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A The Shifted Intervals Preservation (Lemma 3.2.4)

A technical property for the construction of the conjugate IET TL is given by Lemma 3.2.4,
that is: for a shift L with a prolongable set FactL, then for every factor u ∈ FactL which
is not left special, we have for every w,w′ ∈ CylL(au), with a ∈ A:

σ([w,w′]) = [σ(w), σ(w′)]. (2)

Let us give here an illustration of how this can be false when u is left special, and
what are the effects on the IET construction. Recall that the Thue-Morse substitution

over A = {a, b} is defined by θtm(a) = ab and θtm(b) = ba, and its associated shift is
denoted by Ltm. Then for instance, consider CylLtm(aba) where ba is left special. Let
E = [abav, abav′] ⊂ CylLtm(aba) with v, v′ ∈ AN, and let F = [σ(abav), σ(abav′)] =
[bav, bav′]. The above Equality (2) does not hold whenever for some bav′′ ∈ F , we have
abav′′ /∈ σ−1(bav′′), while bbav′′ ∈ σ−1(bav′′), because then bav′′ /∈ σ(E) (which is possible
since ba is left special). For instance, consider a subinterval of E:

E0 = [abaabbaau, ababbu′] ⊂ CylLtm(aba), for some u, u′ ∈ AN.

Note that E0 6= ∅, since Ltm is minimal, and abaabbaa and ababb belong to FactLtm . Let

F0 = [σ(abaabbaau), σ(ababbu′)] = [baabbaau, babbu′].

Take any word babau′′ in F0, which is possible since CylLtm(baba) 6= ∅ and CylLtm(baba) ⊂
F0. But there is no word ababav′′ ∈ E0, because ababa /∈ FactLtm , and thus babav′′ is not
in σ(E0) (in fact, baba is not left special and σ−1(babav′′) = bbabav′′). Therefore, σ(E0) 6=
F0. And then, in the corresponding graph of the conjugate IET TLtm , we can observe
that σ(E0) does not correspond to an interval, and includes a discontinuity:

A generic case on the IET TLtm where a shifted word interval E0 is not equal to the
interval F0 made of its shifted ends, that is, a case where σ([w,w′]) 6= [σ(w), σ(w′)].
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B Constructions of PARTL (Lemma 3.2.5)

Here we give full details about Example 3.2.6 also based on the Thue-Morse shift Ltm,
and illustrating the construction of the associated PARTLtm in the proof of Lemma 3.2.5.
The left special factors of Ltm are known to be all the prefixes of θntm(aba) and θntm(bab),
n ≥ 0 [BLRS09, Proposition II.2.15]. We denote by SPLtm(n) the set of n-length left
special factors of Ltm. Then the first steps of the construction of PARTLtm are:

Step 1. FactLtm(2) = {aa, ab, ba, bb}, SPLtm(1) = {a, b}: No cylinders in PARTLtm .

Step 2. FactLtm(3) = {aab, aba, abb, baa, bab, bba}, SPLtm(2) = {ab, ba}: CylLtm(abb),
CylLtm(baa) are in PARTLtm , so that v(1) = abb, v(2) = baa.

Step 3. FactLtm(4) = {aaba, aabb, abaa, abab, abba, baab, baba, babb, bbaa}, SPLtm(3) =
{aba, abb, baa, bab} : No new cylinders, since CylLtm(abba), CylLtm(baab) are
already contained in the cylinders determined in Step 2.

Step 4. FactLtm(5) = {aabab, aabba, abaab, ababb, abbaa, abbab, baaba, baabb, babaa, babba,
bbaab, bbaba}, SPLtm(4) = {abba, baab}: CylLtm(aabab), CylLtm(ababb),
CylLtm(babaa), and CylLtm(bbaba) are in PARTLtm , so that v(3) = aabab, v(4) =
ababb, v(5) = babaa, v(6) = bbaba.

