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Abstract. We show that minimal shifts with zero topological entropy are topologically

conjugate to interval exchange transformations, which are generally infinite. When these

shifts have linear factor complexity (linear block growth), the conjugate interval exchanges

are proved to satisfy strong finiteness properties.
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1 Introduction

Interval exchange transformations (IETs) are maps over I = [0, 1) which can
be defined as permutations of intervals partitioning I. In the finite case, these
maps are just piecewise isometries of I onto itself, or equivalently, injective maps
preserving measure having only a finite number of discontinuities. They happen
to be a fundamental notion in dynamical systems and ergodic theory [CFS82,
Mañ87, HK02]. Another important notion in the same context is the shift σ on
the set AN of infinite words (symbolic sequences) over a finite alphabet A: this
simple continuous map consists in erasing the first letter of its argument. The
pair (AN, σ) forms a basic topological dynamical system, where AN is then called
the full shift over A; if L is a closed σ-invariant subset of AN, the pair (L, σ) also
induces such a system, where L is then just called a shift [LM95, Kit98]. The
topological entropy of a shift L depends on the factor complexity (block growth)
of L [MH38, Par66, CN10], i.e. the map pL on N∗ giving for each n the number of
distinct length-n factors (subblocks) occurring in the words of L. Now, a known
general relationship between all the above concepts is the following: the support I
of a finite IET can be embedded as a subset into a measured compact space in
such a way that the IET extends to a measure-preserving continuous map, whose
natural symbolic conjugate is a shift L with a factor complexity bounded by an
affine function (thus L has zero topological entropy) [Kea75]. The main idea of
this paper is to study this relationship the other way around, that is, starting
from shifts to build topologically conjugate IETs, generally with infinitely many
discontinuities, and using factor complexity to determine families of these IETs.
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Thus, given a shift L we first describe an ordered measured compact space XL

containing I, and a continuous self-map fL on XL in such a way that (L, σ)
is topologically conjugate to (XL, fL). Next, we show how fL can be seen as
an extension over XL of an IET TL over I. We shall mostly consider aperiodic
minimal shifts, i.e. shifts with no periodic word and containing no proper shift.
With this respect, the first main result we prove is the following:

Theorem 1 Let L be a measured minimal aperiodic shift with zero topological en-
tropy. Then (L, σ) is topologically conjugate to (XL, fL), where fL is the extension
over XL of an IET TL on I ⊂ XL.

This result is to be put into perspective with the fact that aperiodic measure
preserving transformations of a Lebesgue space are known to be isomorphic to
infinite IETs [AOW85]: Besides the fact it defines a tight relationship between
shifts and transformations over [0, 1), Theorem 1 is about topological isomor-
phisms – i.e. homeomorphisms –, and not only about isomorphisms – i.e. measure-
preserving maps. Another comparison point is that the conjugate IETs given by
Theorem 1 can have up to a null measure infinite set of discontinuities, while
being always piecewise increasing. Also, the construction behind these conjugate
maps has the following consistency property: starting with a piecewise increas-
ing IET T , and coding its dynamics after a finite monotonicity partition of I, a
shift is obtained to which Theorem 1 applies, yielding an IET coinciding with T
(see Proposition 3.3.3 further).

The paper focuses next on aperiodic minimal shifts L with linear complex-
ity [Fog02, CN10], i.e. such that pL(n) = O(n), forming a family of shifts with
zero topological entropy, which contains all the simplest non-trivial ones. In par-
ticular, these linear complexity shifts include the conjugate shifts obtained from
the natural coding of finite IETs, but also e.g. the shifts associated with primitive
substitutions [Qué10]. Now, the simplicity behind linear complexity reflects in
the conjugate IETs. As a matter of fact, in this case, a conjugate IET given by
Theorem 1 has three properties: in addition to be piecewise increasing, its discon-
tinuities may accumulate only at a finite set, and all these discontinuities belong
to only finitely many distinct iterates (full orbits) of the IET. We call almost fi-
nite an IET satisfying these properties, and the second main result we prove is
the following variation of Theorem 1:

Theorem 2 Let L be a measured minimal aperiodic shift with linear complex-
ity. Then (L, σ) is topologically conjugate to (XL, fL), where fL is the extension
over XL of an almost finite IET TL on I ⊂ XL.

The above theorems can be constructive. In particular, we give a technique
to exhibit σ-invariant measures on the shifts L for which the conjugate IETs can
be explicitly built (see Proposition 5.1.3, and the examples illustrating it).
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Piecewise increasingness 
is the main specific 
property of the conjugate 
IETs obtained from Th. 1.
It is a direct consequence 
of the definition of the 
map phi_mu (see p.5). 



2 Basic Definitions

2.1 Interval Exchange Transformations

Definition 1 An orientation preserving finite interval exchange transformation∗

(IET) is a map T : I → I, where I = [0, 1), with:

• A finite set {xi}i=0,...,m−1 of discontinuities, denoted by D, with x0 = 0 <
x1 < ... < xm−1 < xm = 1, which determines an ordered partition

⊔m−1
i=0 Ii

of I formed by the right-open intervals Ii = [xi, xi+1),

such that:

• T is injective, and T is a translation on each interval Ii, i.e. for each i =
0, ...,m− 1, there exists ki ∈ R such that for all x ∈ Ii, T (x) = x+ ki.

Such a finite IET T is just a piecewise order-preserving isometry of I. It is right-
continuous, and measure preserving, being injective and with derivative 1 on I\D.
A usual way of interpreting T – giving its name to the notion – is the following:
the intervals Ii, as ordered components of the partition

⊔m−1
i=0 Ii of I, are permuted

in the image of T so as to form another partition
⊔m−1
i=0 Iπ(i) of I, where π is the

permutation over {0, ...,m− 1} induced by the ki determining T . Indeed, an IET
can also be defined by a pair (λ, π), where λ is the vector of the lengths of the
Ii, and π is a permutation of the Ii. Note that, given an IET, the partition of I
can be refined by using any finite set B ⊃ D of points, and such a refinement can
be used as well in Definition 1 by replacing D by B. The points determining a
specific partition of an IET T are then usually called the separation points of T .

The above definition of an IET can be extended to include infinity as follows:

Definition 2 An orientation preserving infinite interval exchange transforma-

tion is a map T : I → I, where I = [0, 1), with:

• An infinite set Y of discontinuities such that the closure of Y in I, denoted
by D, has null measure and determines an ordered partition of I formed by:
(i) The right-open intervals [x, x′) with x ∈ D, x′ ∈ D∪{1}, [x, x′)∩D = {x}
(ii) The set Dacc,r of the accumulation points of D from the right,

such that:

• T is injective on I \Dacc,r, right-continuous on I, and T is a translation on
each right-open interval of the above partition†.

An infinite IET T is also measure preserving, being injective with derivative 1
on I \D, and D being of null measure. Since T is right-continuous on I, its values
on Dacc,r are determined by its values on I \ Dacc,r. Like in the finite case, D can
be replaced in the above definition by any null-measure set B of separation points
such that B ⊃ D, where B∪{1} is compact. Note that we can use a null-measure
infinite set B for finite IETs too.
∗In this paper, it is sufficient to consider the orientation preserving case only, i.e. interval

exchange transformations with (+1) slopes, and no (−1) slopes as in the general case [Mañ87].
†Infinite IETs are considered in different ways in the literature depending on the authors,

e.g. in [AOW85], the discontinuities accumulate only at 1; in [Hoo15], the discontinuities are
countable and the partitioned interval may have infinite length.
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This remark is a 
consequence of the 
choice taken here for 
distinguishing between 
finite and infinite IETs: 
An IET must have an 
infinite number of 
discontinuities to be 
infinite. (In)finiteness is 
intrinsic to T as a map, 
and not as a map 
together with its set of 
separation points. 

The point x could seem 
at first to belong to Y 
only, so that the left ends 
of the intervals are 
always discontinuities of 
T (like in the finite case). 
But in the particular case 
where x is an 
accumulation point from 
the left of points in Y, the 
map T can be 
continuous on x too. The 
last condition can be 
also expressed as 
[x,x')\cap D = {x}.

This possible non-
injectivity on a null-
measure set is another 
noticeable property of 
these IETs. Note that   
when the only allowed 
accumulation point is 1, 
like e.g. in [AOW85]), 
injectivity can readily be 
required on all of I.



2.2 Words

Let A be a finite alphabet, let A+ be the set of finite words over A, let A∗ be A+

with the empty word ε, and let AN be the set of infinite words over A. The
alphabet A can be endowed with the discrete topology, and the resulting product
topology on AN is metrizable and compact. The usual associated metric is the
Cantor metric: if w = a0a1a2... and w′ = a′0a

′
1a
′
2... in AN, with ai, a

′
i ∈ A,

their distance is 0 if they are equal, and 2−k if not, where k is the smallest non-
negative integer for which ak 6= a′k. Let v = v0v1...vn ∈ A∗, with vi ∈ A, then its
cylinder set (for short, cylinder) is Cyl(v) = {w = a0a1a2... ∈ AN | a0 = v0, a1 =
v1, ..., an = vn}. A cylinder is a clopen set, and the collection of all the cylinders
forms a basis for the topology on AN. For L ⊆ AN and v ∈ A∗, the cylinder in the
subspace topology is CylL(v) = Cyl(v)∩L. Let ≤ be an order over A, propagated
to all the words in A+ and AN as the lexicographic order. Then for every w,w′ ∈ L
with w ≤ w′, the word interval [w,w′] in L is {w′′ ∈ L |w ≤ w′′ ≤ w′}. Note that
the induced order topology is the same as the product topology.

A factor (or subblock) of a word w is a finite word v such that w = w′vw′′,
where w′, w′′ are possibly empty, and where w′vw′′ denotes the word concatenation
of w′, v and w′′. The length of v is denoted by |v|. The set of all distinct factors
of a word w is denoted by Factw, and for a set L ⊆ AN, by FactL =

⋃
w∈L Factw.

For each n ∈ N∗, the set of all the distinct factors v of w such that |v| = n
is denoted by Factw(n), and for L ⊆ AN, by FactL(n) =

⋃
w∈L Factw(n). The

(factor) complexity [MH38, CN10] of a word w is the function pw : N∗ → N∗, with
pw(n) = |Factw(n)|, where |.| for a set denotes its cardinality, and for L ⊆ AN,
it is pL(n) = |FactL(n)|. When L is a shift, its topological entropy [Par66] is
defined as limn→∞ log(pL(n))/n (which exists, since log(pL(n)) is subadditive).

An infinite word w is called minimal when each factor in Factw occurs in-
finitely often in w with bounded gaps, i.e. for each factor v of w = a0a1..., the
ordered sequence of distinct indexes {nj}j∈N such that anj ...anj+|v|−1 = v is in-
finite, and nj+1 − nj is bounded independently of j [MH38]. Such a word w is
minimal aperiodic when it is not periodic, i.e. when there is no factor v such that
w = vω. A set of finite words is prolongable if all its words can always be con-
catenated with letters to the right and to the left so that the resulting words still
belong to the set. When L ⊆ AN is made of minimal words, FactL is prolongable.

2.3 Dynamical Systems and Shifts

Considering a self-map f : X → X, where X is a measured space and where f is
measurable, the pair (X, f) is called a measured dynamical system. When X is
a topological space and f is continuous, (X, f) is called a topological dynamical

system. The shift map σ over AN sends a0a1... to a′0a
′
1..., where a′i = ai+1 for

every i ∈ N, and it is a continuous map over AN. A shift space (or simply a
shift) [LM95] is a closed σ-invariant set of words L in AN, and accordingly, (L, σ)
is an instance of a topological dynamical system. For a dynamical system (X, f),
the (positive) orbit of a point x ∈ X is {fn(x)}n∈N. When f is invertible, the
full orbit is {fn(x)}n∈Z, and when f is not invertible, it is the ∼-class of points
in X containing x, where x′ ∼ x if there are n1, n2 ≥ 0 such that fn1(x′) =
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This definition of full orbits makes them transitive in every case (in
particular when f is non-injective). This definition is also the usual one
in complex plane dynamics, where such orbits are called "grand orbits"
(see e.g. J. Milnor, 2006; L. Ahlfors, 2006) .

