BUILDING SCALABLE LINEAR ALGEBRA
ALGORITHMS WITH STARPU

Numpex - refours d'expérience

Antoine Jégo
12 juin 2024

BACKGROUND

APPLICATION CONTEXT

e PhD thesis through ANR project Solvers for Heterogeneous
Architectures over Runtime systems, Investigating Scalability.

e qr_mumps software package.
o multifrontal methods: sparse problems, dense kernels

e Scalable dense linear algebra operations.

o Matrix-matrix multiplication (GEMM, SYMM)
o Matrix factorization (Cholesky POTRF, LU GETRF)

Y}

SCIENTIFIC LITERATURE ON SCALABLE GEMM

L. E. Cannon. "A Celluler Computer to Implement the Kalman Filter Algorithm”. Phd Thesis, 1969.

— Optimal algorithm when # of processors is a square number
and matrices are square.

wJ

SCIENTIFIC LITERATURE ON SCALABLE GEMM

L. E. Cannon. "A Celluler Computer to Implement the Kalman Filter Algorithm”. Phd Thesis, 1969.

— Optimal algorithm when # of processors is a square number
and matrices are square.

R. van de Geijn and J. Watts. "SUMMA : Scalable Universal Matrix Multiplication Algorithm”. Concurrency:
Practice and Experience (1997).

— 2D A/B/C-stationary using collective communication
patterns.

J

SCIENTIFIC LITERATURE ON SCALABLE GEMM

L. E. Cannon. "A Celluler Computer to Implement the Kalman Filter Algorithm”. Phd Thesis, 1969.

— Optimal algorithm when # of processors is a square number
and matrices are square.

R. van de Geijn and J. Watts. "SUMMA : Scalable Universal Matrix Multiplication Algorithm”. Concurrency:
Practice and Experience (1997).

— 2D A/B/C-stationary using collective communication
patterns.

E. Solomonik and J. Demmel. “"Communication-optimal Parallel 2.5D Matrix Multiplication and LU Factor-
ization Algorithms”. Europar (2011).

— 3D Cannon algorithm.

o/

SCIENTIFIC LITERATURE ON SCALABLE GEMM

L. E. Cannon. "A Celluler Computer to Implement the Kalman Filter Algorithm”. Phd Thesis, 1969.

— Optimal algorithm when # of processors is a square number
and matrices are square.

R. van de Geijn and J. Watts. "SUMMA : Scalable Universal Matrix Multiplication Algorithm”. Concurrency:
Practice and Experience (1997).

— 2D A/B/C-stationary using collective communication
patterns.

E. Solomonik and J. Demmel. “"Communication-optimal Parallel 2.5D Matrix Multiplication and LU Factor-
ization Algorithms”. Europar (2011).

— 3D Cannon algorithm.

M. D. Schatz, R van de Geijn and J. Poulson. “Parallel Matrix Multiplication: a Systematic Journey". Jour-
nal on Scientific Computing (2016).

— 3D A/B/C-stationary.

o/

SOFTWARE IMPLEMENTATIONS

Literature recap

X-stationary means Don't move X which is the biggest matrix.
3D means replicate biggest matrix if memory is cheap.

e ScaLAPACK, 1998 : 2D A,B,C-stationary, no GPU

e Elemental, 2015 : 2D A,B,C-stationary, no GPU

Modern software packages don't implement all 3D algorithms.

J

SOFTWARE IMPLEMENTATIONS

Literature recap

X-stationary means Don't move X which is the biggest matrix.
3D means replicate biggest matrix if memory is cheap.

e ScaLAPACK, 1998 : 2D A,B,C-stationary, no GPU
e Elemental, 2015 : 2D A,B,C-stationary, no GPU
e ParSEC, 2011 : 2D C-stat. w/ GPU, A,B partial GPU support
e Chameleon, 2013 : 2D C-stationary, GPU-aware

e Slate, 2020 : 2D A,C-stationary, GPU-aware

Modern software packages don't implement all 3D algorithms.

2)

WRITING MATRIX-MATRIX MULTIPLICATION

Cismxn, Aism x k, Biskxn

for (int 1 = 0; 1 < k; 1++)
for (int i = 0; i < m; i++)
for (int j = 0; j < nj; j++)
Cli,jl += A[i,1] = B[1,j];

This is the plain sequential implementation.

5)

WRITING MATRIX-MATRIX MULTIPLICATION

Cismxn, Aism x k, Biskxn

for (int 1 = 0; 1 < k/b; 1++)
for (int i = 0; i < m/b; i++)
for (int j = 0; j < n/b; j++)
gemm(C[i,jl, A[i,1], B[1,j1);

Matrices are tiled and BLAS is invoked.

