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1 Introduction

Interval exchange transformations are piecewise linear maps [0,1) — [0,1). When it-
erated, they have been extensively studied as generic examples of dynamical systems
(see e.g. [9, 23, 24, 15, 13]). One of its direct quite well-known relationship to formal
language theory is that Sturmian words [2, 3] can be obtained as symbolic codings of
the orbits of such dynamical systems when only 2 intervals are involved. Moreover,
these can be generated essentially by applying compositions of two substitutions
controlled by the classical continued fraction algorithm (see e.g. [14, 25, 8, 3]).

We here adress the question of how to describe all the symbolic orbits of any
interval exchange transformation over n intervals n > 2 by composing a finite set of
substitutions. In this respect, it is a full generalization of the main results in [11, 12]
where the investigated interval exchange transformations were restricted to those of
rotation class. The theorem we present here has no such constraint:

Theorem: Consider any irreducible and irrational interval exchange transforma-
tion over n intervals, n > 2 (respect. n =2). The set of its symbolic orbits can be
constructively described from compositions of an explicit set of n + 1 substitutions
(respect. 2 substitutions) over an alphabet of n letters.

This full generalization has been made possible by setting a tighter relation-
ship between the geometric framework used in [12] and Rauzy induction used as a
nowadays classical tool to investigate ergodic properties of interval exchange trans-
formations (see mainly [20, 24, 26, 27]). The main difference with [12] is that,
focussing on generating the symbolic orbits, one can give up most of the references
to the classical theory of surfaces and foliations.

This presentation is organized as follows: We first recall the main definitions for
the interval exchange transformations. Next, a second part is devoted to introduce
Rauzy induction through a geometric interpretation based on the one used in [12].
This allows us to have an effective grasp on Rauzy induction, which leads, in a third
part, to describe its associated substitutions, and to the above theorem. Since this
result is effective, a full example is finally presented.



2 Interval Exchange Transformations

Let A= (A1,..., ) € R}, n > 2, such that 3°; A; = 1, called a length vector, and let
7 be a permutation of {1,---,n}. An interval exchange transformation (see e.g. [9,
24, 15, 13]) is a function T) , : [0,1) — [0, 1) whose domain is decomposed according
to bp = 0 and b; = 3-21 Aj, fori = 1,...,n, ie. as 4 I; where I; = [b;i_1,b;),
and whose range is decomposed according to the length vector (Ar=1(1)s -+ An=1(m))
with b = 0 and bf = 3% Ar-1(j, i.e. as L., J; where J; = [bf ;,b7). The
complete expression of T , is then given as T r(z) =z — b1 + b];)_, forall z €
I;; 1=1,...,n. An interval exchange transformation is said to be irreducible when
its permutation 7 does not fix (setwise) any strict subset {1,....k} C {1,...,n}.
An interval exchange transformation is said of rotation class iff it has up to two
discontinuities (see [17, 12]). Let the positive orbit (respect. orbit) of a point
z €[0,1) be Ot (z) = {T3 ,(z), i € N} (respect. O(x) = {T%(z), i € Z}), and let
T be [0,1) \ U O(b;). Then the pair (Z,T),) is a dynamical system, i.e. a pair
(X, T) such that X is a metric space and 7' : X — X is continuous. Such a system is
said to be minimal iff for Y C X, Closure(T(Y)) =Y impliesY = X or Y = (). The
system (Z, T ,) is minimal iff for each x € [0, 1), the orbit O(x) is dense in [0,1) [9].
Moreover, if T , irrational, i.e. irreducible and the only rational relations between
the \;’s are multiples of \; + ... + A, = 1, then T} , is minimal [9]. A topological
conjugacy between two dynamical systems (X1, 77) and (X2, T5) is a homeomorphism
¢ : X1 — X5 such that ¢T7 = Ty¢. It is known that, up to a compactification of 7
(see e.g. [9]), (Z,T)) has such a conjugacy towards a language of two-way infinite
words over an alphabet A = {z1,2,...,2,}: Let cod be defined as cod(y) = z; if
y € I, and be extended by setting cod(O(y)) = ...cod(T{ . (y))cod(TX: (y)) - .. =
. T3 Ty, -- -2 the conjugacy is defined by ¢(y) = cod(O(y)). We call ¢(Z) the
symbolic orbits of the interval exchange transformation 7} ,. Note that if minimality
holds then in each word in ¢(Z), every subword of every word in ¢(Z) occurs, and
every of its subword occurs with bounded gaps (see e.g. [18]). So each distinct orbit
contains most of the information about the whole system, and can be studied locally.