In this paper, full orbits are mainly used in Definition 3 (p. 20), and in
Lemma 4.2.6 to prove Theorem 2. Note that since Theorem 2 is about
a case where IETs have at most a finite set of points where f is non-
injective, other definitions of full orbits (e.g., C. Robinson, 1995) could
have been used without impairing the conclusions of this theorem.



fn2(x) [KST01]. A continuous map f : X → X is called minimal if there is no
non-empty closed proper subset X ′ ( X such that f(X ′) = X ′, or equivalently
if the orbit of each x ∈ X is dense in X. The map f is minimal aperiodic if X
does not consist of a single periodic orbit. Accordingly, a minimal shift is a shift
containing no proper shift, and a minimal aperiodic shift is a shift which is not
made of the orbit of one single periodic word. If a word w belongs to a minimal
shift L, it is minimal as a word, and Factw = FactL.

For two measured dynamical systems (X, f) and (Y, g), if there exists a mea-
surable isomorphism φ : X → Y such that φ◦f = g ◦φ, then (X, f) and (Y, g) are
said to be conjugate by φ. When (X, f) and (Y, g) are topological dynamical sys-
tems, and φ is a continuous onto map (resp. a homeomorphism), (X, f) and (Y, g)
are said to be topologically semi-conjugate (resp. topologically conjugate) by φ.

3 From Shifts To Interval Exchange Transformations

3.1 The Conjugacies

We start here by presenting basic results about how to embed ordered measured
spaces coming from shifts into [0, 1].

For any dynamical system (X, f), where X is a compact space and f is a
continuous self-map on X, there exist Borel probability measures on X which are
f -invariant [HK02]. If f is minimal aperiodic, any such measure is nonatomic and
takes positive values on open sets. Borel measures on compact sets behave well
with respect to approximating measurable sets by open and/or closed sets since
they are regular, i.e. for any measurable set E, µ(E) = sup{µ(E′) | E′ compact,
E′ ⊆ E} and µ(E) = inf{µ(E′) | E′ open, E ⊆ E′}. For a regular measure, to be
nonatomic is equivalent to every singleton having measure 0.

From now on, L denotes a shift lexicographically ordered by ≤, and endowed
with a σ-invariant Borel probability measure µ which is nonatomic (so that the
measure of any single word in L is zero), positive on cylinders, and regular. If L
is a minimal aperiodic shift, as just said above, such measures exist.

Remark 3.1.1 There is no isolated word in L.

Proof. If there was an isolated word w in L, there would exist a prefix v of w
such that CylL(v) contains only w, but then {w} would have positive measure.�

Using µ and the order≤ over L, and denoting the smallest word of L by wL,min,
we define:

φµ : L → I = [0, 1]
w 7→ µ([wL,min, w]).

Lemma 3.1.2 φµ is a monotonic non-decreasing continuous map.

Proof. Since µ is a measure which takes its values in [0, 1], φµ is monotonic non-
decreasing. For continuity, the involved spaces being compact, we just check that
the image by φµ of every sequence in L converging to some w ∈ L is a sequence
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converging to φµ(w). Let S be such a sequence, from which we extract two
subsequences {w+

i } and {w−i }, respectively formed by decreasing words greater
than w and by increasing words smaller than w. At least one of them is infinite,
say {w+

i }, and [wL,min, w] =
⋂
i[wL,min, w

+
i ). Since µ is regular, µ([wL,min, w]) =

φµ(w) = infi µ([wL,min, w
+
i )), and since µ is zero on single words, for all i > 0,

µ([wL,min, w
+
i ]) = φµ(w+

i ), thus infi φµ(w+
i ) = φµ(w). Hence since φµ is non-

decreasing, {φµ(w+
i )} converges to φµ(w), whatever the choice of {w+

i }. If {w−i }
is also infinite, similar arguments as for {w+

i } apply using suprema instead of
infima, whence the result. �

Lemma 3.1.3 φµ is a surjective map.

Proof. Since L is compact and φµ is continuous, I \ φµ(L) is open, and if not
empty it is a disjoint union of open intervals, since 0 and 1 belong to φµ(L). Let
J = (x, x′), with x, x′ ∈ φµ(L), be one of these intervals, and let wx,sup = sup{w ∈
L | φµ(w) = x} and wx′,inf = inf{w ∈ L | φµ(w) = x′}. Since x < x′ and since φµ
is non-decreasing, wx,sup < wx′,inf . Also, there is no word w ∈ L with wx,sup <
w < wx′,inf , otherwise φµ(wx,sup) ≤ φµ(w) ≤ φµ(wx′,inf ), and by definition of J
we would have φµ(w) = x or φµ(w) = x′, contradicting the definitions of wx,sup or
wx′,inf . Now, φµ(wx′,inf )−φµ(wx,sup) = µ([wL,min, wx′,inf ])−µ([wL,min, wx,sup]) =
µ((wx,sup, wx′,inf ]), which is equal to the non-zero length of J . But we just have
checked that (wx,sup, wx′,inf ] = {wx′,inf} and µ is zero on single words. Hence
there is no interval such as J , so φµ is onto. �

We now characterize the points where φµ is non-injective. For each n > 0, the
length-n factor set FactL(n) induces an ordered finite partition of L defined as

CY LL(n) : L =
⊔

v∈FactL(n)

CylL(v),

where the CylL(v) are ordered in L according to the lexicographic order of the v
in FactL(n). By compactness, each CylL(v) has two endpoints: its smallest and
its greatest words. We say that w,w′ ∈ L (resp. Cyl(u), Cyl(u′) ∈ CY LL(n),
n > 0) are consecutive if w < w′ (resp. Cyl(u) < Cyl(u′)) and if there is no word
w′′ ∈ L such that w < w′′ < w′ (resp. Cyl(u) < w′′ < Cyl(u′)).

Lemma 3.1.4 Let w,w′ ∈ L. Then w,w′ are consecutive iff for some n > 0 they
are endpoints, respectively the greatest and the smallest words, of two consecutive
cylinders of CY LL(n).

Proof. (⇐): Trivial. (⇒): Assume w < w′, with w,w′ consecutive. Let
u ∈ A∗ be their longest common prefix, so that w = ua1a2... and w′ = ua′1a

′
2...,

with ai, a
′
i ∈ A. Thus w,w′ ∈ CylL(u), and a1 < a′1. Since there is no word

between w and w′, the prefix ua1...aj−1aj of w for each j > 1, is also the greatest
prefix for all the words in CylL(ua1). Otherwise, there would be a factor ua1v ∈
FactL(|u|+ j), v ∈ A+, such that ua1...aj−1aj < ua1v as a prefix of a word w′′ =
ua1v... ∈ L. But then w < w′′ < w′, which is impossible. Thus w is the greatest
word in CylL(ua1). By similar arguments, w′ is the smallest word in CylL(ua′1).
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Lemma 3.1.4 also 
implies that there could 
be no three consecutive 
words in L since there is 
no isolated word in L.



Finally, there is no other a ∈ A with a1 < a < a′1, such that there is w′′′ =
ua... ∈ L, otherwise again w < w′′′ < w′. Hence CylL(ua1) and CylL(ua′1) are
consecutive cylinders in CY LL(|u|+ 1). �

Lemma 3.1.5 Let w,w′ ∈ L. Then φµ is non-injective on {w,w′} iff w,w′ are
consecutive.

Proof. (⇐): Assume w < w′, with w,w′ consecutive. Then we have φµ(w′) −
φµ(w) = µ([wL,min, w

′]) − µ([wL,min, w]) = µ((w,w′]) = µ({w′}) = 0, since µ is
zero on single words. (⇒): Assume w < w′, with w,w′ non-consecutive. Thus
there exists w′′ ∈ L with w < w′′ < w′, so that there is a length-n prefix u
of w′′, with n > 0, distinct from the length-n prefixes of w and w′. But then,
every w′′′ ∈ CylL(u) is such that w < w′′′ < w′, and we have φµ(w′) − φµ(w) =
µ((w,w′]) ≥ µ(CylL(u)) > 0, since µ is positive on cylinders. �

Thus φ−1µ (x), x ∈ I, consists of either one or two words in L, and a consequence
of Lemma 3.1.4 is that the set of points with two-words preimages is countable.

Let us then transform φµ into an injective map by embedding I as a subset of
a larger compact space (using a similar construction to the classic one for trans-
forming piecewise continuous self-maps into homeomorphisms, like e.g. in [Kea75]
for IETs). We first define the following spaces and maps:

• Z0 ⊂ I denotes the image by φµ of the set of points where φµ is not injective.

• Z−0 denotes a copy of Z0.

• XL denotes I t Z−0 , ordered in such a way that each point in Z0 lies to the
right of its copy in Z−0 , with no other point in between. We endow XL with
the order topology for this order relation.

• ι : I → XL denotes the inclusion map. It is increasing and right-continuous
on I.

• κ : XL → I denotes the canonical map associated with the equivalence
relation in XL which identifies each point in Z0 with its copy in Z−0 . It is
a non-decreasing continuous map, and it is onto. Accordingly, κ ◦ ι is the
identity map on I.

Having in mind Lemma 3.1.5 we then define the following map from φµ:

φ : L → XL

w 7→


ι(φµ(w)) if φµ(w) /∈ Z0, or

if φµ(w) ∈ Z0, with φ−1µ (φµ(w)) = {w,w′}, w > w′.
ι(φµ(w))− if φµ(w) ∈ Z0, with φ−1µ (φµ(w)) = {w,w′}, w < w′,

where ι(φµ(w))− is the copy of ι(φµ(w)) in Z−0 .

Note that κ ◦ φ = φµ.
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Said differently:
1) If w belongs to the set where phi_mu is injective, then phi(w)=phi_mu(w). 
(nothing has to be done with respect to phi_mu).
2) Otherwise, w belongs to a pair (w,w') of consecutive words, inverse 
image of phi_mu(w) : if w is the greater, then again, phi(w)=phi_mu(w), 
otherwise phi(w) is set as the copy point of phi_mu(w) in Z_0^-.
 



Lemma 3.1.6 φ is an increasing homeomorphism.

Proof. By Lemma 3.1.2, φ is increasing where φµ is injective since φ = φµ on
these points. Where φµ is not injective, that is, for each x ∈ Z0 where φ−1µ (x) =
{w,w′} for some w,w′ ∈ L with w < w′, then by definition of XL and φ we have
φ(w) < φ(w′). Therefore φ is everywhere increasing, thus into. Since XL = ι(I)t
Z−0 , φ is also onto. Hence φ is a monotonic bijection between two totally ordered
sets endowed with their respective order topologies, so it is a homeomorphism.�

We define two more maps:

fL : XL → XL TL : I → I
x 7→ φ(σ(φ−1(x))) x 7→ κ(fL(ι(x)))

Proposition 3.1.7 Consider the following diagram:

L XL I

L XL I

σ fL TL

φ κ

φ κ

φµ

φµ

ι

ι

a. For every x ∈ I, ι(TL(x)) = fL(ι(x)).

b. (L, σ) is topologically conjugate to (XL, fL) by φ.

c. ((ι(I) ⊂ XL), fL) is topologically semi-conjugate to (I, TL) by κ.

d. ((φ−1(ι(I)) ⊂ L), σ) is topologically semi-conjugate to (I, TL) by φµ.

Proof. (a): Note that 0, 1 /∈ Z0. Indeed, φµ being non-decreasing, if φ−1µ (0)
(resp. φ−1µ (1)) was made of two words, consecutive by Lemma 3.1.5, they would
be the two smallest (resp. greatest) in L, and by Lemma 3.1.4 the smaller one
(resp. greater one) would be isolated, contradicting Remark 3.1.1. Now, we put
I ′ = I \ (Z0 ∪ {0, 1}). By definition, κ is injective on ι(I), hence on ι(I ′), thus
since κ is a left inverse of ι, it is also a right inverse of ι when restricted to
this set. We compose TL = κ ◦ fL ◦ ι on both sides to the left by ι, so that
ι ◦ TL = fL ◦ ι is valid on I ′, provided that fL(ι(I ′)) ⊂ ι(I ′), which is proved
as follows: by definition of I ′, for every x ∈ I ′, φ−1µ (x) = φ−1(ι(x)), that is,
φ−1µ (I ′) = φ−1(ι(I ′)). Also, by Lemmas 3.1.4 and 3.1.5, a word w is in φ−1µ (I ′) iff
it is not a cylinder endpoint. Thus, there are words in L arbitrarily close to w from
the right and the left, that is, words smaller and greater than w with arbitrarily
long prefixes common with those of w. By continuity of σ, the same holds for
σ(w), so σ(φ−1(ι(I ′))) ⊂ φ−1(ι(I ′)). Composing on both sides to the left by φ
yields fL(ι(I ′)) ⊂ ι(I ′), as required. Now, Z0 being countable, I ′ is dense in I.
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This set should 
probably have been 
given a name: for the 
IETs to come in the 
next sections, it just 
corresponds to the set 
of symbolic orbits in L 
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orbits starting from I, 
a set generally not 
closed (cf. the right-
openess of the 
intervals), L being the 
closure of this set. 



