
Programming GPUs at
the parallel loop level:
The case of Kokkos

NumPEx GPU Workshop
June 12th 2024
Julien Bigot & CExA team

How to generate code a GPU can run?

● Low-level, assembly-style programming models
○ Nearly manipulate the actual instructions the device understands
○ E.g. HSA, Level Zero, PTX, Spir-V , …

● General-purpose, imperative GPU programming models
○ Manipulate parallel loops, reductions, data transfer to & from device
○ E.g. Cuda, HIP, Kokkos, OpenACC, OpenMP (target), Raja, SYCL

● Application framework for specific mesh types, numerical
schemes

○ Use domain-specific concepts on GPU

● Pre-written GPU libraries
○ just call them from CPU
○ Neural Networks, Linear Algebra, …

G
eneralityEa

se
 o

f u
se

Performance

Performance

portability

Domain

abstractions

GPU

transparency

2

● Cuda
● HIP/ROCm
● Kokkos
● OpenACC
● OpenMP target
● Raja
● SYCL

○ OneAPI/DPC++
○ AdaptiveC++/OpenSYCL/hipSYCL

Available solutions

3

● Cuda
● HIP/ROCm
● Kokkos
● OpenACC
● OpenMP target
● Raja (LLNL)
● SYCL

○ OneAPI/DPC++
○ AdaptiveC++/OpenSYCL/hipSYCL

(Research project)

Available solutions

● Production grade, with public support

4

● Cuda (Nvidia)
● HIP/ROCm (AMD)
● Kokkos
● OpenACC (Nvidia)
● OpenMP target
● Raja
● SYCL

○ OneAPI/DPC++ (Intel)
○ AdaptiveC++/OpenSYCL/hipSYCL

Available solutions

● Production grade, with public support
● Vendor neutral

5

● Cuda
● HIP/ROCm
● Kokkos
● OpenACC
● OpenMP target
● Raja
● SYCL

○ OneAPI/DPC++
○ AdaptiveC++/OpenSYCL/hipSYCL

Available solutions

● Production grade, with public support
● Vendor neutral

6

Kokkos hardware abstraction

7

#pragma omp teams distribute parallel for
for (int j = 0 ; j < Nj ; ++j) {

// [...]
}

OpenMP & Kokkos : the simplest GPU loop

parallel_for(Nj, KOKKOS_LAMBDA(int j) {
// [...]

});

OpenMP Kokkos

Execute in parallel, on a separate GPU thread each,
the same workload [...]

identified by a unique identifier j
Nj times between 0 and Nj-1

for (int j = 0 ; j < Nj ; ++j) {
// [...]

}

Sequential

8

OpenMP & Kokkos : memory transfer

double* x = malloc(Ni*sizeof(double));
double* y = malloc(Nj*sizeof(double));
double* A = omp_target_alloc(

Ni*Nj*sizeof(double),
omp_get_initial_device());

#pragma omp target data \
map(to: x[0:Ni]) \
map(from: y[0:Nj])

{
#pragma omp teams distribute parallel for
for (int j = 0 ; j < Nj ; ++j) {

for (int i = 0 ; i < Ni ; ++i) {
y[j] += x[i] * A[j*Ni+i];

}
}

View<double*, Kokkos::HostSpace> x(Ni);
View<double*, Kokkos::HostSpace> y(Nj);
View<double*> A(Nj, Ni);

{
auto dx = create_mirror_view_and_copy(dev, x);
auto dy = create_mirror_view(dev, y);
parallel_for(Nj, KOKKOS_LAMBDA(int j) {

for (int i = 0 ; i < Ni ; ++i) {
dy(j) += dx(i) * A(j,i);

}
});
deep_copy(y, dy);
}

OpenMP Kokkos

Copy x to GPU from device before kernel
and y from GPU to device after kernel

Keep A on the device
9

Compilation

OpenMP

● Use an OpenMP compiler
● Compatible with the target construct
● Compatible with the hardware you target

Each vendor provides its own OpenMP compiler

● Usually based on LLVM infra

Default Clang/LLVM & GCC also try to support
this

● For some hardware

Kokkos

● A C++ template library
● No direct code generation, rely on vendors

C++-like languages
● Multiple “backends”, selection at compile

time
○ OpenMP, Cuda, OneAPI, HIP, …

● Maximum 3 backends enabled at once
○ Serial backend
○ 1 Host parallel backend
○ 1 Device parallel backend