3 Rauzy Induction and its Geometric Interpretation

We recall here the construction used in [12] based on the one of Kerckoff [10] which
allows one to consider Rauzy induction from a geometrical viewpoint. The idea is
the following: we first replace the orbits of the system (Z,T),) by continuous tra-
jectories winding around a particular surface. Second, we introduce simple moves of
this surface leading to other surfaces of the same kind, and which can be interpreted
as interval exchange transformations as well. This amounts to have operators on
the space of all the interval exchange transformations. The inverse of these oper-
ators gives an instance of Rauzy induction, which in turn gives an algorithm for
decomposing any interval exchange transformation.

The system (Z,7T).) can be represented as a surface by a classical operation
called a suspension (see e.g. [1, 5]): A foliated box is a product of two intervals
I x I' for which individual leaves are of the form I x {z}, with = € I'. Let the length



vector of T » be A = (A,...A,). Put R =1[0,1] x [0,1) and R; = [0,1] x [0, A;) be n
foliated boxes and apply the following identification rules for each 7 =1,...,n:

{1} X [0, /\Z) with {0} X [1 — bi, 1-— bi—l),
{0} x [0, A;) with {1} x [1 — b7y, 1 —bFq_q)-

This gives a foliated surface M . henceforth called the stripped surface of T} .
Since individual leaves of the boxes fit together through the identification rules, we
get full leaves running on M, . Examples of parts of stripped surfaces are pictured
in Figure 3.1. Each leaf corresponds to one orbit of T ;. To get again the discrete
initial orbits, consider the transverse arc corresponding to the left side of the central
R box, i.e. {0} x [0,1) and the corresponding first-return map. Basic moves can
be applied to such stripped surfaces. They consist in glueing boxes R; along each
other. The construction here described rely on two of them:
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e A move under R, (n is the number of intervals of T) ;) consists in glueing
the box indexed by 7 !(m(n) + 1) under the one indexed n, the glueing being
undergone in the direction opposite to the leaves orientation until the lower
part of R is reached. The glueing is continued under R, and stopped as soon
as the lower corner of the box indexed by 7! (n) is reached (see Figure 3.1(a)).

e A move under R -1, consists in glueing the box indexed by 7~ '(n) + 1 under
the one indexed by m~!(n), the glueing being undergone in the direction of the
leaves orientation until the lower part of R is reached. The glueing is continued
under R, and stopped as soon as the lower corner of the box indexed by n is
reached (see Figure 3.1(b)).

Since 7 is irreducible, w(n) # n, and these moves can always be applied. These can
also be straightforwardly interpreted first as maps over the set of irreducible interval
exchange transformations, and second as maps defined on the set of all the leaves of
M, ». Denote by 7, the partial circular permutation, 7 (i) =i if i < k, 7,(¢) =i +1
ifk+1<i<n,and 7x(n) =k + 1.

Lemma 3.1 Let Ty be an irreducible interval exchange transformation:

e The effect of a move under R, is to send:

A= (et \) fo
()‘17 SRR )\n + )‘7r_1(7r(n)+1)):

and 7 to 7,7t o, with k = m(n),

e The effect of a move under Ry-1(n 1s to send:

(. P )\W—l(n), )\W—l(n)+1, ceey ) to
()\1, cee )\W—l(n) + )\ﬂ-—l(n)+1, )\W—l(n)+2, cey An, )\w—l(n)+1),

and T to o1y, with k =7 (n).