Since both ι ◦ TL and fL ◦ ι are compositions of right-continuous maps on I, they
are right-continuous too, so ι ◦ TL = fL ◦ ι extends to all of I.
(b): φ is a homeomorphism, thus by definition of fL, the result follows.
(c): By definition of TL, we have the conjugacy TL ◦ κ = κ ◦ fL on ι(I ′). Both
members of this identity are right-continuous maps, and by the same arguments
as in (a), this conjugacy holds on all of ι(I). Next, again by definition of TL, we
have TL(1) = κ(fL(ι(1))), and 1 has only one preimage by κ which is ι(1), so the
conjugacy holds on ι(I) too. Finally, κ is measure-preserving and onto.
(d): Using the fact that κ◦φ = φµ, and the commutativity properties given by (b)
and (c) on κ and φ, the result follows. �

3.2 Checking the Infinite Exchange Transformation Properties

We now focus on when TL is an IET. Here are first three general lemmas:

Lemma 3.2.1 The image of µ by φµ is the Lebesgue measure on I, which is pre-
served by TL.

Proof. We denote by f∗µ the image of the measure µ by the map f . By Lem-
mas 3.1.2 and 3.1.3, φµ is continuous and surjective, thus the preimage of any
interval [0, x], with x ∈ I, is an interval [wL,min, w] in L, where φµ(w) = x =
µ([wL,min, w]). Hence (φµ)∗µ is the Lebesgue measure on I. Next, by Proposi-
tion 3.1.7(d), φµ ◦ σ = TL ◦ φµ on φ−1(ι(I)), a set of full measure in L. Thus
(φµ)∗σ∗µ = TL∗(φµ)∗µ, and since σ preserves µ, (φµ)∗σ∗µ = (φµ)∗µ, that is, TL
preserves the Lebesgue measure on I. �

From CY LL(1), that is, the partition of L given by
⊔
a∈ACylL(a), we define

the induced partition of I as

PA : I =
⊔
a∈A

IL,a, where IL,a = {x ∈ I | φ−1(ι(x)) ∈ CylL(a)}. (1)

Note that each IL,a is a right-open interval in I. Indeed, if x < x′, with x, x′ ∈ IL,a,
then every x′′ ∈ I, with x < x′′ < x′, is also in IL,a since φ−1 and ι both
preserve the order. Moreover, if a < a′, where a, a′ ∈ A are consecutive, then
if w is the greatest word in CylL(a), and w′ the smallest in CylL(a′), we have
φµ(w) = φµ(w′) = y, where y ∈ Z0. By definition of Z0 and φ and since w < w′,
φ−1(ι(y)) = w′, thus y ∈ IL,a′ , which means that IL,a is right-open.

Lemma 3.2.2 TL is right-continuous on I, and piecewise increasing on PA.

Proof. TL is right-continuous on I, being a composition of the right-continuous
maps κ, fL and ι. Next, TL is non-decreasing on each IL,a in PA. Indeed, by
Proposition 3.1.7(d), TL ◦ φµ = φµ ◦ σ on φ−1(ι(IL,a)) ⊂ CylL(a), and φµ is non-
decreasing on I, while σ is increasing on CylL(a). Now, assume there exist x, x′ ∈
IL,a, with x < x′, such that TL(x) = TL(x′). Since TL is non-decreasing it
must be constant on (x, x′), which is impossible since TL is measure-preserving
by Lemma 3.2.1, hence TL is increasing on each IL,a. �
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At the end of this Section
3.1, we have described
conjugacies between
shifts and the maps T_L
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phi_mu^{-1}  would give
closed intervals, thus no
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Lemma 3.2.3 TL(I) ⊂ I.

Proof. By Lemma 3.2.2, TL is piecewise increasing on the IL,a. Let J be one of
these intervals, and assume TL(x) = 1 for some x ∈ J . But TL being increasing
on J , and J being right-open, TL(y) would be > 1 for all y ∈ J with y > x. �

As a next step, let us exhibit conditions so that there exists a partition of I
on which TL is a translation on its components (PA is not such a partition in
general). For that purpose, we first study the effect of σ over the word intervals
in L. A factor u ∈ FactL is called left special (resp. right special) if u has at least
two distinct left (resp. right) letter prolongations in FactL, i.e., if u ∈ FactL(n),
then u is the suffix (resp. prefix) of at least two distinct factors in FactL(n+ 1).

Lemma 3.2.4 Let L be a shift such that FactL is prolongable. Let w,w′ ∈ CylL(au),
with a ∈ A, u ∈ FactL not left special, and w < w′. Then

σ([w,w′]) = [σ(w), σ(w′)]. (2)

Proof. (⊆): Let w = auv and w′ = auv′, with v, v′ ∈ AN. Let w′′ =
auv′′ ∈ [w,w′], with v′′ ∈ AN. By lexicographic order, we have uv ≤ uv′′ ≤ uv′.
Hence σ(w′′) = uv′′ belongs to [uv, uv′] = [σ(w), σ(w′)].
(⊇): Let again w = auv and w′ = auv′, with v, v′ ∈ AN. Let w′′ = uv′′ ∈
[σ(w), σ(w′)], with v′′ ∈ AN. Consider {uuj}j∈N the sequence of all the prefixes
of w′′ with uj ∈ A∗ starting with u. By prolongability to the left, each uuj has at
least one left letter prolongation, but it can only be a since u is not left special. By
prolongability to the right, each auuj is the prefix of at least one word in L, which
makes a sequence converging to the word aw′′, belonging to L by compactness
of L. Thus there is one left letter prolongation for w′′ in L, unique since u is not
left special, that is, aw′′ = σ−1(w′′) = σ−1(uv′′). Since uv ≤ uv′′ ≤ uv′, we have
auv ≤ aw′′ ≤ auv′, that is, aw′′ ∈ [w,w′]. Hence w′′ ∈ σ([w,w′]). �

Note that a specific case of the above is σ(CylL(au)) = CylL(u), where a ∈ A
and u is not left special. Now, the idea is to build a partition of L essentially made
of cylinders such that Equality (2) holds in all of these cylinders. An infinite left

special word (or infinite left special branch) with respect to FactL, where L ⊆ AN,
is a one-way infinite word such that all its prefixes are left special factors in FactL.
We denote by SPL ⊆ AN the set of all the infinite left special words with respect
to FactL. When L is a shift, SPL is included in L.

Lemma 3.2.5 Let L be a shift having left special factors of arbitrary length, mea-
sured by µ, with µ(SPL) = 0. Then, there is an infinite partition of L defined as

PARTL : L =
⊔
k>0

CylL(v(k)) tWSPL , (3)

where:

• For each k > 0, v(k) ∈ FactL, such that for all w,w′ ∈ CylL(v(k)) with
w < w′, σ([w,w′]) = [σ(w), σ(w′)] (i.e. Equality (2) holds).

• WSPL = σ−1(SPL) is a null measure non-empty set in L, which is formed
by the accumulation of the endpoints of CylL(v(k)) in L.
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As is required for an IET,  
T_L is indeed a self-map 
over I, and from now on it 
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"having left special 
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Proof. Let us describe the cylinders of PARTL by an iterative process: as a first
step, consider the partition CY LL(2) of L, i.e.

⊔
aiaj∈FactL(2)CylL(aiaj), with

ai, aj ∈ A. By Lemma 3.2.4, for each non-left special aj , we have σ([w,w′]) =
[σ(w), σ(w′)] for all w,w′ ∈ CylL(aiaj), so that CylL(aiaj) is put in PARTL,
and aiaj is one of the v(k). As a second step, each of the remaining CylL(aiaj)
not put in PARTL during the first step, is partitioned with cylinders of the form
CylL(aiajak) in CY LL(3). Again, for each non-left special suffix ajak, the word
intervals in CylL(aiajak) satisfy Equality (2), and CylL(aiajak) is put in PARTL,
while aiajak is also one of the v(k). This refinement process is inductively applied
as long as cylinders remain at step n by partitioning them with cylinders in
CY LL(n+ 1), defining then all the cylinders of PARTL.

Since the left special factors of L can have arbitrary length, and since every
prefix of a left special word is left special, there is at least one left special factor
in L for each length. Thus, given any n > 0, and a left special factor u ∈
FactL(n), the cylinder CylL(au), a ∈ A, must still be refined during the nth step
of the above refinement process. Therefore, this process is necessarily infinite.
It determines infinite sequences of nested cylinders of the form {CylL(auj)}j∈N∗ ,
where uj ∈ FactL(j) is left special while being a prefix of uj+1, for all j. Such
a sequence {auj}j∈N∗ gives a limit infinite word, which belongs to WSPL since
{uj}j∈N∗ gives a limit infinite word in SPL. As a result, if a word w ∈ L does
not belong to some CylL(v(k)), it belongs to WSPL . Conversely, if w ∈ SPL, there
exist more than one left letter prolongation to each of its prefixes. Consider any
of these letters, say a ∈ A, so that aw ∈ σ−1(SPL) = WSPL . According to the
same above argument, each prefix uj of w determines a cylinder CylL(auj) which
has to be refined further. We have

⋂
uj prefix of w CylL(auj) = aw, where aw does

not belong to any cylinder CylL(v(k)), and induces an infinite refinement. Thus
PARTL is a partition since a word w in L belongs either to one of the cylinders
CylL(v(k)) obtained through a finite number of steps in the refinement process,
or to WSPL if w induces an infinite number of steps.

The set WSPL is not empty since SPL is not empty when there are infinitely
many left special factors. Also, WSPL is of null measure since SPL has been
assumed of null measure and σ is measure-preserving. Finally, WSPL occurs as
the set of the accumulation of the endpoints of CylL(v(k)) since again SPL is of
null measure, thus there is no cylinder having all its words in SPL. �

Note that if L is minimal aperiodic, it has left special factors of arbitrary length.
In order to exhibit examples of aperiodic minimal shifts, we use the following

classic technique. A substitution is a map θ : A → A′∗, where A and A′ are
alphabets, which is extended to words by sending w = ...aiai+1ai+2... to θ(w) =
...θ(ai)θ(ai+1)θ(ai+2)..., that is, on finite words, θ is just a monoid morphism
from A∗ to A′∗. For instance, the Thue-Morse substitution θtm over A = A′ =
{a, b} is defined by θtm(a) = ab and θtm(b) = ba. When A = A′, a substitution
can be iterated. The set of factors of such a substitution is defined as Factθ =
{v ∈ A∗ | v ∈ Factθn(a), a ∈ A,n ∈ N}, and its associated shift as Lθ = {w ∈
AN | Factw ⊆ Factθ}. When θ is non-erasing, i.e. there is no a ∈ A whose image
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Thus PART_L is infinite too

The indexes k need not
be explicited so that the
v^(k) denote specific
factors, explaining here
this loose use. By
construction, the factors
v^(k) are just expected to
increase in length with k.

As an extreme counter-
example, let L be the full 
shift: then SP_L=L, and 
mu(SP_L)=1.

