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BOUQUETS OF CIRCLES FOR

LAMINATION LANGUAGES

AND COMPLEXITIES

Ph. Narbel1

Abstract. Laminations are classic sets of disjoint and non-self-crossing
curves on surfaces. Lamination languages are languages of two-way in-
finite words which code laminations by using associated labeled embed-
ded graphs, and which are subshifts. Here, we characterize the possible
exact affine factor complexities of these languages through bouquets of
circles, i.e. graphs made of one vertex, as representative coding graphs.
We also show how to build families of laminations together with cor-
responding lamination languages covering all the possible exact affine
complexities.
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1. Introduction

Laminations on surfaces are closed sets of pairwise disjoint one-dimensional
submanifolds (the lamination leaves) which can be considered as curves with no
preferred parameterization [9,28]. The notion of lamination generalizes the notion
of foliation of surfaces, i.e. global decomposition of surfaces into one-dimensional
submanifolds, and can also be seen as a way of considering singular foliations,
i.e. foliations defined everywhere except at a finite number of points [6]. Lami-
nations occur for instance as fixed subsets of surface diffeomorphisms. A usual
technique to study laminations in surface theory is to deform them continuously
into embedded graphs, often in the form of train tracks [25,28], but also in the form
of more general graphs. Laminations are then said to be carried by these graphs.
When such carrier graphs are labeled, the involved curves inherit the labels of
the paths they are deformed into, giving rise to lamination languages, which are
languages made of two-way infinite words, and which happen to be specific sub-
shifts (or shifts) [19]. Lamination languages can indeed be looked at as subshifts
of edge-shifts [17] constrained by the geometry of the set of curves they represent.

With this relationship in mind between geometry and formal language theory,
the main purpose of this paper is to give some results about how the notion of
lamination helps to produce languages with specific properties, and also conversely,
how languages with their associated tools help to describe laminations.

Our focus here is on a classic word combinatorics notion: the (factor) complexity
of a language L of infinite words is the function pL(n) over N∗, where for each n,
pL(n) is the number of factors (or subblocks) of length n occurring in the words
in L [8, 22]. In particular, this complexity definition is the basic ingredient of
the topological entropy of L, defined as limn→∞ log(pL(n))/n [1]. Lamination
languages are instances of languages with zero entropy as their complexities are
always ultimately affine, that is, of the form an + b, ∀n > n0, for some n0 ≥ 0.
With this respect, we shall here characterize what are the possible forms of their
exact affine complexities, i.e. when n0 = 0:

Theorem 1. A lamination language L with an exact complexity pL is such that
pL(n) = an + b, ∀n > 0, with (a, b) ∈ N × Z, and b ≥

⌈
−a2 + 1

⌉
. Conversely, for

every pL satisfying the preceding conditions, there exist lamination languages with
this complexity.

Note that a consequence of this result is that the exact complexities of lamination
languages do not cover all the exact affine complexities that can take shifts [7].

The proof of Theorem 1 will rely on the fact that there is no univocal relation-
ship between laminations, carrier graphs and lamination languages, giving thus
some freedom to transform the last two while geometrically preserving lamina-
tions. In particular, by applying edge contractions to carrier graphs (closely re-
lated to usual Whitehead moves for singular foliations), one can turn these graphs
into bouquets of circles, i.e. graphs made of a single vertex and m ≥ 1 edges.
These elementary graphs happen to be generic enough to describe all the possi-
ble exact complexities of lamination languages. A coherent bouquet of m circles,
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i.e. an embedded bouquet with its single vertex having all its incoming (resp. out-
going) edges consecutive around it, carries laminations which correspond to the
dynamics of interval exchange transformations on m intervals, that is, orientation-
preserving and piecewise isometric maps of bounded intervals [5]. As a matter of
fact, lamination languages include the natural symbolic representations of interval
exchanges, known to have affine complexity of the form p(n) = (m− 1)n+ 1 [16],
and thus also include Sturmian languages, which have an exact affine complexity
p(n) = n + 1 [20, 23]. Non-coherent bouquets of circles play then an important
role for producing all the affine complexities given by Theorem 1, and accord-
ingly this paper develops and extends the tools introduced in [19] to deal with
non-coherent graphs.

Next, as a complement to the converse part of Theorem 1, we show how embed-
ded bouquets of circles can be used to explicitly construct lamination languages for
each possible exact complexity, yielding at the same time a technique to build lam-
inations, in particular laminations with a finite number of curves and connected
as sets. The main result with this respect will be the following:

Theorem 2. There exist families of lamination languages made of ultimately
periodic words, having exact complexities an+ b, ∀n > 0, covering all the possible
a and b’s given by Theorem 1, and coding finite connected laminations.

For infinite lamination languages we still do not know about a constructive me-
thod to obtain a family of them covering all the possible complexities. Here we
just present how to obtain some of these languages from pseudo-Anosov surface
diffeomorphisms, i.e. transformations leaving two laminations fixed, one stable and
the other one unstable. Some of these surface transformations [24, 29] are indeed
known to translate into the symbolic domain as substitutions, whose fixed points are
representatives of the lamination languages coding the corresponding stable lami-
nations [18,19]. Contracting the involved carrier graphs produces minimal infinite
languages associated with bouquets of circles too, sometimes non-coherent ones.

2. Basic Definitions

2.1. Curves, Laminations and Graphs

We begin with some definitions of geometric-oriented notions, some of them
being in a simplified form but sufficient for the text (for more detailed ones, the
reader may refer to [5, 6, 9, 28]). A surface Σ is a two-dimensional manifold. A
surface of finite type is a closed surface from which finitely many points, called
punctures, have been removed. When endowed with a complete Riemannian
metric with constant curvature −1 a surface is said to be hyperbolic. The objects
under study here mainly belong to hyperbolic surface theory, and Σ will henceforth
always denote an oriented surface of finite type with some fixed hyperbolic metric
(whose choice does not play any role in this paper). A curve γ in Σ is a continuous
map, either from a closed connected subset J ⊆ R, or from the circle S1 to Σ. In
the latter case γ is said to be closed (and also in the former case when the map is
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periodic). If the map is injective, γ is said to be simple. If J = R, γ is said to be
two-way infinite, and if J is bounded and γ is simple, then γ is called an arc.

Let Γ be a finite directed graph embedded in Σ. An admissible path in Γ
is a sequence of consecutive edges with the same orientation. For the sake of
simplicity, we henceforth assume that for every vertex v of Γ, its indegree ∂−(v)
and outdegree ∂+(v) are strictly positive, that is, v is crossed by at least one
admissible path∗. A curve γ in Σ is said to be carried by Γ if it can be continuously
deformed into an admissible path of Γ, by a free homotopy if γ is closed, or by
a uniformly continuous homotopy if γ is two-way infinite [5]. The next figure
shows a closed curve γ carried by a graph Γ where Σ is a torus of genus 2 with
one puncture:

In order to exclude the carrying of ill-behaved curves, Γ is always assumed to be
embedded in such a way that, among the connected components of Σ \ Γ there is
no disk bounded by a cycle of Γ with less than two punctures. A set of curves is
said to be carried by Γ if all its curves are carried by Γ.

In a general setting, a lamination is a foliation of a closed subset of Σ, that
is, roughly, a decomposition into one-dimensional submanifolds of this subset [28].
The laminations mostly used in surface theory are geodesic laminations, i.e. those
made of geodesics only [9, 28]. These are equivalent up to isotopy to laminations
made of pairwise non-homotopic curves, and deformable to graphs [28, 8.9.4].
Here, the laminations we consider are always of this kind, and we use an alterna-
tive definition of them up to isotopy, also coming from Thurston and related to
the preceding equivalence, which is essentially the following [19]: a (topological)
lamination L in Σ is a set of simple closed or two-way infinite curves in Σ, all
pairwise disjoint and non-homotopic, such that there exists an embedded graph Γ
which carries L in a maximal way with respect to inclusion (no other curve carried
by Γ can be added to L while preserving the curve set properties)†.

