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Abstract. Leaves of laminations can be symbolically represented by deforming them into paths of labeled

embedded carrier graphs, including train tracks. Here, we describe and characterize the languages of two-

way infinite words coming from this kind of coding, called lamination languages, first, by using carrier graph

sequences, and second, by using word combinatorics. These characterizations generalize those existing for

interval exchange transformations. We also show that lamination languages have ultimately affine factor

complexity, and we present effective techniques to build these languages.
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1 Introduction

The idea of representing curves and geodesics on surfaces by infinite words has a long
history [21, 35, 36, 37]. In this paper, we study the symbolic representation which relies on
coding curves by deforming them into paths of embedded graphs like train tracks [49, 41], so
that these graphs become carrier graphs for these curves. Using ordinary directed labeled
graphs as carrier graphs, we present a general approach that includes all these graph-based
symbolic representations, and investigate their properties. This study is done on oriented
topological surfaces admitting hyperbolic metrics with finite area, and on the sets of curves
forming laminations [49]. We define lamination languages as the sets of words arising from
this general coding setting. These languages are shift spaces, and include the classic codings
of the interval exchange transformation dynamics as their simplest cases.

We first characterize lamination languages by using their relationships with specific in-
finite sequences of carrier graphs, which happen to be usual representations of the combi-
natorics of the word factors (or subblocks) of these languages. These graphs are commonly
called Rauzy graphs [44, 4] (or edge graphs [28]). We show that these graph sequences can
be built step by step through geometric moves, called slittings, which are just specific kinds
of compositions of usual splittings (or unzippings) in train track theory [41]. The main re-
sult we prove in this respect, generalizing a similar result obtained for interval exchange
transformations in [5, 6], is the following (see Section 3.5):

Theorem A.1 A closed shift-invariant language L of two-way infinite words is a lamination
language coding a lamination L in a surface Σ iff there is a sequence of graphs {Γn}n∈N

embedded in Σ, obtained by successive slitting steps, whose positive terms are the Rauzy
graphs of L.

By exploiting the local planarity property of the slittings applied to the embedded Rauzy
graphs, we derive another characterization of lamination languages, which also generalizes
results obtained for interval exchange transformations [18]. This characterization relies on
order relation constraints over the bispecial factors of languages L, i.e. factors having at
least two distinct letter prolongations in both left and right directions which are still factors
of L (see Section 4.3):

Theorem A.2 A closed shift-invariant language L of two-way infinite words is a lamination
language coding a lamination L in a surface Σ iff there exists a pair of partial orders over
the coding alphabet that applies to the letter prolongations of the bispecial factors of L.

As an outgrowth of these characterization results, we also investigate the form of the
complexity functions [36, 37] of lamination words and languages, i.e. functions over N∗

defined for each n as the number p(n) of distinct length-n factors occurring in them. These
functions determine the topological entropy of infinite words and languages [1]. Families of
low complexity objects, i.e. zero-entropy ones, have been much investigated [2, 17, 7, 13],
in particular those having linear complexity, i.e. when p(n) is O(n), and more specifically
those having (ultimate) affine complexity, i.e. when p(n) = an+ b, ∀n > n0, a ∈ N, b ∈ Z for
some n0 ≥ 0. For instance, the languages of symbolic orbits of minimal interval exchange
transformations have ultimate affine complexity. We prove here that lamination languages
are also such zero-entropy languages (see Section 4.1):

Theorem B A lamination language has ultimate affine complexity.

This low and regular complexity is a consequence of the fact that lamination languages
represent simple and pairwise non-intersecting curves, which induces strong constraints on
the combinatorics of their codings. Incidentally, these constraints explain why, although
they resemble edge shifts [28], lamination languages are generally not shifts of finite type.
Note also that there exist affine complexity languages which are not lamination languages. In
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particular, Arnoux-Rauzy words [4] (or strict episturmian words [20]) are minimal words with
affine complexity whose associated shift invariant languages are generally not lamination
languages (see Corollary 4.2.4).

The last section of the paper presents techniques for obtaining lamination languages in
an effective way, and gives examples illustrating the above results. A first main construction
(see Section 5.2) exploits one of the classic techniques to describe measured laminations
from weighted carrier graphs [23, 41], closely related to slittings. Using the connection
between slittings and Rauzy graphs, factors of lamination languages are then recovered by
explicitly building their associated Rauzy graph sequences. Also, by taking advantage of
the relationships between minimal laminations and interval exchange transformations (see
Section 4.4), we show how to apply Rauzy induction [43], so as to obtain factors of lamination
words by composing substitutions [46, 19]. Second, we present a generalization of a technique
described in [31] (see Section 5.3), based on building lamination languages after a Thurston’s
construction of pseudo-Anosov surface maps [50, 40]; in this context, minimal lamination
words are obtained as purely substitutive words [19, 3]. Third, by using specific graph moves,
namely edge subdivisions, identifications and contractions, we show how to modify carrier
graphs so as to transform and manipulate lamination languages accordingly (see Section 5.4).
All these constructions illustrate the fact that the lamination coding framework we present
here, not only gives ways of obtaining explicit symbolic descriptions of surface laminations,
but also ways of constructing low complexity words and languages.

2 Basic Definitions

2.1 Laminations and their Carrier Graphs

A closed surface with finitely many punctures is called a surface of finite type. In this
paper, Σ always denotes an oriented hyperbolic surface of finite type, with the Poincaré
disk H2 as universal covering space. Also here, a geodesic in a surface Σ is always the image
of a complete geodesic in H2 (as in [14]).

Definition 1 ([49, 14]) A geodesic lamination L on a surface Σ is a non-empty closed
subset of Σ forming a union of simple and pairwise disjoint geodesics. These geodesics are
called the leaves of L.

Because of the assumptions on Σ, a lamination is a union of leaves in only one way. A
curve γ in a surface Σ is a continuous map, either from a closed connected subset J ⊆ R

to Σ, or from S1 to Σ. In the latter case, γ is said to be closed; if the map defining the
curve is injective, γ is said to be simple; if J = R, γ is said to be two-way infinite; if J is
bounded and γ is simple, γ is called an arc. A realization of a leaf ℓ of a lamination is a
parametrization of ℓ to give it a curve structure

A finite set of pairwise non-homotopic compact geodesics in Σ is a lamination, but
laminations are generally made of uncountably many leaves. A lamination L is said to be
minimal if it does not contain a lamination as a proper subset. If a minimal lamination L is
not reduced to a single compact leaf, L is said to be aperiodic minimal. A lamination can
be covered with finitely many product charts Ui of the form [0, 1]× [0, 1], each intersected
by the leaves along sets of the form (Fi ⊆ [0, 1]) × [0, 1] where Fi is closed. A transverse

measure is then a positive Borel measure on the leaf space in each product chart, compatible
on the overlap of distinct charts. Such a measure assigns a nonnegative number to each
transversal, i.e. to each arc everywhere transverse to the leaves, and is invariant under
leaf-preserving homotopies between transversals [41, 9, 10]. A lamination endowed with a
transverse measure whose support is the whole lamination, is called a measured lamination.

Geodesic laminations have also been described in more combinatorial terms via train

tracks, i.e. finite embedded C1 graphs in Σ with a well-defined tangent space at each
vertex [49, 41]. When the tangent space is oriented at each vertex of such a graph, it locally
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determines incoming and outgoing edges. In this respect, to take an even more combinatorial
point of view, we say that a tamely embedded graph Γ = (V,E) in Σ, with V as set of vertices
and E as set of edges, without isolated vertex, is train track-like if its vertices of degree 1
(if any) correspond to punctures of Σ, and if for each vertex v ∈ V in Σ, its set of incident
edges has been non-trivially partitioned into E1,v ⊔ E2,v, where E1,v, E2,v are each formed
of consecutive edges around v, using either cyclic order. These local partitions induce then
two possible local orientations in a small neighborhood of each vertex with positive degree:
the edges in E1,v are either considered incoming at v, and the ones of E2,v outgoing from v,
or the other way around:

v
E 2,vE1,v or

v v

Note that these local orientations need not extend to a global orientation of the graph.
An admissible (edge) path (or trainpath) in a train track-like graph Γ is a sequence of
consecutive edges in Γ, such that at each vertex v crossed, the path enters v by an incoming
edge and leaves it by an outgoing edge, using one of the two possible local orientations at v.

Definition 2 A curve γ is said to be carried by a train track-like graph Γ if (i) when γ is
closed, it is freely homotopic to a closed admissible path of Γ; (ii) when γ is two-way infinite,
it is uniformly homotopic (i.e. the homotopy is uniformly continuous) to an admissible path
of Γ; (iii) when γ is an arc with its endpoints on Γ’s vertices in Σ, it is homotopic rel
endpoints to a finite admissible path of Γ.

Γ

Σ

A uniform homotopy between two curves γ1 and γ2 means they have preimage components
γ̃1 and γ̃2 by the universal covering map at bounded distance from each other in H2. In
particular, if γ̃1 has two endpoints on the boundary of H2, then γ̃2 has the same endpoints,
and both correspond to the same geodesic in H2. Here, homotopies between curves, including
isotopies between simple ones, are always understood to be uniformly continuous map, thus
always preserving these endpoints. Now, to ensure that every closed or two-way infinite
curve carried by a graph Γ has one of its preimage components (hence all) with two distinct
endpoints on the boundary of H2, the embeddings of Γ are restricted by forbidding two
types of regions in Σ \ Γ: disks bounded by a graph cycle, and disks with one puncture
bounded by a graph cycle. When a train track-like graph Γ satisfies these constraints we
call it simply a (lamination) carrier graph. It is then known that for any curve γ carried
by a carrier graph, γ̃ is always uniformly homotopic in H2 to its corresponding geodesic [52].
Definition 2 can then be extended as follows: a leaf of a lamination is carried by a carrier
graph Γ, if one of its curve realizations is carried by Γ. A lamination is carried by Γ if all
its leaves are carried by Γ (this is similar to the notion of weakly carried in [52]).

Theorem 2.1.1 ([49]). Every geodesic lamination L in an orientable hyperbolic surface of
finite type Σ is carried by some carrier graph Γ embedded in Σ.

Now, here is an alternative, metric independent definition of the notion of lamination (also
contained in Thurston’s work [49]):

Definition 3 A lamination L on a surface Σ is a non-empty subset of Σ forming a union
of pairwise disjoint simple curves, all closed or two-way infinite, such that: the curves are
pairwise non-homotopic, they are all carried by a common carrier graph Γ and contained
in a regular neighborhood of it, and L is maximal with respect to inclusion for this Γ and
remains so after any isotopies applied to the curves.
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A leaf with respect to a lamination L as in Definition 3 is a carried curve of L up to
parametrization. All the other notions defined for geodesic laminations as in Definition 1
are defined in the same way for laminations as in Definition 3. Moreover, these two definitions
give rise to the same laminations up to isotopy. Indeed, given a carrier graph Γ, every set of
curves it carries can be deformed into a set of geodesics. Also, any geodesic γ in the closure
of such a set is necessarily carried by Γ [52], thus if maximality is assumed, γ is already in
this set. Conversely, given a geodesic lamination L, to prove Theorem 2.1.1 Thurston builds
a family of carrier graphs Γε, all carrying L, obtained from the open ε-neighborhoods of L
in Σ [49, Section 8.9]. At most finitely many geodesics can be carried by Γε while missing L,
since the lifts of these geodesics must share their endpoints on the boundary of H2 with the
lifts of L’s boundary leaves. But then, since L is closed, there is an ε0 > 0 such that on
each of these geodesics (if any) there is a point at distance at least ε0 from L, so according
to [49, Corollary 8.9.3], as soon as ε < ε0 no such geodesic can be carried by Γε. Thus, L is
maximal rel. to Γε if ε is small enough.

Now, this paper focuses on coding laminations into shifts by using labeled carrier graphs.
This particular point of view upon lamination theory where carrying is central allows one
to consider general carrier graphs, making use of the properties below:

• Directedness. For a carrier graph Γ, if one local orientation – out of the possible two –
can be fixed at each vertex, so that each edge of Γ has an outgoing and an incoming
end, then Γ becomes a usual directed graph. A path is admissible in a directed graph
if it complies with these fixed local orientations. In this paper, a carrier graph is always
assumed to be directed, without loss of generality: if Γ is not directed, we consider
its directed double cover, to which admissible paths lift, reflecting the fact that an
admissible path may visit an edge in both directions [49, Section 9.5]. The initial
embedding surface Σ is then not preserved, but for the symbolic descriptions based on
carrying as studied here, this is not constraining (we precise this point further below).

• Coherence. A directed graph Γ is said to be coherently embedded (coherent for
short) in Σ if all the incoming edges incident with any vertex are consecutive around it,
hence the outgoing edges are too. By the above definitions, directed carrier graphs
are coherent graphs. However, carrying a lamination L mainly relies on the notion of
admissible path, and thus, can be readily extended to directed non-coherent graphs.
The symbolic descriptions studied here will thus include the use of non-coherent graphs.

• Maximality. A lamination L can be carried by a graph Γ without the maximality con-
dition of Definition 3, but when this condition holds, L is said to be maximal rel. to Γ.
Definition 3 just says that a lamination is maximal rel. to at least one carrier graph.

• Freeness. A carrier graph Γ is said to be free if Σ \Γ contains no annulus bounded by
a pair of closed admissible paths, and no disk bounded by a pair of admissible paths
(if Γ is coherent, these additional conditions over Σ\Γ make Γ similar to a usual train
track [41, 52]). Freeness means that each curve carried by Γ is homotopic to a unique
admissible path of Γ. In this paper, carrier graphs are always free.

• Fullness. A carrier graph Γ is said to fully carry a lamination L if each edge of Γ
is visited by some of the admissible paths associated with the carrying of L. In this
paper, carrying is always assumed to be full.

• No Punctures at Vertices. A carrier graph Γ is here always assumed to have no vertices
at punctures, so that every vertex of Γ has admissible paths going through it, and has
degree > 1; allowing vertices at punctures does not add new interesting combinatorial
behaviors, while inducing technical intricacies.

Non-Uniqueness of the Embedding Surfaces

As just said above, the embedding surfaces are not crucial in this study. Only the lamination
structure captured by the carrier graphs is. From this point of view, if L is a lamination
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in Σ carried by a graph Γ, it is possible e.g. to add handles and punctures to Σ in the
complement of any regular neighborhood N of Γ containing L, without altering the way
L is carried. In order to deal with this flexibility, instead of carrier graphs embedded in
specific surfaces, we will use ribbon graphs (or fat graphs), i.e. graphs endowed with cyclic
orderings on the sets of edges incident with each of their vertices. More precisely, a ribbon
graph Γ is defined by (V,H, h, i, ξ), where V is a set of vertices; H is a set of half-edges;
h : H → H is an involution without fixed points, which exchanges the pairs of half-edges,
thus inducing a set E of full edges for Γ; i : H → V is an incidence map, which indicates
the vertex of Γ each half-edge is incident with; ξ is a permutation on H defined as the
product of the cyclic orderings defined on each subset i−1(v), with v ∈ V . A ribbon graph
is directed if its full edges are oriented, and coherent if the cyclic permutation of each
i−1(v) makes all the incoming (equiv. outgoing) edges consecutive around v. To a ribbon
graph Γ = (V,H, h, i, ξ), one associates a compact oriented surface with boundary, unique up
to isometry, called the ribbon graph surface Σ(Γ), by replacing vertices by polygons, and
edges by oriented rectangles (the “ribbons”), gluing them together according to the ribbon
graph structure. More precisely, to each vertex in V with degree d > 2, one associates an
oriented Euclidean regular polygon with d sides of, say, length 1; to the other vertices in V
and also to each half-edge in H , one associates an oriented Euclidean square of side length 1.
Next, all these polygons are glued together according to the patterns given by h, i and ξ.

Σ(Γ)Γ

A tame embedding of Γ in Σ(Γ) is obtained by putting each vertex v ∈ V in its corresponding
polygon, joining these in the obvious way; Σ(Γ) itself becomes a regular neighborhood of Γ.

Construction 2.1.2 (Hyperbolic Surfaces from Carrier Ribbon Graphs). Consider a ribbon
graph Γ = (V,H, h, i, ξ) and its ribbon graph surface Σ(Γ). Assuming that Γ is used to
carry laminations, we define the following associated hyperbolic surface: first, we cap off
the boundary components of Σ(Γ) with disks to form a surface Σ without boundary, and if
necessary, these disks are once or twice punctured to ensure that Γ is a free carrier graph
in Σ. This surface Σ has Euler-Poincaré characteristic χ(Σ) = f −|H |/2+ |V |−m, where |.|
denotes the cardinality of a set, f denotes the number of boundary components of Σ(Γ), and
m ≥ 0 is the number of punctures. If χ(Σ) ≥ 0, we add more punctures until χ(Σ) becomes
negative, so that Σ admits a hyperbolic structure – the classification of closed orientable
surfaces tells us that no more than three additional punctures are needed here. The resulting
surface is denoted by Σ0(Γ), and we call it the standard surface of Γ.

Thus, to define or speak about a carried lamination L we only need a carrier ribbon graph Γ:
the lamination L exists then in Σ(Γ), itself embedded in Σ0(Γ). Moreover, note that if in
Construction 2.1.2 any disk used to cap off Σ(Γ) is replaced by a connected sum of this disk
with any kind of surface of finite type, the lamination L also exists in Σ(Γ). From now on,
if Γ is a carrier graph, we implicitly consider it as a ribbon graph when necessary.

Non-Uniqueness of Carrier Graphs

No univocal relationship exists between laminations and their carrier graphs. In this respect,
we will define several graph moves in the paper to transform a graph while preserving the
carrying of its carried laminations. One significant instance of this non-uniqueness is that
every minimal lamination can be carried by a graph made of a single vertex and m ≥ 1
edges, called a bouquet of circles. There are indeed relationships between laminations and

6



coherent bouquets of circles, which are described via interval exchange transformations

(iets for short) [26, 34, 33]; an iet is an orientation-preserving and piecewise isometric
map T : I → I, where I = [0, 1), whose effect is to permute a finite number of semi-
open subintervals I1, . . . , Im partitioning I. More precisely, T is defined by (λ, π), where
λ = (λ1, . . . , λm) is a positive length vector whose entries are the Ii’s lengths, and π is a
permutation of {1, · · · ,m}, and the effect of T is to concatenate in its image the Ii’s in such
a way that the length vector becomes (λπ−1(1), . . . , λπ−1(m)).