Recall that minimality for L 
implies that Fact_L is 
prolongable (see p.4).



is the empty word, and when a is a strict prefix of θ(a), then for all n ≥ 0, θn(a) is a
strict prefix of θ(n+1)(a). Thus {θn(a)}n∈N gives rise to a limit word in AN, denoted
by θω(a), which is a fixed point of θ. For instance, the Thue-Morse substitution
has two fixed points: θωtm(a) = w1 = abbabaabbaababba..., and θωtm(b) = w2 =
baababbaabbabaab.... Considering a fixed point w of a substitution θ, its associated

shift Lθ,w is then defined as the closure of {σn(w) | n ∈ N}. A substitution θ is said
to be primitive if there exists n > 0 such that for every a, b ∈ A, the word θn(a)
contains b. For a primitive substitution θ, it is known that [Qué10]: (1) if w is
any of its fixed points, Lθ = Lθ,w; (2) for all n > 0, Lθn = Lθ, so that periodic
points can also be considered; (3) Lθ is minimal. Thus for instance the Thue-Morse
substitution θtm generates a minimal shift Ltm, equal to Lθtm = Lθtm,w1 = Lθtm,w2 .
A primitive substitution is said to be aperiodic if its associated shift is minimal
aperiodic, e.g. θtm is known to be aperiodic [Thu12]‡.

Example 3.2.6 (Step-by-step construction of a partition PARTL). Considering
the above Thue-Morse shift Ltm, and its fixed points w1, w2, we build here the
first components of PARTLtm as in the proof of Lemma 3.2.5. First, we have:

FactLtm(1) = {a, b}
FactLtm(2) = {aa, ab, ba, bb}
FactLtm(3) = {aab, aba, abb, baa, bab, bba}
FactLtm(4) = {aaba, aabb, abaa, abab, abba, baab, baba, babb, bbaa}
FactLtm(5) = {aabab, aabba, abaab, ababb, abbaa, abbab, baaba, baabb, babaa,

babba, bbaab, bbaba}
Thus its first left special factors are: a, b, ab, ba, aba, abb, baa, bab, abba, baab. Ap-
plying the refinement process, the first step, based on CY LL(2), gives no cylin-
ders of PARTLtm since a and b are both left special factors. The second step,
based on CY LL(3), gives CylLtm(abb) and CylLtm(baa), since aa and bb are not
left special factors, thus v(1) = abb and v(2) = baa. The third step gives no
new cylinders since abba and baab are the only factors whose right suffix is not
left special, already contained in the cylinders of the preceding step. The fourth
step gives CylLtm(aabab), CylLtm(ababb), CylLtm(babaa), and CylLtm(bbaba), thus
v(3) = aabab, v(4) = ababb, v(5) = babaa, and v(6) = bbaba. And so on. ♦

Now, given a shift L, and PARTL as obtained from Lemma 3.2.5, we define
the induced partition of I as follows:

PARTL,I : I =
⊔
k>0

I
(k)
L tBSPL , (4)

where I
(k)
L = {x ∈ I | φ−1(ι(x)) ∈ CylL(v(k))}, and BSPL = {x ∈ I | φ−1(ι(x)) ∈

WSPL}. Each I
(k)
L is a right-open interval by the same arguments as for the

intervals of the partition PA (see p. 9).

Let BL be the closure in I of the left ends of the I
(k)
L , intersected with I (so

that 1 /∈ BL). Let BL,acc (resp. BL,acc,r) be the set of accumulation points (resp.
accumulation points from the right) of BL in I. Note that BSPL ⊂ BL,acc, and

‡More generally, aperiodicity for a substitution is decidable using [ER83].
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This is an abuse of
language since this
sequence is made of
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even that BSPL = BL,acc,r since an accumulation point x only to the left is the left

endpoint of some I
(k)
L and does not belong to BSPL (in this case, φ−1(ι(x)) /∈WSPL

because of the differences between ι(I) and XL – see also Definition 2).

Lemma 3.2.7 BL t {1} is a null-measure infinite compact set of points in I.

Proof. The set BL t {1} is compact by definition. Since the set of the left

endpoints of the I
(k)
L is countable, the measure of BL is the same as that of BL,acc,

and also as that of BL,acc,r which is equal to BSPL . Now, recall from Lemma 3.2.1
that the Lebesgue measure is the image of µ by φµ. Since φ−1µ (BSPL) = WSPL

and µ(WSPL) = 0, the measure of BL is also zero in I. �

Lemma 3.2.8 TL is a translation on each interval component I
(k)
L of PARTL,I .

Proof. Let the interior of I
(k)
L be denoted by I

(k)o

L . By definition of TL, for all

x ∈ I(k)
o

L ,
TL(x)− x = κ(φ(σ(φ−1(ι(x)))))− x. (5)

We first put φ−1(ι(x)) = w. Next, recalling that φµ = κ ◦ φ, and that κ ◦ ι is the
identity, we compose φ−1(ι(x)) = w on both sides to the left by κ ◦ φ, and get

x = κ(φ(w)) = φµ(w), so that (5) becomes for all x ∈ I(k)
o

L ,

TL(x)− x = κ(φ(σ(w)))− κ(φ(w)) = φµ(σ(w))− φµ(w). (6)

By definition of PARTL,I , the inverse image of I
(k)o

L by φµ is the interior C(k)o ,
where C(k) denotes CylL(v(k)) of PARTL. As a closed ordered set, C(k) has a
smallest word wC(k),min, and recall that wL,min denotes the smallest word of L,

so that for all w ∈ C(k)o , [wL,min, w] = [wL,min, wC(k),min] t (wC(k),min, w], then

φµ(w) = µ([wL,min, wC(k),min]) + µ([wC(k),min, w]). (7)

Since wC(k),min and w belong to the same cylinder, and wC(k),min < w, we have
σ(wC(k),min) < σ(w), hence

φµ(σ(w)) = µ([wL,min, σ(wC(k),min)]) + µ([σ(wC(k),min), σ(w)]).

Next, using the properties over the components of PARTL,

φµ(σ(w)) = µ([wL,min, σ(wC(k),min)]) + µ(σ([wC(k),min, w])) (by Equality (2))

= µ([wL,min, σ(wC(k),min)]) + µ(σ−1σ([wC(k),min, w])) (µ-preservation)

= µ([wL,min, σ(wC(k),min)]) + µ([wC(k),min, w]). (σ injectivity on C(k)o)

Therefore, from the above last equation and (7), we get for all w ∈ C(k)o ,

φµ(σ(w))− φµ(w) = µ([wL,min, σ(wC(k),min)])− µ([wL,min, wC(k),min]) = KC(k).

Thus KC(k) depends only on C(k)o to which w belongs, that is, it depends only on

the open interval I
(k)o

L to which x belongs. Hence, for every I
(k)
L of PARTL,I , and

its corresponding cylinder C(k) = CylL(v(k)) of PARTL, there is a constant KC(k)

such that for all x ∈ I
(k)o

L , TL(x) − x = KC(k) . By right-continuity of TL (see

Lemma 3.2.2), this equality extends to all of I
(k)
L . �
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We can now apply 
Eq.(2) over each 
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by Lemma 3.2.5, so 
as to interpret Eq.(2) 
as translations over 
the corresponding 
intervals in I.



Following Definition 2, let DL be the closure of YL in I, where YL is the set of
discontinuities of TL, which by Lemma 3.2.8, is necessarily included into BL. Let
DL,acc,r be the set of accumulation points of DL from the right.

Lemma 3.2.9 TL is injective on I \ DL,acc,r.
Proof. By Lemma 3.2.8, TL is a translation on each of the right-open interval

components I
(k)
L of PARTL,I . The set DL can be obtained by dropping all the

points from BL having a neighborhood where TL extends as a translation map, so
that TL is still a translation map on each right-open interval component of I \DL.
By Lemma 3.2.1, the Lebesgue measure is preserved by TL, and by Lemma 3.2.7,
BL has null measure, thus DL ⊆ BL has too. Now, if the open interval components
of I \ DL had overlaps in their translated images by TL, the global image would
be a set I ′ with µ(I ′) < 1, such that µ(T−1(I ′)) = µ(I \ DL) = 1, contradicting
measure preservation. Moreover, no image by TL of a left endpoint of these open
intervals can lie in the image of another interval, thus T is injective on all the
corresponding right-open intervals. Since DL \ DL,acc,r consists of all these left
endpoints, the result follows. �

Lemma 3.2.10 Let L be a shift measured by µ. If L has zero topological entropy,
then µ(SPL) = 0.

Proof. The topological entropy dominates the (measure-theoretic) entropies
on L with respect to all the invariant probability measures [HK02, Proposition
4.4.1]. Thus with respect to µ, the shift L has necessarily zero entropy. But then,
a dynamical system with zero entropy with respect to an invariant measure is
known to be invertible [HK02, Section 3.7k]), that is, it has an inverse on a subset
of full measure. In the case of a shift L, the set of words on which the shift map
is not invertible is exactly SPL, so that µ(SPL) = 0. �

We are now ready to prove Theorem 1 as stated in the introduction:

Proof. Since L is assumed aperiodic minimal, the results of Section 3.1 apply,
so that (L, σ) is a topological conjugate by φ of (XL, fL), where I is embedded as
a subset of XL in such a way that fL is an extension of TL. By Lemma 3.2.2, TL
is right-continuous, and by Lemma 3.2.10, µ(SPL) = 0 for any σ-invariant Borel
probability measure µ chosen for L. Minimal aperiodicity means L has left special
factors of arbitrary length, thus Lemma 3.2.5 applies. Hence, by Lemmas 3.2.7,
3.2.8 and 3.2.9, and since the set DL of TL is included into BL, TL is an IET. �

Note that Theorem 1 remains valid under the assumptions on L in Lemma 3.2.5,
in particular µ(SPL) = 0 can be used instead of zero topological entropy. Note
also that the above construction relies on BL, a set determined from PARTL,I ,
determined in turn from PARTL. This set of separation points for TL could have
been different, as it is just a set with the property of including DL (see Section 2.1).
However, following the construction of PARTL in the proof of Lemma 3.2.5, this
set has some word-combinatorics properties, and we shall use them henceforth.

As a complement, in view of Definition 2 of an infinite IET and of Lemma 3.2.9,
we give the following example:
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Lemma 3.2.10 is 
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"mu(SP_L)=0".



Example 3.2.11 (TL can be non-injective on DL,acc,r). Let us reconsider the
Thue-Morse substitution θtm over A = {a, b} (see Example 3.2.6), its associated
shift Ltm, and its fixed points w1 = θωtm(a) and w2 = θωtm(b). A bispecial factor is
a factor which is both right and left special. According to [Cas96], the bispecial
factors in Ltm are θntm(a), θntm(b), θntm(aba), θntm(bab), with n ≥ 0. Thus we have
{w1, w2} = SPLtm . In fact, in an aperiodic minimal shift, every infinite special
word has always infinitely many prefixes which are bispecial factors.

Let the lexicographic order over Ltm be determined by a < b. We claim that
w1, w2 are consecutive in Ltm, with w1 being the greatest word in CylLtm(a),
and w2 the smallest word in CylLtm(b). Assume on the contrary there is w′1 ∈
CylLtm(a) with w1 < w′1. Let u be the maximal common prefix so that w1 = uv1
and w′1 = uv′1. Then u is bispecial, since at least three out of the factors aua,
aub, bua, bub are in FactLtm (both ua and ub are prolongable to the left, and at
least one of them is left special, being a prefix of w1). By [Cas96], such a bispecial
factor in Ltm with at least three continuation factors, and starting by a must be of
the form θntm(a), for some n ≥ 0. Now, since w1 < w′1, the word v1 must also start
with a, and v′1 with b. However since there is n > 0 such that u = θntm(a), and
since θn+1

tm (a) = θntm(a)θntm(b) is also a prefix of w1, then u must be followed by b
in w1. Hence there is no word as w′1, and w1 is the greatest word in CylLtm(a).
Similar arguments apply to w2 showing it is the smallest word in CylLtm(b). Thus
by Lemma 3.1.4, w1, w2 are consecutive.

As a result, {aw1, aw2} and {bw1, bw2} are two pairs of consecutive words
in Ltm. Moreover, CylLtm(abb) is a non-empty cylinder between aw2 and bw1,
then by Lemmas 3.1.2 and 3.1.5, φµ(aw1) = φµ(aw2) < φµ(bw1) = φµ(bw2).
Now, since Ltm has linear complexity [Cas96], it has zero topological entropy, and
Theorem 1 applies. We then obtain a conjugate IET TLtm with BLtm as set of
separation points. By Proposition 3.1.7(d), and since {aw2, bw2} ⊂ φ−1(ι(I)) by
definition of Z0, we have TLtm(φµ(aw2)) = φµ(σ(aw2)) = φµ(w2) = φµ(σ(bw2)) =
TLtm(φµ(bw2)). Hence TLtm is not injective.