Simple examples of laminations are given by the sets of pairwise disjoint and
non-homotopic simple closed curves on Σ. These are finite laminations, i.e. lami-
nations made of a finite number of curves. An instance is shown on the left of the
next figure, made of γ1, γ2, γ3, and carried by Γ consisting of three disjoint cycles:

∗This simplification has no effect on the generality of the results of the paper. Vertices
with ∂−(v) = 0 or ∂+(v) = 0 could be included by making them correspond to punctures of the

surface, but this adds no new combinatorial behavior to the considered curves.
†The graphs we consider here are directed – so as to more easily code laminations –, implying

that laminations are assumed orientable, whereas for the general case one classically uses spe-

cific non-directed graphs, generally train tracks [25, 28]. However in our context, non-orientable
laminations can be considered as being carried by directed double graph covers to which all
admissible paths lift, reflecting the fact that an admissible path may go through an edge in both
directions [19,28]. Thus there is no loss of generality in considering directed graphs only.
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Other examples of finite laminations are obtained by using infinite curves spiraling
along simple closed curves [5]. An instance is shown on the right of the figure above,
where two spiraling curves γ4, γ5 have been added to the lamination shown on the
left, while two edges have been added to Γ to carry these curves.

Examples of infinite laminations are classically obtained via interval exchange

transformations [21] which are, up to scaling, orientation-preserving and piecewise
isometries of I = [0, 1). Such a map T : I → I can be seen as permuting a finite
number of semi-open subintervals I1, . . . , Im partitioning I. More precisely, T is
determined by (λ, π), where λ = [λ1, . . . , λm] is a probability vector made of the
Ii’s lengths in their order of occurrence in I, and π is a permutation of {1, ...,m},
so that the effect of T is to concatenate the Ii’s in its image in the order given
by π, the vector of lengths becoming [λπ−1(1), . . . , λπ−1(m)]. For instance, here is
a representation of an interval exchange over 3 intervals, with π = (1 2 3):

A lamination can be obtained from an interval exchange T given by (λ, π) using
its suspension [5]. Let R = [0, 1] × [0, δ], for some δ > 0, be a closed rectangle
corresponding to I, foliated by the arcs x × [0, δ], and let Sdown = [0, 1] × 0 and
Sup = [0, 1] × δ be its sides of length 1. For each Ii of T , let Ri = [0, λi] × [0, 1]
be a closed rectangle foliated by the arcs x × [0, 1], with Sdowni , Supi its sides of
length λi. Next, the Sdowni ’s are identified to Sup in the same order as I1, ..., Im,
with their ends as the only intersections, and the Supi ’s to Sdown in the order
given by π, i.e. Iπ−1(1), . . . , Iπ−1(m), so that the result is an orientable band-like
surface ΣT which is covered with pairwise disjoint curves made of identified arcs
from the rectangle identifications. For instance, considering T as in the above
example, its corresponding ΣT is shown on the left of the next figure:

By glueing a punctured disk along each boundary component of ΣT , we get a
surface Σ of finite type. Then, by slitting out the induced singular curves, i.e. the
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curves starting or ending at the intersections between theRi’s sides, and by keeping
only one curve from each set of pairwise homotopic curves, a lamination LT is
obtained on Σ [5, 15]. This lamination is carried by a bouquet of m circles ΓT
embedded in Σ, i.e. a graph made of a single vertex and m edges, described here
by placing a vertex v in R, and by defining one edge ei for each Ri, linking v to
itself by going through this Ri (see the example in the figure above). A vertex
of an embedded directed graph is said to be coherent if all its incident incoming
edges are consecutive around it using either cyclic order – hence its outgoing edges
are consecutive too. An embedded directed graph is coherent if all its vertices are
coherent. By the above construction, ΓT is a coherent bouquet of circles.

A lamination is said to be minimal if it does not contain any lamination as a
proper non-empty subset; it is said to be aperiodic minimal if it is not reduced
to a single closed curve. Similarly, an interval exchange transformation T given
by (λ, π) is said to be minimal if for all x ∈ I, the full orbit {Tn(x)}n∈Z is dense
in I. A sufficient condition for minimality of T , called the infinite distinct orbit
condition (idoc for short), is that the orbits of all the m− 1 points x ∈ I of T such
that x = Ii ∩ Ii+1, with i ∈ [1, ..,m− 1], are infinite and disjoint [16]. The idoc is
satisfied if π is irreducible and if the only rational relation between the λi’s in λ is∑
i λi = 1. The lamination LT is aperiodic minimal iff T is minimal. Thus we can

exhibit infinite laminations through interval exchanges satisfying the idoc. Note
that the maximality condition used in the lamination definition is not necessary
for a lamination L to be carried by a graph Γ, but when it holds, we say that L is
maximal rel. to Γ. For instance, if an interval exchange T satisfies the idoc then
the associated lamination LT is maximal rel. to its bouquet of circles ΓT [19].

Even more examples of laminations can be obtained by using the fact that the
union of finitely many minimal sublaminations with finitely many two-way infinite
curves whose ends spiral along the minimal sublaminations is a lamination [5].

2.2. Coding Laminations

Let A be a finite alphabet. Let AZ denote the set of the two-way infinite
words over A. A directed graph Γ is here said to be labeled by A if its edges are
bijectively labeled by A. The label of an admissible path of Γ is the word obtained
by concatenating the labels of its edges. If γ is a curve carried by Γ, and if it is
homotopic to a unique path, its coding is the label of this path. In this case, we
also say that γ is coded by this label, or coded by Γ.

The coding of a carried closed curve γ is the two-way infinite periodic word ωuω,
where u is the label of the closed path in Γ freely homotopic to γ. The above
figure shows a closed curve coded by ω(adbc)ω on a punctured torus of genus 2.
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Thus closed and two-way infinite curves are coded over AZ. By extension, a set of
curves is said to be coded by Γ if all its curves are coded by Γ.

A language is a set of finite and/or infinite words [20, 26]. In particular, a
language in AZ is a language of two-way infinite words. The full language AZ

can be endowed with the topology coming from the Cantor metric, i.e. for w =
...a−1a0a1... and w′ = ...a′−1a

′
0a
′
1... in AZ, with ai, a

′
i ∈ A, their distance is 0

if they are equal, and 2−k if they are not, where k is the smallest non-negative
integer for which ak 6= a′k or a−k 6= a′−k. The shift map σ on AZ is the continuous
transformation which sends ...a−1a0a1... to ...a′−1a

′
0a
′
1... where a′i = ai+1 for i ∈ Z.

A shift (or shift space or subshift) [17] is a closed σ-invariant language in AZ. The
shift orbit closure Lσ of a language L in AZ is the smallest shift which includes L.
A lamination language is the shift orbit closure in AZ of the codings of all the
curves of a lamination L coded by a graph Γ labeled by A; the shift-invariance
reflects the fact that the curves of a lamination are considered up to homotopy,
hence up to parameterization, and the closure property is a consequence of the
lamination definition (mainly, the maximality property) [19]. A lamination word

is an infinite word in a lamination language.
For instance, from the example of the last figure, {ω(adbc)ω}σ is a simple lami-

nation language. Examples of non-trivial lamination languages can be obtained via
interval exchange transformations. Indeed, given an interval exchange T : I → I,
and a map cod : I → A assigning a distinct letter to each Ii of the partition of I, the
symbolic orbit of any x ∈ I is the word wT (x) = ...cod(T−1(x))cod(x)cod(T (x))....
The symbolic orbit language of T is the shift orbit closure of the language
{wT (x)|x ∈ I}, and it corresponds to the lamination language which codes the
lamination LT by ΓT , built from T in the preceding section.

2.3. Factor Complexity

A factor (or subblock) of a word w is a finite word u such that w = w′uw′′,
where w′, u, w′′ are words (w′, w′′ being possibly empty words). The set of all
the distinct factors of a word w is denoted by Factw, and for a language L, by
FactL =

⋃
w∈L Factw. The set of all the distinct length-n factors of a word w

is denoted by Factw(n), and for a language L, by FactL(n) =
⋃
w∈L Factw(n).

An infinite word is minimal (or uniformly recurrent) if each of its factors occurs
infinitely often in it with bounded gaps. A shift is minimal if it has no proper
non-empty subset as a shift. In a minimal shift L, every word w ∈ L is such that

L = {σk(w)}k∈Z, and for every w,w′ ∈ L, Factw = Factw′ , even if w,w′ are only
half-words in L. Since a minimal lamination is coded by a minimal shift L, its
combinatorics can thus be studied through a single (half-)word in L.