WRITING MATRIX-MATRIX MULTIPLICATION

Cismxn, Aism x k, Biskxn

register_handles (handles, matrix, M, N) {

for (int i = 0; i < M; i++)

for (int j = 0; j < N; j++)
register_handle(nandles(i,jl, matrix[i,jl);

};
register_handles (hA,A,m/b,k/b);
register_handles (hB,B,k/b,n/b);
register_handles (hC,C,m/b,n/b);
reglster_codelet(gemm_cl, cpu:blas_gemm, gpu:cublas_gemm) ;

for (int 1 = 0; 1 < k/b; 1++)
for (int i = 0; i < m/b; i++)
for (int j = 0; j < n/b; j++)
‘ insert_task(gemm_cl, ‘
hCri,31:RW, hAri,11:R, hBni,j1:R);

wait_for_all();

Using StarPU requires

e Handing matrices out as handles
e Handing (cu)BLAS out as codelets
¢ |nserting tasks with

This leads to a GPU-aware code on a single node 5)

WRITING MATRIX-MATRIX MULTIPLICATION

Cismxn, Aism x k, Biskxn

register_handles (handles, matrix, M, N) {
for (int i = 0; i < M; i++)
for (int j = 0; j < N; j++)
register_handle(handles[i,j], matrix[i,j],
owner-2dbc,j,p.a));
};
register_handles (hA,A,m/b,k/b);
register_handles (hB,B,k/b,n/b);
register_handles (hC,C,m/b,n/b);
register_codelet(gemm_cl, cpu:blas_gemm, gpu:cublas_gemm);

for (int 1 = 0; 1 < k/b; 1++)
for (int i = 0; i < m/b; i++)
for (int j = 0; j < n/b; j++)
if (pruning(i,j,l,me))
insert_task(gemm_cl, hC[i,jl:RW, hA[i,1]:R, hB[1,jl:R);
wait_for_all();

e To use StarPU in a distributed-memory setting each handle
should have an owner described by its (MPI) rank.

e 2D Block-Cyclic distribution is a standard distribution for linear
algebra operations where # of nodes is p X g.

)

WHY STARPU 7

FEATURES IN STARPU

These specific features fit requirements of linear algebra
operations.

e 1.3 Dynamic collective communication detection

A. Denis, E. Jeannot, P. Swartvagher and S. Thibault. “Using Dynamic Broadcasts to improve Task-Based
Runtime Performances”. Europar (2020).

export NMAD_MCAST_TREE=binomial |binary|chain
e 1.4 Automatic distributed-memory reduction patterns

These recent features are transparent during graph submission.

Scheduling, profiling, out-of-core, efc. are also available.

WRITING SCALABLE MATRIX-MATRIX MULTIPLICATION

register_handles (handles, matrix, M, N) {
for (int i = 0; i < M; i++)
for (int j = 0; j < N; j++)
register_handle (handles[i,j], matrix[i,j],
owner=2dbc(i,j,p,q));

};

register_handles (hA,A,m/b,k/b);

register_handles (hB,B,k/b,n/b);

register_handles (hC,C,m/b,n/b);

register_codelet (gemm_cl , cpu:blas_gemm, gpu: cublas_gemm) 8
register_reduction_codelets(hC, init_cl, add_cl);

for (int 1 = 0; 1 < k/b; 1++)
for (int i = 0; i < m/b; i++)
for (int j = 0; j < n/b; j++)
if (pruning(i,j,l,me))
insert_task(gemm_cl, hC[i,j]:RANK_REDUX,
hA[i,1]:R, hB[1,j]:R,
mapping(i,j, 1) :EXECUTING_RANK) ;
wait_for_all();

E. Agullo, A. Buttari, A. Guermouche, J. Herrmann and A. Jego. "Task-based parallel programming for
scalable matrix product algorithms”. ACM TOMS (2023).

WRITING SCALABLE MATRIX-MATRIX MULTIPLICATION

register_handles (handles, matrix, M, N) {

for (int i = 0; i < M; i++)

for (int j = 0; j < N; j++)
register_handle(handles[i,j], matrix[i,j],
owner=2dbc(i,j,p,q));

};
register_handles (hA,A,m/b,k/b);
register_handles (hB,B,k/b,n/b);
register_handles (hC,C,m/b,n/b);
register_codelet(gemm_cl, cpu:blas_gemm, gpu:cublas_gemm);
register_reduction_codelets(hC, init_cl, add_cl);

/* reordering loops helps with parallelism ; A:jil, B:ilj, C:lij*/
for (int 1 = 0; 1 < k/b; 1++)
for (int i = 0; i < m/b; i++)
for (int j = 0; j < n/b; j++)
if (pruning(i,j,1l,me))
insert_task(gemm_cl, hC[i,j]:RANK_REDUX,

hA[i,1]:R, hB[1,j]:R,
/* 3D A-stationary */
hA[i,1].owner+P/h*j\%h:EXECUTING_RANK) ;
/* 3D B-stationary */
hB[1,j].owner+P/h*i\}%h:EXECUTING_RANK) ;
/* 3D C-stationary */
hC[i,j].owner+P/h*1\%h:EXECUTING_RANK) ;

wait_for_all();

E. Agullo, A. Buttari, A. Guermouche, J. Herrmann and A. Jego. "Task-based parallel programming for
scalable matrix product algorithms”. ACM TOMS (2023).