10

Also in Kokkos

● Parallel patterns w. asynchronous support
○ Independent interactions, Reductions,

Scans
● Iteration strategies

○ Tiled, Hierarchical, …
● Algorithms

○ Sorting
○ Random number generation
○ Most of STL parallel algorithms
○ …

● QoL features: portable printf, etc.
● Portable atomic operations
● SIMD
● Coarse & fine-grain tasks
● And much more…

● Multi-dimensional arrays
○ Layout auto change for performance

● Other containers
○ Key-value maps, …

● Automatic ref-counted Host/Device
memory allocation & management

● Host/device memory transfers
● Support of “dual” arrays with one version

on each side
○ Up-to-date tracking & automatic transfers

when required
● Scratch memory

○ Using “core-local” fast memory on the
device

11

Kokkos Ecosystem

12

+ Kokkos-FFT
+ Kokkos-Comm
+ Kokkos-

Resilience
+ …

● Cuda
● HIP/ROCm
● Kokkos
● OpenACC
● OpenMP target
● Raja
● SYCL

○ OneAPI/DPC++
○ AdaptiveC++/OpenSYCL/hipSYCL

Available solutions

● Production grade, with public support
● Vendor neutral

13

Available solutions

● Production grade, with public support
● Vendor neutral
● Annotations

○ Works best with imperative languages: C,
Fortran, …

○ Compiler integration: potential for
additional optimizations

○ Requires to re-design applications for GPU
● Library

○ Suited to language with deep
encapsulation: C++, …

○ On top of vendor backends: easier to port
to new hardware

○ Requires to re-write applications for GPU

● Cuda
● HIP/ROCm
● Kokkos
● OpenACC
● OpenMP target
● Raja
● SYCL

○ OneAPI/DPC++
○ AdaptiveC++/OpenSYCL/hipSYCL

14

To help applications move to GPU at CEA, in France, and in Europe

“adopt and adapt” strategy based on Kokkos
○ Kokkos : a strong technical basis

■ A software architecture ready for the future
■ Mature, free, libre, and open-source
■ An independent foundation to own the product

● HPSF under the Linux Foundation
■ A standardisation effort in ISO C++

● A stepping stone one step ahead toward parallel C++
○ Some adaptations required

■ For European hardware
● There is no real hardware sovereignty without software sovereignty

■ For applications from CEA, France and Europe
● Take our specificities into account

CExA: a 15 people team to work on Kokkos and its ecosystem
15

With CExA, the CEA chooses Kokkos

Kokkos and the C++ standard

A window in the future of
Parallel C++
Done:

● Mdspan
● Lin alg
● Atomics

Next:
● SIMD
● …

In a backward compatible
way

16

17

The strategy of CExA

Contribute to a
long-term

sustainable
software

middleware for
GPU computing

Adapt
application

demonstrators

Disseminate
and offer training
to the community

DRF DESDAM

Kokkos

Long-term sustainable GPU middleware

Application demonstrators

HPC ecosystem

2-years HPC DevOps Engineer position

Deployment and CI on supercomputers for the C++
Kokkos library within the “Moonshot” CExA project

Join us & join the fun!

2-years C++ expert engineer position

Contribution to the development of the Kokkos GPU
computing library within the CExA “Moonshot” project

Join the CEA’s ambitious “Moonshot” project, CExA,
and contribute to the development of the Kokkos
GPU computing library. We are recruiting six
talented and enthusiastic C++ development
engineers for a period of 2 years to work at our CEA
Saclay site near Paris.

CEA is recruiting DevOps engineers for a 2-year
period to join the CExA “Moonshot” project team,
which is setting up CEA’s GPU computing software
stack around the Kokkos C++ library, to contribute
to innovative packaging, deployment and
continuous integration approaches for
supercomputers, based in particular on Spack. A
team of more than 10 people is currently being set
up. The positions will be based at the CEA Saclay
site near Paris.

https://cexa-project.org

Next Kokkos training on 17-19
June @ Saclay with Damien
Lebrun & Luc Berger-Vergiat

https://indico.math.cnrs.fr/e/kokkos_days

18

https://cexa-project.org
https://indico.math.cnrs.fr/e/kokkos_days