The (factor) complexity [8, 22] of a word w is the function pw : N∗ → N∗,
where pw(n) = |Factw(n)|, i.e. the cardinality of Factw(n). The complexity of a
language L is defined as pL(n) = |FactL(n)|. Accordingly, if L ⊂ AZ is a minimal
shift, every word w ∈ L is such that pw ≡ pL. A complexity formula is said to
be ultimate if there exists n0 ≥ 0, such that it holds for all n > n0, and it is also
said to be exact when n0 = 0. Here are two known results about affine complexity:
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Theorem 2.1. (see [7, 5.3]). Let (a, b) ∈ N× Z. Then there is a word w of exact
affine complexity pw(n) = an+ b, ∀n > 0, iff a+ b ≥ 1 and 2a+ b ≤ (a+ b)2.

Theorem 2.2. (see [19, B]). A lamination language L is such that there exist
n0 ≥ 0, a ∈ N, b ∈ Z, so that pL(n) = an+ b, ∀n > n0.

The purpose of the next two sections is to prove Theorem 1, that is, mainly to
precise Theorem 2.2 for the exact complexity case in similar terms to Theorem 2.1.

3. Graphs and Bursts

3.1. Line Graphs and Languages

Let Γ = (V,E) be a finite directed graph where V denotes the set of vertices,
and E the set of edges. The line graph of Γ is the directed graph S(Γ) = (VS , ES),
where VS = E, and ES is such that there is an edge from ei to ej if the sequence eiej
corresponds to a length-2 admissible path in Γ.

When defined from an embedded graph Γ in Σ, the graph S(Γ) inherits an induced
immersion in Σ (not necessarily an embedding since edge crossings may occur):

i. Each vertex of S(Γ) is placed in the interior of its corresponding edge of Γ.
ii. The pair of vertices lying in a length-2 admissible path of Γ are linked by an

arc in Γ which is contained in this length-2 path.
iii. The arcs defined in (ii) are put in general and minimal intersection position

in Σ with their end vertices fixed (see the figure above).

The graph S(Γ) will henceforth always be considered with this induced immersion.
Now, assume Γ has been labeled by A, and let L be a language in AZ made of

labels of admissible paths in Γ, that is, FactL(2) is a set of labels of length-2 ad-
missible paths in Γ. Let us also assume that every letter of A is used in L, that is,
FactL(1) = A. We then define the graph SL(Γ) as S(Γ) in which we keep only the
edges corresponding to edge pairs of Γ labeled by FactL(2). Accordingly, SL(Γ)
inherits the immersion of S(Γ). The graph SL(Γ) is also related to a classic rep-
resentation of FactL(n), usually called the n-th order Rauzy graph of L, i.e. the
directed graph where each vertex corresponds to a distinct factor in FactL(n), and
where an edge between two vertices au, ub, with a, b ∈ A, u ∈ FactL(n− 1), exists
iff aub ∈ FactL(n+ 1) [12]:
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Lemma 3.1. (see [19, Section 3]). Let Γ be a graph embedded in Σ, and let L be
a language in AZ of labels of admissible paths in Γ. Then:

(1) SL(Γ) is isomorphic to the first-order Rauzy graph of L.
(2) SL(Γ) is a coherent graph.

When L is a lamination language, SL(Γ) comes with additional properties:

Lemma 3.2. (see [19, Section 3]). Let Γ be a graph embedded in Σ carrying a
lamination L, and let L be the lamination language coding L by Γ. Then:

(1) SL(Γ) is an embedding (not just an immersion).
(2) SL(Γ) still carries L.
(3) A curve carried by SL(Γ) is carried by Γ too.
(4) If L is maximal rel. to Γ, it is also maximal rel. to SL(Γ).

For instance, here is again a torus of genus 2, with an embedded graph Γ labeled by
{a, b, c, d}, so that S(Γ) is made of the edges labeled by {ab, ad, ba, bc, ca, cc, db, dd};
the drawn carried disjoint curves are coded into a language L, so that SL(Γ) is
embedded, with edges corresponding to FactL(2) = {ab, ad, ba, bc, ca, db}:

3.2. Bursts and Outerplanar Graphs

When building SL(Γ) from Γ, each vertex v of Γ is transformed into a subgraph
in SL(Γ), called a burst of v, whose vertices correspond to the edges of Γ incident
with v, and whose edges correspond to the length-2 admissible paths labeled by
FactL(2) and going through v. Such a burst can be represented by a bipartite
graph Burstv,L(Γ) = (Vv,intVv,out, Ev), where the vertices in Vv,in correspond to
the incoming half-edges at v, denoted by v−i , where the vertices in Vv,out correspond
to the outgoing half-edges at v, denoted by v+

i , and where Ev is the set of edges
which correspond to length-2 admissible paths labeled by FactL(2) and going
through one incoming and one outgoing half-edge of v. Burstv,L(Γ) is directed too,
its edge orientations going from Vv,in to Vv,out. Here is an example at some vertex v
for some fixed L for which FactL(2) = {ae, af, bc, be, dc, de, fe, ff}, and where the
vertices of Burstv,L(Γ) are Vv,in = {v−a , v−b , v

−
d , v

−
f }, Vv,out = {v+

c , v
+
e , v

+
f }:
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As this example shows, Burstv,L(Γ) is not always isomorphic to the burst it rep-
resents in SL(Γ) since it relies on the incident half-edges at v, thus any loop at v
makes two distinct vertices in Burstv,L(Γ). Still, Burstv,L(Γ) has also its edges
in correspondence with FactL(2), and it is more convenient to work with. In ad-
dition, when defined from an immersed SL(Γ) in Σ, Burstv,L(Γ) has an induced
immersion (up to isotopy):

i. Let D ⊂ Σ be a disk containing v in its interior, such that its boundary ∂D
intersects only the incident half-edges of v. Then each vertex in Vv,in and Vv,out
is placed at the intersection of its corresponding half-edge and ∂D.

ii. Each edge of Burstv,L(Γ) links the corresponding vertices in Vv,in to the ones
in Vv,out by a straight arc within D.

In the figure above, Burstv,L(Γ) is shown with its immersion. Note that given
some Burstv,L(Γ), in order to get the subgraph it represents in SL(Γ), one has
just to identify each pair (v−i , v

+
i ) coming from a loop at v, by dragging v−i to v+

i

along this same loop.
Here is a full example where Γ is a non-coherent bouquet of three circles with

its single vertex v, where its embedding surface Σ can be the sphere with as
many punctures as needed so that Γ is a coding carrier graph, that is, a graph
ensuring unique curve carrying. We then consider two disjoint curves in Σ carried
by Γ, and coded by L = {ωbcaω,ωb(ca)ω}, so that FactL(2) = {aa, ac, bb, bc, ca}.
Thus Burstv,L(Γ) has five edges, from which SL(Γ), being itself the burst of v, is
obtained by identifying v−i and v+

i , for each i = a, b, c, along their corresponding
loop i to get vi:

A (planar) drawing of a graph is an embedding of this graph in the plane;
here by extension, in a surface Σ, it is an embedding of this graph in a disk in Σ
possibly punctured. A drawing is outerplanar if all its vertices belong to a single
face, and a graph is outerplanar if it admits an outerplanar drawing.

Lemma 3.3. Let Γ be a graph embedded in Σ. Let L be a language in AZ of labels
of admissible paths in Γ such that SL(Γ) is embedded too. Then, for every vertex
v ∈ Γ, the induced immersion of Burstv,L(Γ) in Σ is an outerplanar drawing in Σ.

Proof. Since SL(Γ) is embedded, the burst at any vertex v ∈ Γ has edges cor-
responding to FactL(2) which do not cross with each other. Since Burstv,L(Γ) re-
flects how the arcs corresponding to these edges cross a small disk D containing v,
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its immersion in Σ is a graph drawing. The vertices of Burstv,L(Γ) can belong
to ∂D, while its edges are included in D, hence the outerplanarity. �

Thus from now on, when coming from an embedded SL(Γ) in Σ, e.g. when L is a
lamination language, Burstv,L(Γ) will always be considered with its outerplanar
drawing. Also, a property P of a graph or a drawing will be said to be maximal

if one cannot add any edge to it while preserving P.

Proposition 3.4. (see [13]). A drawing of a bipartite graph (V1 t V2, E) where
|V1| ≤ |V2|, which is maximally outerplanar, has at most 2|V1|+ |V2| − 2 edges.

In order to exhibit outerplanar drawings with the maximal number of edges, given
a set of vertices (V1 t V2) of a bipartite graph with |V1| ≤ |V2|, put these vertices
on a circle while maximizing the alternations between the vertices of V1 and V2.
The vertices of V1 can then occur between vertices of V2, and they can thus be
linked by arcs to their neighbors, which makes 2|V1| edges. Next, pick any vertex
of V1, which can be linked to all the other vertices of V2 within the circle, which
makes |V2| − 2 more edges, hence a total of 2|V1|+ |V2| − 2 edges.