Inverting the application of each above glueing move, we get cutting moves: begin-
ning with 7)) i) and trying to find a T)+1) ;+1) such that the former is obtained
from the latter by one of the glueing moves. According to Lemma 3.1, this is equiva-
lent to solve the following equation systems (the upper index of 7() has been omitted
in order to save notation):
- If the move is under R,, :



- If the move is under R -1(,):

)\7(:21(”)—1 )\n—l(n -1
)\(j_)l( , = )\(3_4-11()) +/\(j_+11() L1
I I g
/\7r]—1(n)+1 _)\7r]—1(n)—|—2’
D), =AU,
1
Wi,

Application of these cutting moves also leads to a transformation of the permu-
tations 7U) which is the way around of those given in Lemma 3.1, i.e. a cutting
move under R, sends 7U) to 7, o 7, with k = 70+ (n) = 7 (n). A cutting move
under R 41)-1(,) sends 7@ to 70 o 771, with k = 7U+D™" (n) = 7)™ (n).

Remark 3.2 The above cutting moves are exactly the two main maps acting on the

space of all the irreducible interval exchange transformations which define the so-
called Rauzy induction (also used in e.g. [24, 26]).

In fact, one can check that following the original notations ([20] p.322), Ty 07 =
a(m) and 7o 7'7:_11(") = b(m). We recall now the following (see e.g. [12]):

Remark 3.3 Let T\, be irrational. Then Rauzy induction can be iterated to infinity
on Ty 5.

Remark 3.4 At each step of Rauzy induction, the choice of the cutting move to be
applied is deterministic.

Thus, accordingly to its initial purpose, Rauzy induction can be summed up as an
algorithm to decompose interval exchange transformations:

Algorithm 3.5 Input: Ty, with A € R} irrational, n > 1 and 7 irreducible. Output: A
sequence {tj};—1,.. of cutting moves.
1 j 0,29 )\ 70 7.
: (9) @) .
2. o if Ay’ > )‘w(i)*l(n)'

(a) solve Eq.Sys. 1 to get AUTD),

(b) 7l'(j+1) — Tw(j)(n) o 7T(j).
(€) tj+1 ¢ a move under R,.

: (4) (4) .
[ ] lf An < Aﬂ'(j)_l(n).
(a) solve Eq.Sys. 2 to get AUTD),

(b) 7r(J+1) < 7'((]) o TTr_(Jl_)_l(n)_

(€) tj+1 ¢ a move under Rﬂ(j)q(n).

3. j+j+1, goto (2).



4 Substitutions

We are now in the same situation as for the interval exchange transformations of
rotation class in [12]: all the above can be translated into a symbolic framework.
Given an alphabet A, a substitution  over A is a transformation which sends any
letter = of A to some word over A, and which is extended to any word w = ...w;w;1...
with w; € A by sending it to ...0(w;)8(w;41)...! Now, recall that the leaves of the
stripped surface M, , associated to the orbits of T , can be represented into words
over {21, s, ...,Z,} by using a first-return map, which amounts to mark the boxes
as the leaves visit them. This corresponds to the topological conjugacy ¢ introduced
in Section 2, which maps each point of Z C [0, 1) to its symbolic orbit. The advantage
of the geometric viewpoint we got from the last section is that substitutions can be
readily read off from the glueing moves:

Proposition 4.1 Let t be one of the glueing move of Lemma 3.1. Then there exists a
unique substitution 0; such that ¢ ot =0; 0 ¢.

Remark 4.2 The substitutions obtained above are the same as for interval exchange
transformations of rotation class [12].