Next, we can represent the obtained cylinders of PARTLtm on an abstract interval cor-
responding to Ltm with its lexicographic order, in turn corresponding to intervals of I
when considering their images by φµ:

Below, we indicate the result of the next steps of the construction where only the v(k)

factors are indicated (their corresponding intervals in I can be observed in TLtm – see
e.g. the figure in the preceding page):
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We can do the same as above for the shift Lfib induced by the Fibonacci substitution

defined by θfib(a) = ab, θfib(b) = a. The shift Lfib is known to have complexity p(n) =
n + 1, ∀n > 0, thus is Sturmian [Fog02]. Lfib is also the natural coding of the minimal
finite IET Tfib over two intervals, where the main discontinuity is at 1

ρ , where ρ is the
golden ratio. The left special factors of Lfib are all the prefixes of θnfib(a), n ≥ 0 [BLRS09,
Proposition 4.10.3]. Then the first steps of the construction of PARTLfib

are:

Step 1. FactLfib
(2) = {aa, ab, ba}, SPLfib

(1) = {a}: CylLfib
(ab) is in PARTLfib

, so that

v(1) = ab.

Step 2. FactLfib
(3) = {aab, aba, baa, bab}, SPLfib

(2) = {ab}: CylLfib
(baa) is in PARTLfib

,

so that v(2) = baa.

Step 3. FactLfib
(4) = {aaba, abaa, abab, baab, baba}, SPLfib

(3) = {aba}: No new cylin-
ders, since baba, aaba determine the only cylinders not already in PARTLfib

.

Step 4. FactLfib
(5) = {aabaa, aabab, abaab, ababa, baaba, babaa}, SPLfib

(4) = {abaa}:
CylLfib

(aabab) are in PARTLfib
, so that v(3) = aabab.

Next, the obtained cylinders of PARTLfib
can be put on an abstract interval correspond-

ing to Lfib with its lexicographic order:

And below we recall the corresponding IET graph TLfib
which corresponds to the IET

Tfib (as expected from Corollary 3.3.4):

The approximated IET graph T100 induced by Lfib (with all the corresponding v(k)).
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C Recodings (towards Proposition 3.3.6)

Reconsider the Thue-Morse shift Ltm. Consider some word in Ltm like w = σ(w′) where
w′ belongs to CylLtm(aabbabaabbaababbabaababbaabbabaababbabaabbaababbab), i.e. the
fifth cylinder of PARTLtm , so that

w = abbabaabbaababbabaababbaabbabaababbabaabbaababbab...

Now, having in mind the definitions given at the end of Section 3.3, here is how to get
the corresponding symbolic orbit over the infinite alphabet A∞ of the natural coding
by using the map δ∞(w) based on the factors v(k) inducing PARTLtm . First, abb is the
smallest prefix of σ(w) with a non-special suffix bb, so that abb is a v(k) of PARTLtm .
Indeed abb = v(1), so let y1 ∈ A∞ be such that ζ∞(y1) = abb:

w = abb︸︷︷︸
y1

abaabbaababbabaababbaabbabaababbabaabbaababbab...

And so on for the next iterates of σ over w:

σ(w) = bbaba︸ ︷︷ ︸
y6

abbaababbabaababbaabbabaababbabaabbaababbab...

σ2(w) = babaa︸ ︷︷ ︸
y5

bbaababbabaababbaabbabaababbabaabbaababbab...

σ3(w) = abaabbaa︸ ︷︷ ︸
y8

babbabaababbaabbabaababbabaabbaababbab...

σ4(w) = baa︸︷︷︸
y2

bbaababbabaababbaabbabaababbabaabbaababbab...