Note that with respect to the embedding of Γ in Σ and to a burst of a vertex v
of Γ, the above maximal alternation of the vertices in V1 = Vv,in and V2 = Vv,out
corresponds to a maximal alternation of the orientations of the incident incoming
and outgoing half-edges of v, that is, to a “maximal non-coherence” at v. For
instance, in the example to the left of the figure below, the vertex v is alternating,
i.e. its incident half-edges show a strict alternation of their orientations, and L can
be chosen so that the maximal number of edges of the corresponding Burstv,L(Γ)
is attained, i.e. ten edges (here, |Vv,in| = ∂−(v) = 4 and |Vv,out| = ∂+(v) = 4):

To the right of the figure above is shown a case where there is a minimum orienta-
tion alternations at v, that is, v is coherent: all the vertices of Vv,in (equiv. of Vv,out)
of the corresponding Burstv,L(Γ) are consecutive around the circle. This kind of
outerplanar drawing is also said to be biplanar, i.e. Vv,in and Vv,out can also be re-
spectively placed in two parallel lines, the edges remaining straight arcs. A graph
admitting such a drawing is known to be a union of caterpillar trees [10], i.e. trees
such that deleting all their leaves yield linear path graphs. In the above example,
the maximal number of edges of Burstv,L(Γ) is attained for such a biplanar graph,
that is, as a non-directed graph, it is a single caterpillar tree of seven edges.

When L is a lamination language, Burstv,L(Γ) has some specific properties:
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Lemma 3.5. Let Γ be a graph embedded in Σ, carrying a lamination L, and let L
be the lamination language coding L by Γ. Then for every vertex v ∈ Γ (recall that
|Vv,in| = ∂−(v) and |Vv,out| = ∂+(v)):

(1) The number of edges of Burstv,L(Γ) belongs to the interval [kmax, 2kmin+
kmax−2], where kmin = min(∂−(v), ∂+(v)) and kmax = max(∂−(v), ∂+(v)).

(2) Let Burstv,L(Γ) be a maximal embedding, that is, no edge can be added to
it while preserving the embedding. Then it is connected (as a non-directed
graph), and it has at least ∂−(v) + ∂+(v) − 1 edges (the minimum being
attained when v is coherent, thus Burstv,L(Γ) is biplanar).

(3) Let L be a lamination maximal rel. to Γ. Then for every vertex v ∈ Γ,
Burstv,L(Γ) is a maximal embedding.

Proof. (1): Since L is made of two-way infinite words, FactL is prolongable,
i.e. its words can be prolongated by one letter at least in one way to the right and
to the left so that these prolongations remain in FactL. Thus, since the edges in
Burstv,L(Γ) correspond to edges in SL(Γ) labeled by words in FactL(2), there is
no isolated vertex in Burstv,L(Γ), which has then at least kmax edges. Moreover,
since L is a lamination language, SL(Γ) is embedded, then Lemma 3.3 applies,
and Burstv,L(Γ) is outerplanar, hence by Proposition 3.4 the result follows.

(2): If Burstv,L(Γ) is a maximal embedding, it is maximally outerplanar. As-
sume then that it is made of two disjoint outerplanar subgraphs Γ1 and Γ2 (the
case where there are n of them is handled similarly). Let F denote the external
face of Γ, which is also the external face of Γ1 intersected with the external face
of Γ2. Let D be the disk whose boundary contains the vertices of Burstv,L(Γ),
and let F ′ be the component region in D ∩ F . Since Burstv,L(Γ) is disconnected
without any isolated vertex, F ′ contains in its boundary at least one edge of Γ1

and one edge in Γ2. Also, since Burstv,L(Γ) is bipartite, these two edges link ver-
tices of Vv,in to vertices of Vv,out. But then one edge, linking a vertex of Vv,in to a
vertex of Vv,out, can be added within F ′ while preserving planarity, contradicting
maximality. Hence as a non-directed graph, Burstv,L(Γ) is connected, so it is
at least a tree. This situation happens when Burstv,L(Γ) is maximally biplanar,
being then a caterpillar tree with ∂−(v) + ∂+(v)− 1 edges.

(3): If we could add one edge e to Burstv,L(Γ) while preserving the embedding,
a distinct curve carried by Γ could be built from e, and added to L while preserving
the overall properties of the resulting set of curves [19, 3.3.3]. �

An embedded bouquet of circles is alternating if its single vertex is alternating.

Corollary 3.6. Let Γ be a bouquet of m circles embedded in Σ, carrying a lam-
ination L, and let L be the lamination language coding L by Γ. Then for the
vertex v of Γ, the number of edges of Burstv,L(Γ) (and thus of SL(Γ) too) be-
longs to [m, 3m − 2] (the maximum being attained when Γ is alternating, and
Burstv,L(Γ) is maximally outerplanar).

Proof. For a bouquet of circles Γ, the number of edges of Burstv,L(Γ) is the
same as for SL(Γ). Since ∂−(v) = ∂+(v) = kmin = kmax = m, Lemma 3.5(1) gives
the interval [m, 3m− 2]. Using the outerplanar drawing construction introduced
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after Proposition 3.4, a strict alternation of the half-edges incident with v allows
the maximum of edges given by Proposition 3.4 to be attained. �

4. Complexity and Laminations

4.1. Tools for Computing Complexity

From now on, Γ will always denote a lamination carrier graph embedded in Σ.
Given a lamination coded into L by Γ, the role of SL(Γ) for computing the complex-
ity of L comes from the following result, keeping in mind that by Lemma 3.1(1),
SL(Γ) is the first-order Rauzy graph of L (so that |A| is the number of its vertices,
and |FactL(2)| is the number of its edges, which depends on the bursts of Γ):

Proposition 4.1. (see [19, 4.1.2]). Let L be a lamination language coding a
lamination L by a graph Γ labeled by A. Then L has an exact affine complexity pL
iff L is maximal rel. to SL(Γ). Moreover:

pL(n) = (|FactL(2)| − |A|)n+ (2|A| − |FactL(2)|), ∀n > 0.

Note that this result also applies if L is maximal rel. to Γ, since according to
Lemma 3.2(4), L must be then maximal rel. to SL(Γ) too. Now, the formula
above is not an invariant for laminations, as the same lamination can be carried
by many different graphs. With this respect, there exist simple graph moves over
a graph Γ (closely related to Whitehead moves for singular foliations [6]), which
preserve the carrying of a lamination L, while transforming the coding of L. In
other words, these moves can be used to transform a lamination language with a
specific complexity into another one with another complexity. One such type of
graph move is edge contraction: let e be an edge linking two distinct vertices v1

and v2 in Γ, then the contraction of e consists in erasing e from Γ, and in replacing e
in the set of incident edges with v1 by all the incident edges with v2, using the
same cyclic order. For instance:

Lemma 4.2. Let L be a lamination coded by Γ into L, and maximal rel. to SL(Γ).
Let Γ′ be Γ to which one edge contraction has been applied, and let L′ be the coding
of L by Γ′. Then L is also maximal rel. to SL′(Γ

′).
Proof. Let e be the contracted edge, and ve be its corresponding vertex

in SL(Γ), which exists since FactL(1) is always assumed to be the labeling alphabet
of Γ. Since e is an edge between two distinct vertices of Γ, there is no loop incident
with ve in SL(Γ). Thus such a contraction of emeans to erase ve from SL(Γ), and to
replace it by the set of edges corresponding to every length-2 path going through ve



14

and used to carry L, so as to describe SL′(Γ
′). But then, this transformation also

corresponds to the burst of ve with respect to the language L′′ which codes L by
SL(Γ), that is, to Burstve,L′′ . A consequence of Lemma 3.2(4) is that a burst
preserves the maximality of a carried lamination, whence the result. �

Lemma 4.3. Let L be a lamination language coding a lamination L by a graph Γ,
L being maximal rel. to SL(Γ). Let Γ′ be Γ to which one edge contraction has been
applied, and let L′ be the coding of L by Γ′. Then, pL′(n) = pL(n)− 1, ∀n > 0.