• Iets → Laminations carried by coherent bouquets: Let T be an iet over m intervals
defined by (λ, π). Let F be the suspension flow of T [33]. Let Γ be a coherent bouquet
of m circles, such that π induces the ribbon structure of Γ, where ξ is the cyclic
permutation on the 2m half-edges obtained by concatenating the outgoing ones in the
order (1, . . . , n) to the incoming ones in the order (π−1(n), . . . , π−1(1)). Then F can be
embedded in Σ(Γ), so that each trajectory of F is carried by Γ. Fixing an embedding
hyperbolic surface, like the standard surface Σ0(Γ), each of these trajectories has one
geodesic homotopic to it. The closure of this union of carried geodesics is a geodesic
lamination L associated with T (see the details in [9]), and L is carried by Γ. Moreover,
the suspension flow leaves invariant a measure coming from λ on the underlying surface
of F , inducing in turn a transverse measure for L, with L as support.

• Laminations carried by coherent bouquets → Iets: A measured lamination L carried by
a coherent ribbon bouquet of circles Γ can be associated with an area-preserving flow by
replacing the edges of Γ by foliated rectangles [23, 41, 10] (see also Construction 5.2.1
below). Then this flow can be seen as the suspension F of the iet (λ, π), where λ is
given by the invariant measure on F , and π is determined by the permutation ξ of Γ [9].

• Minimal laminations → Laminations carried by coherent bouquets: Every oriented
measured lamination can be associated with a measure preserving flow F , and the first-
return map, or Poincaré map on any transversal to F essentially gives an iet [34, 33].
Since every minimal lamination is measurable, this is how given such a lamination L,
we can find coherent bouquets of circles carrying L [27] (see also Section 4.4 below).

2.2 Coding Laminations

Let A be a finite alphabet. Let A∗ denote the set of finite words over A. Let Aω (resp. ωA)
denote the set of right (resp. left) one-way infinite words, and let ωAω denote the set of
two-way infinite words. A language is a subset of A∗ ∪ Aω ∪ ωA ∪ ωAω . A factor (or sub-
block) of a word w is a finite word u such that w = w′uw′′, with w′, w′′ possibly empty, and
where w′uw′′ denotes the concatenation of the words w′, u and w. The set of all the distinct
factors of a word w is denoted by Factw, and if L is a language, FactL =

⋃

w∈L Factw.
Following Definition 3, a lamination L carried by Γ can be symbolically represented by

a language of two-way infinite words. First, here, a carrier graph Γ is said to be labeled

by an alphabet A if it endowed with a bijection from its set of edges to A. Every graph
in this paper is assumed to be labeled. Next, the label of an admissible path η of Γ is the
word obtained by concatenating the letters in A labeling the edges whose sequence forms η.
Then, if γ is a curve carried by Γ, and if its homotopic path η in Γ is unique up to re-
parametrization, Γ is said to code γ by the label of η. The label of η is the coding of γ
by Γ. For instance in the following figure, the coding of the drawn piece of curve is “ace”:

a

Γ b c
d

e

By convention, the coding of a closed curve γ is the periodic word ωuω, where u is the label
of the closed path in Γ freely homotopic to γ. A coding of a leaf is the coding of any of its
curve realizations. If Γ codes every leaf of a lamination L, then Γ is said to code L.
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Definition 4 A lamination language is a set of two-way infinite words in ωAω which cor-
responds to the codings of all the curve realizations of the leaves in a lamination L, when L
is coded by a directed carrier graph Γ labeled by A. A lamination word is a word in a
lamination language.

When the carrying is full, every letter of A is used to code L. If Γ is free, then Γ codes all
the possible individual leaves it carries, hence also every lamination it carries. When Γ is a
ribbon graph, Γ is always free in its standard surface Σ0(Γ) (see Construction 2.1.2).

A topology is given to ωAω by theCantor metric: let . . . w−1w0w1 . . . and . . . w′
−1w

′
0w

′
1 . . .

be two words in ωAω, then their distance is 0 if they are equal, and 2−k if they are not,
where k ≥ 0 is the smallest integer for which wk 6= w′

k or w−k 6= w′
−k. The shift map σ on

ωAω sends ...w−1w0w1... to ...w′
−1w

′
0w

′
1... where w′

i = wi+1 for i ∈ Z. A language L in ωAω

is shift-invariant if σ(L) = L, and a closed shift-invariant language is called a shift. Lam-
ination languages are shifts. Indeed, by Definition 4, a lamination language L includes the
coding of every realization of each leaf of the lamination L it codes, so L is shift-invariant.
Moreover L is closed, since first, up to deformation, L can be assumed to be a geodesic
lamination (see Section 2.1); second, for any sequence of words {w(i)} in L converging to w
in L, where L denotes the topological closure of L in ωAω , there is a geodesic γ obtained as
the limit of the geodesics coded by the w(i)’s. Then, w is the coding of γ, and since L is
closed, γ ∈ L, hence w ∈ L. We can also sometimes construct laminations from shifts:

Lemma 2.2.1 ([31]). Let Γ be a coherent carrier graph labeled by A, embedded in a sur-
face Σ. Let L be a shift in ωAω, and let CL be a set of finite simple curves in Σ carried
by Γ such that: (i) each factor in FactL is the coding of a curve in CL, and vice-versa;
(ii) up to moving their extremities in an arbitrarily small neighborhood of Γ’s vertices, all
the curves in CL can be made simultaneously pairwise disjoint in Σ. Then, L is the coding
of a closed set C of simple curves, pairwise disjoint, pairwise non-homotopic, such that C is
a lamination, and thus L is a lamination language.

A consequence of Lemma 2.2.1 is that, if w is a lamination word, then the shift {σk(w)}k∈Z

is a lamination language. Another consequence is that every lamination in the sense of
Definition 3 can be assumed to form a closed set in any regular neighborhood it lies in, up
to moving its curves by isotopy. A shift-invariant language L is said to beminimal if the orbit
set {σk(w)}k∈Z of each word w ∈ L is dense in L, i.e. {σk(w)}k∈Z

= L. Minimal laminations
are coded by minimal languages. Moreover, every word w of a minimal language L is such
that Factw = FactL, and w itself is said to be minimal (or uniformly recurrent) [36], i.e.
every u ∈ Factw occurs infinitely often with bounded gaps in w. Also, let w′ be any one-way
right infinite half-word in L, and pad it to the left with a dummy letter z∈/ A to transform

it into ωzw′. Then, by minimality, the shift made of all the words in {σk(ωzw′)}k∈Z
where z

does not occur, i.e. the two-way infinite boundary language of Factw′ [38], is L too. Here
are two additional facts:

• Lamination languages are not finite type shifts: Shifts can be defined by languages
of infinite words whose factors do not fall into a prescribed set. When this set is
finite, shifts are said to be of finite type. A way of describing shifts of finite type
is to consider the sets of all the infinite admissible path labels of directed labeled
graphs, i.e., edge shifts [28]. Lamination languages look like edge shifts, being also
shifts based on admissible path codings, but they are generally shifts of non-finite
type. Words in a lamination language represent simple and pairwise disjoint curves
on a surface, and these geometric constraints imply that lamination languages are
generally far from being all the possible admissible path labels of a graph. As a
matter of fact, all non-trivial minimal shifts of finite type have positive entropy [28],
whereas all lamination languages have zero entropy (see Theorem B below). In this
respect, lamination languages should also be contrasted with symbolic geodesic flows,
whose associated shifts are of finite type [47, 48], while their coding scheme (the Morse
coding) can be interpreted through carrier graphs too.
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• Classic iet codings are lamination languages: With the discussion at the end of Sec-
tion 2.1 in mind, we define an iet language as the coding of a lamination carried
by a coherent bouquet of circles. Moreover, iet languages correspond to the stan-
dard way of coding iet iterations [26]. Indeed, let T : I → I be an iet, and let
cod : I → A assign a distinct letter of A to each subinterval Ii of the partition of I.
Then for every x ∈ I, the orbit of x is {T k(x)}k∈Z, and its symbolic orbit is the word
...cod(T−1(x))cod(x)cod(T (x))cod(T 2(x)).... In the corresponding bouquet of circles
labeled by A, each edge is associated with one subinterval Ii of T , so that the corre-
sponding iet language is equal to the closure of all the symbolic orbits of T . Thus,
lamination languages include the usual way of coding symbolic orbits of iets.

2.3 Factor Combinatorics: Complexity and Rauzy Graphs

The set of all the distinct length-n factors of a word w is denoted by Factw(n), and if L is a
language, FactL(n) =

⋃

w∈L Factw(n). The (factor) complexity of an infinite word w [36,
37, 1, 13] is the function pw : N∗ → N∗, where pw(n) = |Factw(n)|, i.e. the cardinality of
Factw(n). The complexity of a language L of infinite words is pL(n) = |FactL(n)|. For a
minimal language L, since all the words w ∈ L have the same sets of factors, then pw ≡ pL.
A language of finite words is said to be prolongable if its words can be prolongated at
least in one way to the right and to the left, such that these prolongations remain in the
language. If L is a language made of two-way infinite words, FactL is prolongable. If w is a
one-way minimal infinite word, Factw is also prolongable. A length-n factor u ∈ FactL(n)
is said to be right special (resp. left special) if u has at least two right (resp. left) letter
prolongations in FactL, that is, u is the prefix (resp. suffix) of at least two distinct length-
(n + 1) factors in FactL(n + 1). The right (resp. left) prolongation order mr(u) (resp.
ml(u)) of a factor u is the number of its right (resp. left) prolongations minus 1. For every
word u in a prolongable language, we then have mr(u) ≥ 0, ml(u) ≥ 0.

Example 2.3.1 Let L be such that FactL(5) = {aabaa, abaab, ababa, baaba, babaa, aabab}.
Since FactFactL(n)(n − k) = FactL(n − k), then FactL(4) = {aaba, abaa, abab, baab, baba},
FactL(3) = {aab, aba, bab, baa}, FactL(2) = {aa, ab, ba}. Then, the words ba, aba, aaba are
right special with mr(.) = 1, and ab, aba, abaa are left special with ml(.) = 1.

When FactL is prolongable, the orders of either all the left or all the right special factors of
each length determine the first difference complexity function of L [11, 13]:

p′L(n) = pL(n+ 1)− pL(n) =
∑

u∈FactL(n)

mr(u) =
∑

u∈FactL(n)

ml(u).

A factor which is both right and left special is said to be bispecial. In Example 2.3.1, aba is
the only length-3 bispecial factor among the listed special factors. The prolongation order

of a factor u is defined by m(u) = |FactL∩AuA|− (ml(u)+mr(u)+1), where AuA denotes
all the prolongations of u by one letter to the left and one letter to the right. For instance,
in Example 2.3.1, m(aba) = 0. The orders of all the bispecial factors determine the second
difference complexity functionof L (the other factors contribute to zero to the sum):

p′′L(n) = p′L(n+ 1)− p′L(n) =
∑

u∈FactL(n)

m(u).

In order to study the sets of factors, there exists a classic graph-based representation
defined as follows: For a language L (similarly for a word w) and n ≥ 0, the n-th Rauzy

graph [44, 4] (or n-th higher edge graph [28]) is the directed labeled graph ΓL,n = (Vn, En),
where the set of vertices Vn = FactL(n), and where there is an edge in En between two
vertices au, ub ∈ FactL(n) with a, b ∈ A, if aub ∈ FactL(n+ 1), and aub is the label of this
edge. Note that for n > 0, we have |Vn| = pL(n) and |En| = pL(n + 1). For n = 0, ΓL,0

is a bouquet of m circles where m = |FactL(1)| = |A|. The Rauzy graph sequence of a
language L is defined as the sequence {ΓL,n}n≥0.
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Example 2.3.2 Consider the factor sets FactL(2), FactL(3) and FactL(4) in Example 2.3.1.
Here are the three corresponding Rauzy graphs ΓL,2, ΓL,3 and ΓL,4:

abaa

ababa

babaa

aabaa

abaab

baaba

aabab

ba

baa

bab aba

aab baba

abab abaa

aaba

baabaa

ab

bab aba

aab

baa
abab

baab

baba aaba

Construction 2.3.3 (Rauzy Graph Sequences). In {ΓL,n}n≥0, the (n+ 1)-th Rauzy graph
ΓL,n+1 = (Vn+1, En+1) is obtained from ΓL,n = (Vn, En) as follows: First, we build up the
line graph LG(ΓL,n) = (VLG, ELG) where VLG = En, and where ELG is such that there
is an edge between e1 and e2, if e1e2 corresponds to a length-2 admissible path in ΓL,n.
Next, we put Vn+1 = VLG, and En+1 is obtained by pruning off ELG so that only the edges
corresponding to FactL(n+ 2) remain.

For every n ≥ 0, a vertex v in ΓL,n whose indegree ∂−(v) ≥ 2 (resp. outdegree ∂+(v) ≥ 2)
corresponds to a length-n left (resp. right) special factor, and in terms of the prolongation
orders, ∂−(v) = ml(v) + 1 and ∂+(v) = mr(v) + 1 (where v also stands for the factor
it corresponds to). A vertex v such that ∂−(v) ≥ 2 and ∂+(v) ≥ 2 corresponds to a
bispecial factor, and we call it a bispecial vertex. Now, according to Construction 2.3.3,
each vertex v of ΓL,n gives rise in LG(ΓL,n) to a small graph, whose vertices correspond to
the edges of ΓL,n incident with v, and whose edges correspond to all the length-2 admissible
paths going through v. This graph is pruned off by keeping only the edges corresponding
to FactL ∩AvA, and the resulting subgraph in ΓL,n+1 is called the burst of v. Notice then
that if FactL is prolongable, and if v is a vertex of ΓL,n such that ∂−(v) = 1 or ∂+(v) = 1,
the burst depend only on the definition of LG(.), whereas if v is bispecial, the pruning off
by FactL ∩ AvA determines a specific burst. Indeed, the inclusion of ΓL,n+1 in LG(ΓL,n),
and more generally the evolution of a Rauzy graph sequence {ΓL,n}n≥0 is determined by
the bursts of the bispecial vertices [44, 4, 45]. In order to represent a burst of a vertex v
in a convenient way, we associate a bipartite graph Γv = (Vl,v ⊔ Vr,v, Ev) to it where Vl,v

(resp. Vr,v) corresponds to the incoming (resp. outgoing) half-edges incident with v, labeled
as their corresponding edges, and where Ev corresponds to the factors in FactL ∩ AvA,
the edge orientations being from Vl,v to Vr,v. Each Γv is then isomorphic to its burst in
ΓL,n+1, except when loops are incident with v; for each such loop, an identification of the
two distinct vertices of Γv corresponding to its half-edges yields an isomorphic graph. In
any case, Γv has the same edge cardinality as the burst it corresponds to.

Example 2.3.4 Let v be a length-n bispecial factor with ml(v) = mr(v) = 1, i.e. ∂−(v) =
∂+(v) = 2 as a vertex in ΓL,n. In a prolongable context, there are seven possible distinct
bursts for v when going from ΓL,n to ΓL,n+1, i.e. seven corresponding bipartite graphs Γv

since there are at most four possible factors, avb, a′vb, avb′, a′vb′ in FactL(n + 2), with
a, a′, b, b′ ∈ A, not necessarily distinct (Cases (i), (ii) correspond to m(v) = −1, Cases (iii)−
(vi) to m(v) = 0, Case (vii) to m(v) = 1):

Burst (ii)(i) (iii)

(iv) (v) (vi)

(vii)

v

avb

a’vb’

avb

a’vb’

avb’

avb

avb’

a’vb’a’vb’

avb
a’v

av vb

vb’

a’vb
a’vb’

avb

a’vb

avb’
a’vb

avb’

avb’

a’vb
a’vb
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The bursts are closely related to the prolongation orders of the factors producing them, hence
also to the second difference complexity function p′′. The number of edges generated by the
burst of a vertex v in ΓL,n, i.e. |FactL∩AvA|, is at least k = max(ml(v)+1,mr(v)+1) since
FactL is prolongable, and is at most k′ = (ml(v)+1)(mr(v)+1), i.e. the number of edges of
the associated bipartite graph Γv at v, when Γv is complete. The number ml(v)+mr(v)+1
in [k, k′], implying m(v) = 0, corresponds to the number of edges for Γv such that the sum
of mr(.) over the left vertices of Γv and the sum of ml(.) over the right vertices of Γv are
preserved, respectively equal to mr(v) and ml(v), so that p′′(n) remains unchanged.

A recoding by a length-n sliding window of a word w = w1...wh, h ≥ n, is based
on a map κ : Factw(n) → B, where B is an alphabet, and it consists in rewriting w into
w′

1...w
′
h−n+1 where each w′

i = κ(wi...wi+n−1), 1 ≤ i ≤ h − n + 1. This recoding scheme is
extended in a straightforward way to infinite words and languages. It is a continuous map
on ωAω. In the context of Rauzy graphs, we may assume that FactL(n) stands itself for the
recoding alphabet B. As a consequence, every admissible path label of ΓL,n can be seen as
a recoding by a length-(n + 1) sliding window over FactL(n + 1) of a word over A. This
kind of recoding for two-way and right (resp. left) one-way infinite words has also an inverse
which is given by projecting each occurrence of FactL(n+ 1) to its first (resp. last) letter.

3 Lamination Languages and Rauzy Graphs

3.1 Lamination-Based Slittings

In order to establish relationships between lamination languages and Rauzy graphs, we now
introduce classic notions of train track theory in our context.

Construction 3.1.1 (Regular Neighborhoods as Euclidean Complexes). Let Γ be a coher-
ent ribbon graph. To each edge of Γ we associate a closed Euclidean rectangle, called
an edge-rectangle, and to each vertex of Γ we associate a closed trapezium, called a
vertex-trapezium. Edge-rectangle heights are arbitrarily chosen, and the lengths of vertex-
trapezium bases are respectively set to the sum of their corresponding incoming edge-
rectangle heights and to the sum of their outgoing ones, where edge-rectangles are matched
along these bases according to the pattern induced by the ribbon structure of Γ. We
thus obtain a Euclidean complex N(Γ) embeddable into the ribbon graph surface Σ(Γ),
where each vertex-trapezium of N(Γ) is isometrically embedded in its corresponding poly-
gon of Σ(Γ), the latter being embeddable into the standard hyperbolic surface Σ0(Γ). Hence,
Γ ⊂ N(Γ) ⊂ Σ(Γ) ⊂ Σ0(Γ). The edge-rectangles of N(Γ) are labeled after the labels of Γ.