Now, by Lemma 3.2.9, φµ(aw2) and φµ(bw2) must belong to the set of discon-
tinuities DLtm,acc,r. Note that this is coherent with the fact that by Lemma 3.2.5,
{aw1, bw1, aw2, bw2} = WSPLtm

, so that {φµ(aw2), φµ(bw2)} = BSPLtm , and that
by definition, BSPLtm = BLtm,acc,r ⊇ DLtm,acc,r. ♦

Also, according to the construction behind Lemma 3.2.5, the set of separation
points BL is always infinite, while including the set DL which can be in fact finite
(see e.g. Corollary 3.3.4 further), but:

Example 3.2.12 (The set DL of TL can be infinite). Let us consider again the
Thue-Morse associated shift Ltm and its associated definitions. If there were only
finitely many discontinuities for TLtm , we could assume there is an open interval
J ⊂ I, having φµ(aw2) as left endpoint, on which TLtm is continuous. We could
also assume J avoids the finite set φµ(WSPLtm

), hence J would be contained in a
subset of I where TLtm is injective. But TLtm(φµ(aw2)) = TLtm(φµ(bw2)), so by
right-continuity, TLtm cannot be injective on J , and there is no such interval. ♦
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Otherwise said, these 
words are not in 
phi^{-1}(Z^-_0) (see the 
definitions given before 
Lemma 3.1.6).

In the corresponding 
graph shown in Example 
5.2.3, these two points 
correspond to the two 
accumulation points. 

General conditions for 
T_L to be non-injective 
are still to be found. 

General conditions for
T_L to have finitely or
infinitely many disconti-
nuities are still to be
found too. Nevertheless,
taking into account
Lemmas 3.3.4 and 3.3.5,
the existing
characterization theorems
of symbolic orbits of finite
IETs using a natural
coding (see [Ferenczi,
Zamboni, 2008; Belov,
Chernyatev, 2008])
provide sufficient
conditions on L so that
T_L has finitely many
discontinuities. Still, these
conditions are not
necessary, since here the
natural coding is not
required.



3.3 Codings and Reconstructions

In this section, we describe some more relationships between L and TL.
First, an IET T is said to be minimal if all its orbits are dense in I. Next,

a monotonicity partition P of I with respect to T is a finite partition, made of
right-open intervals on each of which T is increasing, but not necessarily contin-
uous. Recall then that by Lemma 3.2.2, the conjugate IETs given by Theorem 1
are piecewise increasing, thus admitting monotonicity partitions. The associated
coding of the orbits of T with a partition P is based on a map α assigning a
distinct letter of an alphabet A to each interval of P , so that

cod0,P : I → A
x 7→ α(J) if x ∈ J , with J ∈ P ,

which is extended as

codP : I → AN

x 7→ cod0,P (x) cod0,P (T (x)) cod0,P (T 2(x))...

The word codP (x) is called the symbolic orbit of x by codP , and the closure
codP (I), denoted by LP , is called the associated shift of codP . A lexicographic
order on LP is induced by the order over A determined by the order of the com-
ponent intervals of P on I, that is, cod0,P (x) < cod0,P (x′), if x ∈ J , x′ ∈ J ′ with
J < J ′, i.e. J occurs before J ′ on I.

The next two technical lemmas make it possible to apply Theorem 1 to LP :

Lemma 3.3.1 Let T be a piecewise increasing IET, and let P be a monotonic-
ity partition of I. Then codP is non-decreasing, Borel measurable and right-
continuous. Moreover, if T is minimal, codP is increasing.

Proof. Let x, x′ ∈ I, with x < x′. If x ∈ J and x′ ∈ J , where J, J ′ are intervals
of P with J < J ′, we have cod0,P (x) < cod0,P (x′), hence codP (x) < codP (x′).
Otherwise, J = J ′, so that cod0,P (x) = cod0,P (x′). Since on the intervals of P ,
we have T (x) < T (x′), we can inductively apply the same argument until for
some n > 0, cod0,P (Tn(x)) < cod0,P (Tn(x′)), in which case codP (x) < codP (x′),
and if there is no such n, then codP (x) = codP (x′). Hence, codP is non-decreasing.
If T is minimal, the above n always exists since Tn(x) can be arbitrarily close to
the left end of an interval in P , and as long as both Tn(x) and Tn(x′) are in the
same interval of P , we have Tn(x′)−Tn(x) ≥ x′−x. Hence, codP (x) < codP (x′).

The map codP is the product of the maps cod0,P ◦T i, i ≥ 0, each being contin-
uous on the interiors of the intervals of a finite partition of I, since T i is piecewise
increasing. Hence codP is Borel measurable. Likewise, each cod0,P ◦ T i is right-
continuous since codP and T i are right-continuous, hence codP is too. �

From the above lemma, the image by codP of the Lebesgue measure on I is a
Borel measure on LP , that we denote by µP . Since codP conjugates σ and T ,
µP is invariant by σ. Also, codP being right-continuous, when T is minimal, LP is
aperiodic minimal, and µP is nonatomic and positive on the cylinder sets of LP .
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T is not necessarily 
continuous on an 
interval of P.

The coding cod_P of T 
is not the usual one for 
IETs, but it is adapted 
for the conjugate IETs 
from Theorem 1, all 
piecewise increasing 
and generally infinite. 
Lemma 3.3.1 below 
shows that cod_P has 
the expected properties 
for a symbolic 
representation.



Lemma 3.3.2 Let T be a piecewise increasing and minimal IET. Let P be a mono-
tonicity partition of I, and let LP be the associated shift. Then µP (SPLP ) = 0.

Proof. By definition of µP , for all x ∈ I, µP ([wLP ,min, codP (x)]) is equal to
the Lebesgue measure of cod−1P ([wLP ,min, codP (x))), that is, of [0, x), since by
Lemma 3.3.1 codP is increasing. Thus, using the map φµP on LP , for all i ∈ I,

φµP (codP (x)) = x. (8)

By Lemma 3.1.5 and by definition of Z0, recall that if x /∈ Z0, φ
−1
µP

(x) is well-
defined, and by Equality (8) is equal to codP (x). If x ∈ Z0, φ

−1
µP

(x) consists of
two words, one of them being codP (x). Accordingly, codP (I) misses some words
of LP , but LP \ codP (I) is countable, since Z0 is countable.

Let us now estimate the measure of σ−1(SPLP ). We define the subset W =
σ−1(SPLP ) ∩ (LP \ codP (I)), which is countable too. Let w0 ∈ σ−1(SPLP ). By
definition of SPLP , {w0} ( σ−1(σ(w0)), and there are three cases:

• w0 ∈W : thus w0 ∈ σ−1(σ(W )).

• w0 /∈ W and there is w1 ∈ σ−1(σ(w0)) such that w1 ∈ W : thus w0 ∈
σ−1(σ(W )) too, since σ(w0) = σ(w1).

• w0 /∈ W and there is no w1 ∈ σ−1(σ(w0)) such that w1 ∈ W : thus there
are x0, x1 ∈ I such that {w0, w1} ⊂ σ−1(σ(w0)) with w0 = codP (x0), w1 =
codP (x1), and x0 6= x1 since w0 6= w1. By definition of codP , for all x ∈ I,

codP (T (x)) = σ(codP (x)). (9)

Since σ(codP (x0)) = σ(codP (x1)), then codP (T (x0)) = codP (T (x1)), that
is, since codP is injective, T (x0) = T (x1). Hence according to Definition 2,
x0, x1 ∈ Dacc,r and w0 ∈ σ−1(codP (Dacc,r)).

Thus σ−1(SPLP ) ⊆ σ−1(σ(W )) ∪ σ−1(codP (Dacc,r)). Then, µP (σ−1(σ(W )) = 0,
since σ−1(σ(W )) is countable and µP is nonatomic. Next, µP (σ−1(codP (Dacc,r))) =
µP (codP (Dacc,r)) since µP is preserved by σ. Now, since µP is the image of
the Lebesgue measure on I by codP and Dacc,r has measure 0, T being an IET,
µP (codP (Dacc,r)) = 0, so µP (σ−1(codP (Dacc,r))) = 0 too. Hence µP (σ−1(SPLP )) =
0, and again by measure preservation, µP (SPLP ) = 0. �

Then, given a monotonicity partition P , Lemma 3.2.5 applies to LP measured
by µP , so that Theorem 1 applies to LP too, and we can get a conjugate IET TLP .

Proposition 3.3.3 Let T be a piecewise increasing and minimal IET. Let P be a
monotonicity partition of I, and let LP be the associated shift with its conjugate
IET TLP . Then TLP = T , i.e.:

For every monotonicity partition P : T
codP−→ LP

Theorem 1−→ TLP = T.

Proof. In Equality (8), T (x) can replace x, and by using (9) we get for all x ∈ I,

T (x) = φµP (codP (T (x))) = φµP (σ(codP (x))).

Also, right-continuity of codP (see Lemma 3.3.1) means that for every x ∈ I,
codP (x) is the infimum of {codP (y) | y > x, y ∈ I}. Thus codP (x) cannot be the
right endpoint of a cylinder in LP , hence codP (x) ∈ φ−1(ι(I)). In fact, since φµP =
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E.g. for the Thue-Morse case 
where W={aw_1, b_w_1} 
(see Example 3.2.11), this 
case occurs for aw_2, bw_2: 
aw_2 = cod_P(x_0), 
bw_2 = cod_P(x_1),
so that by Eq. (8) above:  
phi_mu(aw_2)=x_0,
phi_mu(bw_2)=x_1. 
Then, by 3.2.11, we know 
that T(x_0)=T(x_1). 

Proposition 3.3.3 shows 
how an IET T can be 
reobtained as a T_L when 
L is a shift given by 
coding T based on a 
monotonicity partition.



κ ◦ φ, and since ι ◦ κ is the identity on φ(codP (I)), we get codP (x) = φ−1(ι(x))
by composing Equality (8) to the left with φ−1 ◦ ι. By Proposition 3.1.7(d),
TLP (φµP (w)) = φµP (σ(w)) on φ−1(ι(I)), thus with w = φ−1(ι(x)), for all x ∈ I,

TLP (x) = φµP (σ(codP (x))),

whence T and TLP coincide on I. �

Of course the above result applies to minimal finite IETs, as these are piecewise
increasing by definition. In this case, the partition P can be the one induced by
the set D of discontinuities, or by any finite B ⊇ D. Then, codP becomes the
usual natural coding of the orbits of T with B as set of separation points [Kea75],
that is, a coding based on the assignment of a distinct letter to each component
of a partition on which T is continuous in the interior of these components:

Corollary 3.3.4 Let T be a finite minimal IET. Let L be the associated shift given
by a natural coding of T , with its conjugate IET TL. Then T = TL.

Note that in this finite IET case, T is reobtained as TL from L, but according to
the construction behind Lemma 3.2.5, the set of separation points BL is infinite,
whereas D ⊂ BL is finite (see Example 5.2.4 (iv) further).

A shift L can also be recovered from TL. Recall that PA is the monotonicity
partition of I for TL relying on the letters of A (see Lemma 3.2.2):

Proposition 3.3.5 Let L be any shift with a conjugate IET TL (Theorem 1 applies
to L). Then for every x ∈ I, codPA(x) = φ−1(ι(x)), so that LPA = L, i.e.:

For the monotonicity partition PA : L
Theorem 1−→ TLPA

codPA−→ LPA = L.