Proof. Let L′′ be the language coding L by SL(Γ). In the proof of Lemma 4.2,
we saw that a contraction of e in Γ means to erase ve in SL(Γ), and to replace
it by Burstve,L′′ , a transformation defining SL′(Γ

′). Moreover, L is maximal
rel. to SL(Γ), and by Lemma 3.1(2), SL(Γ) is a coherent graph. By Lemma 3.5,
Burstve,L′′ is thus a maximal biplanar drawing. Then, since there is no loop
incident with ve in SL(Γ), the erasing of ve means to replace its ∂−(ve) + ∂+(ve)
incident edges by ∂−(ve) + ∂+(ve) − 1 edges. By Lemma 4.2, L is still maximal
rel. to SL′(Γ

′), thus Proposition 4.1 applies to obtain pL′ , with |FactL′(2)| =
|FactL(2)| − 1, and with a labeling alphabet A′ such that |A′| = |A| − 1. �

4.2. The Exact Complexities of Lamination Languages

A lamination carrier graph Γ is said to be recurrent, if for every edge e in Γ there
exists a simple closed curve which uses e to be carried by Γ. When Γ is coherent
and recurrent, its edges can be weighted by maps like µ : E → R∗+ for which

at every vertex v of Γ the branch equation
∑
i µ(e−i ) =

∑
j µ(e+

j ) holds, where

the e−i ’s are the incoming incident edges at v, and the e+
j ’s the outgoing ones [6,25].

From these equations, a weighted coherent graph Γ can be transformed into a
band-like surface in a similar way to the construction of ΣT given in Section 2.1
for an interval exchange T : each edge e of Γ is replaced by a foliated rectangle
Re = [0, µ(e)]× [0, 1], and these rectangles are glued together along their sides of
length µ(e), reflecting the incidence patterns of the edges at each vertex of Γ.

Lemma 4.4. Let Γ be a coherent and recurrent graph. Then there exist lamina-
tions carried and maximal rel. to Γ.

Proof. With the same treatment as for ΣT , the above construction is known to
yield laminations carried by Γ [6,15,25]. Next, if such a lamination is not maximal
rel. to Γ, there always exists a finite set of curves carried by Γ which is sufficient so
that its union with L becomes a maximal lamination rel. to Γ [19, Section 3]. �

Now, recall that given a lamination language L, the graph SL(Γ) is determined
by the bursts of Γ’s vertices induced by L. Thus more abstractly, without any
reference to a given L, a well-formed set of bursts B(Γ) is a set of outerplanar
drawings in Σ of bipartite graphs without isolated vertex, one for each vertex
v ∈ Γ, such that for the graph (V1tV2, E) associated with v, we have |V1| = ∂−(v),
|V2| = ∂+(v), and V1 t V2 corresponds to the adjacent half-edges around v on Γ,
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placed in the same cyclic ordering. The embedded graph SB(Γ)(Γ) is then obtained
by replacing each v ∈ Γ with its corresponding burst in B(Γ).

Corollary 4.5. Let Γ be a recurrent graph. Let B(Γ) be a well-formed set of
bursts. Then there exist laminations carried by Γ and maximal rel. to SB(Γ)(Γ).

Proof. Γ being recurrent, SB(Γ)(Γ) is recurrent too. From Lemma 3.1(2),
one can also deduce SB(Γ)(Γ) is coherent, thus Lemma 4.4 applies to SB(Γ)(Γ).
Then similarly to Lemma 3.2(3), to transform the bursts back into their vertices
preserves the carrying, thus a lamination carried by SB(Γ)(Γ) is carried by Γ. �

We can now prove Theorem 1, that is, characterize what are the possible exact
complexities for lamination languages:

Proof. Let Γ be an alternating bouquet of m circles with its single vertex v.
A bouquet of circles is recurrent, and thus for any well-formed burst of v, denoted
by Burstv, making by itself a well-formed set B(Γ), Corollary 4.5 ensures the
existence of laminations carried by Γ and maximal rel. to SB(Γ)(Γ).

According to Proposition 4.1, the coding L of a lamination maximal rel. to SL(Γ)
has complexity pL(n) = (K −m)n + (2m −K), ∀n > 0, where K is the number
of edges of SL(Γ), equal to the number of edges of Burstv since Γ is a bouquet
of circles. Next, by Corollary 3.6, K ∈ [m, 3m− 2], and Γ being alternating, this
number of edges can take the maximal value, that is, there exists some Burstv
with 3m− 2 edges. This burst defines a well-formed B(Γ), so that by the prelimi-
nary remark above, laminations carried by Γ exist, and given any such lamination,
its coding language L satisfies Burstv,L(Γ) = Burstv, and SB(Γ)(Γ) = SL(Γ).
Now, edges can be removed one by one from Burstv until m edges are left, so
that at each edge removal the graph remains a burst defining a well-formed B(Γ),
and so that the same reasoning as before applies. Hence, K can take every value
in [m, 3m − 2], and thus pL(n) = an + b, ∀n > 0, where a ∈ [0, 2m − 2], and
b ∈ [2 −m,m] with b = m − a, is a possible complexity for a lamination carried
by Γ. In N × Z, this set of pairs (a, b) determines for each m ≥ 1, a diagonal
segment of slope −1, starting from (0,m) and going down to (2m− 2, 2−m), so
as to cover an infinite region Q = {(a, b) ∈ N× Z | a ≥ 0, b ≥

⌈
−a2 + 1

⌉
}:

Hence laminations exist with coding languages having all the claimed complexities,
and we have proved the converse part of Theorem 1.

Now, let Γ be any embedded graph, that we first assume connected, and let L
be a lamination carried by Γ such that its coding lamination language L0 has an
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exact complexity, that is, pL0
(n) = a0n + b0, ∀n > 0, for some a0 ∈ N, b0 ∈ Z.

Then, according to Proposition 4.1, L is maximal rel. to SL0(Γ). We then contract
the edges of Γ one by one, and we get at each contraction a new language Li
coding L by the resulting graph. By Lemma 4.2, the affine complexity remains
exact, i.e. pLi(n) = ain + bi, ∀n > 0, for which by Lemma 4.3, ai = a0 and
bi = bi−1−1. Since Γ is assumed connected, edge contractions can be applied, say h
of them, until we get a bouquet of circles. But then, again by Corollary 3.6 and
the above arguments for the specific K obtained, pLh(n) = ahn+bh = a0n+b0−h
is such that (ah, bh) ∈ Q. Now, if (a, b) ∈ Q, then (a, b′) ∈ Q for every integer
b′ ≥ b. Thus the complexity of L0 is such that (ah, bh + h) = (a0, b0) ∈ Q.

In the case Γ is not connected, the complexities of the languages associated
with each of its connected components add, the edges being bijectively labeled,
and this remains true when each of these components has been contracted to a
bouquet of circles. Since if (a, b) ∈ Q, (a′, b′) ∈ Q, then (a + a′, b + b′) ∈ Q, the
complexity of L0 is such that (a0, b0) ∈ Q in this case too. �

Note that in Cassaigne’s Theorem 2.1, the main condition over exact complexi-
ties for the (a, b)’s is 2a+b ≤ (a+b)2, whereas the one in the above proof translates
into 2a+ b ≤ 3(a+ b)− 2 (equivalently, |FactL(2)| = pL(2) = 2a+ b ≤ 3m− 2 =
3pL(1)− 2 = 3(a+ b)− 2). Thus:

Corollary 4.6. There exist infinitely many shifts with exact affine complexity
which are not lamination languages.

Proof. The proof of Theorem 2.1 in [7] includes the fact that for each possible
exact complexity there is a minimal word w having that complexity. By minimality,
pw is equal to the complexity of its shift closure, whence the result. �

A carrier graph can be embedded in infinitely many surfaces, and lamination
language complexities are thus not related to specific surfaces. Nevertheless for
bouquets of circles, a remark can be made: First of all, for the known case, con-
sidering a coherent bouquet Γ of m circles, a language coding a maximal lam-
ination carried by Γ corresponds to the symbolic orbit language of idoc interval
exchanges T on m intervals [19], having an exact complexity an+b, with a = m−1,
b = 1 [16]. On the associated suspension surface ΣT (see Section 2.1), the Euler
characteristic gives 1−m+C = 2− 2g, where g is the genus of ΣT , and C is the
number of components of its boundary, that is, a+ b = 2g+C − 1. A similar con-
struction of a suspension surface generalizes to non-coherent bouquets of circles,
where the central rectangle R of ΣT is replaced by a polygon with 2m sides, also
foliated, but including singularities. By Proposition 4.1 applied to any bouquet
of m circles, the languages coding its maximal carried laminations have an exact
complexity an+ b, with a+ b = m, that is, a+ b = 2g + C − 1 too.

