Orszag-Tang test case
Grid size: 4096x4096 [BDH 23]

1

LBM with OpenCL

| | prec. [b (GB/s, shift-only) [b (GB/s, shift-relax) | max. b (GB/s) |

Intel float32 17.58 13.38 60
Intel float64 19.12 17.48 60
Iris 640 | float32 26.20 24.98 34
Iris 640 | float64 20.08 3.78 34
GTX float32 147.54 146.94 192
GTX float64 148.76 49.72 192
Quadro | float32 336.45 329.06 432
Quadro | float64 344.50 127.21 432
V100 | float32 692.31 676.44 900
V100 | float64 705.88 610.17 900

Table 2: Bandwidth efficiency of the LBM algorithm. Comparison of the data transfer rates of
the shift-only algorithm and of the shift-and-relaxation algorithm. The resulting bandwidth
is compared with the maximal memory bandwidth advertised by the vendors of the hardware
devices.

Rust automatic parallelism

» Resolution of a PDE on a regular mesh split into “boxes”. The
computations on red boxes depend only on blue boxes and vice
versa.

» Sort the array of boxes by color. Then “split at mut” the array:
separate access to the blue and red boxes.

» Automatic parallelization, without race condition.

0

: mutable

7

— <« split at mut here
8

: immutable

Upwind scheme in 2D or 3D

Dependency graph of the computations

» The solution can be explicitly computed by following a
topological ordering of a Direct Acyclic Graph (DAG), e.g. 3,
7,0, 15, 1, etc.

» In addition there is parallelism: (3,7) can be computed in
parallel, then (0,15,1) can be computed in parallel, etc.

» Low storage: the solution can be replaced in memory during
the computations.

Rust implementation

We have implemented the upwind algorithm in Rust with the “split
at mut” trick. More details in [GHMD21].

Error e, CPU (s)

Method CFL 3 At v=2 v=>5 1 thread 24 threads
RK3DG 0.37 0.00009 0.00070 0.01238 4,607.95 T85.28
D34P 0.37 0.00009 0.00103 0.01467 1.524.45 234.48
RK3DG 0.93 0.00023 0.00070 0.01238 2,189.76 384.79
D3Q4P 0.93 0.00023 0.00103 0.01467 613.44 90.84
RK3DG 1.85 0.00046 0.00070 0.01238 1.121.96 212.60
D3g4P 1.85 0.00046 0.00103 0.01467 304.41 45.14
D34P 3.70 0.00091 0.00103 0.01468 153.09 22.40
D3Q4P 9.25 0.00228 0.00104 0.01479 61.60 8.96
D3Q4P 18.50 0.00456 0.00115 0.01619 30.76 4.53
D34P 37.00 0.00912 0.00210 0.02992 15.34 2.46
D3Q4P 92.50 0.02281 0.01107 0.16589 6.17 0.92

D3Q4P 185.00 0.04562 0.04509 0.40344 3.10 0.48

Application to an electromagnetic solver

» The transport solver is the building block of our CFL-less
scheme for conservation laws.
» Unstructured mesh of the unit cube made of large and small

cells. A small electric wire at the middle of the mesh.
» Resolution of the Maxwell equations.

%

u, ny
1 1
01 o1
505 o 2o g 05
01 ~o1
% 05 1 % 05 1

(a) Solution at time t = 0.75; left panel: i, _, ;; middle panel: Ba|, _, .; right panel: Ha|,,_, ;.

[m] = =

i
N)
yel
)

"Kyoto" test-case
Maxwell, 6 millions tetrahedrons [GHMDW24].

solver hardware platform computation time
CLAC 6 x Nvidia Ge.Fc')rce QTX IQSO Ti 31h
single precision arithmetic
KOUGLOFV AMD EPYC 7713x2, 128 cores, 2 GHz 20h

double precision arithmetic

~150

—250

~350

—150

e £

FIGURE 6.9. Numerical approximation of |E|, sliced in the (z1,s) plane, at ¢ = 09ns. Left
panel: results from CLAC; right panel: results from KOUGLOFYV. o
- =

Conclusion

vy

vVvYyyvyy

Practical use of Rust in a scientific computing context.

GPU computing support through OpenCL: works on Linux,
Windows, Mac.

Less bugs, which was the objective.

Automatic, fast and robust parallelism.

Friendly environment.

Many other features, which we have not yet explored.

But if | had to develop a big project, Kokkos is probably a
much safer choice !

Post scriptum: on-the-fly memory compression

PhD thesis of Clement Flint: CFD on a structured grid. The grid
does not enter the GPU memory.

» Wavelet compression for virtually increasing the memory.

» By turns, each block is uncompressed, processed and
recompressed (in cache memory)

» C++ and CUDA (for the moment)

GB processed per second depending on the used method and the grid size

A A ~=- GPU limit (without compression)
w0 A0 3 limit
A .
. A ssion, no bounceback
‘W No subgrids, no compression, bounceback
A a N @ subgrids, no compression, bounceback
A) % subgrids, block compression, bounceback
300 - — T2 ok J Subgrids, global compression, bounceback
B P M Color of A100 data
5 A v oV * * B Color of V100 data
g Yo . B Color of P100 data
g v . * » * ® % xxpuR
° 100 v
2 Yo Ve
H Yo
g v * *
g
@
° o, * * * Bx % % » Pele.gen 3 imit
*
] * *
*] *
] *
*]

128MB 256MB 512MB 1B 2GB 4GB 8GB 16GB 32GB 64GB 126GB 256GB 512GB 118 2TB
Grid size

Bibliography |

@ Hubert Baty, Florence Drui, Philippe Helluy, Emmanuel Franck, Christian Klingenberg, and Lukas
Thanh3user.

A robust and efficient solver based on kinetic schemes for magnetohydrodynamics (mhd)
equations.
Applied Mathematics and Computation, 440:127667, 2023.

@ Pierre Gerhard, Philippe Helluy, and Victor Michel-Dansac.
Cfl-less discontinuous galerkin solver.
2021.

Pierre Gerhard, Philippe Helluy, Victor Michel-Dansac, and Bruno Weber.

Parallel kinetic schemes for conservation laws, with large time steps.
Journal of Scientific Computing, 99(1):5, 2024.

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.

Rustbelt: Securing the foundations of the rust programming language.
Proceedings of the ACM on Programming Languages, 2(POPL):1-34, 2017.

	A simple wave solver in Rust