Proof. For x ∈ I, by definition of cod0,PA and PA, codPA(x) = a when x ∈ IL,a,
since α(IL,a) = a. Next, by definition of IL,a, φ

−1(ι(x)) ∈ Cyl(a), that is, the first
letter of codPA(x) and of φ−1(ι(x)) are equal. To check equality on their second let-
ters, that is, the first letter of σ(codPA(x)) and of σ(φ−1(ι(x))), consider that since
x above can be arbitrary, the first letter of codPA(TL(x)) and of φ−1(ι(TL(x))) are
equal too. Then by Equality (9), codPA(TL(x)) = σ(codPA(x)), and by Proposi-
tion 3.1.7 (a)(b), φ−1(ι(TL(x))) = σ(φ−1(ι(x))). By inductively applying the same
arguments, equality holds for the next letters. Hence codPA(I) = φ−1(ι(I)). �

If an IET is given with an infinite set B ⊇ D of separation points, its natural
coding is such that the coding alphabet must be then infinite too. However, in
the case of TL with BL as set of separation points, this coding is related to L, that
is, to a language over a finite alphabet. Indeed, let A∞ be an infinite alphabet,
and let α∞ be a map assigning a distinct letter of A∞ to each component of the
partition PARTL,I (cf. p. 12), so that its natural coding is defined as

cod0,∞ : I → A∞

x 7→

{
α∞(I

(k)
L ) if x ∈ I(k)L

α∞(x) if x ∈ BSPL.

cod∞ : I → AN
∞

x 7→ cod0,∞(x) cod0,∞(TL(x)) cod0,∞(T 2
L(x))...
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But also, finite IETs can 
be coded over coarser 
monotonicity partitions 
than the one induced by 
the set D of disconti-
nuities, thus not with a 
natural coding. Lemma 
3.3.4 still applies, and as 
already noticed in p.15, 
the characterization of 
the shifts having finite 
conjugate IETs is still to 
be found.

In the sequel, we shall not refer
to shifts over A_infty, whose
theory is different from the one
over finite alphabets (see e.g.
[LM95] in the bibliography
below), and which we do not
use here.  The codings given by
cod_infty are just considered as
intermediate codings.

Proposition 3.3.5 is a 
complement to 3.3.3 as 
it  shows how L can be 
reotained as a coding 
of T_L. can be simplified as T_L.

 



Recall now that the partition PARTL of L (cf. p. 10) is made of the cylinders
determined by the finite words v(k) in FactL, and by the infinite words in WSPL .
We consider then the following injective recoding map of the letters of A∞:

ζ∞ : A∞ → FactL ∪WSPL

a 7→

{
v(k) if a = α∞(I

(k)
L )

w if a = α∞(x), where x ∈ BSPL and φ−1(ι(x)) = w.

Next, we define
δ0,∞ : L → A∞,

where for each w ∈ L:

• δ0,∞(w) = (ζ∞)−1(au), if au occurs as a prefix of w, with a ∈ A and
u ∈ FactL is non-left special, that is, by the construction of PARTL in
Lemma 3.2.5, au is a factor v(k) such that CylL(v(k)) ∈ PARTL.

• δ0,∞(w) = (ζ∞)−1(w), if w is of the form w = aw′, with a ∈ A and w′ is an
infinite left special word in SPL, that is, w ∈WSPL .

The map δ0,∞ is well-defined because first, the two above cases cover L and are
independent, reflecting how PARTL is built; second, if au exists, it is unique since
the v(k) determining the cylinders of PARTL can never be prefixes to each other
(these cylinders do not overlap). Then, δ0,∞ is extended as follows:

δ∞ : L → AN
∞

w 7→ δ0,∞(w) δ0,∞(σ(w)) δ0,∞(σ2(w))...

We can now map the words in L to symbolic orbits of TL obtained by cod∞:

Proposition 3.3.6 Let L be any shift with a conjugate IET TL (Theorem 1 applies
to L). Then for every x ∈ I, cod∞(x) = δ∞(φ−1(ι(x))), i.e.:

L
Theorem 1−→ TL

cod∞−→ cod∞(I) = δ∞(codPA(I)).

Proof. For x ∈ I, the first letter of cod∞(x) and of δ∞(w) where w = φ−1(ι(x)),
are equal. Indeed, since w belongs to some Cyl(v(k)) or to WSPL , δ0,∞(w) recovers
the letter assigned by α∞ to the component of PARTL,I containing x, i.e. cod∞(x).
Next, σ(cod∞(x)) = cod∞(TL(x)), and σ(δ∞(φ−1(ι(x)))) = δ∞(σ(φ−1(ι(x)))) =
δ∞(φ−1(ι(TL(x)))), so that the second letters are also equal. By inductively apply-
ing the same arguments, we obtain cod∞(x) = δ∞(φ−1(ι(x))). Hence cod∞(I) =
δ∞(φ−1(ι(I))), and by Proposition 3.3.5, δ∞(φ−1(ι(I))) = δ∞(codPA(I)). �

This mapping of L to the natural coding of TL will be in use in the next section.

4 The Linear Complexity Shift Case

We now focus on shifts L with linear complexity, i.e. those such that pL(n) =
O(n), and prove Theorem 2. For instance, aperiodic minimal shifts associated with
primitive substitutions have linear complexity [Pan84, Qué10], e.g. the shift asso-
ciated with the Thue-Morse substitution. Since these shifts form a specific family
of shifts with zero topological entropy, the idea behind Theorem 2 is to investigate
the properties of their conjugate IETs as given by Theorem 1.
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This general definition of linear growth includes the
case where p(n) is ultimately constant. But it is known
that If w is a one-way infinite word, p_w is ultimately
constant iff w is ultimately periodic. Even more: if there
is n >0,  p_w (n) <= n, then w is ultimately periodic
([MH38] in the bibliography below). In fact, the lowest
complexity function for a non-ultimately periodic word is
p_w(n)=n+1 [Lot02,CN10]. Thus in the minimal
aperiodic case, p(n) >= n+1.

Being over an infinite 
alphabet, we do not 
close these sets as in 
Proposition 3.3.5 (see 
also the annotation at 
the bottom of the 
preceding page).

Proposition 3.3.6 shows 
that the natural infinite 
coding of T_L can be 
obtained from the 
prefixes of the shifted 
words in L (which are 
over a finite alphabet). 

Thus "u" corresponds to 
the smallest prefix of 
sigma(w) which is not 
left special.



4.1 Almost Finite Interval Exchange Transformations

We begin by defining a specific kind of IETs:

Definition 3 An IET T with a set D of discontinuities is almost finite if:
1. T is piecewise increasing on I.

2. The set Dacc of accumulation points of D is finite.

3. The points in D belong to a finite number of full orbits of T §.

In the above definition – like in Definitions 1 and 2 – D can be replaced by a
null-measure set of separation points B such that B ⊃ D. Note also that a finite
IET is almost finite. Now, the first property of almost finiteness is always satisfied
by a conjugate IET TL (see Lemma 3.2.2). About the second property, when L
has linear complexity, we first show the following technical result:

Lemma 4.1.1 Let L be a minimal shift with linear complexity. Then SPL is finite.
Proof. For each finite r ≤ |SPL|, there is n0 > 0 such that for all n ≥ n0, the
number of distinct length-n prefixes of the words in SPL is at least r. If spL,l(n)
denotes the number of left special factors in FactL(n), then spL,l(n) ≥ r. Since
L is minimal, FactL is prolongable, and thus for all n ≥ 1, pL(n + 1) − pL(n) ≥
spL,l(n). Therefore, if SPL was infinite, for every r ∈ N, there would exist n0 > 0
such that for all n ≥ n0, pL(n+ 1)− pL(n) ≥ r, whence pL(n) 6= O(n). �

Then:

Lemma 4.1.2 Let L be an aperiodic minimal shift with linear complexity, and
let TL be its conjugate IET. Then the set DL,acc of the accumulation points of the
set DL of the discontinuities of TL is finite.
Proof. By definition, DL ⊆ BL. Next, BL,acc is determined by WSPL since
φµ(WSPL) = BL,acc, and we also have WSPL = σ−1(SPL). The alphabet A is
finite, and by Lemma 4.1.1 SPL is too, whence the result. �

In order to prove the third property of almost finiteness for TL, the idea is to
study similar relationships to known ones for finite IETs, between natural cod-
ings, complexity of the associated shifts, and distinctiveness of the orbits of the
separation points [Kea75]. However, as seen in Section 3.3, a natural coding cod∞
of an infinite IET T uses an infinite alphabet A∞. To deal with this situation,
we shall code orbits of T using finer and finer finite partitions of I, together with
finite alphabets with more and more letters, as is developed in the next section.

4.2 A Finite Number of Full Orbits

For an IET T with B ⊃ D as set of separation points, let Bacc denote the set of
accumulation points of B in I, and let Bacc = B1

acc tB2
acc, where B1

acc denote the
one-sided accumulation points, and B2

acc the two-sided ones. An ordered finite
subset Bm = {0 = b0, b1, . . . , bm−1}, m > 0, of B is called admissible if for Bm ∪
{bm = 1}, each induced interval Im,i = [bi, bi+1) has one of the following types:

§A sufficient condition for minimality of a finite IET is that the full orbits of the discontinuity
points are infinite and distinct [Kea75] (cf. the infinite distinct orbit condition (IDOC)). An
almost finite IET with an infinite number of discontinuities is thus far from satisfying the IDOC.
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1. Im,i is an interval of T with respect to B (bi is the only point of B in Im,i).

2. Im,i covers infinitely many consecutive intervals of T , and either:

(a) [bi, bi+1] has exactly one point of Bacc, belonging to B1
acc, either bi or bi+1;

(b) (bi, bi+1) has exactly one point of Bacc, belonging to B2
acc, with bi, bi+1 /∈ Bacc.

Thus, an admissible Bm induces a finite partition
⊔
i Im,i of I, where for each

point x ∈ BL,acc, there is exactly one Im,ix such that almost every point of any
sequence of points of B converging to x lies in Im,ix . For instance, here is a possible
subset B4 of a set B with two accumulation points x1 ∈ B1

acc and x2 ∈ B2
acc, such

that the induced intervals I4,0, I4,2 are of type 1, I4,1 of type 2a, I4,3 of type 2b:

Lemma 4.2.1 Let B be a set of separation points. Then Bacc is finite iff for some
m > 0, there is an admissible Bm ⊂ B.

Proof. (⇐): Trivial. (⇒): First, for each point x ∈ B2
acc there is an interval of

type 2b containing it, because such an x is the intersection of a sequence of closed
nested intervals with endpoints in B, and if every interval in the sequence con-
tained a point in Bacc, then Bacc would be infinite. Next, by the same argument,
each x ∈ B1

acc which is the intersection of a sequence of nested closed intervals to
its right is the left endpoint of an interval of type 2a, while in its other side, x is
the right endpoint of an interval of type 1, or else x = 0. The same occurs the
other way around when the accumulation is on the left. Then there are finitely
many points of B in the complement of the union of the above intervals, and
together with the endpoints of those intervals, they form an admissible Bm. �

Given an admissible set Bm, let Am be an alphabet with m letters, and let αm
be a map assigning a distinct letter in Am to each Im,i induced by Bm, so that

cod0,m : I → Am
x 7→ αm(Im,i), if x ∈ Im,i.

codm : I → AN
m

x 7→ cod0,m(x) cod0,m(T (x)) cod0,m(T 2(x))...

The associated shift Lm of codm is then as usual defined as codm(I).
Now, let L be a shift over A, with a conjugate IET TL having BL as set

of separation points, and BL,acc = B1
L,acc t B2

L,acc as accumulation point sets.
Let BL,m be an admissible subset of BL, inducing a finite partition

⊔
i IL,m,i of I.

Then, we define a recoding map similar to and based on ζ∞ (see p. 19), sending
each letter of Am to words over A, which are either v(k) or common prefixes of
sets of v(k) (the v(k) determining the cylinder components of PARTL):

ζm : Am → FactL ∪ (FactL × FactL),

where for each a ∈ Am:

1. ζm(a) = ζ∞(α∞(IL,m,i)), if a = αm(IL,m,i) where IL,m,i is of type 1, that is,
ζm yields the same v(k) as ζ∞ if a is assigned to a type 1 interval.

21

Thus, a set B_m induces 
a finite partition of I where 
each accumulation point 
in B is covered by exactly 
one interval component, 
so as to "inhibit" the 
accumulation points of B. 

Said differently: 
(1) The factor image by zeta_m for an interval of type 1 is just the v^(k) 
of its corresponding cylinder in PART_L by zeta_infty.
(2) Since the image of zeta_m must be representative of the infinite set 
of intervals covered by an interval of type 2, the idea is to define this 
image as the longest common prefixes of all the corresponding v^(k) : 
one prefix for an interval of type 2a (one-side accumulation point), and a 
pair of prefixes for an interval of type 2b (two-sides accumulation point).



