
Rust, OpenCL, GPU

Philippe Helluy

IRMA Strasbourg, Inria Macaron

June 2024



What is Rust ?

Rust (“rouille” in French) is a programming language created in
2009, using only old (rusty), but robust ideas. Some features,
compared to C, C++ and Python, are:
▶ no memory leak or segfault, generally guaranteed at compile

time [JJKD17];
▶ no unitialized memory, no hidden type conversion (such as int

to float, float32 to float64);
▶ no race conditions, generally guaranteed at compile time;
▶ strict ownership system, fast executable;
▶ Cargo, which replaces cmake, doxygen, ctest, anaconda, etc.

in a single utility.
▶ "most loved programming language" in the Stack Overflow

Developer Survey every year since 2016.



1D solver

Wave equation with unknown u(x , t), x ∈ R, t ∈]0,T [,

∂2u

∂t2
− ∂2u

∂x2 = 0, u(x , 0) = u0(x),
∂u

∂t
(x , 0) = 0.

Leapfrog (“saute-mouton”) scheme

uni ≃ u(xi , tn), xi = i∆x , tn = n∆t,

un+1
i = −un−1

i + 2(1− β2)uni + β2 (uni−1 + uni+1
)
, (1)

where β = ∆t/∆x .



Rust code

▶ Variables are immutable by default.
▶ An object passed to a function cannot be used anymore: use

reference instead.
▶ Only one mutable reference or several immutable references

allowed at a time.
▶ The compiler messages are generally helpful. Cargo clippy

gives hints about what can be improved.
▶ It is recommended to use iterators for efficient and robust

programs. Use of three different arrays for storing un−1
i , uni

and un+1
i .

▶ Automatic parallelism with the rayon library, without race
condition.

▶ Source code at https://github.com/phelluy/tutorust

https://github.com/phelluy/tutorust


2D solver

We now consider the 2D case on a square. In 2D the leapfrog
scheme reads:

pn+1
i ,j = −pn−1

i ,j + 2(1− 2β2)pni ,j

+ β2 (pni−1,j + pni+1,jp
n
i ,j−1 + pni ,j+1

)
. (2)

Boundary conditions:
pn0,j = pn1,j . (3)

pnN+1,j = pnN,j . (4)

pni ,0 = pni ,1. (5)

pni ,N+1 = pni ,N . (6)



Code description

▶ We define a 2D array struct.
▶ Overloading of the [][] operator for immutable or mutable

access.
▶ template <T>.
▶ 2D plot with Python.



OpenCL wrapper in Rust

▶ C bindings.
▶ Unsafe code.
▶ Memory management.
▶ One example of macro.
▶ Doc and testing with Cargo.
▶ Application to the wave equation on GPU.
▶ Source code at https://github.com/phelluy/minicl

https://github.com/phelluy/minicl


Application to MHD

MHD equations:

∂t


ρ
ρu
Q
B
ψ

+∇ ·


ρu

ρu⊗ u + (p + B·B
2 )I− B⊗ B

(Q + p + B·B
2 )u− (B · u)B

u⊗ B− B⊗ u + ψI
c2
hB

 =


0
0
0
0
0

 ,

where the velocity and magnetic field are denoted
u = (u1, u2, u3)

T , B = (B1,B2,B3)
T , the pressure is given by a

perfect-gas law with a constant polytropic exponent γ > 1
p = (γ − 1)(Q − ρu·u

2 −
B·B
2 ).



Orszag-Tang test case
Grid size: 4096x4096 [BDH+23]



LBM with OpenCL



Rust automatic parallelism
▶ Resolution of a PDE on a regular mesh split into “boxes”. The

computations on red boxes depend only on blue boxes and vice
versa.

▶ Sort the array of boxes by color. Then “split at mut” the array:
separate access to the blue and red boxes.

▶ Automatic parallelization, without race condition.

0
... mutable
7
− ← split at mut here
8
... immutable

15





Upwind scheme in 2D or 3D
Dependency graph of the computations

▶ The solution can be explicitly computed by following a
topological ordering of a Direct Acyclic Graph (DAG), e.g. 3,
7, 0, 15, 1, etc.

▶ In addition there is parallelism: (3,7) can be computed in
parallel, then (0,15,1) can be computed in parallel, etc.

▶ Low storage: the solution can be replaced in memory during
the computations.



Rust implementation

We have implemented the upwind algorithm in Rust with the “split
at mut” trick. More details in [GHMD21].



Application to an electromagnetic solver
▶ The transport solver is the building block of our CFL-less

scheme for conservation laws.
▶ Unstructured mesh of the unit cube made of large and small

cells. A small electric wire at the middle of the mesh.
▶ Resolution of the Maxwell equations.



“Kyoto” test-case
Maxwell, 6 millions tetrahedrons [GHMDW24].



Conclusion

▶ Practical use of Rust in a scientific computing context.
▶ GPU computing support through OpenCL: works on Linux,

Windows, Mac.
▶ Less bugs, which was the objective.
▶ Automatic, fast and robust parallelism.
▶ Friendly environment.
▶ Many other features, which we have not yet explored.
▶ But if I had to develop a big project, Kokkos is probably a

much safer choice !



Post scriptum: on-the-fly memory compression
PhD thesis of Clement Flint: CFD on a structured grid. The grid
does not enter the GPU memory.
▶ Wavelet compression for virtually increasing the memory.
▶ By turns, each block is uncompressed, processed and

recompressed (in cache memory)
▶ C++ and CUDA (for the moment)



Bibliography I

Hubert Baty, Florence Drui, Philippe Helluy, Emmanuel Franck, Christian Klingenberg, and Lukas
Thanhäuser.
A robust and efficient solver based on kinetic schemes for magnetohydrodynamics (mhd)
equations.
Applied Mathematics and Computation, 440:127667, 2023.

Pierre Gerhard, Philippe Helluy, and Victor Michel-Dansac.
Cfl-less discontinuous galerkin solver.
2021.

Pierre Gerhard, Philippe Helluy, Victor Michel-Dansac, and Bruno Weber.
Parallel kinetic schemes for conservation laws, with large time steps.
Journal of Scientific Computing, 99(1):5, 2024.

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
Rustbelt: Securing the foundations of the rust programming language.
Proceedings of the ACM on Programming Languages, 2(POPL):1–34, 2017.


	A simple wave solver in Rust