(Γ)N

(Γ)N for Γ

Σ(Γ)
Σ (Γ)

(Γ)N

c

b

a

e

d
d

e

c
b

a

Γ

Regular 

Collapse of

neighborhood

0

Since Γ is directed, we can define in a consistent manner right, left, top and bottom sides
of each quadrilateral making N(Γ). These quadrilaterals can also be fibered with fibers
parallel to their right and left sides, defining a fibration in all of N(Γ). We can then
recover Γ from N(Γ): first by collapsing the fibers, next by contracting to one vertex each
arc resulting from the collapsing of a vertex-trapezium. The resulting graph is embeddable
in N(Γ) in such a way that N(Γ) becomes a regular neighborhood of it. This graph is called
a core graph of N(Γ). Any such graph is isomorphic to Γ (as a ribbon graph too), and
any two core graphs are isotopic in N(Γ). Thus, by abuse of language we refer to any such
graph as the core graph of N(Γ), and call it Γ too.
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When Γ carries a lamination L, given a regular neighborhoodN(Γ), the leaves of L can all be
moved so as to be contained in N(Γ). Moreover, using the Euclidean metric and the fibers,
L can be further moved so that all its leaves become everywhere transverse to the fibers.
For every N(Γ) and every L carried by Γ, we will assume that L ⊂ N(Γ) with the preceding
property. We say that a curve in N(Γ) is L-avoiding if it has no intersection with L and
if it is everywhere transverse to all the fibers of N(Γ). A slitting curve is an L-avoiding
curve starting at an intersection point between two edge-rectangles of N(Γ), occurring in
some side of a vertex-trapezium. If a slitting curve γ can reach another edge-rectangle
intersection of N(Γ) while preserving L-avoidance, we force it to do so as soon as it can, and
call γ a finite slitting curve. Because of this definition and because of the L-avoidance, the
sequence of quadrilaterals that are visited by a slitting curve γ is determined by L. Note
that there is no finite slitting curve iff L is maximal rel. to Γ (see Proposition 3.3.3 below).
Now, based on slitting curves, the following transformations of N(Γ) are defined, and can be
understood to take place in the ribbon graph surface Σ(Γ), thus in an Euclidean context: A
right (resp. left) slitting basic step slitα,L of N(Γ) along a slitting curve γ starting at an
edge-rectangle intersection α occurring at the left (resp. right) side of a vertex-trapezium Q
consists in: (i) dividing Q along γ ∩Q into two trapezia placed one above the other in Σ(Γ)
at distance ǫ > 0; (ii) if γ does not end at an edge-rectangle intersection in the other side
of Q, dividing the next edge-rectangle Q′ that γ enters along γ∩Q′ into two edge-rectangles,
placed one above the other at a distance which monotonically decreases from ǫ to 0.

Right slitting

γ

Q Q’
α

(Γ)N

Γ

basic step

γ

The result of slitα,L(N(Γ)) is again a Euclidean complex as in Construction 3.1.1, which
does not depend on the choice of a specific slitting curve γ starting from α, or on the choice
of ǫ, up to isotopy. A slitting basic step is thus also interpretable as a transformation of Γ (see
the above figure): slitα,L(Γ) is defined as the core graph of slitα,L(N(Γ)) in Σ(Γ). A slitting
basic step is similar to a usual train track splitting (also called unzipping) [49, 39, 41]. When
Step (ii) of the definition of a slitting basic step cannot be applied, that is, when it applies
only to Q, then slitα,L(Γ) is a vertex cutting. Note that if L is a measured lamination
carried by a coherent bouquet of circles Γ, i.e. L corresponds to an iet T (see the end of
Section 2.1), to have no finite slitting curve in N(Γ) is equivalent to the infinite distinct

orbit condition (i.d.o.c. for short), i.e. the orbits of the separation points between the
subintervals Ii of the partition of I by T are infinite and disjoint [26].

All the main properties of carrier graphs are preserved through a slitting basic step:
Let slitα,L(Γ) be denoted by Γ′. According to the definition of a slitting curve, every leaf of
L is still carried by Γ′. Conversely, every curve carried by Γ′ is also carried by Γ, since the
difference from N(Γ′) to N(Γ) is made up of at most a rectangle and an adjacent triangle,
both fibered. Hence, a slitting basic step also preserves maximality. According to the
definition of a finite slitting curve, and because of the carrying being full, near its endpoints
a slitting curve γ has at least one leaf above it and one leaf under it, and this remains true
all along γ. Thus, a full carrying of L remains full after a slitting basic step. Coherence
is also preserved since after a slitting basic step, all the leaves entering a vertex-trapezium
of N(Γ′) by one side must exit by the opposite one. Finally, freeness is preserved in Σ(Γ)
and, in particular L is still coded by Γ′. Indeed, if two curves carried by Γ′ are homotopic
in Σ(Γ), they are also carried by Γ and homotopic within N(Γ), since by freeness they are
homotopic to a unique path in Γ; but then, using again the difference from N(Γ′) to N(Γ),
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they are also homotopic within N(Γ′), hence homotopic to a unique path in Γ′.
Thus, slitting basic steps can be iterated along slitting curves without losing any carrying

property. An iteration of slitting basic steps which goes all along a finite slitting curve is
called a finite slitting (it is similar to a collision in train track theory [41]). Slitting basic
steps along distinct slitting curves can also be composed, since these curves are always
separated by leaves of L when the carrying is full, thus being well-defined. Here, we will use
the following specific compositions of slitting basic steps:

Definition 5 Let Γ be a coherent graph with a regular neighborhood N(Γ), and let L be a
lamination carried by Γ. A right (resp. left) slitting global step Slitr,L (resp. Slitl,L) of
N(Γ) is the result of applying all the possible right (resp. left) slitting basic steps to N(Γ),
i.e. slitα1,L ◦ ... ◦ slitαn,L, where the αi’s are all the edge-rectangle intersections occurring
to the left (resp. right) sides of the vertex-trapezia of N(Γ).

Accordingly, the result of Slit.,L(Γ) is the core graph of Slit.,L(N(Γ)), still embedded in the
ribbon graph surface Σ(Γ).

3.2 Slittings and Embedded Rauzy Graphs

The rationale of Definition 5 is that applying slitting global steps to a carrier graph Γ is
closely related to Construction 2.3.3 of Rauzy graphs. Slitting curves of N(Γ) are indeed
dividing lines for the way the leaves of a carried lamination L enter or exit quadrilaterals
of N(Γ), and as such, locally determine the carrying length-2 admissible paths. To capture
this fact, we label Slit.,L(N(Γ)) as follows: We first assume that each edge-rectangle of
Slit.,L(N(Γ)) keeps the label of the edge-rectangle of N(Γ) it comes from before the slitting.
Next, when a, b, c label consecutive edge-rectangles in Slitr,L(N(Γ)) (resp. Slitl,L(N(Γ))),
the one labeled by b is relabeled by ab (resp. bc); this relabeling is unique since, after a
global slitting step, the edge-rectangle labeled by b, either has a unique preceding (resp.
succeeding) edge-rectangle labeled by a, or more than one but all labeled by a (resp. c).
The core graph Slit.,L(Γ) inherits its edge labeling from Slit.,L(N(Γ))’s edge-rectangles.

Example 3.2.1 The effect of a left and right slitting basic steps on a trivalent configuration:

basic step
Right slitting

basic step
Left slitting

a

a’

b
ab

a’b

bc

bc’
b

c’

c

The local effect of slitting global steps on a more involved configuration:

Left slitting
global stepglobal step

Right slitting

2

2 1

3

4

2

3

1

1 1

3 2

2 2

4 3

1

2

3

4

2

1

3

1 1

2 2

3

4 3

2

4

1

2 4 2

1

2

a b

a

b

b

b

a b

a b

a b

a

a

a

a

b

b

b

a b

a b

a b

a b

a

a b a b

a ba

a

a b

Lemma 3.2.2 Let Γ be a coherent graph which codes a lamination L by a language L.
Let Γ′ denote Slitr,L(Γ) (or Slitl,L(Γ)). Then ab ∈ FactL(2) iff ab occurs as an edge label
in Γ′. Also, two edges ab and a′b′, in this order, make a length-2 path in Γ′ iff b = a′.

Proof. The carrying of L remains full after the slitting, so if ab occurs as a label of an edge
of Γ′, there are leaves of L carried along the corresponding length-2 path ab in Γ, hence
ab ∈ FactL(2). Conversely, if ab ∈ FactL(2), then a and b are two consecutive edges in Γ
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used to carry L. According to the labeling definition of Γ′, ab must occur as an edge label
of Γ′. The form of this labeling also gives the label constraint on consecutive edges. �

Now, when slitting global steps are iterated, the labeling definition of the obtained graphs
inductively applies using longer labels as follows: Assuming first that each edge-rectangle
of Slitn.,L(N(Γ)) keeps the label of the edge-rectangle of Slitn−1

.,L (N(Γ)) it comes from, then
when ua = a0...an−1, ub = b0...bn−1, uc = c0...cn−1, with ai, bi, ci ∈ A, label consecutive
edge-rectangles of Slitnr,L(N(Γ)) (resp. Slitnl,L(N(Γ))), the edge-rectangle ub is uniquely
relabeled by a0ub (resp. ubcn−1). We can then generalize Lemma 3.2.2 (its proof is similar):

Lemma 3.2.3 Let Γ be a coherent graph which codes a lamination L by a language L.
Let Γ′ denote Slitnr,L(Γ) (or Slitnl,L(Γ)) with n > 0. Then u ∈ FactL(n + 1) iff u occurs
as an edge label in Γ′. Also, two edges u = a0...an and u′ = b0...bn, in this order, make a
length-2 path in Γ′ iff a1...an = b0...bn−1.

Lemma 3.2.4 Let Γ be a coherent graph which codes a lamination L by a language L. Then
Slitr,L(Γ) is isotopic to Slitl,L(Γ), with the same labeling.

Proof. We prove the property with respect to Lemma 3.2.2 only (it generalizes straightfor-
wardly with Lemma 3.2.3). By this lemma, both graphs have the same set of edges labeled
by FactL(2), linking the same set of vertices, i.e. the single letters of L. Moreover, the fact
that ab, a′b′ are consecutive iff b = a′ does not depend on the direction of the global slitting
steps, so the vertex adjacencies are the same. Thus, both graphs are isomorphic. They
are also isotopic: Let us consider the ribbon structure of Γ and its surface Σ(Γ). For each
vertex v of Γ, let Pv denote its corresponding polygon of Σ(Γ). We then embed Slitr,L(Γ)
in Σ(Γ) with respect to Γ as follows: for each vertex v of Γ, then (i) each edge ai of Γ
incoming at v has its corresponding vertex ai of Slitr,L(Γ) placed in Pv; (ii) each edge bj
of Γ outgoing from v gives a set of edges {aibj} in Slitr,L(Γ), corresponding to the factors
in FactL(2) of this form, each one going out of Pv, and linking ai to bj. We similarly embed
Slitl,L(Γ) in Σ(Γ): for each vertex v in Γ, then (i) each edge bj of Γ outgoing from v has its
corresponding vertex bj of Slitl,L(Γ) placed in Pv; (ii) each edge ai of Γ incoming in v gives
a set of edges {aibj} in Slitl,L(Γ), each one coming in Pv, and linking ai to bj .

Dragging

global step

global step

Left  slitting

Right  slitting

1

2

1

3

2

2

1

12

1

3

4

2

1

4

2

1

1

1

2

2

3

2

1

4

2

3

3

4

4

P

v

v

v v

Pv

embedded in
Σ(Γ)

Core graph

Σ(Γ)
embedded in

Core graph

b

a

a

a

a

a

a

a

a

a
a
a

a

b

b

b

b

b

b

b

a

a

a

a

a

a

a

a

b

b

According to the definition of a right slitting global step, for a vertex labeled bj in Slitr,L(Γ),
all the edges aibj incoming at bj are such that the vertices ai’s at their other end are
necessarily in the same polygon Pv of Σ(Γ). Thus, we can drag bj along these aibj ’s until bj
becomes a vertex in Pv (see the above figure). We drag in the same way all the vertices of
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Slitr,L(Γ). As a result, in each polygon of Σ(Γ), each vertex bj is now as prescribed by the
embedding of Slitl,L(Γ). Moreover, the polygons of Σ(Γ) contain all the vertices we expect
them to contain. Indeed, if aibj is an edge in Slitr,L(Γ), it is also one in Slitl,L(Γ), since
by Lemma 3.2.2, both sets of edges exactly correspond to FactL(2), therefore all the bj ’s
corresponding to edges of Γ outgoing from a vertex v are now in Pv. Also, there are no other
vertices than the bj’s since all the ai’s originally in a polygon Pv have been dragged out of
Pv. Thus all the aibj are incoming into Pv as prescribed for the embedding of Slitl,L(Γ).
Now, dragging is an isotopy, hence the result. �

As a consequence, a slitting global step can be simply denoted by SlitL whenever carrier
graphs are considered up to isotopy.

Proposition 3.2.5 (Slitting Global Steps and Rauzy Graphs). Let Γ be a coherent graph
which codes a lamination L by a language L. Then, ∀n > 0, SlitnL(Γ) is isomorphic to the
n-th order Rauzy graph ΓL,n. Moreover, SlitnL(Γ) can be coherently embedded into Σ(Γ),
and preserves the carrying properties of Γ with respect to L.
Proof. By Lemma 3.2.2, SlitL(Γ) has edges labeled by FactL(2), in such a way that ab and
a′b′ are consecutive iff b = a′. These constraints are the same as the ones defining the first-
order Rauzy graph ΓL,1. According to Lemma 3.2.3, the same arguments hold inductively
for all ΓL,n, ∀n > 1. Slitting global steps preserve carrying, maximality, fullness, coherence,
freeness, and the fact that L is coded in Σ(Γ) (see Section 3.1), hence the same is true for
SlitnL(Γ), ∀n > 0, with respect to Γ. �

In the sequel, we will consider carrier ribbon graph sequences of the form S = {SlitnL(Γ)}n≥0.
Note however that, in terms of Rauzy graphs, Proposition 3.2.5 only ensures that SlitnL(Γ) =
ΓL,n for n > 0 (from now on, when there is no ambiguity we use the equality sign for graphs
to denote either isomorphism or isotopy). As a matter of fact, a carrier graph Γ is the
0-th order Rauzy graph ΓL,0 if Γ is a bouquet of circles, where the single vertex corresponds
to the empty word, and the edges correspond to FactL(1). Otherwise, Γ is of different
nature from a Rauzy graph (similarly to what happens for higher edge graph sequences of
edge shifts [28]); it is a general graph, describing more than FactL(1) in terms of constraints
over L, but less than FactL(2). This exception in S gives some of the extended possibilities
compared to the iet case which requires Γ to be a coherent bouquet of circles.

3.3 Bursts, Bipartite Graphs and Maximality

We now analyze the constraints on the sequences of the form {SlitnL(Γ)}n≥0. When building
SlitL(Γ) from Γ, each vertex v ∈ Γ gives rise in SlitL(Γ) to a small graph, to which one
can associate a bipartite graph (Vl,v ⊔ Vr,v, Ev), where Vl,v (resp. Vr,v) corresponds to the
incoming (resp. outgoing) half-edges incident with v, and where Ev corresponds to the
length-2 admissible paths going through v and used to carry L. Applying Proposition 3.2.5,
if Γ is a Rauzy graph, this bipartite graph is isomorphic to the graph Γv, as introduced in
Section 2.3. But slitting applies also when Γ is not a Rauzy graph, thus by extension, we
also denote (Vl,v⊔Vr,v, Ev) by Γv for a vertex v in any slitted Γ. The graph Γv represents the
local graph transformation at v induced by SlitL(Γ) which we also call a burst. Moreover,
since Γ is coherent, we can place Vl,v and Vr,v in two parallel lines in a neighborhood of v
in Σ(Γ), using the order over the half-edges given by the ribbon structure of Γ. Then Ev

is realized by arcs connecting Vl,v to Vr,v, making Γv an embedded graph in Σ(Γ) since it
comes from a slitting. For instance (see the second case in Example 3.2.1):
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Such an embedding of a bipartite graph is classically called a biplanar drawing. From now
on, Γv denotes the bipartite graph (Vl,v ⊔ Vr,v, Ev) with its biplanar drawing in Σ(Γ), both
induced by SlitL(Γ), and representing the burst it corresponds to.

Remark 3.3.1 Let Γ be a coherent graph carrying a lamination L. Then every vertex v
in Γ is such that its corresponding Γv induced by SlitL(Γ) is topologically connected iff there
is no vertex cutting at v.