WRITING MATRIX-MATRIX MULTIPLICATION — SOME RESULTS

m=8n=k= 65536 m=8*n=k=131,072 m =8*n =k =262,144
500
400
300
n
5200
o
=
;100 =
o
D 3
Q (0]
o
(77]
o
Q
X
w
16 64 25616 64 25616 64 256
of nodes
Algorithm Stationary variant Block size
¥ Elemental © gqr_mumps — ~~ ¢ o
A 256 512 1024

ScalLAPACK © SLATE

SCALABLE SYMMETRIC MATRIX-MATRIX MULTIPLICATION

for (int j = 0; j < n; j++)
for (int i = 0; i < m; i++) {
for (int 1 = 0; 1 < i; 1++)
Cli,j] += A[i,1] * B[1,j];
Cli,j] += A[i,i] = B[i,j];
for (int 1 = i+1; 1 < m; 1++)
C[i,j] += A[1,i] * BI[1,j];

General matrix-matrix multiplication is not everything ...
The same ideas can be applied to symmetric matrix-matrix

multiplication. @

SCALABLE SYMMETRIC MATRIX-MATRIX MULTIPLICATION

for (int j = 0; j < n/b; j++)
for (int i = 0; i < m/b; i++) {
for (int 1 = 0; 1 < i; 1++)
gemm(C[i,jl, A[i,1], BI[1,j1);
symm(C[i,jl, A[i,il, B[i,j1);
for (int 1 = i+1; 1 < m/b; 1++)
gemm(C[i,jl, A[1,i]l"T, B[1,j1);

SYMM is part of BLAS - which is part of the reason we may wish
to implement it in distributed-memory in the first place.

@)

SCALABLE SYMMETRIC MATRIX-MATRIX MULTIPLICATION

register_handles (handles, matrix, M, N) {
for (int i = 0; i < M; i++)
for (int j = 0; j < Nj; j++)
register_handle(handles[i,j], matrix[i,j],
owner=2dbc(i,j,p,q));

};

register_symmetric_handles(hA,A,m/b);

register_handles (hB,B,m/b,n/b);

register_handles (hC,C,m/b,n/b);

register_codelet (gemm_cl, cpu:blas_gemm, gpu:cublas_gemn);
register_codelet (symm_cl, cpu:blas_symm, gpu:cublas_symm);

for (int j = 0; j < n/b; j++)
for (int i = 0; i < m/b; i++)
for (int 1 = 0; 1 < m/b; 1++)
if (pruning(i,j,l,me))
insert_task(i == 1 7 symm_cl : gemm_cl,

hC[i,j]:RANK_REDUX,
i <=1 7 hA[i,1] : hA[1,i]"T:R, hB[i,j]:R,
mapping(i,j,i) :EXECUTING_RANK) ;

wait_for_all();

StarPU helps with porting GEMM as well as SYMM.
But we can actually do even better this fimel!

SCALABLE SYMMETRIC MATRIX-MATRIX MULTIPLICATION

[register_handles(handles, matrix, M, N,

distribution = 2dbc(.,.,p,q) ¢
for (int i = 0; i < M; i++)
for (int j = 0; j < N; j++)
register_handle (handles[i,j], matrix[i,j],
owner=distribution(i,j));

};

register_symmetric_handles(hA,A,m/b,
symmetric_block_cyclic(.,.,r));

register_handles (hB,B,m/b,n/b);

register_handles (hC,C,m/b,n/b);

register_codelet(gemm_cl, cpu:blas_gemm, gpu:cublas_gemm);

register_codelet(symm_cl, cpu:blas_symm, gpu:cublas_symm);

for (int j = 0; j < n/b; j++)
for (int i = 0; i < m/b; i++)
for (int 1 = 0; 1 < m/b; 1++)
if (pruning(i,j,1l,me))
insert_task(i == 1 ? symm_cl : gemm_cl,
hC[i,j]:RANK_REDUX,
i <=1 7 hA[i,1] : hA[1,i]"T:R, hB[i,jl:R,
mapping(i,j,i) : EXECUTING_RANK) ;
wait_for_all();

Distribution doesn't need to follow the standard 2DBC.
The submission loop is distribution-agnostic.

SCALABLE SYMMETRIC MATRIX-MATRIX MULTIPLICATION — THEORY

When operations are symmetric, symmetric distributions should
be invoked to minimize communication volume.

