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BACKGROUND



APPLICATION CONTEXT

• PhD thesis through ANR project Solvers for Heterogeneous
Architectures over Runtime systems, Investigating Scalability.

• qr_mumps software package.
◦ multifrontal methods: sparse problems, dense kernels

• Scalable dense linear algebra operations.
◦ Matrix-matrix multiplication (GEMM, SYMM)
◦ Matrix factorization (Cholesky POTRF, LU GETRF)
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SCIENTIFIC LITERATURE ON SCALABLE GEMM

•L. E. Cannon. “A Celluler Computer to Implement the Kalman Filter Algorithm”. Phd Thesis, 1969.


→ Optimal algorithm when # of processors is a square number
and matrices are square.

•R. van de Geijn and J. Watts. “SUMMA : Scalable Universal Matrix Multiplication Algorithm”. Concurrency:
Practice and Experience (1997).



→ 2D A/B/C-stationary using collective communication
patterns.

•E. Solomonik and J. Demmel. “Communication-optimal Parallel 2.5D Matrix Multiplication and LU Factor-
ization Algorithms”. Europar (2011).



→ 3D Cannon algorithm.

•M. D. Schatz, R van de Geijn and J. Poulson. “Parallel Matrix Multiplication: a Systematic Journey”. Jour-
nal on Scientific Computing (2016).



→ 3D A/B/C-stationary.
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SOFTWARE IMPLEMENTATIONS

Literature recap

X-stationary means Don’t move X which is the biggest matrix.
3D means replicate biggest matrix if memory is cheap.

• ScaLAPACK, 1998 : 2D A,B,C-stationary, no GPU

• Elemental, 2015 : 2D A,B,C-stationary, no GPU

• ParSEC, 2011 : 2D C-stat. w/ GPU, A,B partial GPU support

• Chameleon, 2013 : 2D C-stationary, GPU-aware

• Slate, 2020 : 2D A,C-stationary, GPU-aware

Modern software packages don’t implement all 3D algorithms.
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WRITING MATRIX-MATRIX MULTIPLICATION

C is m× n, A is m× k, B is k× n

for (int l = 0; l < k; l++)
for (int i = 0; i < m; i++)

for (int j = 0; j < n; j++)
C[i,j] += A[i,l] * B[l,j];

A

B

C

This is the plain sequential implementation.
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WRITING MATRIX-MATRIX MULTIPLICATION

C is m× n, A is m× k, B is k× n

for (int l = 0; l < k/b; l++)
for (int i = 0; i < m/b; i++)

for (int j = 0; j < n/b; j++)
gemm(C[i,j], A[i,l], B[l,j]);

A

B

C

Matrices are tiled and BLAS is invoked.
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WRITING MATRIX-MATRIX MULTIPLICATION

C is m× n, A is m× k, B is k× n

register_handles(handles, matrix, M, N) {
for (int i = 0; i < M; i++)

for (int j = 0; j < N; j++)
register_handle(handles[i,j], matrix[i,j]);

};
register_handles(hA,A,m/b,k/b);
register_handles(hB,B,k/b,n/b);
register_handles(hC,C,m/b,n/b);
register_codelet(gemm_cl, cpu:blas_gemm, gpu:cublas_gemm);

for (int l = 0; l < k/b; l++)
for (int i = 0; i < m/b; i++)

for (int j = 0; j < n/b; j++)
insert_task(gemm_cl,

hC[i,j]:RW, hA[i,l]:R, hB[l,j]:R);
wait_for_all();

Using StarPU requires
• Handing matrices out as handles
• Handing (cu)BLAS out as codelets
• Inserting tasks with access modes

This leads to a GPU-aware code on a single node 5



WRITING MATRIX-MATRIX MULTIPLICATION

C is m× n, A is m× k, B is k× n

register_handles(handles, matrix, M, N) {
for (int i = 0; i < M; i++)

for (int j = 0; j < N; j++)
register_handle(handles[i,j], matrix[i,j],

owner=2dbc(i,j,p,q));
};
register_handles(hA,A,m/b,k/b);
register_handles(hB,B,k/b,n/b);
register_handles(hC,C,m/b,n/b);
register_codelet(gemm_cl, cpu:blas_gemm, gpu:cublas_gemm);

for (int l = 0; l < k/b; l++)
for (int i = 0; i < m/b; i++)

for (int j = 0; j < n/b; j++)
if (pruning(i,j,l,me))

insert_task(gemm_cl, hC[i,j]:RW, hA[i,l]:R, hB[l,j]:R);
wait_for_all();

• To use StarPU in a distributed-memory setting each handle
should have an owner described by its (MPI) rank.

• 2D Block-Cyclic distribution is a standard distribution for linear
algebra operations where # of nodes is p× q.
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WHY STARPU ?



FEATURES IN STARPU

These specific features fit requirements of linear algebra
operations.

• 1.3 Dynamic collective communication detection

A. Denis, E. Jeannot, P. Swartvagher and S. Thibault. “Using Dynamic Broadcasts to improve Task-Based
Runtime Performances”. Europar (2020).



export NMAD_MCAST_TREE=binomial|binary|chain

• 1.4 Automatic distributed-memory reduction patterns

These recent features are transparent during graph submission.