Proof. Let N(Γ) be a neighborhood of Γ. A vertex cutting at v means a slitting step slitα,L
restricted to slit the vertex-trapezium Qv in N(Γ) corresponding to v (see Section 3.1). In
the core graph, this vertex cutting results into a local disconnection, hence by construction,
into a disconnection of Γv since the carrying L is assumed to be full. The converse also
holds since a disconnection of Γv means there is a finite slitting within Qv. �

Example 3.3.2 Let v be a bispecial vertex of a coherent graph with ∂−(v) = ∂+(v) = 2.
There are three possibilities for a slitting step at v, reflected into three local graph transfor-
mations: these are exactly the three forms of bursts for v for which their corresponding Γv

are biplanar among all the possible ones (see Example 2.3.4 (i), (iii) and (iv)). The middle
case corresponds to a vertex cutting. These graphs are similar to the usual three forms of
splittings in train track theory [41].
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If a bipartite graph drawing is biplanar then it is a disjoint union of caterpillar trees, where
a caterpillar tree is such that deleting all its leaves yields a linear path graph [22]. This
property gives us a criterion to prove the following:

Proposition 3.3.3 (Maximality and Finite Slittings). Let L be a lamination carried by a
coherent graph Γ. Then L is maximal rel. to Γ iff there is no finite slitting of Γ with respect
to L.
Proof. (⇐): Assume there is a curve γ carried by Γ but disjoint from L and not homotopic
to any curve of L. Consider a neighborhood N(Γ) containing L ∪ {γ}. Let Γ be labeled
by A, and let L be the lamination language which codes L by Γ. Let wγ denote the coding
of γ by Γ. Since wγ /∈ L, there must be factors which occur in wγ but not in L (L is a
shift over A). Let u be a shortest one, having length n. Since Γ is assumed to carry L
in a full way, all the letters in A occur in L, therefore n > 1. Let Γ′ denote Slitn−2

L (Γ),
with edges labeled with length-(n − 1) factors. By construction, every factor of length at
most n − 1 in wγ is also a factor of L. Thus, the slittings to get Γ′ can be performed on
N(Γ) using slitting curves disjoint from γ and coded by factors of length n − 1, so that γ
is still carried by Γ′. We write u = au′d with a, d ∈ A, u′ ∈ A∗, that is, u corresponds to
a length-2 path in Γ′ made of the edges au′ and u′d, linked by the vertex u′. Now, au′

and u′d are factors of L, but by assumption u is not. Hence, since FactL is prolongable,
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u′ must be bispecial in L. Indeed, au′ is prolongated to the right by at least another letter
c ∈ A, giving rise to au′c ∈ FactL, and u′d is prolongated to the left by at least another
letter b ∈ A, giving rise to bu′d ∈ FactL. Therefore, when constructing SlitL(Γ

′), there is
a burst at u′, with its corresponding embedded bipartite graph Γ′

u′ . For SlitL∪{γ}(Γ
′), the

existence of u = au′d means to add an edge to Γ′
u′ , and the result must remain biplanar,

i.e. it must be a caterpillar forest. Thus, without u, the graph Γ′
u′ could not be topolgically

connected. According to Remark 3.3.1 there is a vertex cutting on Γ′ at u′, that is, there is
a finite slitting curve coded by u′ on Γ.

finite slitting curve γ’
a

u’

c

db

γ

(⇒): Assume there is a finite slitting curve γ′ linking two edge-rectangle intersections in
N(Γ), say between the edge-rectangles a, b at one end, and c, d at the other one (see the above
figure). Let u′ be the coding of γ′, and let γ1, γ2 be two curves of L, with respective codings
wlau

′cwr and w′
lbu

′dw′
r , where wl, w

′
l ∈ ωA, wr, w

′
r ∈ Aω, such that γ1 is the lowermost

curve going through a, and γ2 is the uppermost one going through d. The curves γ1, γ2 exist
since the carrying is assumed full and L can be assumed to be closed. But then γ′ can be
prolongated from each of its endpoints into a two-way infinite curve γ coded by wlau

′dw′
r

(see the above figure). By construction, γ is carried by Γ, and cannot be homotopic to any
other curve of L, since au′d ∈/ FactL. Hence, L is not maximal rel. to Γ. �

Corollary 3.3.4 Let L be a lamination carried by a coherent graph Γ, but not maximal
rel. to Γ. Then, there exists k > 0 such that L is maximal rel. to SlitkL(Γ).
Proof. According to Proposition 3.3.3, if L is not maximal rel. to Γ, there are finite slitting
curves associated with Γ. But a carrier graph has only a finite number of associated slitting
curves, since these start from the edge-rectangle intersections of N(Γ). Hence, there is a
k > 0 such that k slitting global steps exhaust all the finite slittings. �

We can now generalize Remark 3.3.1:

Proposition 3.3.5 (Maximality and Vertex Bursts). Let L be a lamination carried by a co-
herent graph Γ. Then L is maximal rel. to Γ iff every vertex v in the graphs in {SlitnL(Γ)}n≥0

is such that its burst representation Γv induced by SlitL is topologically connected, hence
maximally biplanar (no edge can be added without impairing biplanarity), and with ∂−(v) +
∂+(v) − 1 edges.
Proof. If L is maximal rel. to Γ, every vertex burst in SlitnL(Γ) for every n ≥ 0, is associated
with a topologically connected Γv = (Vl,v ⊔ Vr,v, Ev). Otherwise by Remark 3.3.1, for some
index n0 ≥ 0, a vertex cutting would occur when obtaining Slitn0+1

L (Γ) from Slitn0

L (Γ),
meaning a finite slitting in Γ, and contradicting Proposition 3.3.3. Since Remark 3.3.1 and
Proposition 3.3.3 give necessary and sufficient conditions, the converse holds too. Now, by
definition of a slitting global step, Γv is such that |Vl,v| = ∂−(v) and |Vr,v| = ∂+(v). Thus,
if Γv is topologically connected, it contains a tree, and it has at least ∂−(v)+∂+(v)−1 edges.
Moreover, being induced by slittings, Γv is biplanar, and as such it must be a caterpillar
tree, that is, ∂−(v) + ∂+(v)− 1 is the maximal number of edges. �

3.4 Non-Coherent Graphs and Language-Based Slittings

Coherent embeddings for carrier graphs are the natural geometric context whereto apply
slittings, since slitting curves are well-defined for them, univocally starting from the edge-
rectangle intersections ofN(.), i.e. crotches of these graphs. The preceding sections exploited

17



this fact, and the same is true for classic train track theory. However, using the relationships
between slittings, Rauzy graphs and vertex bursts (see Section 3.3), we can extend the
slitting operations to non-coherent graphs by applying in a general way the main ideas of
Construction 2.3.3:

Construction 3.4.1 (Slittings from Line Graph Immersions). Let Γ be a ribbon graph la-
beled by A, and let L be a language in ωAω of labels of admissible paths of Γ, which is
equivalent to ask that FactL(2) is a set of labels of length-2 admissible paths of Γ. Using
Construction 2.3.3, we first consider the line graph LG(Γ), and we immerse it in Σ(Γ) as fol-
lows: (i) one vertex is placed in the interior of each edge of Γ; (ii) the vertices of each pair of
vertices lying in a length-2 admissible path of Γ are linked by an arc in Γ which is contained
in this length-2 path. Next, we prune LG(Γ) off its edges not corresponding to length-2
factors in FactL(2), and we put them in general and minimal intersection position (with
vertices fixed). The resulting graph Γ′ is an immersion of the first-order Rauzy graph ΓL,1

in Σ(Γ). If the language L involves all the edge labels of Γ, and if Γ′ is embedded in Σ(Γ)
(not just immersed), we say that Γ is L-slittable, and we denote Γ′ by SlitL(Γ). If L is
a lamination language coding a lamination L carried by Γ, then Γ is L-slittable; moreover,
if Γ is coherent then by Proposition 3.2.5, SlitL(Γ) is just SlitL(Γ) (up to isotopy), so if Γ
is non-coherent, by extension, we also denote SlitL(Γ) by SlitL(Γ).

Example 3.4.2 Here is the effect of Construction 3.4.1 (a burst in this context) at a non-
coherent vertex v, where the involved factors of L are {af, bf, bd, cd, ed, ef} ⊂ FactL(2):
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f e
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a f
e

d
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The properties of carrier graphs are preserved by SlitL, as they are by SlitL. First:

Lemma 3.4.3 Let Γ be a (not necessarily coherent) graph. Let L be a language such that Γ
is L-slittable. Then if γ is a curve carried by Γ with a path whose label is in L, γ is also
carried by SlitL(Γ). Conversely, if γ is any curve carried by SlitL(Γ), γ is also carried by Γ.
Proof. According to Construction 3.4.1, each edge e of SlitL(Γ) corresponds to a length-2
admissible path e1e2 of Γ, which can be homotopically deformed into an arc embedded in Γ,
with start and end fixed in e1 and e2, respectively. Now, if γ is carried by SlitL(Γ), it has a
homotopic path η′ in SlitL(Γ). This path η′ can be deformed into a path η in Γ described
by the sequence of overlapping length-2 paths given by the sequence of the deformed edges
of η′. Hence γ is also carried Γ. Conversely, let γ be carried by Γ with a path η whose label
is in L. The path η can be decomposed into a sequence of length-2 overlapping subpaths.
By definition of SlitL(Γ), each of these subpaths contains one of the arcs described above,
with endpoints at the vertices of SlitL(Γ) and homotopic to one edge of this graph, defining
a path η′ in SlitL(Γ) homotopic to γ. �

A set of curves fully carried by Γ with paths whose labels are in L is still fully carried by
SlitL(Γ). Freeness is also preserved by SlitL(Γ) in Σ(Γ). Indeed, by Lemma 3.4.3, any
two homotopic curves in Σ(Γ) carried by SlitL(Γ) are also carried by Γ, and with a unique
path η if Γ is free; then, η is transformed into a unique path η′ in SlitL(Γ) following the
length-2 overlapping subpaths of η.

Corollary 3.4.4 Let Γ be a (not necessarily coherent) graph, and let L be a lamination
coded by Γ. Then L is coded by SlitL(Γ). Conversely, if γ is any curve coded by SlitL(Γ),
then γ is also coded by Γ.
Proof. If L is the coding of L by Γ, then Γ is L-slittable, and Lemma 3.4.3 applies. �

Moreover, if L is maximal rel. to Γ, it is also rel. to SlitL(Γ). Finally, dealing with non-
coherence is simplified by the following property:
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Proposition 3.4.5 (Coherence in One Slitting Global Step). Let Γ be a (not necessarily
coherent) graph, and let L be a language such that Γ is L-slittable. Then SlitL(Γ) is a
coherent graph.

Proof. Let e be an edge of Γ, and let ve be its corresponding vertex in SlitL(Γ). First,
assume that e is not a loop. Let D ⊂ Σ(Γ) be a disk containing e, such that e is the only
edge of Γ completely included in D. We assume its boundary ∂D is in minimal intersection
position with each edge ai (resp. bj) incident with the initial vertex (resp. the terminal
vertex) of e. Similarly, let DSlit ⊂ Σ(Γ) be a disk containing ve, such that ve is the only
vertex contained by DSlit.

Slitting  step
1e

eb3

a e4

Slit

2

a3

a4

a5

b2

a3e
a1e

b

a

e
e
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b

1

v

1

b3

D
D

According to Construction 3.4.1, the edges of SlitL(Γ) incoming at ve (resp. outgoing
from ve) intersecting ∂DSlit correspond to length-2 paths aie (resp. ebj) of Γ used to
describe factors in FactL(2). Now, any incident edge ai with the initial vertex of e, which
has another orientation than the ones determined by the above length-2 paths is such that
aie is not an admissible path, so that there is no possible corresponding edge incident with
ve in SlitL(Γ). The same holds for the incident edges at the terminal vertex of e. Hence,
the aie’s intersections with ∂DSlit are all consecutive, and the ebj’s intersections too, that
is, SlitL(Γ) is coherent at ve. The same reasoning applies to every edge of Γ.

If there are loops in Γ, we subdivide each of them into two edges by adding a new vertex
on it, and call Γ′ the resulting graph. We then use the above argument to obtain a coherent
graph SlitL(Γ

′). Next, we consider any of these loops in Γ′, subdivided into e1, e2, and for
which ve1 and ve2 are the corresponding vertices in SlitL(Γ

′). There is a unique edge e′ from
ve1 to ve2 , and ∂+(ve1) = ∂−(ve2 ) = 1. Hence, contracting e′ preserves coherence. Applying
contraction to every such edge of SlitL(Γ

′) yields a coherent graph which is SlitL(Γ). �

Corollary 3.4.6 Let Γ be a (not necessarily coherent) graph, and let L be a lamination
carried by Γ. Then SlitL(Γ) is a coherent graph.

A consequence of the above Corollary 3.4.6 is that, given a carried lamination L, only Γ
may be not coherent in a sequence S = {SlitnL(Γ)}n≥0. Thus, using Construction 3.4.1 and
Corollary 3.4.4, the close relationship between sequences like S and Rauzy graph sequences,
i.e. Proposition 3.2.5, also holds when Γ is non-coherent. Moreover by Lemma 3.4.3, given
a lamination or a language to obtain Slit(.)(Γ), one can work with curves carried by this
Slit(.)(Γ), that is, in the context of coherent graphs, and then go back to Γ, by which these
curves are carried too.

3.5 A Characterization of Lamination Languages

In order to describe a sequence of slitted graphs with respect to a language L, we inductively
extend Construction 3.4.1 to every Rauzy graph ΓL,n, n > 0: We first define an immersion
of ΓL,n+1 in Σ(Γ) from ΓL,n by using FactL(n + 1); next, if ΓL,n+1 is embedded in Σ(Γ),
we also say that ΓL,n is L-slittable. This extension leads to the following definition:

Definition 6 An infinite sequence {Γn}n≥0 of ribbon graphs is said to be a L-slittable

graph sequence if L is a language in ωAω, and if Γn is L-slittable, ∀n ≥ 0, so that Γn+1 =
SlitL(Γn), i.e. {Γn}n≥0 = {SlitnL(Γ0)}n≥0.
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Thus, in a L-slittable graph sequence, SlitnL(Γ0) is the n-th order Rauzy graph ΓL,n, ∀n > 0,
and the starting graph Γ0 is not necessarily a Rauzy graph, like in a sequence of the form
{SlitnL(Γ)}n≥0 based on a lamination L carried by Γ (see the end of Section 3.2). Also, a
L-slittable graph sequence induces a ribbon structure for each of the Γn’s, all embeddable
in Σ(Γ0), that is, in the same hyperbolic surface, like the standard surface Σ0(Γ0). Therefore,
Definition 6 is stronger than just asking each slitted Γn be independently embeddable.

We now characterize lamination languages by using the above graph sequences. This
result is an extension of the iet language case [5, 6]:

Theorem A.1 Let L be a shift in ωAω. Then L is a lamination language iff there exists a
corresponding L-slittable graph sequence {Γn}n≥0, where Γ0 is labeled by A.

Proof. (⇒): Since L is a lamination language, there exists a ribbon graph Γ which codes a
lamination L into L. According to Construction 3.4.1 and Proposition 3.2.5, we know that
SlitnL(Γ) = SlitnL(Γ), ∀n ≥ 0, so that {SlitnL(Γ)}n≥0 forms a L-slittable graph sequence.

(⇐): By definition, the graphs Γn are all inductively embeddable in Σ(Γ0). Let us first
assume that no isolated cyclic subgraph occurs in {Γn}n≥0. Let us also assume that Γ0

is coherent. Thus we can consider regular neighborhoods N(Γn), here denoted by Nn, and
build a sequence N = {Nn}n≥0 using the following definition: A rightward (resp. leftward)
inclusion of Nn+1 in the interior of Nn is first based on an immersion of the line graph
LG(Γn) (see Construction 3.4.1) in the interior of Nn, such that each vertex ve of LG(Γn)
corresponding to the edge e of Γn is placed in the vertex-trapezium of Nn corresponding
to the terminal (resp. initial) vertex of e. Second, as usual, Γn+1 is obtained by pruning
off the edges of LG(Γn), keeping only those corresponding to FactL(n + 1). Finally, the
corresponding Nn+1 is built within Nn, so that the Nn+1’s vertex-trapezia (resp. edge-
rectangles) are included in the interiors of the Nn’s vertex-trapezia (resp. in the interior of
Nn). Since all the edges of Γn+1 can be assumed to be transverse to Nn’s fibers, Nn+1 can
be taken such that its fibers are subarcs of fibers of Nn. Geometrically, a rightward (resp.
leftward) inclusion behaves as a neighborhood obtained after a right (resp. left) slitting
global step. The sequence N is defined such that the inclusions of Nn+1 in Nn are taken
alternatively rightward and leftward, for all n ≥ 0. Here is a rightward inclusion of N1 in N0:

Γ

a
c

b c

N0

0

1N

We define a boundary curve of a neighborhood Nn as a union of top or bottom sides
of quadrilaterals, forming a finite oriented simple curve which starts and ends with edge-
rectangle sides. In order to code these boundary curves by Γ0, we can deform them so that
each of their extremities is identified with the vertex of Γ0 contained in the vertex-trapezia
of N(Γ0) the extremity belongs to, accordingly determining a carrying by Γ0. For instance,
in the above figure, ac and bc are codings of boundary curves of N0 and N1, where a, b, c ∈ A
are the labels of the involved Γ0 edges. Now, for each n there is a finite number of boundary
curves defined from Nn, so after having modified them as described above, we can make
them pairwise disjoint arcs in Nn\Nn+1 by using homotopies along the transverse fibers. We
take the union over n of all these curves, and obtain a set CL of finite simple curves, pairwise
disjoint, transverse to the fibers of N0, and unambiguously deformable onto paths of Γ0. We
denote by LC the set of codings of the curves in CL by Γ0. We claim that LC = FactL:

– LC ⊆ FactL: Let e denote any edge of Γn, n ≥ 0. The top and bottom sides of its
associated edge-rectangle Qe in Nn induce curves in CL coded by a single edge in Γ0, thus
by a single letter, say a ∈ A. When these sides are prolongated to the right (the reasoning
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is similar for the left direction), each of them goes along a side of a vertex-trapezium Qv

corresponding to a vertex v ∈ Γn, and along a side of another edge-rectangle. Consider the
prolongation whose sides belong to Qe′ , coded by b ∈ A, where e′ is an edge consecutive to e
in Γn: (i) If ∂+(v) = 1 (resp. ∂−(v) = 1), then according to the Rauzy graph definition,
ab ∈ FactL, since it is the unique way of prolongating e to the right (resp. e′ to the left)
in Γn; (ii) If ∂+(v) > 1 and ∂−(v) > 1, then by construction, e and e′ are either the two
highest or the two lowest edges incident with v. Consider the case where they are, say, the
two highest, and assume ab ∈/ FactL(2). Since FactL is prolongable, there are letters c and d
such that ac and db are in FactL(2), where c labels an outgoing edge from v necessarily lower
than e′, and d labels an incoming edge at v necessarily lower than e. But then, ac and db
are labels of paths which cross each other, contradicting the fact that Γn is L-slittable.

– FactL ⊆ LC: N1, being a rightward inclusion in N0, behaves like a right slitting global
step; thus it slits open every edge-rectangle coded by a left special letter in A, producing
boundary curves coded by these letters. Next, N2, being a leftward inclusion in N1, has the
same effect for the right direction. Carrying on this reasoning to all of N , we see that all
the prolongations to the left and to the right of these boundary curves produce longer and
longer special factors in FactL. In fact, all the special factors in FactL are produced by this
process. Indeed, the prefix of a left special factor being also left special, left special factors
are successive prolongations to the right of smaller special factors, and we have an analogous
situation for the right special factors. As a result, the only factors in FactL which fail to be
included here are those which are not factors of any special factor of L. Since the alphabet
is finite, these factors must be included in periodic words in L, since their prolongations to
the left and right must be deterministic. But periodic words do not include special factors
of L with arbitrary length. As a consequence, there exists an n0 > 0 such that their factors
make up isolated cyclic subgraphs in the Rauzy graphs ΓL,n, ∀n > n0, but for the time
being, we have excluded this possibility. Hence, FactL is also included in LC.