5. Building Laminations and Lamination Languages

In this section we discuss more constructive methods than the ones behind
Lemma 4.4 to build laminations and lamination languages.
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5.1. Complete Complexity Families of Lamination Languages

From Proposition 4.1, one can deduce a criterion to check that a set of curves
is a lamination, knowing the complexity of its coding:

Corollary 5.1. Let C be a set of simple closed or two-way infinite curves in Σ, all
pairwise disjoint and non-homotopic, coded into a shift L by a graph Γ labeled by A.
Then C is a lamination if pL(n) = (|FactL(2)|−|A|)n+(2|A|−|FactL(2)|), ∀n > 0.

Proof. We must check that C is maximal rel. to some graph. By Lemma 3.2(2),
the set C is carried by SL(Γ). Next, if C was not maximal rel. to SL(Γ), curves
could be added to C until it is, while preserving all the properties of the curves,
and by Lemma 3.2(3), while also being carried by Γ. But then, this new set of
curves C′ is a lamination maximal rel. to SL(Γ), and Proposition 4.1 applies to it.
Since the added curve codings include distinct factors from the ones in FactL, the
complexity of the coding of C is not equal to the one of C′, whence the result. �

Using the preceding result, we now build laminations whose codings have com-
plexities running all the possible exact complexities, that is, we prove Theorem 2.

Let Γm be an alternating bouquet of m circles, whose embedding in Σ is such
that each circle has its two half-edges consecutive around the unique vertex v
of Γm with the same orientation order (so that Γm can be embedded as a drawing
of a coding carrier graph in a punctured sphere – see the next figures below). Let
the edges of Γm be labeled by A = {a1, ..., am}, where the ai’s are used in the
clockwise order of the circles of Γm. If m = 1, we define the language L1 = {ωaω1 }
which codes the trivial lamination made of a simple closed curve homotopic to the
unique circle of Γ1. If m > 1 is even, we define the following languages:

Lm (with m mod 2 ≡ 0) = {ωa1a
ω
2 } ∪ {ωa2i+1a

ω
2i,

ωa2i+1a
ω
2i+2 | i = 1, ..., m2 − 1} ∪

{ωa1a
ω
2i | i = 2, ..., m2 } ∪

{ωa1a2a3...a
ω
2i | i = 2, ..., m2 } ∪

{ωa1(a2...ama1)ω}.

For instance, L2 = {ωa1a
ω
2 ,
ωa1(a2a1)ω}, and L6 = {ωa1a

ω
2 , ωa3a

ω
2 , ωa3a

ω
4 , ωa5a

ω
4 ,

ωa5a
ω
6 , ωa1a

ω
4 , ωa1a

ω
6 , ωa1a2a3a

ω
4 , ωa1a2a3a4a5a

ω
6 , ωa1(a2a3a4a5a6a1)ω}. These

words are the codings of curves carried by Γm, having their ends spiraling ei-
ther around single circles of Γm, or around the set of all the circles of Γm. For
instance, here is represented this set of curves carried by Γ2 coded by L2, together
with a drawing of the induced Burstv,L2

(Γ2) on the right:

We can also describe more precisely the sets of curves corresponding to the four
lines of the definition of Lm: (i) C-shaped double spirals linking neighbor circles,
attached together by alternating their orientation, and making a chain around
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the circles of Γm; (ii) C-shaped double spirals starting from a1, linking non-
neighbor circles of Γm, going within the chain defined in (i); (iii) C-shaped double
spirals starting from a1, linking non-neighbor circles of Γm, going externally to
the chain defined in (i); (iv) a double spiral starting from a1 and then spiraling
globally around Γm. For instance, here are the curves carried by Γ6 coded by L6,
shown by a union of two sets of curves, the first one corresponding to the curves of
kind (i) and (ii), and the second one to the curves of kind (iii) and (iv), together
with a drawing of the induced Burstv,L6(Γ6) on the right:

If m > 1 is odd, we define the following languages similarly to the even case:

Lm (with m mod 2 ≡ 1) =
{ωa1a

ω
2 } ∪ {ωa2i+1a

ω
2i,

ωa2i+1a
ω
2i+2 | i = 1, ..., m−1

2 − 1} ∪ {ωamaωm−1} ∪
{ωa1a

ω
2i | i = 2, ..., m−1

2 } ∪
{ωa1a2a3...a

ω
2i | i = 2, ..., m−1

2 } ∪ {
ωa1....ama

ω
m−1} ∪

{ωa1(a2...ama1)ω}.

For instance, L7 = { ωa1a
ω
2 , ωa3a

ω
2 , ωa3a

ω
4 , ωa5a

ω
4 , ωa5a

ω
6 , ωa7a

ω
6 , ωa1a

ω
4 , ωa1a

ω
6 ,

ωa1a2a3a
ω
4 , ωa1a2a3a4a5a

ω
6 , ωa1a2a3a4a5a6a7a

ω
6 , ωa1(a2a3a4a5a6a7a1)ω}. Here are

represented the corresponding curves carried by Γ7 and coded by L7, together with
a drawing of the induced Burstv,L7

(Γ7) on the right:

Now, the shift orbit closure Lσm of Lm for every m > 0 includes all the shifted
words in Lm, and also the shifted periodic words in {ωaωi | i = 1...m} ∪ ω(a1...am)ω,
that is, the only two-way infinite limit words to be added, and corresponding to
the left or right periodicities of the words in Lm. In terms of curves, these periodic
words are the codings of the closed curves which are the limits of the spiraling ends
of the curves coded by Lm. Let Lm denote the set of curves coded by Lσm:

Lemma 5.2. For every m > 0, Lm is a lamination coded into Lσm by Γm, for
which pLσm(n) = (2m− 2)n+ (2−m), ∀n > 0.
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Proof. By construction, for every m > 0, the curves of Lm are simple, closed
or two-way infinite, pairwise disjoint, pairwise non-homotopic, all carried by Γm,
and thus by SLσm(Γm) too. Also, when m is even, we have:

FactLσm(2) = {a2
i | i = 1...m} ∪ {a2i+1a2i | i = 1, ..., m2 − 1} ∪

{a1a2i | i = 2, ..., m2 } ∪ {aiai+1 | i = 1, ...,m− 1} ∪ {ama1}.

And when m is odd:

FactLσm(2) = {a2
i | i = 1...m} ∪ {a2i+1a2i | i = 1, ..., m−1

2 } ∪
{a1a2i | i = 2, ..., m−1

2 } ∪ {aiai+1 | i = 1...m− 1} ∪ {ama1}.

For every m > 0, |FactLσm(2)| = 3m − 2, and thus by Corollary 5.1, Lm is a
lamination if pLσm(n) = (2m−2)n+(2−m), ∀n > 0. Note that pLσm ≡ pLm , and that
Lσm involves only ultimately periodic words, i.e. words ωv1uv

ω
2 , where v1, u, v2 are

finite words, u being possibly the empty word (periodic words are included in this
definition when v1 = v2 and u is empty). We then check the above complexities for
the Lm’s by first considering the following fact: a word w =ωaia

ω
j , with ai, aj ∈ A

and ai 6= aj , has complexity pw(n) = n + 1, ∀n > 0 (words of this form are
skew Sturmian words [23]). Now, if L = {ωaiaωj , ωaka

ω
l } with ai, aj , ak, al ∈ A,

aiaj 6= akal, ai 6= aj and ak 6= al, then pL(n) = 2(n+ 1)− (4− t), ∀n > 0, where t
is the number of distinct letters among ai, aj , ak, al. Indeed, in ωaia

ω
j and ωaka

ω
l ,

if two of their letters are equal, say to a, the only factors in common are an for
each n > 0. For instance, if L = {ωabω,ωbaω}, then pL(n) = 2n, ∀n > 0. From
this complexity rule, when m is even, the complexity of Lm is obtained as follows
(it is obtained similarly when m is odd):

• The subset H1 = {ωa1a
ω
2 } ∪ {ωa2i+1a

ω
2i,

ωa2i+1a
ω
2i+2 | i = 1, ..., m2 −1} has

complexity q1(n) = pH1(n) = (m − 1)(n + 1) − (m − 2) = (m − 1)n + 1,
∀n > 0, since adding one by one the complexities of these m − 1 words
means to apply m− 2 times the rule above with t = 3.
• Adding H2 = {ωa1a

ω
2i | i = 2, ..., m2 } means to add to pH1

(n) the function
q2(n) = (m2 − 1)(n + 1) − 2(m2 − 1) = (m2 − 1)n − (m2 − 1), ∀n > 0, since
adding one by one the complexities of these m

2 − 1 words means to apply
m
2 − 1 times the rule above with t = 2 (these words have their two letters
in common with the others in H1).
• For H3 = {ωa1a2a3...a

ω
2i | i = 2, ..., m2 }, when adding one by one its words

to H1 ∪ H2, we see that at each adding the only new length-2 factor is
a2ja2j+1 with j = i − 1, and thus for each length n > 2, the new factors
are those containing a2ja2j+1, that is, n−1 factors. Hence the complexity
contribution of H3 is q3(n) = (m2 − 1)(n− 1), ∀n > 0.
• Finally, H4 = {a1(a2...ama1)ω} is made of a word with the same property

as the ones in H3 where the only new length-2 factor is ama1, so that the
contribution of H4 is q4(n) = n− 1, ∀n > 0.

