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• Programmation particulière
− Parallélisme massif !
− Mémoire séparée (la plupart du temps)

• Développement particulier
− Compilation différente
− Lancement par offload logiciel

 On ne peut pas juste recompiler
− Outils de débuggage différents
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Massive parallelism !
Example: V100
• 5,120 CUDA cores, structured in SM, TPC, GPC, ...

− Parallelism to be structured
− And massive to overlap memory access

• SP: ~16TFlop/s
• DP: ~8TFlop/s
• HBM Memory: ~900GB/s
• (and not counting the tensor cores)
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Basic block: Streaming Multiprocessor (SM)
= Cluster of streaming processors (~core)
• Local memory sharing
• Synchronization
• 64KB of registers
• hardware threads

− Creation/destruction is free !
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Only one instruction dispatch unit per SM
• All cores execute the same instruction at the same 

clock cycle
• On different data  SIMD⇒
• Takes several cycles to fetch&decode
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Only one instruction dispatch unit per SM
• All cores execute the same instruction at the same 

clock cycle
• On different data  SIMD⇒
• Takes several cycles to fetch&decode

 ⇒ overlap by running yet more threads running the 
same instruction

− Warp = 32 threads
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Only one instruction dispatch unit per SM
• Loading data from global memory takes cycles
•  ⇒ overlap by running yet more threads

− 128 are enough to hide memory latency
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Threads, threads, threads...
• But they are trivial to create
• Example: vector scaling
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But hierarchy of SM
• Thread scheduling needs structure : blocks

Compensate round-up

Two-dimension
indexing

(can be three)



NumPEx
Exascale computing GPU execution model
Threads, threads, threads...
• Trivial to create

− Massive parallelism
− Forget about for loops

• Thread scheduling needs structure : blocks
− How large? Depends on

 the GPU generation,
 available parallelism, ...
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Thread divergence

Only half the threads actually work
 ⇒ 2x parallelism loss

Related to warps ; depends on GPU generation
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Memory coalescing

Performance is weak : accesses are non-coalesced
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Memory coalescing
• Depends on the GPU generation
• Better use structures of arrays

− E.g. all threads get the temperature, then the pression, etc.
• For the global memory
• Not for the local shared memory

− Has to be allocated explicitly
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Summary : requires
• Massive parallelism
• Taking care of divergence
• Taking care of memory coalescing

− Or taking care of using the local shared memory
• And other details I don’t have time to explain :)
If you can avoid writing kernels it’s best...
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But we need to get data onto the GPU...
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• Allocate memory on the GPU
• Copy between GPU and CPU

− For copy to be efficient, use cudaMallocHost for CPU memory
 Pinned memory for DMA
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But transfer takes time
• Overlap cudaMemcpy with another kernel execution
• Async variants of cuda operations, and poll or wait
• Use Streams for coordination
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Or use cudaGraphs
• Express dependencies explicitly between cudaMemcpyAsync and 

kernel calls
• Let the GPU process the task graph
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Topology matters
• NVlink provides fast GPU-GPU transfers
• GPU-Direct provides fast NIC-GPU transfers

− With CUDA-aware MPI implementation
• Beware of PCI topology
• Beware of NUMA topology

RAM

GPU            

RAM

GPU            

RAM

NIC

NVlink
~20-100GB/s

PCI

~10GB/s



NumPEx
Exascale computing Data management
Or use unified memory
• Pass managed pointers to kernels
• CUDA runtime handles transfers on the fly
• But CUDA runtime is mostly blind

− On-demand migration, introduces latency
− With cudaMemAdvise / cudaMemPrefetch 

hints, can be efficient
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Summary
• HBM memory embedded in GPU
• Requires transfers
• To be pipelined with computation kernels
If you can avoid managing this it’s best...
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GPUs are beasts
• Require massive parallelism

− With massive data accesses
• Optimizing is very involved
• Better delegate it to another software layer