We are therefore in position to apply Lemma 2.2.1 to CL and FactL, and we obtain a
lamination L in the standard surface Σ0(Γ0), coded by Γ0 into the language L. Now if there
exist isolated cyclic subgraphs in {Γn}n≥0, they correspond to isolated periodic two-way
infinite words, which in turn, correspond to pairwise disjoint and non-homotopic compact
leaves. These cycles are finite in number since Σ0(Γ0) is of finite type. Therefore we can also
apply the preceding procedure to {Γn}n≥0, except that we exclude the corresponding finite
set of closed curves from CL, as well as their periodic codings from L. We get a lamination L′

from Lemma 2.2.1 as above, to which we add a posteriori these closed curves to get L.
If Γ0 is not coherent, we can apply the same reasoning as above starting from Γ1, since

first, Γ0 is L-slittable so that Γ1 = SlitL(Γ0) is coherent (cf. Proposition 3.4.5); and second,
Γ1 is the first-order Rauzy graph ΓL,1 (cf. Construction 3.4.1), so that the language L is
transformed into L1 over Γ1 by a recoding by a length-2 sliding window over FactL(2). As a
result, we obtain a lamination L carried by Γ1, and coded by L1. Applying Corollary 3.4.4,
L is also carried and coded by Γ0, and this coding is the inverse of the recoding of L into L1,
i.e. a projection of each occurrence of FactL(2) to its first letter, that is L itself. �

Note that given a shift L in ωAω , there exists only a finite number of ribbon graphs which
are labeled by A and for which FactL(2) is a set of labels of length-2 admissible paths.
Therefore, knowing whether there is no L-slittable graph sequence associated with a given
shift L is semi-decidable.

4 Lamination Language Combinatorics

We just have seen that lamination languages are characterized by slittable graph sequences,
whose positive terms correspond to their embedded corresponding Rauzy graphs. From this,
we can infer results about their combinatorics.
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4.1 Ultimate Affine Complexity

First, let us investigate the complexity functions of lamination languages:

Theorem B Let L be a lamination language. Then L has ultimate affine complexity.
Proof. Let Γ be a graph which codes a lamination L into L. Let k be positive, while
ensuring that L is maximal rel. to Γ′ = SlitkL(Γ), and Γ′ is coherent (see Corollary 3.3.4
and 3.4.6). By Proposition 3.2.5, the sequence S = {SlitnL(Γ)}n≥k is equal to the sequence of
Rauzy graphs {ΓL,n}n≥k. Now, recall that in a Rauzy graph, each vertex v can be identified
to the factor it corresponds to, and that its prolongation orders are ml(v) = ∂−(v) − 1,
mr(v) = ∂+(v)− 1, and m(v) = |FactL ∩AvA| − (ml(v) +mr(v) + 1). The graph Γ′ being
coherent, and L maximal rel. to it, we can apply Proposition 3.3.5 to every v of a graph
in S to get |FactL ∩ AvA| = ∂−(v) + ∂+(v) − 1, i.e. the number of edges of the burst
of v, thus m(v) = 0. Since FactL is prolongable, then

∑

v∈FactL(n) m(v) = p′′L(n), ∀n ≥ k

(see Section 2.3). Hence p′′L(n) = 0, i.e. pL(n) is affine, ∀n ≥ k. �

If a lamination language L is made of a finite number of periodic words (corresponding to
a lamination made of a finite number of non-homotopic compact leaves), there exists some
n0 > 0, such that L has no length-n special factors for all n > n0. Hence p

′
L(n) = 0, ∀n > n0,

and the complexity is ultimately constant. In all the other cases, there are special factors
of every length in FactL, that is, p

′
L(n) > 0, ∀n > 0. More explicit complexity formulae can

also be obtained. First, here is a generalization of a result in [30]:

Corollary 4.1.1 Let L be a lamination language over A, coding a lamination L by a co-
herent graph Γ = (V,E) rel. to which L is maximal. Then |E| = |A|, and:

pL(n) = (|E| − |V |)n+ |V |, ∀n > 0.

Proof. Since Γ is coherent, and L is maximal rel. to Γ, we can apply the case k = 1
of the proof of Theorem B, considering the first order differences, that is, p′L(n) = K,
∀n ≥ 1, K ≥ 0. But we can also apply Proposition 3.3.5 to Γ to deduce that |FactL(2)| =
∑

v∈Γ(∂
−(v)+∂+(v)−1) = |E1|, where SlitL(Γ) = ΓL,1 = (V1, E1), that is, 2|E|−|V | = |E1|.

Since on ΓL,1 we have p
′
L(1) = |E1|−|V1| = |E1|−|E| = K, we also have that |E|−|V | = K.

Using that pL(1) = |E|, we obtain pL(n) = |E|+ (n− 1)(|E| − |V |), ∀n > 0. �

A direct consequence of Corollary 4.1.1 is a known property for an iet language L based on an
iet T overm intervals and satisfying the i.d.o.c. [26], that is, a coding of a maximal lamination
rel. to a coherent bouquet of m circles has complexity pL(n) = (m− 1)n+ 1, ∀n > 0.

Corollary 4.1.2 Let L be a lamination language over A, coding a lamination L by a (not
necessarily coherent) graph Γ = (V,E). Then the complexity pL is affine iff L is maximal
rel. to SlitL(Γ) = (V1, E1), so that |E| = |A| and:

pL(n) = (|E1| − |E|)n+ (2|E| − |E1|)
= (|FactL(2)| − |A|)n+ (2|A| − |FactL(2)|), ∀n > 0.

Proof. Reusing the arguments from the proof of Corollary 4.1.1, p′L(1) = |E1| − |E| and
pL(1) = |E|, hence pL(n) = |E| + (n − 1)(|E1| − |E|), ∀n > 0. Moreover by definition, E1

is in bijection with FactL(2), and E with A, whence the second equality. Conversely, if
maximality holds only for SlitkL(Γ) with k > 1, then by Proposition 3.3.5, there is some k0
with 1 ≤ k0 < k, and a length-k0 bispecial v for which m(v) < 0, whereas for the others
m(.) ≤ 0. Hence, p′′L(k0) < 0, and the complexity is affine only ultimately. �

Recall that if L is maximal rel. to Γ, it is maximal rel. to SlitL(Γ), and this is how Corol-
lary 4.1.2 is consistent with Corollary 4.1.1. Note that Corollary 4.1.2 is useful to obtain the
complexities associated with coded laminations maximal rel. to non-coherent graphs. This
corollary is also generalized as follows:
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Corollary 4.1.3 Let L be a lamination language over A, coding a lamination L by a (not
necessarily coherent) graph Γ. Let L be maximal rel. to SlitkL(Γ) = (Vk, Ek) for k > 0.
Then:

pL(n) = Dn− (Dk − |Vk|), ∀n ≥ k, where D = |Ek| − |Vk|.

Proof. We have p′L(n) = K, ∀n ≥ k, K ≥ 0. Since SlitkL(Γ) = ΓL,k, then p′L(k) =
|Ek| − |Vk| = K, and pL(k) = |Vk|. Hence, pL(n) = |Vk|+ (n− k)(|Ek| − |Vk|), ∀n ≥ k. �

4.2 Leaf Packets, Special Factors and Infinite Special Words

We now analyze the structure of the special factors of lamination languages through their
corresponding curve subsets. Let L be a lamination coded by a coherent carrier graph Γ
into a language L over A. Let N(Γ) be a fibered neighborhood of Γ, containing L with
all its leaves transverse to the fibers, as usual. In a quadrilateral Q of N(Γ), let s be any
transverse fiber, and consider two points x ∈ (ℓ1∩s), y ∈ (ℓ2∩s) where ℓ1, ℓ2 are leaves in L.
Let I = [x, y] ⊂ s be the interval in s defined by x and y. Let s′ be another transverse fiber
in Q, and consider x′ ∈ (ℓ1 ∩ s′) and y′ ∈ (ℓ2 ∩ s′) such that x, x′, and y, y′ lie respectively
on the same connected component of ℓ1 ∩Q and ℓ2 ∩Q. We say then that I ′ = [x′, y′] ⊂ s′

is a translate of I along L’s leaves. This definition induces an equivalence relation among
these intervals in the fibers of Q, which extends by transitivity to all of N(Γ).

Given a factor u ∈ FactL, we define the right cylinder RCylu as the set of the right
one-way infinite half-words of words in L having u as prefix (here, we develop the right
direction, the left direction being handled similarly with suffixes and left cylinders). We
denote by sl(Q) and sr(Q) respectively the left and right sides of the quadrilateralQ ofN(Γ).
Assuming u is a non-empty factor, let a ∈ A be its first letter and let Qa be its corresponding
edge-rectangle in N(Γ). The right cylinder RCylu determines a subset Lu of L made of half-
leaves, i.e. subsets of L’s leaves forming one-way infinite curves, each beginning at some
point of sl(Qa) and having its coding in RCylu. Let umin and umax be respectively the
lower and upper bounds of Lu’s origins in sl(Qa). The interval Il,u = [umin, umax] ⊂ sl(Qa)
contains every starting point of the half-leaves in Lu. Indeed, let γ, γ′ be two half-leaves
in Lu, then all the half-leaves with their origins at sl(Qa) and lying between γ and γ′ also
belong to Lu, since leaves in L do not intersect. Let b ∈ A be the last letter of u. Because
u ∈ FactL the interval Il,u can be translated in N(Γ) following the quadrilateral sequence
corresponding to u until it gets to sr(Qb). This translation determines an interval Ir,u in
sr(Qb), together with a set of arcs Xu ⊂ Lu, called a leaf packet of L [51].
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We say that an interval Il,u (resp. Ir,u) meets an intersection point α between edge-
rectangles of N(Γ), if its left (resp. right) translate in the adjacent vertex-trapezium con-
tains α. For instance, in the above figure, Il,u meets one intersection point, and Ir,u meets
two. If u is a left special factor in L of order ml(u), then Il,u meets ml(u) intersection points
in its interior (the same is true for Ir,u and the right special factors). These intersection
points are the starting points of slitting curves, and any such slitting curve, following the
sequence of quadrilaterals associated with u, divides Xu, Il,u and Ir,u. Let u

′ ∈ FactL be a
prolongated factor of u to the right, i.e. u′ = uu′′ ∈ FactL. Then, since RCylu′ ⊆ RCylu,
we have Lu′ ⊆ Lu and Il,u′ ⊆ Il,u.

The following results about minimal laminations are generalizations of the iet case [6]:
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Proposition 4.2.1 (Special Factors with Ultimate Order 1). Let L be a minimal lamination
language over A. Then there exists n0 > 0 such that for every u ∈ FactL(n), n ≥ n0, the
prolongation orders of u are at most 1, i.e. ml(u) ≤ 1 and mr(u) ≤ 1.

Proof. If L is made of a single periodic word, then for every sufficiently long u ∈ FactL,
ml(u) = mr(u) = 0. Thus, let us assume that L is aperiodic. Let Γ be the carrier graph
coding a lamination into L, and let us first assume that Γ is coherent. We prove the result
for ml (the proof is similar for mr). Let u ∈ FactL be such ml(u) > 1, and consider Il,u
and Ir,u in a regular neighborhood N(Γ). Accordingly, Il,u meets ml(u) intersection points.
Now, the translates to the right of Ir,u eventually meet edge-rectangle intersections because
of the aperiodic minimality. Indeed, the complexity of L is ultimately affine but not ul-
timately constant (see Section 4.1), that is, there are arbitrarily long right special factors
in FactL; moreover, by minimality, every factor in FactL is necessarily contained in longer
right special factors. Let u′ = uu′′ be the shortest one with this property, so that Ir,u′ meets
m = mr(u

′) > 0 intersection points. Next, we follow m slitting curves from these m points
toward the left all along the quadrilateral sequence corresponding to u′ until they hit Il,u.
This hitting defines m + 1 subintervals in Il,u, each corresponding to a factor ui = u′xi,
where the xi’s label the m+ 1 edge-rectangle prolongations to the right determined by the
m intersection points. This also induces partitions of Lu and RCylu into strict subsets.
We can inductively apply this dividing process to each of the subintervals Iui

, until each
intersection point met by Iu is eventually met by a single subinterval, so as to correspond
to a left special factor with ml(.) = 1, whereas the other factors are such ml(.) = 0.

Now, we apply the above procedure to all the letters a ∈ A as starting factors, that is, by
using a partition ∪a∈ARCyla, until we get a finite set F of factors, all verifying ml(.) ≤ 1.
Let n0 be the maximal length of the factors in F . By construction and by minimality, every
factor longer than n0 in FactL has a prefix in F , and prolongating such a prefix cannot
increase its prolongation order. In case Γ is not coherent, we apply the same arguments to
SlitL(Γ), which is coherent by Proposition 3.4.5. According to Proposition 3.2.5, we can
then start the above process with FactL(2) instead of A to reach the same conclusion. �

Corollary 4.2.2 Let L be a minimal lamination language. Then there exists n0 > 0 such
that every vertex v in every Rauzy graph ΓL,n, n ≥ n0, has degrees ∂

−(v) ≤ 2 and ∂+(v) ≤ 2.

The above results do not hold in the non-minimal case. For instance, consider a loop e in Γ,
labeled by a, whose vertex v is such that ∂+(v) = 1 and ∂−(v) = m, with m > 1, that is, v
has m− 1 incoming edges besides e. The leaves of a lamination whose carrying by Γ use the
incoming edges at v, all end up running forever around e. In the corresponding lamination
language L, we thus have ak ∈ FactL, ∀k > 0, and ml(a

k) = m− 1, ∀k > 0.
An infinite left (resp. right) special word w with respect to FactL, where L is a language

of infinite words, is a one-way infinite word such that all its prefixes (resp. suffixes) are left
(resp. right) special factors in FactL. Its prolongation order ml(w) (resp. mr(w)) is the
smallest of the orders ml(.) (resp. mr(.)) of all its prefixes (resp. suffixes). If L is a minimal
shift, the infinite special words with respect to FactL are half-words of words in L.

Proposition 4.2.3 (Finite Number of Infinite Special Words). Let L be a minimal lamination
language over A, coding a lamination L by a graph Γ = (V0, E0). Let k ≥ 0 be the smallest
such that L is maximal rel. to Γ′ = SlitkL(Γ) = (Vk, Ek) and such that Γ′ is coherent. Then
there are exactly |Ek|− |Vk| infinite left special words (resp. right special words) with respect
to FactL, all with ml(.) = mr(.) = 1.

Proof. If L is made of a single periodic word, there is no infinite special word with respect
to FactL, and there is k ≥ 0 such that SlitkL(Γ) is a cycle, so that |Ek| − |Vk| = 0. Let us
then assume L is aperiodic. Let L be transformed into a language L′ by a recoding by a
length-(k + 1) sliding window over FactL(k + 1), i.e. L′ is the coding of L by Γ′. We prove
the result for the left special words. Consider a neighborhood N(Γ′), and let α be an edge-
rectangle intersection point in N(Γ′) on the left side of a vertex-trapezium. Let Qu be the
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edge-rectangle labeled by u ∈ FactL(k + 1) such that the interval Il,u meets α. A sequence
of intervals {Il,ui

}i≥1 in sl(Qu), each meeting α, is then built as follows: Put u1 = u, and
translate Ir,u1

to the right until it meets edge-rectangle intersections, which must happen by
the same argument as in the proof of Proposition 4.2.1. Following slitting curves starting at
these intersection points towards the left until they hit Il,u1

defines subintervals in it. Among
these we keep the one meeting α, which exists since by maximality there is no finite slitting
curve (see Proposition 3.3.3), and we call it Il,u2

. We inductively obtain the next Il,ui
’s, such

that α meets Il,ui
for every i, and this process goes to infinity because of minimality. The

sequence {Il,ui
}i≥1 is decreasing, and its non-empty limit intersection meets at least α. By

Proposition 4.2.1 this limit interval meets only α. We obtain a sequence {ui}i≥1 for which
by construction, ui+1 is a left special factor of L′ with ui as a strict prefix for every i, that
is, ui+1 is a prolongation of ui. Thus there is an infinite left special word w, for which all
the ui’s are prefixes, and such that ml(w) = 1. Let w′ be the inverse of the recoding of w by
the sliding window, i.e. the projection of each occurrence of FactL(k + 1) to its first letter.
Then w′ is an infinite left special word with respect to FactL, such that ml(w

′) = 1 too.
Now, we apply the above procedure starting with all the edge-rectangles Qu of N(Γ′),

where u ∈ FactL(k+1) is left special, so that the corresponding Il,u’s meet edge-intersections.

We obtain associated sequences {u(u)
i }i>0. By construction, every left special factor of L′

has some u
(u)
i as a prefix, while being a prefix of u

(u)
i+1. Thus, the sequences {u

(u)
i }i>0 include

every sequence of left special factors. The same property holds also on L after the inverse
recoding. The number of left edge-rectangle intersections in N(Γ′) is |Ek| − |Vk|, and since
the carrying of L is full and FactL′ is prolongable, the result follows. �

The above result sheds another light on the affine complexity of a minimal lamination
language L: any left special factor in FactL of length > max(n0, k), where n0 comes from
Proposition 4.2.1 and k from Proposition 4.2.3, belongs to a unique infinite left special word
of order 1, and all the prefixes of an infinite left special word are left special factors (equiv. for
the right special case with suffixes). Therefore, the first difference complexity p′L(n) must
be constant for n ≥ max(n0, k), hence the ultimate affine complexity of L.

We can also further explain a remark we made about L-slittable graph sequences (see
Section 3.5): the fact that every vertex burst in a Rauzy graph sequence can be indepen-
dently made into a local planar graph in the embedding surface is not sufficient to yield a
lamination language. Examples are given by Arnoux-Rauzy words (or strict episturmian
words) [44, 4, 20], which are the minimal words having, for each length, exactly one left
and one right special factors with respective prolongation orders mr(.) = ml(.) = |A| − 1,
where A is the alphabet. This constraint gives these words a complexity p(n) = (|A|−1)n+1,
∀n > 0, and also that all the bipartite representations of the vertex bursts of their Rauzy
graphs have individually biplanar drawings, since each one generates ml(.)+mr(.)+1 edges.

Corollary 4.2.4 Arnoux-Rauzy words over A are not lamination words if |A| > 2.

Proof. According to Proposition 4.2.1, minimal lamination words have only special factors
which are ultimately of order mr(.) ≤ 1, ml(.) ≤ 1 as their lengths increase. The case
|A| = 2 corresponds to Sturmian words [32, 19], which are known to be symbolic orbits of
minimal iets over two intervals, hence are lamination words. �

From the point of view of infinite special words, a difference between Arnoux-Rauzy words
and minimal lamination words is the following:

• For every Arnoux-Rauzy word w over A, there is one single infinite left (resp. right)
special word w′ with respect to Factw, such that ml(w

′) = mr(w
′) = |A| − 1.