Indeed, put @ = 7~ (w(n) + 1) — 1 for 6, 4.0, and a = 71(n) for 6, 4.1:

Hn,oe,O ] — I Hn,a,l ] — T
Tq = Tq Lo = Tq
Ta+1 — Ta+1Tn Ta+1 = Tadn
Ta+2 — Ta+2 Ta+2 — Ta+1
Tn — Xy Tn = 1

Moreover, taking into account irreducibility of the considered interval exchange
transformations, this gives a set of 2(n — 1) substitutions since 6, o ¢ is defined for
a€{0,..,n—2},and 6, o1 for o € {1,..,n —1}. We proved in [12] that this set can
be generated from a set of (n+1) substitutions when n > 2: Let p be the substitution
Ty > Ty (the other letters remain unchanged), and 7; be the substitutions induced
by the n — 1 transpositions (1 i), for ¢ = 2,...n, i.e. x; — x; and z; — xz; (the
other letters remain unchanged). Then the substitutions 6, 4., with € = 0,1, can be
obtained by a finite composition of p, 7; and 0, 9. Therefore, the increased power of
these substitutions compared to [12] is only due by new possibilities for composing
them:

Theorem 4.3 Let Ty . be irreducible, irrational over n intervals, n > 2 (respect.
n = 2). Every subword of its symbolic orbits can be obtained to any prescribed
length by applying a composition of n + 1 substitutions (respect. 2 substitutions)
over {1, ..., Tn}-

1 This is a definition of substitutions as used in dynamical system theory (see e.g. [18]). In fact,
substitutions in their full extent also support non-determinism and images are not necessarily on
the same alphabet, so that they are not necessarily iterable (see e.g. [21]).
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We next give the algorithm coming from the proof of the above theorem as in [12].
Recall first that recurrence of the generated finite subwords is due to minimality
of T\ . It means that each subword occurs in all the infinite symbolic orbits with
bounded gaps (see e.g. [18]):

Algorithm 4.4 Input: T) . with A € R} irrational, n > 1, 7 irreducible, and some N > 0.
Output: A word over {zi,...,z,} which is a recurrent subword of any of the symbolic
orbits of T

1. Apply Algorithm 3.5 to T} , and get the composition ¢; o ... o tx made of the first
N cutting moves ;.

2. Transform each cutting move ¢; into a substitution 6;, according to Proposition 4.1
to get a composition © =6, o...060;,.

3. Output O(z1).

Corollary 4.5 Let T}  be any irrational irreducible interval exchange transformation.
Then the sequence {61 o .... 0 On (1)} nen obtained by the above algorithm converges
to a one-way infinite word which is a positive orbit of T ..

The complexity of an infinite word w is defined as a map N* — N which gives
the number of subwords of length m that occur in w. It is known that the one-
way infinite words generated by the above algorithm have complexity (n — 1)m + 1
where n is the number of intervals[9, 12]. Now, according to the recurrence property,
there exists a £ > 0 such that every subword with a prescribed length belongs to
w = 60; o...06;,(x1). Thus to generate the set of subwords of a prescribed length
m, it suffices to input a sufficiently large N in the above algorithm.

These algorithms have been implemented and here is the result for an interval
exchange transformation Ty, over 4 intervals where A = (1,v/2, (3v/2)2, (°v2)?)
and 7is 1 - 4,2 - 1, 3 — 3, 4 — 2 (which is neither an interval exchange
transformation of rotation class as in [12], nor of the type investigated in [20]).
By applying the induction, one may check that the decomposition of T) . goes as
follows for the ten first iterations (pi indicates the state of the permutation, lambda
indicates the state of the length vector A, and at the end of the line, the equation
system which must be solved is given):

