
NumPEx
Exascale computing

Exa-SofT

Introduction aux GPUs,
à la programmation CUDA

12 juin 2024
Jussieu, Paris

Samuel Thibault

NumPEx
Exascale computing

• Programmation particulière
− Parallélisme massif !
− Mémoire séparée (la plupart du temps)

• Développement particulier
− Compilation différente
− Lancement par offload logiciel

 On ne peut pas juste recompiler
− Outils de débuggage différents

CPU

RAM

GPU

RAM

GPUs

NumPEx
Exascale computing GPUs

NumPEx
Exascale computing GPUs

NumPEx
Exascale computing GPUs

NumPEx
Exascale computing GPUs

NumPEx
Exascale computing GPUs
Massive parallelism !
Example: V100
• 5,120 CUDA cores, structured in SM, TPC, GPC, ...

− Parallelism to be structured
− And massive to overlap memory access

• SP: ~16TFlop/s
• DP: ~8TFlop/s
• HBM Memory: ~900GB/s
• (and not counting the tensor cores)

NumPEx
Exascale computing GPU execution model
Basic block: Streaming Multiprocessor (SM)
= Cluster of streaming processors (~core)
• Local memory sharing
• Synchronization
• 64KB of registers
• hardware threads

− Creation/destruction is free !

Streaming
Processor

Hardware
Thread

sp

sp

sp

sp

lo
ca

l m
em

or
y

sp

sp

sp

sp

Dispatch Unit

NumPEx
Exascale computing GPU execution model
Only one instruction dispatch unit per SM
• All cores execute the same instruction at the same

clock cycle
• On different data SIMD⇒
• Takes several cycles to fetch&decode

sp

sp

sp

sp

lo
ca

l m
em

or
y

sp

sp

sp

sp

Dispatch Unit

NumPEx
Exascale computing GPU execution model
Only one instruction dispatch unit per SM
• All cores execute the same instruction at the same

clock cycle
• On different data SIMD⇒
• Takes several cycles to fetch&decode

 ⇒ overlap by running yet more threads running the
same instruction

− Warp = 32 threads

sp

sp

sp

sp

lo
ca

l m
em

or
y

sp

sp

sp

sp

Dispatch Unit

NumPEx
Exascale computing GPU execution model
Only one instruction dispatch unit per SM
• Loading data from global memory takes cycles
• ⇒ overlap by running yet more threads

− 128 are enough to hide memory latency

sp

sp

sp

sp

lo
ca

l m
em

or
y

sp

sp

sp

sp

Dispatch Unit

...

NumPEx
Exascale computing GPU execution model
Threads, threads, threads...
• But they are trivial to create
• Example: vector scaling

sp

sp

sp

sp

lo
ca

l m
em

or
y

sp

sp

sp

sp

Dispatch Unit

...

GPU function

CPU function

GPU pointer !

NumPEx
Exascale computing GPU execution model
But hierarchy of SM
• Thread scheduling needs structure : blocks

Compensate round-up

Two-dimension
indexing

(can be three)

NumPEx
Exascale computing GPU execution model
Threads, threads, threads...
• Trivial to create

− Massive parallelism
− Forget about for loops

• Thread scheduling needs structure : blocks
− How large? Depends on

 the GPU generation,
 available parallelism, ...

NumPEx
Exascale computing GPU execution model
Thread divergence

Only half the threads actually work
 ⇒ 2x parallelism loss

Related to warps ; depends on GPU generation

NumPEx
Exascale computing GPU execution model
Memory coalescing

Performance is weak : accesses are non-coalesced

NumPEx
Exascale computing GPU execution model
Memory coalescing

Performance is weak : accesses are non-coalesced

NumPEx
Exascale computing GPU execution model
Memory coalescing

Accesses are coalesced

NumPEx
Exascale computing GPU execution model
Memory coalescing

Accesses are coalesced

NumPEx
Exascale computing GPU execution model
Memory coalescing
• Depends on the GPU generation
• Better use structures of arrays

− E.g. all threads get the temperature, then the pression, etc.
• For the global memory
• Not for the local shared memory

− Has to be allocated explicitly

NumPEx
Exascale computing GPU execution model
Summary : requires
• Massive parallelism
• Taking care of divergence
• Taking care of memory coalescing

− Or taking care of using the local shared memory
• And other details I don’t have time to explain :)
If you can avoid writing kernels it’s best...

NumPEx
Exascale computing

But we need to get data onto the GPU...

NumPEx
Exascale computing Data management
• Allocate memory on the GPU
• Copy between GPU and CPU

− For copy to be efficient, use cudaMallocHost for CPU memory
 Pinned memory for DMA

NumPEx
Exascale computing Data management
But transfer takes time
• Overlap cudaMemcpy with another kernel execution
• Async variants of cuda operations, and poll or wait
• Use Streams for coordination

NumPEx
Exascale computing Data management
Or use cudaGraphs
• Express dependencies explicitly between cudaMemcpyAsync and

kernel calls
• Let the GPU process the task graph

NumPEx
Exascale computing Data management
Topology matters
• NVlink provides fast GPU-GPU transfers
• GPU-Direct provides fast NIC-GPU transfers

− With CUDA-aware MPI implementation
• Beware of PCI topology
• Beware of NUMA topology

RAM

GPU

RAM

GPU

RAM

NIC

NVlink
~20-100GB/s

PCI

~10GB/s

NumPEx
Exascale computing Data management
Or use unified memory
• Pass managed pointers to kernels
• CUDA runtime handles transfers on the fly
• But CUDA runtime is mostly blind

− On-demand migration, introduces latency
− With cudaMemAdvise / cudaMemPrefetch

hints, can be efficient

RAM

GPU

RAM

GPU

RAM

NIC

NVlink
~20-100GB/s

PCI

~10GB/s

NumPEx
Exascale computing Data management
Summary
• HBM memory embedded in GPU
• Requires transfers
• To be pipelined with computation kernels
If you can avoid managing this it’s best...

NumPEx
Exascale computing Conclusion
GPUs are beasts
• Require massive parallelism

− With massive data accesses
• Optimizing is very involved
• Better delegate it to another software layer