• For every aperiodic minimal lamination word w over A, there are h > 0 infinite left
(resp. right) special words with respect to Factw, such that ml(.) = mr(.) = 1 for all
of them. If w comes from the coding of a lamination L maximal rel. to Γ = (V,E),
then h = |E| − |V | = |A| − |V |.
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4.3 Another Characterization of Lamination Languages

We now give another characterization of lamination languages, based on the properties of
their bispecial factors. This characterization is an extension of the combinatorial character-
ization of the iet symbolic orbits as given in [18].

Let Γ = (V,E) be a directed graph labeled by A. Let O = (≤in,≤out) denote a pair
of partial orders over A, where ≤in (resp. ≤out) is defined for each vertex v ∈ V on the
subset of A labeling the edges incoming (resp. outgoing) at v. A pair O induces a canonical
coherent ribbon graph structure (V,H, h, i, ξ) on Γ as follows: V,H, h, i are inherited from Γ,
and the permutation ξ around each vertex v ∈ V is defined by making a cycle of all the
half-edges incident with v, first in the order ≤in on the incoming half-edges, and then in
the opposite order to ≤out on the outgoing half-edges. Conversely, given a coherent ribbon
structure over Γ and an orientation on the ribbon graph surface Σ(Γ), there is a canonical
pair O defined as follows: at each vertex v, all the incident incoming half-edges are ordered
with respect to their sequence in the clockwise direction, and the outgoing ones according
to the counterclockwise direction, respectively defining ≤in and ≤out around each vertex.
Since the edges of Γ are in bijection with A, these partial orders translate to A. For instance,
in the first figure of Section 3.3, we have a4 ≤in a3 ≤in a2 ≤in a1, and b3 ≤out b2 ≤out b1.
Let L be a language over A, and let O = (≤in,≤out) be also defined over A. Then, a
bispecial factor u in FactL is said to be compatible with O, if for all a, b, c, d ∈ A with
a 6= b, c 6= d, such that auc, bud ∈ FactL, we have b ≤in a ⇒ d ≤out c.

Theorem A.2 Let L be a shift in ωAω. Then L is a lamination language iff there is a
ribbon graph Γ labeled by A, and every word in FactL is a label of an admissible path of Γ
in such a way that:

• If Γ is coherent, all the bispecial factors of L are compatible with the canonical pair of
partial orders O = (≤in,≤out) over A induced by Γ.

• If Γ is not coherent, then Γ is L-slittable, and all the bispecial factors of the recoding
of L on SlitL(Γ) by a sliding window of length 2 over FactL(2) are compatible with the
canonical pair of partial orders O = (≤in,≤out) over FactL(2) induced by SlitL(Γ).

Proof. (⇒): By definition of a lamination language, there exists a ribbon graph Γ coding
a lamination L into L. First, assume that Γ is coherent, and let O be the canonical pair
of orders induced by Γ. Consider a regular neighborhood N(Γ) containing L. Let u be
any length-n bispecial factor in FactL, with n > 0. Let auc and bud be any left and right
prolongations of u, with a, b, c, d ∈ A, a 6= b, c 6= d, and with b ≤in a. Using the terminology
of Section 4.2, the pieces of leaves in Xauc and Xbud in N(Γ) do not cross each other, being
subsets of L. The same property holds for Xu, and thus also for Xauc and Xbud within Xu.
Hence, since b ≤in a, if a piece of a leaf is in Xauc, it lies over all the pieces of leaves in Xbud

all along its way, i.e. d ≤out c. Hence, u is compatible with O. If n = 0, i.e. u is the empty
word, then if ac and bd visit the same vertex of Γ, the same reasoning as above applies;
otherwise, a, b, c, d are not in relation via O.

If Γ is not coherent, we can apply the same reasoning as above to SlitL(Γ) since Γ is
L-slittable: SlitL(Γ) is coherent (cf. Proposition 3.4.5), and isomorphic to ΓL,1 so its edges
are labeled over FactL(2) (cf. Construction 3.4.1).

(⇐): Assume that Γ is coherent. We build a set of compact curves in N(Γ) satisfying
the hypothesis of Lemma 2.2.1 as follows: First, we consider an enumeration of the factors
in FactL. Next, for each factor u ∈ FactL, we consider the path corresponding to u as
a curve, denoted by γu. Now, let u be the n-th factor of FactL. We assume that the
n− 1 curves associated with the n− 1 first factors have been already placed in N(Γ) in such
a way that they are simple, pairwise disjoint and transverse to the fibers of N(Γ), while
their extremities have been moved only within the vertex-trapezia they lie in. We put γu
in general position in N(Γ), and in minimal intersection position with respect to the other
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n− 1 curves and to itself. If there is no intersection, we are done. Otherwise, we push such
an intersection ι in the forward direction, so that either we meet an extremity of one of the
curves involved, and ι disappears, or there is a vertex-trapezium of N(Γ) where the two arcs
containing ι cross themselves to enter distinct edge-rectangles, say c and d, with d ≤out c:

γu ι
c

d

u’

a

b

We can then attempt to push ι in the other direction, and again we have two cases: either ι
disappears, or there is a vertex-trapezium of N(Γ) where the two arcs containing ι cross
themselves to enter distinct edge-rectangles, say a and b, with b ≤in a. In this case, ι cannot
be erased by homotopy. But then, there is a factor u′ of u, labeling the path between the
two vertex-trapezia where ι has been blocked, and because of the crossing involved, au′d
and bu′c are also factors of u, belonging to FactL. Thus, u

′ would be a bispecial factor not
compatible with O, which is impossible by hypothesis. Hence, ι can always be erased by
homotopy, and γu can be made simple and disjoint from the other curves. By inductively
applying this process to every factor in FactL, we obtain a set of pairwise disjoint curves
from FactL, carried by Γ when their extremities are taken back to the vertices they come
from. Therefore, we can apply Lemma 2.2.1, and obtain a lamination L coded by Γ into L.

If Γ is not coherent, we can apply the same reasoning as above to SlitL(Γ), and we
conclude by the same arguments as in the last paragraph of the proof of Theorem A.1. �

Like for Theorem A.1, knowing whether there is no ribbon graph with the properties required
by Theorem A.2 is semi-decidable. Also, when maximality comes into play, another property
based on O can be proved:

Proposition 4.3.1 (Maximality and Special Factors). Let L be a lamination coded by a
coherent ribbon graph Γ into a language L over A. Let O = (≤in,≤out) be induced by Γ.
Then L is maximal rel. to Γ iff for every left special factor u ∈ FactL, then if au, bu ∈ FactL,
where a, b ∈ A are distinct and consecutive for ≤in∈ O, there exists only one x ∈ A such
that aux, bux ∈ FactL (a similar result holds for the right special factors and ≤out).
Proof. (⇐): Let u ∈ FactL be any left special factor as required. Accordingly, the existence
of u implies an intersection α between the two edge-rectangles a and b of N(Γ). From α, a
slitting curve γ starts, visiting the quadrilaterals of N(Γ) following the sequence of labels
given by u. According to Proposition 3.3.3, maximality of L implies that there is no finite
slitting curve. Therefore, γ can be prolongated beyond u, so that γ enters an edge-rectangle,
say labeled by x, and because the carrying is full, γ has leaves of L above and under it when
entering the edge-rectangle x. Thus, the coding of these leaves shares the same continuation
letter x, and this letter is the only one because leaves in L avoid γ.

(⇒): The assumptions imply that the burst of each left special factor u ∈ FactL in its
corresponding Rauzy graph is made of ∂+(u)+ml(u) edges. Indeed, ml(u) is the number of
slitting curves starting from the left, which is also the number of pairs of consecutive letters
a, b ∈ A such that au, bu ∈ FactL. Because for each such pair there exists x ∈ A such that
aux, bux ∈ FactL, each corresponding slitting must slit in two an edge outgoing from u,
thus adding one edge to the burst. Recalling that ml(u) = ∂−(u) − 1, then according to
Proposition 3.3.5, L must be maximal rel. to Γ. �

4.4 Iet Languages and Bouquets of Circles

A lamination L obtained from a shift L using Theorems A.1 or A.2 admits sometimes a
transverse measure with full support, in particular in the minimal case. A classic construc-
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tion exists for geodesic laminations [9, 10] that we translate in our context as follows: Let Γ
be a carrier graph for L, let N(Γ) be a fibered neighborhood of Γ, and let L be considered as
a closed subset of N(Γ), with all its leaves transverse to the fibers. Let ℓ be a leaf in L with
a base point, and let Q denote the set of quadrilaterals making N(Γ). For each Q ∈ Q in
intersection with ℓ, and for each transversal s included in Q, we define µQ

m(s) = 1
2m |{γm∩s}|,

where m ∈ N∗, and where γm is the subarc of ℓ going exactly through m quadrilaterals of
N(Γ) to the left and to right with respect to the base point. Then there exists some sequence
mi → ∞, so that {µQ

mi
} converges to a transverse measure µQ on L∩Q. Thus, we can suc-

cessively obtain such transverse measures µQj for all Qj ∈ Q, with converging sequences
being extracted in such a way that µQj (s) = µQk(s) for any transversal s in Qj ∩Qk, where
Qk ∈ Q, so that the µQj ’s extend to a transverse measure µ on L. If L is minimal, ℓ is dense
in it, and the support of µ is L. Now, here is how Theorems A.1 and A.2 are restated for
the iet case:

Corollary 4.4.1 Let L be a minimal shift in ωAω. Then L is an iet language iff there exists
a L-slittable graph sequence {Γn}n≥0, where Γ0 is a coherent bouquet of circles labeled by A.

Proof. An iet language L is the coding of a lamination L by a coherent bouquet of
circles Γ0 (see Section 2.1), hence Γ0 is L-slittable, and the graphs Γn = SlitnL(Γ0) too.
Conversely, according to Theorem A.1, from L we obtain a lamination L carried by Γ0 in
Σ0(Γ0). Since L is assumed minimal, so is L, and then L has a transverse measure as
described above. Let N(Γ0) be a regular neighborhood containing L. Let λ be the vector of
the positive measures of a set of transverse fibers, one for each edge-rectangle of N(Γ0), and
let π be the permutation defined by the ribbon structure of Γ0. Then the iet corresponding
to L is defined by (π, λ). �

Corollary 4.4.2 Let L be a minimal shift in ωAω. Then L is an iet language iff there is
a coherent bouquet of circles Γ labeled by A, and every word in FactL is the label of an
admissible path in Γ such that all the bispecial factors of L are compatible with the canonical
pair of (total) orders O over A induced by Γ.

Proof. Similar to Corollary 4.4.1. �

In Corollary 4.4.2, if we make the additional assumption that the coded iet satisfies the
i.d.o.c., i.e. the corresponding lamination is maximal, then the property described by Propo-
sition 4.3.1 also holds for the shift L, leading to the same statement as the main result in [18].

Other general properties hold about minimal laminations and their relationships with
iets. We present them now in our context:

Proposition 4.4.3 (Laminations Carried by Bouquets of Circles). Let L be a minimal lami-
nation carried by a (not necessarily coherent) graph Γ. Then L is also carried by a coherent
bouquet of circles.

Proof. Assume first that Γ is coherent. Let v be a vertex of Γ, and let Qv denote its
corresponding vertex-trapezium in a neighborhood N(Γ). Consider a set of slitting curves
starting from all the edge-rectangle intersections of N(Γ): these curves either eventually
enter Qv since L is minimal, or end up before reaching Qv, being finite slitting curves. We
apply all the possible right (resp. left) slitting basic steps on N(Γ) along these slitting
curves, until those which reach Qv hit the left (resp. right) side of Qv for the first time.
We thus obtain a new neighborhood N(Γ′) with Γ′ as a core graph, such that all the edge-
rectangle intersections of N(Γ′) lie in the sides of Qv. By construction, v is now a vertex
of Γ′ such that ∂−(v) ≥ 1 and ∂+(v) ≥ 1, whereas all the other vertices are trivial ones, i.e.
vertices with ∂−(.) = ∂+(.) = 1, which means Γ′ is a bouquet of cycles. Γ′ also carries L,
and is coherent because Γ is. Erasing the trivial vertices of Γ′ yields a bouquet of circles,
carrying L too. In case Γ is not coherent, the same reasoning as above applies to SlitL(Γ)
which carries L too (see Construction 3.4.1), and which is coherent (see Corollary 3.4.6). �
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The above result is just a simplified form of the classic result saying that first-return maps
of measure-preserving minimal flows on surfaces are essentially iets [34, 33]. Here, we can
also interpret it into symbolic terms. Let A and B be two finite alphabets. A substitution

is a map θ : A → B∗ which is extended to words by sending w = ...wiwi+1wi+2... to
θ(w) = ...θ(wi)θ(wi+1)θ(wi+2).... When applied to finite words, a substitution is just a
monoid morphism between A∗ and B∗. If L is a language of finite words, θ(L) denotes
the language {θ(w)|w ∈ L}. If L is a shift in ωAω, then θ(L) denotes the shift generated
by {θ(w)|w ∈ L}. A substitution θ is said to be non-erasing if the length of θ(a) is
positive, ∀a ∈ A.

Proposition 4.4.4 (Minimal Lamination Languages as Iet Language Recodings). Let L be a
minimal lamination coded by a (not necessarily coherent) graph Γ into a minimal language L
over A. Then there is an iet language LT over B, and a non-erasing substitution θ : B → A∗

such that L = θ(LT ).
Proof. Assume first that Γ is coherent. Consider the bouquet of cycles Γ′ obtained from Γ
in the proof of Proposition 4.4.3. Let A′ be an alphabet disjoint from A, with as many
letters as we want. We define a labeling of Γ′ from its construction as follows: First, fixing a
letter z in A′, we relabel each edge e of Γ with a pair (a, z), where a ∈ A is the original label
of e. Second, following the slitting process of Proposition 4.4.3, each time an edge e labeled
by (a, .) is slitted by a slitting basic step, we relabel the resulting two edges with (a, z1) and
(a, z2), with z1, z2 ∈ A′, such that all the labels (a, .) in the resulting graph remain distinct.
At the end of the slitting process to obtain Γ′, each edge of Γ′ has a distinct label in A×A′,
whose first entry records the label of the edge of Γ it comes from. L is thus coded by Γ′ into
a language L′ over A×A′. Let θ0 : A×A′ → A be the substitution defined as θ0((a, .)) = a,
then L = θ0(L

′). Now, each cycle of Γ′ is a path with a label in (A × A′)∗. Consider the
bouquet of circles obtained by erasing all the trivial vertices off the cycles of Γ′, and denote
it by ΓT . We bijectively label each edge (circle) of ΓT by letters in another alphabet B, and
we define the substitution θ1 : B → (A×A′)∗ by sending each edge letter of ΓT to the label
of its corresponding cycle in Γ′. Let LT be the coding of L by ΓT . Then, L

′ = θ1(LT ), and
therefore L = θ(LT ) where θ = θ0θ1. Finally, since Γ is coherent, so is ΓT . Hence there is
an iet T corresponding to L, and LT is an iet language.

If Γ is not coherent, we apply the same reasoning as above to SlitL(Γ) which is coherent
(cf. Proposition 3.4.5). The coding of L by SlitL(Γ) is a recoding by a length-2 sliding
window κ : FactL(2) → A′′, where A′′ is another alphabet. Inverting this recoding is also a
substitution θκ(a) = fst(κ−1(a)), a ∈ A′′, where fst extracts the first letter of the word it
applies to. Hence, θ = θκθ0θ1, and L = θ(LT ) too. �

Note that the converse of Proposition 4.4.4 is false, that is, a recoding by a substitution of an
iet language is not necessarily a lamination language. For instance, one can insert bispecial
factors in the images of the letters by a substitution which contradict Theorem A.2. Note also
that Arnoux-Rauzy words – i.e. affine complexity words which are generally not lamination
words (see Corollary 4.2.4) – are known to be images of substitutions applied to iet symbolic
orbits (however by using erasing substitutions) [4].

Another remark about the above results is that Proposition 4.4.3 does not ensure that L
is maximal rel. to the obtained bouquet of circles. Thus for instance, the i.d.o.c. for the
corresponding iets does not necessarily hold, and also complexity computations as developed
in Section 4.1 are more involved (one may need use Corollary 4.1.3). The following result
tackles this problem by using a translation in our context of Rauzy induction [43]. Recall
first that a coherent bouquet Γ of m circles induces a permutation π over its circles, labeled
1, 2, . . . ,m in the order given by the embedding of its outgoing half-edges. A permutation
is said to be irreducible if no strict subset of the form {1, 2, . . . , i}, 1 ≤ i < m, is left stable
by π. If π is reducible, Γ can be decomposed into a disjoint union of bouquets of circles,
and if Γ carries a minimal lamination, its permutation π is irreducible.
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Proposition 4.4.5 (Maximality, Bouquets of Circles and Rauzy Induction). Let L be a lam-
ination carried by a coherent bouquet of circles Γ, such that L is not maximal rel. to Γ,
and such that the permutation induced by Γ is irreducible. Then there is another coherent
bouquet of circles rel. to which L is maximal.

Proof. Consider a neighborhood N(Γ) with its unique vertex-trapezium Q (in this case
necessarily a rectangle). In the left (resp. right) side ofQ, let αl (resp. αr) denote the highest
edge-rectangle intersection point. We say that α ∈ {αl, αr} is the highest intersection in Q
if a slitting curve starting at α enters the interior of the top edge-rectangle on the other side
of Q. By convention, if a vertex cutting occurs and the slitting curve joins αl and αr, we put
α = αl. Now, a slitting basic step slitα,L yields a neighborhood slitα,L(N(Γ)) whose core
graph is a bouquet of cycles. Indeed, let a, b be the two edge-rectangles in intersection at α
(with a above b). Then slitα,L goes to the other side of Q and slits the top edge-rectangle c
into two sub-rectangles c′, c′′ where c′ is above c′′. In slitα,L(N(Γ)), c′′ is what remains of c
after the slitting, thus its core is still a cycle; and c′ becomes the consecutive edge-rectangle
to a through Q, generating also a cycle in the core graph. In the case of a vertex cutting, i.e.
if slitα,L stops at the side of Q opposite to the one containing α, the situation is analogous
except that we only have the edge-rectangle a prolongated through Q by c, so the number
of cycles in the core graph is one less. The slitting basic step slitα,L corresponds to a
Rauzy induction step [43]. Now, according to Corollary 3.3.4, we can make L maximal by
performing all the finite slittings on N(Γ). But here, to obtain this effect, we first consider
a set of slitting curves starting from all the edge-rectangle intersections of N(Γ), and we
apply slitting basic steps along these curves in a sequence given by Rauzy induction steps
as above. All the slitting curves are eventually used in the process since π is irreducible,
so that all the finite slittings are eventually performed. Thus, L becomes maximal rel. to a
bouquet of cycles. Erasing the trivial vertices off the cycles yields a bouquet of circles. �

5 Building Lamination Languages and Examples

5.1 Building Simple Lamination Languages

There are cases where carrier graphs are simple enough so that some of their carried lami-
nations can be devised by hand, involving only a few leaves. The simplest cases are given
by carrier graphs made of m pairwise disjoint oriented cycles Ci with ki edges each. These
graphs carry laminations made of m isolated compact leaves, whose respective codings are
the periodic words ω(ai,1ai,2...ai,ki

)ω , where the ai,j ’s are the distinct labels of the con-
secutive edges of Ci, and where “(.)” denotes a factor to be iterated. The complexity of
their associated lamination languages L, i.e. the smallest shifts containing these words, is
pL(n) ≡

∑m
i=1 ki, ∀n > 0, as also given by Corollary 4.1.1. Here are less trivial examples of

such simple laminations, which all happen to be non-minimal:

Example 5.1.1 Consider the two following carrier graphs:

b

2Γ1

c
a b

d e

c

f

a

Γ

The only carried maximal lamination rel. to Γ1 is made of three leaves with codings ωaω, ωbω,
ωacbω. The complexity of its associated lamination language L is pL(n) = n + 2, ∀n > 0,
as given by Corollary 4.1.1. For Γ2, one of the carried maximal laminations is made of five
leaves with codings ω(ad)ω, ω(eb)ω, ω(acbf)ω, ω(da)c(be)ω, ω(da)(cbfa)ω. The complexity of
its associated lamination language L is pL(n) = 2(n+ 2), ∀n > 0.