Scheduling, profiling, out-of-core, etc. are also available.
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WRITING SCALABLE MATRIX-MATRIX MULTIPLICATION

register_handles(handles, matrix, M, N) {
for (int i = 0; i < M; i++)

for (int j = 0; j < N; j++)
register_handle(handles[i,j], matrix[i,j],

owner=2dbc(i,j,p,q));
};
register_handles(hA,A,m/b,k/b);
register_handles(hB,B,k/b,n/b);
register_handles(hC,C,m/b,n/b);
register_codelet(gemm_cl, cpu:blas_gemm, gpu:cublas_gemm);
register_reduction_codelets(hC, init_cl, add_cl);

for (int l = 0; l < k/b; l++)
for (int i = 0; i < m/b; i++)

for (int j = 0; j < n/b; j++)
if (pruning(i,j,l,me))

insert_task(gemm_cl, hC[i,j]:RANK_REDUX,
hA[i,l]:R, hB[l,j]:R,
mapping(i,j,l):EXECUTING_RANK);

wait_for_all();

E. Agullo, A. Buttari, A. Guermouche, J. Herrmann and A. Jego. “Task-based parallel programming for
scalable matrix product algorithms”. ACM TOMS (2023).


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WRITING SCALABLE MATRIX-MATRIX MULTIPLICATION

register_handles(handles, matrix, M, N) {
for (int i = 0; i < M; i++)

for (int j = 0; j < N; j++)
register_handle(handles[i,j], matrix[i,j],

owner=2dbc(i,j,p,q));
};
register_handles(hA,A,m/b,k/b);
register_handles(hB,B,k/b,n/b);
register_handles(hC,C,m/b,n/b);
register_codelet(gemm_cl, cpu:blas_gemm, gpu:cublas_gemm);
register_reduction_codelets(hC, init_cl, add_cl);

/* reordering loops helps with parallelism ; A:jil, B:ilj, C:lij*/
for (int l = 0; l < k/b; l++)

for (int i = 0; i < m/b; i++)
for (int j = 0; j < n/b; j++)

if (pruning(i,j,l,me))
insert_task(gemm_cl, hC[i,j]:RANK_REDUX,

hA[i,l]:R, hB[l,j]:R,
/* 3D A-stationary */
hA[i,l].owner+P/h*j\%h:EXECUTING_RANK);
/* 3D B-stationary */
hB[l,j].owner+P/h*i\%h:EXECUTING_RANK);
/* 3D C-stationary */
hC[i,j].owner+P/h*l\%h:EXECUTING_RANK);

wait_for_all();

E. Agullo, A. Buttari, A. Guermouche, J. Herrmann and A. Jego. “Task-based parallel programming for
scalable matrix product algorithms”. ACM TOMS (2023).


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WRITING MATRIX-MATRIX MULTIPLICATION – SOME RESULTS

m = 8*n = k =  65,536 m = 8*n = k = 131,072 m = 8*n = k = 262,144
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SCALABLE SYMMETRIC MATRIX-MATRIX MULTIPLICATION

for (int j = 0; j < n; j++)
for (int i = 0; i < m; i++) {

for (int l = 0; l < i; l++)
C[i,j] += A[i,l] * B[l,j];

C[i,j] += A[i,i] * B[i,j];
for (int l = i+1; l < m; l++)

C[i,j] += A[l,i] * B[l,j];
}

A = AT

B

C

General matrix-matrix multiplication is not everything ...
The same ideas can be applied to symmetric matrix-matrix
multiplication. 10



SCALABLE SYMMETRIC MATRIX-MATRIX MULTIPLICATION

for (int j = 0; j < n/b; j++)
for (int i = 0; i < m/b; i++) {

for (int l = 0; l < i; l++)
gemm(C[i,j], A[i,l], B[l,j]);

symm(C[i,j], A[i,i], B[i,j]);
for (int l = i+1; l < m/b; l++)

gemm(C[i,j], A[l,i]^T, B[l,j]);
}

A = AT

B

C

SYMM is part of BLAS – which is part of the reason we may wish
to implement it in distributed-memory in the first place.
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SCALABLE SYMMETRIC MATRIX-MATRIX MULTIPLICATION

register_handles(handles, matrix, M, N) {
for (int i = 0; i < M; i++)

for (int j = 0; j < N; j++)
register_handle(handles[i,j], matrix[i,j],

owner=2dbc(i,j,p,q));
};
register_symmetric_handles(hA,A,m/b);
register_handles(hB,B,m/b,n/b);
register_handles(hC,C,m/b,n/b);
register_codelet(gemm_cl, cpu:blas_gemm, gpu:cublas_gemm);
register_codelet(symm_cl, cpu:blas_symm, gpu:cublas_symm);

for (int j = 0; j < n/b; j++)
for (int i = 0; i < m/b; i++)

for (int l = 0; l < m/b; l++)
if (pruning(i,j,l,me))

insert_task(i == l ? symm_cl : gemm_cl,
hC[i,j]:RANK_REDUX,
i <= l ? hA[i,l] : hA[l,i]^T:R, hB[i,j]:R,
mapping(i,j,i):EXECUTING_RANK);

wait_for_all();