O. Beaumont, P. Duchon, L. Eyraud-Dubois, J. Langou, M. Vérité. “Symmetric Block-Cyclic Distribution :
Fewer Communications Leads to Faster Dense Cholesky Factorization”. SC 2022.

SCALABLE SYMMETRIC MATRIX-MATRIX MULTIPLICATION — THEORY

When operations are symmetric, symmetric distributions should
be invoked to minimize communication volume.

O. Beaumont, P. Duchon, L. Eyraud-Dubois, J. Langou, M. Vérité. “Symmetric Block-Cyclic Distribution :
Fewer Communications Leads to Faster Dense Cholesky Factorization”. SC 2022.

This is untractable in software such as ScalLAPACK because
input distribution is tightly tied to compute distribution.

This is easy when building software with a programming model
like the one interfaced in StarPU.

SCALABLE SYMMETRIC MATRIX-MATRIX MULTIPLICATION — THEORY

When operations are symmetric, symmetric distributions should
be invoked to minimize communication volume.

O. Beaumont, P. Duchon, L. Eyraud-Dubois, J. Langou, M. Vérité. “Symmetric Block-Cyclic Distribution :
Fewer Communications Leads to Faster Dense Cholesky Factorization”. SC 2022.

This is untractable in software such as ScalLAPACK because
input distribution is tightly tied to compute distribution.

This is easy when building software with a programming model
like the one interfaced in StarPU.

e Symmetric Block-Cyclic distribution can be applied to SYMM.
e Triangular Block-Cyclic yields lowest communication volume.

E. Agullo, A. Buttari, O. Coulaud, L. Eyraud-Dubois, M. Faverge, A. Franc, A. Guermouche, A. Jego, R. Per-
essoni and F. Pruvost. “On the arithmetic intensity of distributed-memory dense matrix multiplication in-
volving a symmetric input matrix (symm).”. IPDPS 2023.

Q)

SCALABLE SYMMETRIC MATRIX-MATRIX MULTIPLICATION — RESULT

GEMM-A SYMM-A
1.5
)
0T
[=ie]
® c
Enlo0
=
28
Sk
~0.5
0.0
32k 110k 262k 32k 110k 262k
73k 186k 524k 73k 186k 524k
Matrix size
Block size Distribution Library
S} @ 0O O A —@ Elementai —@— STF-2D
256 512 1024 BC SBC TBC ScalAPACK —@— Slate

0

SOME OTHER PROGRAMMING MODELS

e MPI+OpenMP+CUDA

o Algorithms risk being rigid and hardly portable.

o Developping new algorithms may require much effort.
o As low-level as can practically be.

e SYCL, Kokkos

o Lacks support for distributed-memory.

o Celerity (SYCL), Remote Spaces (Kokkos) may help with the
distributed side of things.

e ParSEC

o Job Data Flow DSL may be deterring from a software
development point-of-view.

o |t handles distributed-memory efficiently.

PITFALLS OF STARPU

e Pruning of the DAG is not straightforward
o Ensuring any rank inserts the minimal portion of the DAG may
become difficult

e Handles handling requires engineering
o Ensuring ranks create the minimal amount of handles can get
messy.

e Task priority meaning is sometimes unclear
o Collective communication trees are built through the order of
submission and the task priorities.

PITFALLS OF STARPU — WISHLIST/PERSPECTIVES

e Pruning of the DAG is not straightforward

o Ensuring any rank inserts the minimal portion of the DAG may
become difficult

o May be alleviated with some analysis when describing matrices,
may be helped by interfacing runtime and compile tools, ...

e Handles handling requires engineering

o Ensuring ranks create the minimal amount of handles can get
messy.

o You can always wrap task insertion to include handle submission.

e Task priority meaning is sometimes unclear

o Collective communication trees are built through the order of
submission and the task priorities.

o Simple heuristics on priority yield positive results on scalability.
This is being studied further at Inria Bordeaux.

@

CONCLUSIONS

e Programming models taking both distributed memory and
heterogeneity in consideration make writing algorithms simpler.

o Make adaptating legacy algorithms a breeze.

o Make further pushing the state-of-the-art possible.

e StarPU fits this description
o ParSEC, etc. may fit the description i.e. YMMV

o Distributed-memory programming models seem to be considered
by Kokkos and the likes.

e Programming models taking both distributed memory and
heterogeneity in consideration make writing algorithms simpler.

o Make adaptating legacy algorithms a breeze.

o Make further pushing the state-of-the-art possible.

e StarPU fits this description
o ParSEC, etc. may fit the description i.e. YMMV

o Distributed-memory programming models seem to be considered
by Kokkos and the likes.

Questions 7

	Background
	Why StarPU ?
	Conclusions