Non-coherent bouquets of circles also carries simple finite laminations made essentially of
imbricated spiraling leaves:
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Example 5.1.2 Consider the two following carrier non-coherent bouquets of circles:

c1 Γ2

a b
b

a

Γ

One of the carried maximal laminations rel. to Γ1 is made of five leaves with codings ωaω, ωbω,
ωabω, ω(ab)ω, ωa(ba)ω. The complexity of the associated lamination language L is pL(n) =
2n, ∀n > 0, as given by Corollary 4.1.2 since |FactL(2)| = |{aa, ab, ba, bb}| = 4. One of
the carried maximal laminations rel. to Γ2 is made of eight leaves with codings ωaω, ωbω,
ωcω, ωabω, ωcbω, ωa(bca)ω, ωc(abc)ω, ω(abc)ω. The complexity of the associated lamination
language L is pL(n) = 4n− 1, ∀n > 0, as also given by Corollary 4.1.2, since |FactL(2)| =
|{aa, bb, cc, ab, cb, bc, ca}|= 7.

5.2 Building Lamination Languages from Measured Laminations

A coherent graph Γ = (V,E) is said to be measured by a weighting function µ : E → R+ if at
every vertex v of Γ, the assigned weights satisfy the branch equation

∑

i µ(ai) =
∑

j µ(bj),
where the ai’s denote all the incoming edges at v, and the bj ’s the outgoing ones. Given
a measured carrier graph, there is a classic technique to obtain an associated measured
lamination [23, 41, 10], closely related to the definitions we gave in Section 3.1:

Construction 5.2.1 (Measured Laminations from Measured Carrier Graphs). Let Γ be a
coherent ribbon graph measured by µ. Similarly to Construction 3.1.1, to each edge and
vertex of Γ we associate a quadrilateral, but here it is always a closed Euclidean foliated
rectangle given as I × I ′, where individual leaves are the sets of form I × {x}, x ∈ I ′. The
edge-rectangles have heights equal to the edge weights given by µ, so that thanks to the
branch equations, the height of each vertex-rectangle is the sum of the heights of its incoming
(equivalently, its outgoing) edge-rectangles. Edge-rectangles are matched along the sides of
the vertex-rectangles according to the pattern induced by the ribbon structure of Γ, and
global leaves are defined by fitting together the individual leaves of the rectangles. We then
obtain a Euclidean foliated band complex Nµ(Γ), embeddable into the corresponding ribbon
graph surface Σ(Γ), with singular leaves starting at each edge-rectangle intersection.

Slitting can then be described like in Section 3.1, but by using the singular leaves of
Nµ(Γ) as slitting curves: slitting basic and global steps, slitα,µ, Slitr,µ, Slitl,µ, are defined
similarly to slitα,L, Slitr,L, Slitl,L, using subleaves of singular leaves, horizontally crossing
rectangles, and thus without any reference to any existing lamination L. We can then iterate
– to infinity if necessary – slitting basic steps slitα,µ to exhaust all the singular leaves: like
slitα,L, each slitα,µ depends on a separating distance ǫi between divided rectangles, and
when these distances are globally set to form converging series, a limit set of leaves exists.
It is then a classic result that this limit set, under the equivalence relation generated by
curve isotopy, is a lamination L0 [23, 41]. This lamination is unique up to isotopy and does
not depend on the chosen distances ǫi. Moreover, L0 is carried by Γ, and has a transverse
measure determined by µ. It is also a fact that slitα,L0

, Slitr,L0
, Slitl,L0

, have respectively
the same effect on Γ as slitα,µ, Slitr,µ, Slitl,µ. Note that if Γ is strongly connected, Γ can
always be measured by a set of positive weights, so that the carrying of L0 by Γ is full.

Construction 5.2.2 (Lamination Languages from Measured Carrier Graphs). Let Γ be a
coherent ribbon graph measured by µ. Using the above Construction 5.2.1, we can obtain
step by step the terms of the corresponding Rauzy graph sequence {ΓL,n}n>0, that is, the
factors in FactL(n), where L is the coding of the limit lamination L0. Indeed, according
to Proposition 3.2.5, ΓL,n corresponds to SlitnL0

(Γ), which in turn corresponds to Slitnµ(Γ),
performed by using the edge-rectangle heights of Nµ(Γ), i.e. the Γ’s edge weights.
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Example 5.2.3 Let Γ be a measured graph of five edges with weights µa = 1, µb =
√
2,

µc =
3
√
2, µd = µb + µc − µe, µe =

√
5 (so that L0 of Construction 5.2.1 is minimal):

Nµ

ca

Γ

a

b

c

e
e

d
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c

b
d

bd

bd

cd

be

ae eb
db be

ec

eb
ec

aeca

db

µ
µ

µ

µcµ
b

a
d

e

cd

(Γ)

The first step of Construction 5.2.2 means to obtain FactL(2), where L codes L0: To
the right of the figure, Slitµ(Nµ(Γ)) is applied as a left slitting global step, using the µi’s
which satisfy µa < µe < µa + µb < µe + µd, and µd < µb, on the vertex-rectangle sides.
We next use the labeling definition of Slitµ(Nµ(Γ)) (see Section 3.2) and get FactL(2) =
{ae, be, bd, cd, ca, db, eb, ec} since Slitµ(Γ) = ΓL,1.

It is also possible to exploit some of the results of Section 4.4:

Construction 5.2.4 (Lamination Languages from Measured Carrier Graphs Using Rauzy In-
duction). Let Γ be a coherent ribbon graph measured by µ, with µ defined such that the
lamination L0 of Construction 5.2.1 is minimal. Let L be the coding of L0 by Γ. Then:

1. Let Nµ(Γ) be a foliated neighborhood of Γ. We apply Proposition 4.4.3 to L0 and Γ,
by using slittings associated with the singular leaves of Nµ(Γ). The result is a coherent
measured bouquet of circles ΓT , also carrying L0. Following Proposition 4.4.4, let LT

be the coding of L0 by ΓT over the alphabet B, and let θ be the associated substitution
such that L = θ(LT ).

2. We apply Construction 5.2.1 to effectively build L0 from ΓT to get factors of LT .
But instead of using Construction 5.2.2, we take advantage of the fact that ΓT is a
bouquet of circles, and we use Proposition 4.4.5, that is, we apply Rauzy induction
as a slitting process to get longer and longer pieces of leaves of L0. The relevance of
using Rauzy induction is that it has a well-known symbolic translation into a finite
set of substitutions. From the proof of Proposition 4.4.5, these substitutions can be
computed by looking at the effect produced by each type of slitting basic step on a
bouquet of circles starting from its highest intersection. Indeed, each such step adds
one edge to one of the circles while keeping the other circles fixed, possibly modifying
the permutation of the circles. Therefore, such a substitution permutes the letters
of B, except one of them whose image is a length-2 word (see the details e.g. in [29]).
A composition of slitting basic steps as produced by Proposition 4.4.5 translates into a
composition of these substitutions. The longer the sequence of slitting basic steps, the
longer the substitution composition, hence the longer the generated factors of symbolic
orbits of the iet language LT . If finite slittings occur – i.e. the iet T associated with LT

does not satisfy the i.d.o.c. – some of the singular leaves are finite, and vertex cuttings
eventually occur, each reducing by one the number of subintervals of T , while keeping
the resulting graph connected because of minimality. Each time this happens, the
associated substitutions must be recomputed on the alphabet minus the label of the
erased subinterval.

3. We finally apply the substitution θ to the factors of LT generated in the preceding
Step (2) to obtain factors of the lamination language L.

Summing up the above construction, we see that arbitrarily long factors in FactL are ob-
tained, first by composing a finite number of substitutions associated with Rauzy induction,
and second, by applying a last substitution representing the first return map (the substitu-
tion θ of Proposition 4.4.4). This process is thus related to a classic kind of word generating
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systems in formal language theory, called HDT0L-systems [46, 25, 24]. Moreover, in the
minimal case, a lamination language L can be explicitly described from FactL as follows:
Consider a sequence {ui}i≥1 of factors in FactL, such that ui is a strict prefix of ui+1, for
every i. Then, since ui+1 is just a prolongation of ui, there exists a one-way right infinite
word w of L, i.e. a right half lamination word, for which all the ui’s are prefixes. Since we
are in the minimal case, the corresponding two-way infinite boundary language of w is L
itself (see Section 2.2). Thus, in case, as here, where FactL has been built by composing
a finite number of substitutions, this way of generating affine complexity shifts like L is
related to S-adic systems [19, 13].

Now, the simplest instances of the above generating processes are associated with the
following technique: Let θ : A → A∗ be a substitution over an alphabet A. A word w
is a fixed point of θ if θ(w) = w, and is a periodic point if there exists m > 1 such that
θm(w) = w. One-way right infinite fixed and periodic points are obtained by iterating θ when
a ∈ A is a strict prefix of θm(a) for somem ≥ 1, so that θmn(a) is a strict prefix of θm(n+1)(a),
∀n > 0; again, this prefix-preserving property produces right one-way infinite words of the
form w = (θm)ω(a), such that θm(w) = w. For instance, the Fibonacci substitution [19]
is defined by θf (a) = ab, θf (b) = a, and the word θωf (a) = abaababaabaababaababa... is
a fixed point of θf ; incidentally, θ

ω
f (a) is known to be a positive symbolic orbit of the iet

language corresponding to the minimal iet Tρ over the two subintervals [0, ρ) and [ρ, 1),
where ρ is the inverse of the golden mean. Such words obtained by infinitely iterating a
substitution are called purely substitutive (or purely morphic), and they are related to
D0L-systems [46, 25]. Also, words which are images of purely substitutive words by another
substitution are called substitutive (or morphic [3]). These words belong to a class strictly
larger than the one of purely substitutive words, and they are related to tag systems [15, 3]
and to HD0L-systems [46, 25] (where D0L-systems ( HD0L-systems ( HDT0L-systems). In
Construction 5.2.4, when Rauzy induction generates periodic compositions of substitutions,
we thus get half lamination words of the substitutive kind.

The next section develops a different technique to obtain purely substitutive minimal
half laminations words.

5.3 Building Lamination Languages from Pseudo-Anosov Homeomorphisms

A Dehn twist τ is a basic homeomorphism of a surface Σ, associated with a simple closed
oriented curve γ, which consists in cutting Σ along γ, and in reglueing it after a full twist
turn. Considering a carrier graph Γ embedded in Σ, if τ transforms every edge of Γ into a
curve also carried by Γ, then τ induces a carrier graph map τΓ, sending each edge e of Γ to
the admissible path carrying τ(e) (this is an oriented version of a usual train track map [8]).
From the coding point of view, τΓ induces a substitution, sending the label of each edge of Γ
to the label of its image by τΓ.

Among the homeomorphisms of Σ, the pseudo-Anosov homeomorphisms are charac-
terized by the fact that they have one stable and one unstable measured aperiodic minimal
lamination. There are cases where a pseudo-Anosov homeomorphism f can be described
as a composition of a set of Dehn twists all inducing carrier graph maps on the same
graph Γ [50, 40]. Composing the corresponding substitutions yields a substitution θ cor-
responding to f . Then, iterating f on curves carried by Γ produces pieces of curves of its
stable lamination, so that iterating θ produces factors of the coding of this lamination [31].

We now give a practical description of a technique derived from the above facts to obtain
lamination languages. We say that a directed graph Γ = (V,E) is cycle-based if it is strongly
connected and if it can be obtained as the union of m = k+h oriented cycles {C1, ..., Cm} as
follows: (i) {C1, ..., Ck} is a set of pairwise disjoint cycles with respective non-empty finite

sets of vertices Vi, such that V =
⋃k

i=1 Vi; (ii) π is a permutation over V such that v ∈ V
is linked to π(v) by an edge in E not in {C1, ..., Ck}, thus determining the other cycles
{Ck+1, ..., Ck+h}. Note that every vertex v ∈ V has degrees ∂−(v) = ∂+(v) = 2. Now, to a
cycle-based graph Γ on m cycles Ci, we can associate m substitutions. In fact, through this
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association process, Γ inherits a coherent ribbon structure, inducing embedding surfaces in
which these substitutions correspond to graph maps over Γ, which in turn correspond to the
Dehn twists associated with each of the Ci’s. In order to describe these substitutions, here
is a method based on a two-dimensional representation:

Construction 5.3.1 (Substitutions from Cycle-Based Graphs). Let Γ = (V,E) be a cycle-
based graph on m = k + h cycles, and labeled by A. Then:

1. We draw Γ on the plane as follows: we first draw the cycles {C1, ..., Ck} in a disjoint
way. Next, we draw the cycles {Ck+1, ..., Ck+h} in such a way that at each vertex
v ∈ V , there is an oriented coherent crossing between exactly two cycles, and such that
the crossing orientations are globally consistent over all of Γ (the relative orientations
of the edges at any crossing must match when translated along any edge path of Γ).
These orientations fix a permutation around each vertex, and thus determine a coherent
ribbon structure for Γ. A cycle-based graph being generally non-planar, the other
crossings which arise in the drawing are just replaced by cuts. For instance, here are
three cycles making two vertex crossings with consistent orientations:

f

e

2

C3

1

c

a

b

d

C

C

v

v2

1

2. For each vertex crossing, we choose one of the four quadrants it determines, subject
to the following constraint: for each cycle C of Γ, the chosen quadrants at the vertices
along C must lie in the same complementary region of C in the plane. For instance,
here are the four possible choices of quadrants with respect to the above figure for the
cycle C1 and its external complementary region (there are four more patterns for its
internal complementary region); the internal complementary region of C1 is shown in
gray, and the chosen quadrants are indicated by stars:

*

*
*

*

b*

*
*

*

C2

C

C

C

C

C C

C

C

C

C

C

a

e

f

c

d

f

e

a

b c

dd

c

f

e

a

b

f

e

a

c

d

b

v
1

3

1

2

3

2

1

3

1

2

3

1

v2

3. We derive a substitution θi from each cycle Ci as follows: Let c
(v)
i be the finite path

label of the cycle Ci starting from the vertex v ∈ Ci. For instance in the above figure,

c
(v1)
1 = ca and c

(v2)
1 = ac. At each vertex v, the chosen quadrant is defined by two

half-edges. Let h
(v)
i denote the half-edge which is not on the cycle Ci, and let x

(v)
i

be the label of the edge containing h
(v)
i . For instance, in the four cases in the above

figure, x
(v1)
1 = b and x

(v2)
1 = e (for the four other choices of quadrants, x

(v1)
1 = d and

x
(v2)
1 = f). The substitution θi is then the identity over all the letters in A, except for

the letters x
(v)
i where v is a vertex of Ci, for which:

θi(x
(v)
i ) =

{

x
(v)
i c

(v)
i , if h

(v)
i is incoming at v,

c
(v)
i x

(v)
i , if h

(v)
i is outgoing from v.
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Intuitively, this scheme represents the dragging of the incident edges with Ci along Ci

(topologically this is the carrier graph map corresponding to a Dehn twist application
along Ci in the embedding surface, and all the above conditions ensure this fact). For

instance, in the four cases in the above figure, θ1 is the identity except for x
(v1)
1 = b

and x
(v2)
1 = e, for which:

θ1(b) = bca, since c
(v1)
1 = ca,

θ1(e) = eac, since c
(v2)
1 = ac.

For the four other choices of quadrants, θ1 is the identity except for x
(v1)
1 = d

and x
(v2)
1 = f , for which:

θ1(d) = cad, since c
(v1)
1 = ca,

θ1(f) = acf, since c
(v2)
1 = ac.

Let T = {θ1...θn} be a finite set of substitutions. A composition θ of substitutions in T
is said to be full if each θi ∈ T appears at least once in θ. Given a cycle-based graph Γ
labeled by A, let TΓ be the set of substitutions induced by all the cycles of Γ as in the
above Construction 5.3.1. If the quadrant choices are the same for all the vertices of Γ,
any full composition θ of TΓ is a primitive substitution [42], i.e. there exists an integer
k ≥ 1 such that for all a, b ∈ A, the word θk(a) contains b. Indeed, a cycle-based graph is
strongly connected, and whenever the quadrant choices are uniform, for every letter a ∈ A
there is one of the θi’s in TΓ which sends a to a word made out of a concatenated with the
label of one of the cycles of Γ; thus, iterating θ eventually includes all the cycle labels of Γ.
Moreover, a primitive substitution θ is such that there is at least one letter a which is a
strict prefix of θm(a) for some m ≥ 1. In fact, there are always uniform quadrant choices
in Construction 5.3.1 so that the full compositions of TΓ are all such that m = 1. Thus, at
least one fixed point w of θ can be obtained by iterating θ on some letter a, i.e. w = θω(a)
(see Section 5.2), and because of the primitivity of θ, w is necessarily minimal [42]. The
minimal shift generated by w is then the two-way infinite boundary language of Factw (see
Section 2.2). If there are more letters in A with the strict prefix property for θ, they all
generate the same minimal shift. Now, the following result proved in [31] is an application
of the pseudo-Anosov homeomorphism construction from [50, 40, 16]:

Construction 5.3.2 (Lamination Languages from Pseudo-Anosov Homeomorphisms).
Consider a cycle-based graph Γ = (V,E) on m cycles, and let TΓ = {θ1, ..., θm} be the set of
the associated substitutions obtained from Construction 5.3.1. Then every one-way infinite
fixed point w of a full composition substitution of TΓ is a minimal half lamination word.
Moreover, the corresponding two-way infinite boundary L of Factw is a minimal lamination
language which codes a lamination carried by Γ, which is maximal rel. to Γ.