2. (a) ζm(a) = vpref, if a = αm(IL,m,i) where IL,m,i is of type 2a, and vpref
is the longest common prefix of {ζ∞(α∞(J))|J ∈ PARTL,I , J ⊂ IL,m,i},
that is, ζm yields the longest common prefix of the v(k) given by ζ∞
applied to all the intervals covered by IL,m,i.

(b) ζm(a) = (vpref,l, vpref,r), if a = αm(IL,m,i) where IL,m,i of type 2b, and
vpref,l, vpref,r are defined as follows: let IL,m,i = [bi, bi+1) be divided into
Jl = [bi, x) and Jr = [x, bi+1), where x ∈ B2

L,acc is the accumulation
point in IL,m,i; then vpref,l (resp. vpref,r) is the longest common prefix of
{ζ∞(α∞(J)) | J ∈ PARTL,I , J ∈ Jl} (resp. J ∈ Jr).

The case 2(b) above deals with the possible existence of points x ∈ B2
L,acc such

that φ−1µ (x) is made of two consecutive distinct words in WSPL .
We show then that if m is sufficiently large, the map ζm can be used like ζ∞

to define a map δm similar to δ∞. First of all, we say a sequence {Bm}m≥m0 , with
m0 > 0, is admissible if for all m ≥ m0: (i) Bm is an admissible subset of B;
(ii) |Bm+1| = |Bm|+ 1; (iii) B =

⋃
m≥m0

Bm ∪ (Bacc \ {1}).

Lemma 4.2.2 Let B be a set of separation points. Then Bacc is finite iff for some
m0 > 0, there is an admissible sequence {Bm}m≥m0.

Proof. (⇐): A consequence of Lemma 4.2.1. (⇒): By Lemma 4.2.1 also, for
some m0 > 0 there is an admissible Bm0 of B. If the first point x of Bacc in I
lies in an interval Im0,i of type 2b, we add to Bm0 the smallest point of B in the
interior of Im0,i to obtain Bm0+1, then the greatest one to obtain Bm0+2. If x lies
in Im0,i of type 2a we do the same, but using the smallest or the greatest point
of B in the interior of Im0,i, according to if the point is an accumulation point on
the left or the right. Then we proceed to the next point of Bacc, and so on, going
back to the first one after having processed the last one. �

We denote by Fm,1 (resp. Fm,2) the set of the v(k) (resp. the prefixes of the v(k))
given by ζm(αm(IL,m,i)) when IL,m,i is of type 1 (resp. type 2, including vpref,l and
vpref,r as distinct words when IL,m,i is of type 2b). The technicalities in the proof
of the following lemma come from the topological differences between L and I:

Lemma 4.2.3 Let L be a shift with a conjugate TL and an admissible sequence
{BL,m}m≥m0, m0 > 0. Then there is m1 ≥ m0, such that for all m ≥ m1, the
map ζm is injective, such that for i = 1, 2, Fm,i does not include the empty word,
nor words prefix to each other, and no word in Fm,1 is a prefix of a word in Fm,2.

Proof. By the construction of PARTL in Lemma 3.2.5, the set Fm,1, being made
of v(k), has the first two required properties. Next, a word v in Fm,1 cannot be
a prefix of any word in Fm,2, since v would be then a common prefix of words of
type v(k), and again the v(k) are not prefixes to each other.

Now, from the point-of-view of L, each word w ∈WSPL is an accumulation of
endpoints of cylinder components of PARTL, and can be seen as the intersection
of a sequence of nested cylinders of L (see again the proof of Lemma 3.2.5). Also,
by Lemma 4.2.2, the set BL,acc must be finite, so that WSPL is too. Therefore,
there exists n > 0 such that at the nth step of the construction of PARTL, the
nested cylinders to be refined at each further step are such that they contain only
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one word in WSPL , and such that they are all disjoint. Thus for each w ∈WSPL ,
there is a sequence of nested cylinders {Cw,j}j∈N∗ such that

⋂
j∈N∗ Cw,j = {w},

disjoint from the other sequences, and having one of these two forms:

aL) {Cw,j}j∈N∗ is such that w is the smallest or the greatest element of every Cw,j ,
so that w is a one-sided accumulation word in L.

bL) {Cw,j}j∈N∗ is such that w belongs to the interior of every cylinder Cw,j , so
that w is a two-sided accumulation word in L.

From the point-of-view of I, the corresponding sequences {φµ(Cw,j)}j∈N∗ are
sequences of nested closed intervals with pairwise disjoint interiors, such that⋂
j∈N∗ φµ(Cw,j) = {φµ(w)}, with φµ(w) ∈ BL,acc, taking one of these two forms:

aI) {φµ(Cw,j)}j∈N∗ is such that φµ(w) is equal to the right or the left endpoint
of every interval φµ(Cw,j) so that φµ(w) ∈ B1

L,acc or B2
L,acc.

bI) {φµ(Cw,j)}j∈N∗ is such that φµ(w) belongs to the interior of φµ(Cw,j), so that
φµ(w) ∈ B2

L,acc.

From the point-of-view of {BL,m}m≥m0 , for each m ≥ m0, every x ∈ BL,acc is
such that there is a IL,m,i of type 2 containing almost every point of any sequence
in BL converging to x, so that putting Jx,m = IL,m,i, we get a sequence of nested
intervals {Jx,m}m≥m0 , with

⋂
m≥m0

Jx,m = {x}, taking one of these three forms:

aB) {Jx,m}m≥m0 is made of type 2a intervals, i.e. x ∈ B1
L,acc, where φ−1µ (x) = w,

w ∈ WSPL . There is then a corresponding sequence {Cw,j}j∈N∗ of form aL
with intersection {w}, and {φµ(Cw,j)}j∈N∗ of form aI with intersection {x}.

bB) {Jx,m}m≥m0 is made of type 2b intervals, i.e. x ∈ B2
L,acc, where either:

i) φ−1µ (x) = w, with w ∈ WSPL . There is then a corresponding sequence
{Cw,j}j∈N∗ of form bL with intersection {w}, and {φµ(Cw,j)}j∈N∗ of
form bI with intersection {x}.

ii) φ−1µ (x) = {w,w′}, with w,w′ ∈ WSPL . There are then corresponding
sequences {Cw,j}j∈N∗ , {Cw′,j}j∈N∗ of form aL, respectively with inter-
section {w} and {w′}, and {φµ(Cw,j)}j∈N∗ , {φµ(Cw′,j)}j∈N∗ of form aI ,
both with intersection {x}.

Now, since the sequences {φµ(Cw,j)}j∈N∗ and {Jx,m}m≥m0 have the same in-
tersection point in BL,acc, and because of the properties of the Cw,1, there exists
m1 > 0, such that one of the following cases occur:

• {Jx,m}m≥m0 is of form aB or bBi, and for all m > m1, Jx,m ⊂ φµ(Cw,1), that
is, the word determining the cylinder Cw,1 is a common prefix of the words
in {ζ∞(α∞(Jx,m)) | m > m1}, i.e. a prefix of the corresponding vpref ∈ Fm,2.
• {Jx,m}m≥m0 is of form bBii, and for allm > m1, Jx,m ⊂ φµ(Cw,1)∪φµ(Cw′,1),

that is, the two words determining Cw,1 and Cw′,1 are respective common
prefixes of the factors in {ζ∞(α∞(Jl)) | m > m1} and ζ∞(α∞(Jr)) | m >
m1}, where Jl and Jr are the two components of Jx,m \x, i.e. prefixes of the
corresponding (vpref,l, vpref,r), with vpref,l, vpref,r ∈ Fm,2.

Thus, for all m ≥ m1, since all the Cw,1 are disjoint, the set Fm,2 does not contain
the empty word, nor words which are prefix to each other. �

23

It is open to know 
whether this case can 
actually occur.



Similarly to δ0,∞, we can now define δ0,m for each m > m1, using the properties
of ζm, so as to obtain letters of Am out of the prefixes of the words in L:

δ0,m : L → Am,

where for each w ∈ L:

1. δ0,m(w) = (ζm)−1(au), if au occurs as a prefix of w in Fm,1, that is, au is a
factor v(k) which belongs to ζm(Am), and such that CylL(v(k)) ∈ PARTL.

2. Or, one of the two following cases occurs:

• δ0,m(w) = (ζm)−1(vpref), if vpref occurs as a prefix of w in Fm,2, which
belongs as a single word to ζm(Am).

• δ0,m(w) = (ζm)−1(vpref,l, vpref,r), if vpref,l or vpref,r occurs as a prefix
of w in Fm,2, which belongs to a pair (vpref,l, vpref,r) in ζm(Am).

This map is well-defined because first, all the above cases cover L by definition of
Fm,1 and Fm,2; second, the properties of Fm,1 and Fm,2 proved by Lemma 4.2.3
imply that taken in order, only one case applies for each w ∈ L. Accordingly, δ0,m
is extended as follows to obtain words in AN

m from words in L:

δm : L → AN
m

w 7→ δ0,m(w) δ0,m(σ(w)) δ0,m(σ2(w))...

We then have a similar result to Proposition 3.3.6 (m1 comes from Lemma 4.2.3):

Lemma 4.2.4 Let L be any shift with a conjugate TL and an admissible sequence
{BL,m}m≥m1. Then, for all m ≥ m1 and for all x ∈ I, codm(x) = δm(φ−1(ι(x))),
i.e.:

L
Theorem 1−→ TL

codm−→ Lm = δm(L).

Proof. For x ∈ I, the first letter of codm(x) and of δm(w) where w = φ−1(ι(x)),
are equal. Indeed, w belongs to some cylinder determined by a word in Fm,1∪Fm,2.
Then, Case (1) of the δ0,m(w) definition applies iff x belongs to a type 1 inter-
val, and δ0,m(w) recovers the letter assigned by αm to this interval, i.e. codm(x).
Otherwise, x belongs to a type 2 interval, and Case (2) of the δ0,m(w) definition
necessarily applies, with the same effect. This is well-defined since by Lemma 4.2.3
only words in Fm,2 can be prefixes of words in Fm,1. Next, similarly to Proposi-
tion 3.3.6, using the conjugacies given by Proposition 3.1.7, the same is true for
the other letters of codm(x) and δm(w). Hence codm(I) = δm(φ−1(ι(I))). �

Lemma 4.2.5 Let L be any shift with a conjugate TL and an admissible sequence
{BL,m}m≥m1. Then, for all m ≥ m1, there exists hm > 0 such that for all n > 0,
pLm(n) ≤ pL(n+ hm),

Proof. Fix some m ≥ m1, and let w ∈ L and w′ = δm(w) ∈ Lm. Let hm be the
maximum length of the factors in Fm,1∪Fm,2. According to the definition of δ0,m
and to Lemma 4.2.4, for each n > 0, the length-(n + hm) prefix of w determines
by δm at least one length-n prefix of w′, hence, pw′(n) ≤ pw(n+hm). Now, L being
minimal, Lm is too, and w,w′ are minimal words. Thus each of the factors in
Factw, i.e. FactL, occurs as a prefix in the words in {σi(w)}i∈N, and these factors
determine Factw′ , i.e. FactLm . Hence for all n > 0, pLm(n) ≤ pL(n+ hm). �
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Lemma 4.2.6 Let L be an aperiodic minimal shift with linear complexity. Let TL
be its conjugate IET. Then BL belongs to a finite number of full orbits of TL.

Proof. According to the proof of Lemma 4.1.2, BL,acc is finite, thus according
to Lemma 4.2.2 there is an admissible sequence {BL,m}m≥m1 of BL, with m1 > 0
given by Lemma 4.2.3. Fix some m ≥ m1, and consider the shift Lm associated
with codm. For each v ∈ FactLm , let Ev = {x ∈ I | cod0,m(x)cod0,m(TL(x)) . . .

cod0,m(T
|v|−1
L (x)) = v}, i.e. the set of the points in I having symbolic orbits by

codm with v as prefix (note that Ev is not necessarily connected). For each n > 0,⊔
v∈FactLm (n)Ev is a partition of I, and the set {T−jL (BL,m) | j = 0, ..., n − 1}

defines the endpoints of the interval components of this partition. Then, for
any point x ∈ BL,m, if the set T−nL (x) has a point y in the interior of some Ev
with v ∈ FactLm(n), it means that to each side of y there are components of Ev1
and Ev2 , with v1, v2 ∈ FactLm(n + 1) with v as prefix, and v1 6= v2. Thus v is a
right special factor, and it induces an increase in the complexity pLm of Lm.