Hence pLm(n) =
∑
i=1..4 qi(n) = ((m− 1)n+ 1) + ((m2 − 1)n− (m2 − 1)) + ((m2 −

1)(n− 1)) + (n− 1) = (2m− 2)n+ (2−m), thus Lm is a lamination. �

For instance, with respect to the examples of the preceding figures, Lσ6 is a lami-
nation language with exact complexity pLσ6 (n) = 10n− 4, and Lσ7 has complexity
pLσ7 (n) = 12n− 5, ∀n > 0.
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Now, the exact complexities an + b of the Lσm’s, are such that each (a, b) =
(2m− 2, 2−m) is on the lower boundary of the region Q ⊂ N× Z of the possible
complexities given by Theorem 1, with the additional property that there is no
(a′, b′) ∈ Q, with a′ < a or b′ < b. These languages have these extremal complexi-
ties because for every m > 0, |FactLσm(2)| = 3m−2, which is the maximal possible
value associated with the number of edges of Burstv,Lσm , that is of SLσm(Γm) too,
for an alternating bouquet of circles (see Corollary 3.6).

In order to get the other (a, b)’s of the lower boundary of Q, that is, the com-
plexities for which a is odd, and for which there is no point (a′, b′) ∈ Q, with b′ < b,
it is sufficient to have the preceding bursts with one edge removed. Indeed, this
removal is equivalent to having one factor less in Fact(2), that is, 3m− 3 of them,
so that by Proposition 4.1 the corresponding languages would have complexity
(2m− 3)n+ (3−m). Thus, for m = 2, we define L′2 = L2 \ {ωa1(a2a1)ω}, remov-
ing only the factor a2a1 from FactLσ2 (2), contained only in ωa1(a2a1)ω. Then L′2
consists of a single skew Sturmian word, and pL′σ2 (n) = pL′2(n) = n + 1, ∀n > 0.
For m > 2, we define L′m = Lm \ {ωa3a

ω
2 }, removing only the factor a3a2 from

FactLσm(2), contained only in ωa3a
ω
2 . From the proof of Lemma 5.2, we see that re-

moving ωa3a
ω
2 means to subtract an (n− 1) contribution to the complexity of Lm,

that is, pL′σm(n) = pL′m(n) = pLm(n) − (n − 1) = (2m − 3)n + (2 − m + 1),

∀n > 0. Hence the complexities of the L′
σ
m’s are the ones expected to apply Corol-

lary 5.1, thus if γm is the curve corresponding to the removed word, maximality of
L′m = Lm − {γm} rel. to SL′σm(Γm) holds, and L′m is a lamination. For instance,

for L′
σ
6 , then pL′σ6 (n) = 9n− 3, and for L′

σ
7 , then pL′σ7 (n) = 11n− 4, ∀n > 0.

As a result, we have described lamination languages with exact complexities
covering all the pairs (a, b) of the lower boundary of Q. In order to obtain the
other pairs, we use another simple graph move called edge subdivision: let e be
any edge of a graph Γ, then the subdivision of e consists in putting a new vertex v
in e, dividing it into two edges so that v has degree 2. For instance:

Lemma 5.3. Let L be a lamination coded by Γ into L, and maximal rel. to SL(Γ).
Let Γ′ be Γ to which one edge subdivision has been applied, and let L′ be the coding
of L by Γ′. Then L is also maximal rel. to SL′(Γ

′).

Proof. A subdivision of an edge e in Γ means to replace the corresponding
vertex ve in SL(Γ) by an edge in SL′(Γ

′). By Lemma 3.1(2), ve is coherent, thus
this replacement has no effect on the carrying possibilities, whence the result. �

Lemma 5.4. Let L be a lamination language coding a lamination L by a graph Γ,
L being maximal rel. to SL(Γ). Let Γ′ be Γ to which one edge subdivision has been
applied, and let L′ be the coding of L carried by Γ′. Then, pL′ = pL(n)+1,∀n > 0.
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Proof. According to Lemma 5.3 and its proof, one can apply Proposition 4.1
to compute pL′ with |FactL′(2)| = |FactL(2)| + 1, and with an alphabet A′ such
that |A′| = |A|+ 1. �

Now, by applying Lemma 5.4 to each Lσm and L′
σ
m, that is, by subdividing the

edges of their corresponding bouquets of circles Γm, we can arbitrarily increment
the b part of their exact complexities an+ b, and get lamination languages having
complexities covering all the region Q. Moreover, the corresponding laminations
Lm, L′m are finite, and they are connected sets, since for each circle of Γm there is
a curve with an end spiraling around it, and any two circles are joined by a chain
of such curves. Hence the proof of Theorem 2 is complete.

Note that the above construction was based on specific embeddings of alter-
nating bouquets of circles Γm, and on a specific family of laminations Lm, L′m
carried by them. There are other possible embeddings for such bouquets of circles
and other finite carried laminations. We could also drop the idea of describing
a complete family for every possible complexity, and consider bouquets of circles
which are not alternating. For instance, here are two such embedded bouquets
carrying maximal laminations [14]:

For the carried lamination on the left, its coding lamination language L is such
that FactL(2) = {a2

i | i = 1, 2, 3} ∪ {a1a3, a2a3, a2a1}, thus pL(n) = 3n, ∀n >
0. For the one on the right, L is such that FactL(2) = {a2

i | i = 1...6} ∪
{a1a2, a3a2, a3a4, a5a4, a5a6, a1a6, a1a4}, thus pL(n) = 7n− 1, ∀n > 0.

5.2. Some Minimal Lamination Languages

In the preceding section, the lamination languages allowing us to cover all the
possible exact complexities given by Theorem 1 were finite and made of ulti-
mately periodic words. For aperiodic minimal lamination languages, we still do
not know about a fully constructive method to build such a family. A step towards
a solution would be to use the relationship between laminations carried by coher-
ent bouquets of circles and interval exchanges (see Section 2.1). There are indeed
ways to generate the symbolic orbits of interval exchanges, corresponding then to
lamination languages. These techniques are e.g. based on Rauzy induction [3, 12]
and on substitution compositions. A substitution is indeed a simple rewriting rule
defined by a map θ : A→ B∗, where A,B are finite alphabets, B∗ denotes the set
of finite words over B, which extends to all words by sending w = ...anan+1an+2...
to θ(w) = ...θ(an)θ(an+1)θ(an+2)....
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Here however we focus on another construction able to produce minimal lami-
nation languages associated sometimes with non-coherent bouquets of circles, and
relying on substitution iterations and letter projections only. This construction
is derived from the fact that some pseudo-Anosov diffeomorphisms of surfaces,
i.e. diffeomorphisms which always have one stable and one unstable minimal lami-
nations [24,29], can be represented by substitutions in the symbolic domain [18,19].
By iterating these substitutions, it is then possible to obtain the lamination lan-
guages which code their associated stable laminations. Let us here recall this
technique in a simplified setting from [19]: A directed graph Γ = (V,E) is said to
be cycle-based if it is strongly connected and if it can be described as the union
of k+h = n oriented cycles {C1, ..., Cn} as follows: (i) {C1, ..., Ck} is a set of pair-
wise disjoint cycles with respective non-empty finite sets of vertices Vi, such that

V =
⋃k
i=1 Vi; (ii) π is a permutation over V such that v ∈ V is linked to π(v) by an

edge in E not in {C1, ..., Ck}, thus determining the other cycles {Ck+1, ..., Ck+h}.