Since the laminations involved in Construction 5.3.2 are maximal rel. to their carrier cycle-
based graphs, Corollary 4.1.1 applies, and the complexity of their corresponding lamination
languages L is pL(n) = |V |n + |V |, ∀n > 0, over an alphabet of |E| = 2|V | letters. Since
these laminations are minimal too, any half lamination word w in L is such that pw ≡ pL.

Here is the simplest instance of Construction 5.3.2:

Example 5.3.3 (Sturmian Case). Let Γ be a cycle-based graph built from one cycle C1 with
one vertex v, and from a trivial π, inducing another cycle C2, so that Γ is a coherent bouquet
of two circles:

∗
C C2

ba
v

1
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With the chosen quadrant at v, indicated in the figure by a star, the two corresponding
substitutions are: θ1(a) = a, θ1(b) = ba, and θ2(a) = ab, θ2(b) = b. Any fixed point of
any full composition of θ1, θ2 is a minimal half lamination word w with complexity pw(n) =
n + 1, ∀n > 0, i.e. a one-way infinite Sturmian word (in fact, θ1, θ2, together with the flip
substitution θE(a) = b, θE(b) = a, are generators of the Sturm monoid [32]).

Here are the two next possible simplest families of examples; both of them are made of
cycle-based graphs with two vertices and four edges:

Example 5.3.4 Let Γ be a cycle-based graph built from two cycles C1, C2 with one vertex
each, respectively v1, v2, and from π(v1) = v2, π(v2) = v1, inducing a third cycle C3:

∗

1

v2

a b

d

1C C C3 2

c
∗ v

With the quadrants indicated in the figure by stars, the three corresponding substitutions are:

θ1(a) = a θ2(a) = a θ3(a) = adc

θ1(b) = b θ2(b) = b, θ3(b) = bcd

θ1(c) = c θ2(c) = bc, θ3(c) = c

θ1(d) = ad θ2(d) = d. θ3(d) = d

Any fixed point of any full composition of these substitutions is a minimal half lamination
word w over four letters, with complexity pw(n) = 2n+2, ∀n > 0. For instance, if θ = θ1θ2θ3,
then θ(a) = aadbc, θ(b) = bbcad, θ(c) = bc, θ(d) = ad, and e.g. w = θω(a) is such a half
lamination word.

Example 5.3.5 Let Γ be a cycle-based graph built from one cycle C1 with two vertices v1,
v2, and from π(v1) = v2, π(v2) = v1, inducing a second cycle C2 (here, the swerving-like
aspect of C2 is necessary to represent the two crossings with consistent local orientations):

∗

1

v2

C2C1

c d
a b∗

v

With the quadrants indicated in the figure by stars, the two corresponding substitutions are:

θ1(a) = a θ2(a) = acb

θ1(b) = bda θ2(b) = b

θ1(c) = cad θ2(c) = c

θ1(d) = d θ2(d) = dbc

Like in Example 5.3.4, any fixed point of any full composition of these substitutions generates
minimal half lamination words w over four letters, with complexity pw(n) = 2n+2, ∀n > 0.

Here are two more examples of Construction 5.3.2:

Example 5.3.6 Let Γ be a cycle-based graph built from two cycles C1, C2 with two vertices
each, respectively v1, v2 and v3, v4, and from π(v1) = v3, π(v3) = v1, π(v2) = v4, π(v4) = v2,
inducing two other cycles C3, C4:

e 21C
v1 v3

v2

C3

C4

v4

∗∗
∗ ∗

b

a

d

ch

g

f
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36



With the quadrants indicated in the figure by stars, the four corresponding substitutions are
(we only give the images of the letters which are not the identity):

θ1(f) = fae θ2(b) = bcg θ3(g) = gfb θ4(c) = chd

θ1(h) = hea θ2(d) = dgc θ3(e) = ebf, θ4(a) = adh

Any fixed point of any full composition of these substitutions is a minimal half lamination
word w over eight letters, with complexity pw(n) = 4n+ 4, ∀n > 0.

Example 5.3.7 Let Γ be a cycle-based graph built from five cycles C1, . . . , C5 with seven ver-
tices, and from π determining three other cycles C6, C7, C8:

d

a
k

b
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f
h

g
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With the quadrants indicated in the figure by stars, the eight corresponding substitutions are
(we only give the images of the letters which are not the identity):

θ1(b) = ab θ3(c) = lkc θ4(h) = ih θ6(a) = bcda θ7(e) = ghe θ8(k) = mnk

θ2(d) = fed θ3(m) = klm θ5(n) = jn θ6(f) = dbcf θ7(i) = hgi θ8(j) = nmj

θ2(g) = efg θ6(l) = cdbl

Any fixed point of any full composition of these substitutions is a minimal half lamination
word w over fourteen letters, with complexity pw(n) = 7n+ 7, ∀n > 0.

5.4 Lamination Language Transformations and Carrier Graph Moves

Let L be a lamination carried by a ribbon graph Γ. A graph move t of Γ, compatible

with L, is a transformation of Γ into another graph t(Γ), for which there is a surface Σt(Γ)
in which both Γ and t(Γ) are embedded, such that L is a lamination carried and coded by
t(Γ) in Σt(Γ). If t is compatible with all the laminations carried by Γ we just call it a graph

move. For instance, a slitting global step on Γ with respect to a carried lamination L is
a graph move compatible with L where Σt(Γ) is just the ribbon graph surface Σ(Γ), and
the reverse of such a slitting global step, defined on the same surface, is a graph move (see
Corollary 3.4.4). We now define three additional simple graph moves whose main use here is
to illustrate how one can transform lamination languages into other lamination languages:

aa

subdivision full identification contraction

a a’

a

a’

a

1. An edge subdivision t of an edge a in a graph Γ consists in putting a new vertex v
on a, subdividing it into two edges a, a′, so that v has degree 2. Edge subdivisions take
place in Σt(Γ) = Σ(Γ) and preserve fullness and maximality of the carried laminations,
and coherence of Γ.
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Let L be a lamination coded by Γ into a language L over A. Let θ be the substitution
over A which is the identity except at a, where θ(a) = aa′, then the language coding L
by t(Γ) is L′ = θ(L). If L is maximal rel. to Γ, then since FactL′(2) = FactL(2) + 1,
and the alphabet A′ of L′ is such that |A′| = |A| + 1, by Corollary 4.1.2, we have
pL′(n) = pL(n) + 1, ∀n > 0.

2. A full edge identification t of two edges a and a′ in a ribbon graph Γ, is such that a
and a′ have no vertex in common, and consists first in glueing the upper oriented side
of the rectangle corresponding to a in the ribbon graph surface Σ(Γ) with the lower
oriented side of the rectangle corresponding to a′, or conversely. The surface obtained
after this glueing operation is Σt(Γ), where t(Γ) is defined by identifying the edges a
and a′, using an homotopy within a neighborhood of their glued rectangles containing
a and a′. Full edge identifications preserve fullness, but not necessarily coherence of Γ,
and never maximality of the carried laminations.

Let L be a lamination coded by Γ into a language L over A. Let θ be the substitution
over A which is the identity except at a′, where θ(a′) = a, then the language coding L
by t(Γ) is L′ = θ(L). If L is maximal rel. to Γ, the identification of a and a′ creates
one finite slitting curve involving one edge, and by Corollary 4.1.3, we have pL′(n) =
pL(n), ∀n ≥ 2, and pL′(1) = pL(1)− 1, since Slit2L(t(Γ)) separates the edges a and a′

again.

Example 5.4.1 A word w is quasi-Sturmian if its complexity function is pw(n) = n+ h,
∀n > K, for some integers h > 0 and K ≥ 0 [12]. Let us reconsider Example 5.3.3 and
its bouquet of two circles Γ. We subdivide k times each circle of Γ, and we get a graph Γ′.
Any leaf coded by Γ is then coded by Γ′ into a word w′ over an alphabet of 2(k + 1) letters,
and pw′(n) = n + (1 + 2k), ∀n > 0. Next, considering the edges in Γ′ with no vertex in
common with the ones initially in Γ, we apply k′ < k consecutive full edge identifications
by pairs between the two cycles, and we get a graph Γ′′. A coding w′ as above is then
transformed into a word w′′ over an alphabet of 2(k+1)−k′ letters, and by Corollary 4.1.3,
pw′′(n) = n+ (1 + 2k), ∀n > k′, that is, w′′ is a quasi-Sturmian word.

For instance, let k = 3, so that the two circles a, b of Γ are subdivided three times each.
Let x, y, z (in this order) be the new edges given by the subdivision of a, and let p, q, r (in
this order) be the new edges given by the subdivision of b, defining a graph Γ′ as follows:

z C C2

*a b

y
x p

q

r
1

Consider any fixed point of any full composition of the substitutions θ1, θ2 of Example 5.3.3,
and apply to it the substitution θ′(a) = xyza, θ′(b) = pqrb, reflecting the subdivisions of a
and b, to get a minimal half lamination word w′ over {a, b, x, y, z, p, q, r} with complexity
pw′(n) = n + 7, ∀n > 0. Next, we apply k′ = 2 full edge identifications: one identifying q
and y, the other one r and z. Let θ′′ be the substitution reflecting this graph move, which
is the identity except for θ′′(q) = y and θ′′(r) = z. Then, w′′ = θ′′(w′) is a quasi-Sturmian
word with pw′′(n) = n+ 7, ∀n > 2, and pw′′(1) = 6, pw′′(2) = 8.

3. An edge contraction t of an edge a linking two distinct vertices v and v′ in a ribbon
graph Γ, with Ev and Ev′ as respective sets of incident edges, consists in replacing v
and v′ with a single vertex, whose set of incident edges is (Ev ∪ Ev′) \ {a} using the
same cyclic order as in Γ, and such that all the edges of Ev (equiv. Ev′) are consecutive
around it. For an edge contraction, Σt(Γ) = Σ(Γ). Edge contractions preserve fullness,
but not necessarily maximality of the carried laminations and coherence of Γ.
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Let L be a lamination coded by Γ into a language L over A. Let θ be the substitution
over A which is the identity except that it erases a by sending it to the empty word,
then the language coding L by t(Γ) is L′ = θ(L). Let Γ = (V,E) and t(Γ) = (V ′, E′).
If Γ and t(Γ) are coherent, and if L is maximal rel. to Γ and t(Γ) (the general case
is studied in Proposition 5.4.3 below), then since |V ′| = |V | − 1, |E′| = |E| − 1, by
Corollary 4.1.1, we have pL′(n) = pL(n)− 1.

Remark 5.4.2 (Contracted Carrier Graphs and Bouquets of Circles). Let Γ = (V,E) be
a connected graph which codes a lamination L into a language over A. Then there is a
bouquet of circles which codes L into a language over an alphabet of |A| − |V |+ 1 letters.

Proof. We contract all the edges linking distinct vertices, and since Γ is connected, we get
a bouquet of |E| − |V |+ 1 circles, still carrying L. �

Note that in contrast to the use of slittings in Proposition 4.4.3, the use of edge contractions
as in Remark 5.4.2 often leads to non-coherent bouquets of circles (see e.g. Example 5.4.5
below), and laminations carried by them do not correspond to iets.

Proposition 5.4.3 (Maximality and Edge Contractions). Let L be a lamination maximal
rel. to a graph Γ. Let Γ′ be Γ to which a finite number of edge contractions have been
applied. Then L is maximal rel. to SlitL(Γ

′).

Proof. We apply an induction on the number of contractions. First, L is maximal rel. to
SlitL(Γ) since slitting preserves maximality. Next, we assume that the result is true for the
graph resulting from k edge contractions on Γ, denoted by Γ(k), and we prove the result
for Γ(k+1) obtained by contracting an edge e0 of Γ(k). Assume L is not maximal rel. to
SlitL(Γ

(k+1)). Thus, there is a simple curve γ in the ribbon surface Σ(Γ(k+1)), which is
carried by SlitL(Γ

(k+1)) but disjoint from L and not homotopic to any curve of L. By
Corollary 3.4.4, γ is also carried by Γ(k+1), since any admissible path of SlitL(Γ

(k+1))
corresponds to an admissible path of Γ(k+1) obtained as a sequence of overlapping length-2
subpaths, each of them used in the carrying of some leaf of L. Let ηγ be the admissible
path in Γ(k+1) homotopic to γ, and let Pγ be its sequence of overlapping length-2 subpaths.
Then, ηγ has a preimage in Γ(k) made of the preimages of the subpaths in Pγ , which must
be of the form either e′e′′ or e′e0e

′′. Indeed, the subpaths of the form e′em0 e′′ for m > 1 are
impossible, since then e0 would be a loop. Now, a preimage e′e′′ or e′e0e

′′ in Γ(k) overlaps
with adjacent preimage subpaths along e′ and e′′. Thus, any piece of path e1...eh, h > 0
in ηγ ’s preimage can be prolongated to the right and to the left, since there always exist
subpaths of the above form, overlapping it along e1 to the left, and along eh to the right.
As a result, ηγ has a preimage on Γ(k) which is an admissible path, homotopic to γ. Hence,
γ is carried by Γ(k), and also by SlitL(Γ

(k)), since ηγ ’s preimage is made of overlapping
subpaths all contained in paths used to carry leaves of L. This is a contradiction since L
has been assumed to be maximal rel. to SlitL(Γ

(k)). �

Thus, according to Corollary 4.1.2 saying that complexity is affine whenever a lamination L
coded by Γ is maximal rel. to SlitL(Γ), edge contractions preserve affine complexity.

Example 5.4.4 Let us reconsider the graph Γ of Example 5.3.4. We apply a contraction of
the edge c to obtain a coherent bouquet of three circles Γ′:

c contracted
b a

d

C

C

C

2

1 3
v

v

2

1

a c b

d

1C C C3 2

Γ Γ’

Assume L is a maximal lamination rel. to Γ (like the laminations obtained in Example 5.3.4).
Let L be the language coding L by Γ, and let L′ be the language coding L by Γ′. Let θ be the

39



substitution reflecting the contraction, which is the identity except that it sends the letter c
to the empty word, so that L′ = θ(L). We can check that |FactL′(2)| = 5: Since Γ is
a cycle-based graph, its two vertices v1 and v2 are such that ∂−(.) = ∂+(.) = 2. Also
by Proposition 3.3.5, since L is maximal rel. to Γ, for each vertex vi, its burst embedded
representation Γvi induced by SlitL(Γ) is maximally biplanar, and as such, has three edges
(see Cases (iii) and (iv) of Example 2.3.4). But then, to contract the edge c in Γ is equivalent
to erase the corresponding vertex vc in SlitL(Γ), which is common to Γv1 and Γv2 . This
erasing of vc in SlitL(Γ) corresponds to replacing the edges incident with vc by the set of
edges of all the possible length-2 paths going through vc while carrying L. In other words,
erasing vc has the same effect as a burst of vc. By maximality of L rel. to SlitL(Γ) and
by Proposition 3.3.5 again, this burst has an embedded representation which is maximally
biplanar, determining the number of involved edges. By inspection of the four cases given
by the two possible forms that each Γvi can take, we see that the remaining graphs have
always five edges. But these graphs correspond to the possible forms of the burst of the
vertex of Γ′, and therefore FactL′(2) = 5. Hence, according to Proposition 5.4.3, we can
apply Corollary 4.1.2 to deduce that pL′(n) = 2n+ 1, ∀n > 0.

Example 5.4.5 Let us reconsider the graph Γ of Example 5.3.6. We apply the contractions
of the three edges f, h, e to obtain a non-coherent bouquet of five circles Γ′:

ΓΓ ’
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Assume L is a maximal lamination rel. to Γ (like the laminations obtained in Example 5.3.6).
Let L and L′ be defined as in Example 5.4.4, and let θ be the substitution erasing the let-
ters f, h, e, so that L′ = θ(L). Like in Example 5.4.4, to each vertex of Γ corresponds a burst
with three edges in SlitL(Γ). Also, according to Proposition 5.4.3, at each edge contraction,
we can apply the same kind of arguments as in Example 5.4.4 since L remains maximal
rel. to the slitted contracted graph SlitL(.); in particular, erasing the corresponding vertices
in SlitL(.) is similar to their bursts where their embedded representations are maximally
biplanar. By inspection of all the cases, we see that the remaining graphs have always nine
edges, i.e. |FactL′(2)| = 9. Hence, by Proposition 5.4.3, we can apply Corollary 4.1.2 to
deduce that pL′(n) = 4n+ 1, ∀n > 0.
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[44] G. Rauzy. Suites à termes dans un alphabet fini. In Seminar on number theory, 1982–1983
(Talence, 1982/1983), pages Exp. No. 25, 16. Univ. Bordeaux I, 1983.

[45] G. Rote. Sequences with subword complexity 2n. J. of Number Theory, 46(2):196–213, 1994.

[46] G. Rozenberg and A. Salomaa. The mathematical theory of L systems, volume 90 of Pure and
Applied Mathematics. Academic Press, New York, 1980.

[47] C. Series. Symbolic dynamics for geodesic flows. Acta Math., 146(1-2):103–128, 1981.

[48] C. Series. Geometrical Markov coding of geodesics on surfaces of constant negative curvature.
Ergodic Theory Dynam. Systems, 6(4):601–625, 1986.

[49] W.P. Thurston. The geometry and topology of three-manifolds (Princeton University Lecture
Notes) (Electronic version 1.1 – march 2002). http://library.msri.org/books/gt3m, 1980.
[Accessed July 2012].

[50] W.P. Thurston. On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Amer.
Math. Soc. (N.S.), 19(2):417–431, 1988.

[51] H. Weiss. The geometry of measured geodesic laminations and measured train tracks. Ergodic
Theory Dynam. Systems, 9(3):587–604, 1989.

[52] X. Zhu and F. Bonahon. The metric space of geodesic laminations on a surface. I. Geom.
Topol., 8:539–564, 2004.

Tokyo University of Social Welfare University of Bordeaux 1

2020-1 Sanno-cho, LaBRI - UFR Math-Info

Isesaki, 372-0831 Gunma 33405 Talence

Japan France

lopez@ed.tokyo-fukushi.ac.jp narbel@labri.fr

42