As a result we obtain the word δ∞(w) = y1y6y5y8y2.... in AN
∞. In the next figure we can

then follow the orbit of φµ(w) on TLtm visiting the intervals corresponding to each of
these cylinders (see Proposition 3.3.6):

On the IET TLtm, the orbit of φµ(w), which falls into the intervals corresponding to the
cylinders induced by the ζ∞(yi), i.e. abb, bbaba, babaa, abaabbaa, baa, as described above.
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D IET Graph Sequences {Tn}n>1 (Proposition 5.1.3)

Considering the Thue-Morse shift Ltm, and following Proposition 5.1.3, we show below
the first terms of the corresponding map sequence {Tn}n>1 converging to the IET TLtm :

T3 T4

T5 T6

T7 T8

The first terms of {Tn}n>1 converging to the IET TLtm. Here, each Tn is defined as
a partial function over the intervals corresponding to the cylinders determined to be in
PARTLtm at step n of the construction behind Lemma 3.2.5 (see Section B above).
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E The Thue-Morse IET Graph TLtm

Recall that in the primitive substitution case, one can directly compute the measure µ
of the cylinders of the associated uniquely ergodic shift, i.e. the lengths of the corre-
sponding intervals of the conjugate IET. A general technique relies on obtaining for each
factor length the normalized Perron-Frobenius positive eigenvector of a primitive matrix
associated with the substitution [Qué10, Section 5.4].

In the Thue-Morse case, the measure values can be more readily obtained. Namely
by [Dek92, Theorem 1], for each v ∈ FactLtm(n), n ≥ 2, µ(CylLtm(v)) is either 1

62−m or
1
32−m, where m is such that 2m < n ≤ 2m+1, and in the specific case n = 2m + 1, m > 0,
this value is 1

32−m. Now, when 2m + 1 < n ≤ 2m+1, m > 0, the value ambiguity can be
solved using σ-preservation: First, consider all the factors σk(v) for k = 1, ..., n−(2m+1)
(where σ on a finite word v is v minus its first letter). If there is no left special factor
among them, by measure preservation the length is 1

32−m; if there is one (there can be
only one since only two values are possible) the length is 1

62−m. Thus in Ltm, we have
e.g. µ(abb) = µ(baa) = 1/6, µ(aabab) = µ(ababb) = 1/12, µ(aabbaaba) = µ(abaabbaa) =
1/24, etc. The next figure shows the IET graph TLtm with its main values (also validating
experimentally Proposition 5.1.3). Note that this kind of exact computations are also
possible for other examples thanks to [Fri98] (see also [Saa08]).
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F Other IET Graphs

In [LN15], we chose to illustrate Theorem 1 and Proposition 5.1.3 only with shifts coming
from primitive substitutions for which minimality, unique ergodicity, and linear complex-
ity are known [Qué10], so that Proposition 5.2.1 applies. But we can use the construction
of conjugate IETs for other shifts.

F.1 The Chacon Shift

First, there are substitutions which are non-primitive and nevertheless generate shifts
with the needed properties for applying Proposition 5.2.1. One well-studied instance is
the Chacon non-primitive substitution [Fer95, Fog02], i.e. θcha(a) = aaba, θcha(b) = b.
The associated shift is minimal, uniquely ergodic, and has linear complexity p(n) = 2n−1,
for n ≥ 2. In fact, this shift is morphic as it can be also obtained from a primitive
substitution shift recoded by applying another substitution to it.

The approximated IET graph T150 of the shift associated with the Chacon non-primitive
substitution θcha (together with all the corresponding v(k)).
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F.2 S-Adic Shifts

A generalization of infinitely iterating a single substitution is to infinitely compose dif-
ferent substitutions. Let {θi} denote a set of substitutions over an alphabet A, and let
{θij}j∈N be a sequence made of these substitutions. Then the limit

w = lim
j→∞

(θi0 ◦ θi1 ◦ ... ◦ θij )(a), a ∈ A,
sometimes exists, and is then said to be a s-adic construction of w (see also the DT0L-

systems [KRS97]). For instance in [CN10, Section 4.11], the following infinite set of
substitutions is considered over A = {a, b, c}:

for each i > 0, θi(a) = b, θi(b) = cai+1, θi(c) = cai.