StarPU helps with porting GEMM as well as SYMM.
But we can actually do even better this time!
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SCALABLE SYMMETRIC MATRIX-MATRIX MULTIPLICATION

register_handles(handles, matrix, M, N,
distribution = 2dbc(.,.,p,q)) {

for (int i = 0; i < M; i++)
for (int j = 0; j < N; j++)

register_handle(handles[i,j], matrix[i,j],
owner=distribution(i,j));

};
register_symmetric_handles(hA,A,m/b,

symmetric_block_cyclic(.,.,r));
register_handles(hB,B,m/b,n/b);
register_handles(hC,C,m/b,n/b);
register_codelet(gemm_cl, cpu:blas_gemm, gpu:cublas_gemm);
register_codelet(symm_cl, cpu:blas_symm, gpu:cublas_symm);

for (int j = 0; j < n/b; j++)
for (int i = 0; i < m/b; i++)

for (int l = 0; l < m/b; l++)
if (pruning(i,j,l,me))

insert_task(i == l ? symm_cl : gemm_cl,
hC[i,j]:RANK_REDUX,
i <= l ? hA[i,l] : hA[l,i]^T:R, hB[i,j]:R,
mapping(i,j,i):EXECUTING_RANK);

wait_for_all();

Distribution doesn’t need to follow the standard 2DBC.
The submission loop is distribution-agnostic.
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SCALABLE SYMMETRICMATRIX-MATRIX MULTIPLICATION – THEORY

When operations are symmetric, symmetric distributions should
be invoked to minimize communication volume.

O. Beaumont, P. Duchon, L. Eyraud-Dubois, J. Langou, M. Vérité. “Symmetric Block-Cyclic Distribution :
Fewer Communications Leads to Faster Dense Cholesky Factorization”. SC 2022.



This is untractable in software such as ScaLAPACK because
input distribution is tightly tied to compute distribution.
This is easy when building software with a programming model
like the one interfaced in StarPU.

• Symmetric Block-Cyclic distribution can be applied to SYMM.
• Triangular Block-Cyclic yields lowest communication volume.

E. Agullo, A. Buttari, O. Coulaud, L. Eyraud-Dubois, M. Faverge, A. Franc, A. Guermouche, A. Jego, R. Per-
essoni and F. Pruvost. “On the arithmetic intensity of distributed-memory dense matrix multiplication in-
volving a symmetric input matrix (symm).”. IPDPS 2023.


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SCALABLE SYMMETRIC MATRIX-MATRIX MULTIPLICATION – RESULT

GEMM-A SYMM-A
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SOME OTHER PROGRAMMING MODELS

• MPI+OpenMP+CUDA
◦ Algorithms risk being rigid and hardly portable.
◦ Developping new algorithms may require much effort.
◦ As low-level as can practically be.

• SYCL, Kokkos
◦ Lacks support for distributed-memory.
◦ Celerity (SYCL), Remote Spaces (Kokkos) may help with the

distributed side of things.

• ParSEC
◦ Job Data Flow DSL may be deterring from a software

development point-of-view.
◦ It handles distributed-memory efficiently.
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PITFALLS OF STARPU

• Pruning of the DAG is not straightforward
◦ Ensuring any rank inserts the minimal portion of the DAG may

become difficult
◦ May be alleviated with some analysis when describing matrices,

may be helped by interfacing runtime and compile tools, ...

• Handles handling requires engineering
◦ Ensuring ranks create the minimal amount of handles can get

messy.
◦ You can always wrap task insertion to include handle submission.

• Task priority meaning is sometimes unclear
◦ Collective communication trees are built through the order of

submission and the task priorities.
◦ Simple heuristics on priority yield positive results on scalability.

This is being studied further at Inria Bordeaux.

14



PITFALLS OF STARPU – WISHLIST/PERSPECTIVES

• Pruning of the DAG is not straightforward
◦ Ensuring any rank inserts the minimal portion of the DAG may

become difficult
◦ May be alleviated with some analysis when describing matrices,

may be helped by interfacing runtime and compile tools, ...

• Handles handling requires engineering
◦ Ensuring ranks create the minimal amount of handles can get

messy.
◦ You can always wrap task insertion to include handle submission.

• Task priority meaning is sometimes unclear
◦ Collective communication trees are built through the order of

submission and the task priorities.
◦ Simple heuristics on priority yield positive results on scalability.

This is being studied further at Inria Bordeaux.

14



CONCLUSIONS



• Programming models taking both distributed memory and
heterogeneity in consideration make writing algorithms simpler.

◦ Make adaptating legacy algorithms a breeze.

◦ Make further pushing the state-of-the-art possible.

• StarPU fits this description
◦ ParSEC, etc. may fit the description i.e. YMMV

◦ Distributed-memory programming models seem to be considered
by Kokkos and the likes.

Questions ?
16
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