Example 5.5. Let C1, C2 be two cycles with two vertices each, respectively v1, v2

and v3, v4, and let π = (v1 v3)(v2 v4) inducing two other cycles C3, C4. The result
is the following cycle-based graph:

Now, let Γ be a cycle-based graph labeled by A, embedded in a surface Σ as
a coding carrier graph, with the following constraints: at each vertex of Γ, the
crossing orientation – by construction, this crossing is made of exactly two cycles
of Γ – must be consistent with the others, that is, the relative orientations of the
edges at each crossing must match when translated along any edge path of Γ (see

e.g. the figure above). Now let c
(v)
i denote the finite path label of the cycle Ci of

Γ starting from the vertex v ∈ Ci. Then we associate a substitution θi with Ci,

defined as the identity over all the letters in A, except for the letters x
(v)
i for which

θi(x
(v)
i ) = x

(v)
i c

(v)
i , where v is any vertex of Ci, and where x

(v)
i is the label of

the edge of Γ whose one of the half-edges is incoming at v while not being in Ci.
We denote by TΓ the set of the n substitutions θi over A associated with the n
cycles of Γ. For instance, the four substitutions of TΓ where Γ is the graph of
Example 5.5 are the following (we only give the images of the letters which are
not the identity):

θ1(f) = fae θ2(b) = bcg θ3(e) = ebf θ4(a) = adh
θ1(h) = hea θ2(d) = dgc θ3(g) = gfb θ4(c) = chd

Substitutions as above are said to be non-erasing, i.e. there is no letter whose
image is the empty word. A word w is a fixed point of a substitution θ, if
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θ(w) = w. One-way right infinite fixed points can be obtained by iterating θ(a),
whenever θ is non-erasing, and a ∈ A is a strict prefix of θ(a), so that for every
n > 0, θn(a) is a strict prefix of θ(n+1)(a). When such a one-way infinite word w
is minimal, its associated shift orbit closure Lσw in AZ is defined as the set of the
two-way infinite words whose factor set is Factw, and accordingly w is sufficient
to study the combinatorics of Lσw (see also Section 2.3).

Theorem 5.6. (see [18]). Let Γ be a cycle-based graph labeled by A. Let θ be a
finite composition of substitutions in TΓ, where each θi ∈ TΓ occurs at least once.
Then there is a letter a ∈ A, such that iterating θ(a) gives a fixed point w which
is minimal and which codes a half-curve of a maximal lamination L rel. to Γ,
where Lσw is the lamination language coding L by Γ.

Corollary 5.7. (see [19, 5.3.2]). Let L be a lamination language obtained by
Theorem 5.6 from a cycle-based graph Γ = (V,E). Then the complexity of L is
pL(n) = |V |n+ |V |,∀n > 0.

Proof. As an embedded cycle-based graph, Γ is coherent, and it is such that
|E| = 2|V | with ∂−(v) = ∂+(v) = 2, for every v ∈ V . Moreover, L is maximal
rel. to Γ. Thus according to Lemma 3.5, when constructing SL(Γ), each burst is
maximally biplanar, hence generates three edges, so that |FactL(2)| = 3|V |. By
Proposition 4.1, the result follows. �

Thus for instance considering the substitutions associated with Example 5.5, a
fixed point of any composition of the θi’s involving each θi at least once, is a
minimal lamination half-word w with complexity pw(n) = 4n + 4, ∀n > 0, e.g.
(θ1θ2θ3θ4)ω(a) = adgcheadgcgfaebc...

Cycle-based graphs are not bouquets of circles, except in the case of two circles
built from a cycle C1 with one vertex and a trivial π generating another cycle C2

(this case corresponds to interval exchanges over two intervals, and thus to the
Sturmian case). However, bouquets of circles can be obtained by applying edge
contractions, similarly to what has been done in the proof of Theorem 1. Now,
symbolically, an edge contraction has the trivial effect of erasing the letter labeling
the contracted edge. With this respect, let erasA′ denote the erasing substitution
(or letter projection) over A which is the identity except for the letters in A′ ⊂ A
which are sent to the empty word. If L is a shift in AZ, and θ is a substitution
over A, then θ(L) denotes the shift orbit closure of {θ(w)|w ∈ L}:
Corollary 5.8. Let L be a lamination obtained by Theorem 5.6 from a cycle-based
graph Γ = (V,E) labeled by A. Let L be the lamination language coding L by Γ.
Let Γ′ be a bouquet of circles obtained by iteratively contracting edges of Γ, and
let L′ be the coding of L by Γ′, which is such that L′ = erasA′(L) where A′ ⊂ A is
the set of labels of the contracted edges. Then pL′(n) = |V |n+ 1,∀n > 0.

Proof. A cycle-based graph is assumed connected, thus Γ can be contracted
into a bouquet of circles with |V | − 1 edge contractions. Hence, by Corollary 5.7,
and next by iteratively applying Lemma 4.3, the result follows. �

For instance, considering the graph Γ of Example 5.5, we can contract three of its
edges to obtain a non-coherent bouquet of five circles as follows:
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Then according to Corollary 5.8, iterating a composition of the associated four
substitutions θi of TΓ, and applying eras{f,g,h}, we get minimal words of complex-
ity p(n) = 4n + 1, ∀n > 0 (e.g. eras{f,g,h}((θ1θ2θ3θ4)ω)(a)), which are minimal
lamination half-words too.

Here is another example illustrating all the above generation steps. Let Γ be a
graph based on six cycles with nine vertices, and where eight edges are contracted
to obtain a non-coherent bouquet of ten circles:

Then, the six associated substitutions of TΓ are the following (we only give the
images of the letters which are not the identity):

θ1(m) = mabc θ2(l) = ldef θ3(k) = kghi
θ1(p) = pcab θ2(o) = ofde θ3(n) = nigh
θ1(s) = sbca θ2(r) = refd θ3(q) = qhig

θ4(c) = cklm θ5(b) = bnop θ6(a) = aqrs
θ4(f) = fmkl θ5(e) = epno θ6(d) = dsqr
θ4(i) = ilmk θ5(h) = hopn θ6(g) = grsq

The complexity of the fixed point words obtained by iterating compositions of these
substitutions involving each θi at least once is p(n) = 9n + 9, ∀n > 0, and after
erasing the eight letters corresponding to the contracted edges, it becomes p(n) =
9n+ 1, ∀n > 0, as is the complexity of the corresponding lamination languages.

The above generation technique produces lamination languages as shift orbit
closures of minimal words which are fixed points of a single substitution θ, to which
a second substitution of type eras is applied. This kind of words are well-known
and called substitutive (or morphic) [2, 8]. However in terms of all the possible
complexities given by Theorem 1, this technique does not cover all of them: cycle-
based graphs exist with any number of vertices, so as to give by Corollary 5.8
languages of exact complexities an+b, with a ≥ 1, b = 1, associated with bouquets
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of circles. Next, by applying edge subdivisions together with Lemma 5.4, we cover
every b ≥ 1, but not the complexities for which b < 1.

Note also that the above examples of contracted cycle-based graphs yield non-
coherent bouquets of circles, while producing lamination languages with exact
complexity of the form an + 1, that is, languages with complexity of the same
form as the natural symbolic orbit languages of idoc interval exchanges. How-
ever, one can prove e.g. by using the explicit characterizations of these inter-
val exchange languages [4, 11], that for instance the above projected fixed point
eras{f,g,h}((θ1θ2θ3θ4)ω)(a) does not occur in one of them as a half-word, and thus
that the corresponding lamination language is not an interval exchange language.

As a final remark, let us sum up some of the problems which remain to be solved
in the context of this paper: understanding the characteristics of all the lamination
languages having exact complexities of the form an+ 1, finding constructive fami-
lies of aperiodic minimal lamination languages covering every possible exact com-
plexity, enumerating finite laminations within the framework used in Section 5.1,
analyzing from a word-combinatorics viewpoint the geometric constraints which
lead to Corollary 4.6, characterizing the possible non-exact affine complexities of
lamination languages.
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Soc. Math. France, 119:199–215, 1991.
[4] A. Ya. Belov and A. L. Chernyatiev. Words with low complexity and interval exchange

transformations. Commun. of the Moscow Math. Soc., 63(1):159–160, 2008.

[5] F. Bonahon. Geodesic laminations on surfaces. In Laminations and foliations in dynamics,
geometry and topology, volume 269 of Contemp. Math., pages 1–37. Amer. Math. Soc., 2001.

[6] D. Calegari. Foliations and the geometry of 3-manifolds. Oxford Mathematical Monographs.

Oxford University Press, Oxford, 2007.
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