For any composition of these substitutions applied to the letter c, the above limit con-
verges to a word w with linear complexity p(n) ≤ 3n, ∀n ≥ 1, and if there is C such
that for all j ∈ N, ij ≤ C, then the associated shift Lw is uniquely ergodic. It is also
minimal [Dur00, BD14]. Thus for all infinite compositions over a finite subset of {θi},
Proposition 5.2.1 applies to Lw.

The approximated IET graph T100 of the s-adic construction limn→∞(θi0 ◦θi1 ◦ ...◦θin)(c),
where i0i1i2...in... is the fixed point θωfib(1) of the Fibonacci substitution defined over the

alphabet {1, 2} instead of {a, b} (together with all the corresponding v(k)).
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The approximated IET graph T100 of limn→∞(θi0 ◦ θi1 ◦ ... ◦ θin)(c), where i0i1i2...in... is
the fixed point θωtm(1) of the Thue-Morse substitution defined over {1, 2} instead of {a, b}.

The approximated IET graph T100 of limn→∞(θi0 ◦ θi1 ◦ ... ◦ θin)(c), where i0i1i2...in... is
the fixed point θωcha(1) of the Chacon substitution defined over {1, 2} instead of {a, b}.
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G Speculative Constructions of IET Graphs

The next few examples of IET graphs are about shifts which are not proved to satisfy all
the assumptions to ensure the straightforward application of Proposition 5.1.3 through
Proposition 5.2.1. We nevertheless show how they could look like ({Tn} always exists).

G.1 Toeplitz Shifts

There are other ways of describing minimal words than using substitutions. Let ? be a
letter not in A. For a finite word v over (A ∪ {?}) not starting by ?, let t0(v) = vω,
ti+1(v) = ti(v), where ti(v) is the word obtained from ti−1(v) by replacing the first
occurrence of ? in ti−1(v) by the ith letter of ti−1(v) (always different from ?). Then

t(v) = limi→∞ti(u) ∈ AN

is the Toeplitz word determined by the pattern v. If p is the length of v, and q is
the number of ? in v, then t(v) is said to be a (p, q)-Toeplitz word [CK97]. Toeplitz
words are minimal, and there are known to be aperiodic iff the prefix of length p is not
d-periodic, where d = gcd(p, q) [CK97]. Moreover, a non-periodic (p, q) Toeplitz has
complexity p(n) = Θ(nlog(p/d)/(log(p/q))). Thus, zero topological entropy holds, but the
fact that {Tn}n>1 converges without subsequence extraction has not been proved. Here
are nevertheless the aspect of some of the corresponding graphs.

The graph T70 for the shift associated with t(aaaaaab ? ?) for which p(n) ≈ Θ(n1.46)
(together with the first corresponding v(k)).
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The graph T70 for the shift associated with t(aaaab ? ?) for which p(n) ≈ Θ(n1.55).

The graph T50 for the shift associated with t(aab ? ?), for which p(n) ≈ Θ(n1.75).
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G.2 The Kolakoski Shift

The Kolakoski sequence κ consists of blocks of 1 and 2, each being of length either 1
or 2, where the length of the ith block is equal to the ith letter of κ [Dek97, Fog02]:

κ = 2211212212211211221211212211211212212211...

Nothing has been established about κ in terms of complexity, recurrence, ergodicity. So no
assumption can be readily checked to apply Propositions 5.1.3 or 5.2.1. We nevertheless
show the corresponding approximated graph below. For v = v1...vn ∈ Factκ, ṽ denotes

ṽ1...ṽn, where 1̃ = 2, 2̃ = 1, and it is also conjectured that Factκ = F̃ actκ [Dek97]. The
symmetry of the graph is alike the one of the Thue-Morse IET Ttm, and suggests even
that: au ∈ Factκ with u not left special iff ãu ∈ Factκ with ũ not left special (a ∈ {1, 2}).

The graph T30 of the shift associated with κ (together with the first v(k)).

13



References
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