pi:(1->4, 2->1, 3->3, 4->2), lambda: (1 1.414213562 1.587401052 1.515716567) => Eq.Sys 1
pi:(1->3, 2->1, 3->4, 4->2), lambda: (1 1.414213562 1.587401052 0.5157165669) => Eq.Sys 2
pi:(1->3, 2->1, 3->4, 4->2), lambda: (1 1.414213562 1.071684485 0.5157165669) => Eq.Sys 2
pi:(1->3, 2->1, 3->4, 4->2), lambda: (1 1.414213562 0.555967918 0.5157165669) => Eq.Sys 2
pi:(1->3, 2->1, 3->4, 4->2), lambda: (1 1.414213562 0.040251351 0.5157165669) => Eq.Sys 1
pi:(1->4, 2->1, 3->3, 4->2), lambda: (1 1.414213562 0.040251351 0.475465215) => Eq.Sys 2
pi:(1->4, 2->2, 3->1, 4->3), lambda: (0.524534784 0.475465215 1.414213562 0.040251351) => Eq.Sys 2
pi:(1->4, 2->3, 3->2, 4->1), lambda: (0.484283433 0.040251351 0.475465215 1.414213562) => Eq.Sys 1
pi:(1->2, 2->4, 3->3, 4->1), lambda: (0.484283433 0.040251351 0.475465215 0.929930128) => Eq.Sys 1
pi:(1->3, 2->2, 3->4, 4->1), lambda: (0.484283433 0.040251351 0.475465215 0.889678777) => Eq.Sys 1

According to step (1) of Algorithm 4.4, the applications of the respective equation
systems yields the composition of the first ten cutting moves. Next, according



to Proposition 4.1, we obtain 6 different substitutions of type 04,,.. We then get a
composition © of these which is applied to the letter z; according to step (2) and (3)
of Algorithm 4.4. This generates a specific word which is a subword of the symbolic
orbits of T} . Here, i.e. for N = 10, the obtained subword is z;2422. Because of
minimality of T} ,, the bigger is N, the longer the word: for N = 12, we get the
subword z124T9x1T4x373T32422; for N = 50, we get a subword of length 524 and for
N = 80, it is of length 12449.

5 Discussion

e Applying Algorithm 3.5 is known to define a multidimensional continued frac-
tion in its additive form (see e.g. [19, 26]). In fact, Algorithm 3.5 gives the
traditional continued fraction algorithm in case n = 2. In [12], it has been
shown that this algorithm fits into one of the existing frameworks for general-
izing continued fractions defined in [22, 4] and convergence results have been
obtained by using unique ergodicity of the interval exchange transformations of
rotation class. However, this property is known to be false in the general case
discussed here [7, 15, 24] and convergence is still to be set. Also, characteri-
zation of periodic expansions of this continued fraction algorithm could lead
to a generalization of the results corresponding to the 2 intervals case [6, 2],
i.e. to a description of the orbits which can be obtained by iterating a single
substitution.

e Sturmian words [16] (see the surveys [2, 3]) are words over two letters with
many characterizations and properties. They are known to correspond to
symbolic orbits of interval exchange transformations over 2 intervals. Having
linear complexity and being described by compositions of substitutions con-
trolled by continued fractions expansions are two important properties of these
words. We have seen that these two properties still hold for interval exchange
transformations over n intervals. Other relationships can be found in [12].

e The approach of followed here compared to [12] is different in that we did
not make use of any surface embeddings of the stripped surfaces M .. The
interval exchange transformations of rotation class have indeed the property
that they can all be embedded into torii of genus 1 with a certain number of
punctures. Among others, this allowed to consider Rauzy induction in a very
geometric manner, i.e. as a transformation on the set of singular foliations
on such surfaces. In theory, this would still be possible in the general case
discussed here, since Rauzy induction leaves stable the surface on which the
successive states of the interval exchange transformation can be embedded.
Indeed, apply the Euler-Poincaré characteristic formula: 2—(n+1)+C = 2-2g
where n is the number of intervals, C' is equal to the number of boundary
components of M, and g is the genus of the surface. Both glueing moves
can be seen to leave invariant the number of boundary components C'. But,
the main difference is that one would have to deal with torii of genus > 1.



e In [12], we described two distinct systems of cutting moves leading to Rauzy
induction. Here, we discussed the one for which boxes R; of M, , are always
glued under the lower side of R (see Figure 3.1). The other natural system
of moves is given symetrically by having the glueings take place along the
upper side of R. For this latter system, the resulting set of substitutions is
similar, but different from the one obtained in the former (see [12]). We still
do not know whether these are the only ways of defining such an induction
and therefore such systems of substitutions. We also do not know whether the
number of basic substitutions can be less than n + 1 in case n > 2.
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