Now, let km ≤ |BL,m| = m be the number of distinct full orbits of BL,m. Since
Lm is aperiodic minimal, each of these orbits may contain at most one occurrence
of each point in BL,m. And since BL,m is finite, in each of these orbits there is

a least −j ∈ Z− for which a point of BL,m occurs in {T−jL (BL,m) | j = 0, ...}.
Thus there are at least km points in BL,m such that for all n > 0, their preimages
by T−nL avoid BL,m, and being in the interior of some Ev, they induce an increase
of the number of the length-n factors. Hence, for all m ≥ m1 and for all n > 0,
kmn ≤ pLm(n). By Lemma 4.2.5, and since L has linear complexity, there exists
a > 1 such that

pLm(n) ≤ pL(n+ hm) ≤ a(n+ hm).

that is,
km ≤ a+

ahm
n

.

Since n is a free variable, we have km ≤ a for all m ≥ m1, and thus letting m go
to infinity, this inequality holds also for BL of TL. �

We can then prove Theorem 2 as stated in the introduction:

Proof. Since L has linear complexity, Theorem 1 applies, and we get a conjugate
IET TL. By Lemmas 3.2.2 and 4.1.2, TL has the two first properties of almost
finiteness. Next, applying Lemma 4.2.6, and using the fact that DL ⊆ BL, then TL
has also the third property of almost finiteness. �

5 Building Infinite Interval Exchange Transformations

In this section, we present results in the context of zero entropy about how to
build effective approximations of the conjugate IETs TL given by Theorem 1 for
a set of corresponding σ-invariant measures on the shifts L.

5.1 An Approximation Scheme

Given a shift L over an ordered alphabet A, and its complexity pL, we define a
sequence of maps {Tn}n>1, where each Tn is a map I → I, x 7→ y = Tn(x), such
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that the source on the x-axis is divided into pL(n) right-open intervals of equal
length, and the range on the y-axis is divided into pL(n− 1) ones. The intervals
of the source are then put into correspondence with the cylinders of the factors
in FactL(n), using the lexicographic order between these factors, and the same is
done for the intervals of the range with cylinders of the factors in FactL(n − 1).
Next, Tn is defined as the piecewise affine map which sends for each v ∈ FactL(n)
the interval corresponding to CylL(v) to the interval corresponding to CylL(σ(v)),

where σ(v) denotes v minus its first letter, by using a slope pL(n)
pL(n−1) .

Here is first a technical result about the above slopes converging to 1. Re-
call that spL,l(n) denotes the number of left special factors in FactL(n), and
let spL,r(n) denote the same for the right special factors:

Lemma 5.1.1 Let L be a shift such that FactL is prolongable. Let {ns}s∈N be a

subsequence of N \ {0, 1}. Then lims→∞
pL(ns)
pL(ns−1) = 1 iff lims→∞

spL,l(ns−1)
pL(ns−1) = 0.

The same holds for spL,r(ns − 1).

Proof. We prove the result for spL,l (the proof for spL,r is similar):

(⇒): pL(ns)
pL(ns−1) − 1 = pL(ns)−pL(ns−1)

pL(ns−1) ≥ spL,l(ns−1)
pL(ns−1) ≥ 0.

(⇐):
|A| spL,l(ns−1)
pL(ns−1) ≥ pL(ns)−pL(ns−1)

pL(ns−1) = pL(ns)
pL(ns−1) − 1 ≥ 0 �

For zero entropy, using subsequences is indeed useful:

Lemma 5.1.2 Let L be a minimal aperiodic shift with zero topological entropy.
Then there is a subsequence {ns}s∈N of N \ {0, 1} such that lims→∞

pL(ns)
pL(ns−1) = 1.

Proof. Since L is minimal aperiodic, then for all n > 1, pL(n)
pL(n−1) > 1. Next, pL(n)

pL(n−1)
is not bounded away from 1. Assume on the contrary there is c > 0 such that for
all n > 1, pL(n) ≥ (1 + c)pL(n− 1). Hence pL(n) ≥ (1 + c)n, and the topological
entropy of L would not be less than log(1 + c), a contradiction. �

Let FactL(u, n) = {v ∈ FactL(n) | v = uv′, v′ ∈ A∗}, i.e. the set of length-n
factors with u as prefix, and let pL(u, n) = |FactL(u, n)|. In the next result we
simultaneously build measures on L and approximations of the corresponding TL:

Proposition 5.1.3 Let L be a minimal aperiodic shift with zero topological entropy.
Let {Tn}n>1 be the corresponding sequence of maps as defined above, and let T =

{Tns}s∈N, where {ns}s∈N is a subsequence of N\{0, 1} such that lims→∞
pL(ns)
pL(ns−1) =

1. Then:

1. There is at least one shift-invariant measure µ on L, induced by the Tns’s
interval lengths.

2. There is a subsequence of T converging to a map T , equal almost everywhere
to the conjugate IET TL obtained by Theorem 1 from L measured by µ.

Proof. (1): For every s ∈ N and for every u ∈ FactL, we consider pL(u,ns)
pL(ns)

, that

is, the length of the interval corresponding to CylL(u) on the x-axis of Tns . By a

diagonal process on {pL(u,ns)pL(ns)
}s∈N, we obtain a sequence Q = {mi}i∈N such that,

for every u, limi→∞
pL(u,mi)
pL(mi)

exists, and we denote it by Mu. We then define µ on
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the cylinders of L by µ(CylL(u)) = Mu. Note that µ(L) = Mε = 1. The finite
unions of the cylinders of AN together with the empty cylinder form a semiring
of sets, thus the intersection of this semiring with the cylinders of L too, and µ is
a premeasure on this semiring. By Caratheodory’s extension theorem, µ extends
as a Borel probability measure on L.

Note that limi→∞
pL(u,mi)
pL(mi)

= Mu implies that limi→∞
pL(u,mi−1)
pL(mi−1) = Mu too,

that is, putting di = pL(u,mi)
pL(mi)

− pL(u,mi−1)
pL(mi−1) , we have that limi→∞ di = 0. Indeed,

first, since L is aperiodic minimal, pL(mi) > pL(mi − 1) for every i, thus

di <
pL(u,mi)
pL(mi−1) −

pL(u,mi−1)
pL(mi−1) ≤ |A|

spL,l(mi−1)
pL(mi−1) ,

which, by Lemma 5.1.1, converges to 0. Next, since pL(u,mi) ≥ pL(u,mi − 1),

di ≥ pL(u,mi−1)
pL(mi)

− pL(u,mi−1)
pL(mi−1) = pL(u,mi − 1)pL(mi−1)−pL(mi)pL(mi)pL(mi−1)

≥ −pL(u,mi − 1)|A| spL,l(mi−1)
pL(mi)pL(mi−1) = −|A|pL(u,mi−1)pL(mi)

spL,l(mi−1)
pL(mi−1) ,

which also converges to 0, again by Lemma 5.1.1.
We now check the preservation of µ by σ. Assume that the letter prolongations

in FactL of u to the left are a1, .., ah ∈ A, where h > 0 since FactL is prolongable,
L being minimal. Thus σ−1(CylL(u)) = ∪hj=1CylL(aju). For all mi ∈ Q, we

also have
∑h

j=1 pL(aju,mi) ≥ pL(u,mi− 1), and the difference between these two
terms depends on the number of left special factors in FactL(u,mi − 1) and on
the number of their prolongations:

0 ≤
h∑
j=1

pL(aju,mi)− pL(u,mi − 1) ≤ |A| spL,l(mi − 1). (10)

Similarly, for each aj , pL(aju,mi) ≥ pL(aju,mi − 1), and the difference between
these terms depends on the number of right special factors in FactL(aju,mi− 1):

0 ≤
h∑
j=1

pL(aju,mi)−
h∑
j=1

pL(aju,mi − 1) ≤ |A| spL,r(mi − 1). (11)

Reversing (11) and adding it to (10) we get for all mi ∈ Q,

−|A| spL,r(mi − 1) ≤
h∑
j=1

pL(aju,mi − 1)− pL(u,mi − 1) ≤ |A| spL,l(mi − 1).

We then divide the above terms by pL(mi − 1), let i go to infinity, and using
Lemma 5.1.1 again, we obtain µ(CylL(u)) =

∑h
j=1 µ(CylL(aju)). Hence µ is an

invariant measure for L. Moreover, since L is aperiodic minimal, µ is nonatomic.
(2): On the x-axis for each u ∈ FactL, the length of the interval corresponding

to CylL(u) converges to Mu as limi→∞
pL(u,mi)
pL(mi)

, and the same is true on the y-axis

for σ(u) with Mσ(u) as limi→∞
pL(σ(u),mi−1)
pL(mi−1) . Now, since L has zero topological

entropy, and µ has all the requested properties, Theorem 1 applies to L measured
by µ, so as to obtain TL, with its associated partitions PARTL and PARTL,I .
The main components of PARTL are the cylinders CylL(v(k)) (see Lemma 3.2.5),
and following the construction of Tmi , on the x-axis for each k, the associated

intervals I
(k)
mi are the union of the intervals corresponding to CylL(v(k)v), v(k)v ∈

FactL(mi), then converging to an interval I(k) of length Mv(k) . The same holds

for the intervals J
(k)
mi in the y-axis with CylL(σ(v(k)v)), respectively converging
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to intervals J (k) of length Mσ(v(k)). Note then that for every i, Tmi is continuous,

hence is an affine map on each I
(k)
mi . Indeed, σ is increasing on CylL(σ(v(k))), thus

Tmi on I
(k)
mi too. But if Tmi had a discontinuity, it would mean that σ−1 is not

well-defined in this cylinder, contradicting the definition of PARTL.
Now, the left endpoint of I(k) is ok =

∑
v<v(k),v∈FactL(|v(k)|)Mv, and the lower

endpoint of J (k) is o′k =
∑

v<σ(v(k)),v∈FactL(|v(k)|−1)Mv. By convergence, for ev-

ery k and ε > 0, there is j > 0 such that for all i ≥ j, the endpoints of I
(k)
mi

are at distances < ε respectively from ok and ok + Mv(k) . Thus let Ti,k,ε be Tmi
restricted to I

(k)
ε = [ok + ε, ok + Mv(k) − ε] for i ≥ j, on which it is affine with

slope pL(mi)
pL(mi−1) . These slopes converge to 1, and the endpoints of J

(k)
mi converge

respectively to o′k and o′k + Mσ(CylL(v(k)))
, hence Ti,k,ε converges on I

(k)
ε . Since ε

is arbitrary, {Tmi}i∈N converges on all the I(k)
o
, i.e. the interiors of the I(k). We

put T as the limit map, so that for each x ∈ I(k)o , T (x) = o′k + (x − ok). Now,
in the proof of Lemma 3.2.8, TL(x)− x = KC(k) , where C(k) denoted CylL(v(k)),
and where KC(k) = µ([wL,min, σ(wC(k),min)]) − µ([wL,min, wC(k),min]. By defini-
tion of T , the first term of this difference is o′k and the second is ok, that is,

TL(x)−x = T (x)−x on I(k)
o
, thus by comparison with Lemma 3.2.8, I(k)

o
= I

(k)o

L .
Since by Lemma 3.2.10, µ(SPL) = 0, the union of the I(k)

o
has measure 1, whence

T = TL almost everywhere. �

Note that the map T above can be extended to all of I by right-continuity, so
that T can be made equal to TL.

5.2 Explicit Graph Examples

A dynamical system (X, f) is said to be uniquely ergodic if there exists only one
f -invariant Borel probability measure on X.

Proposition 5.2.1 Let L be an aperiodic minimal shift with linear complexity which
is uniquely ergodic. Then T in Proposition 5.1.3, defined as {Tn}n>1, converges
almost everywhere to TL.

Proof. Since L has linear complexity, its topological entropy is zero. For the
same reason, there exists r > 0 such that for all n > 1, pL(n) − pL(n − 1) ≤ r

[Cas96], hence limn→∞
pL(n)
pL(n−1) = 1, and Proposition 5.1.3 can be applied to L.

Now, in the proof of this proposition, unique ergodicity means there can be only
one accumulation point for each {pL(u,n)pL(n)

}n>1, u ∈ FactL. Thus these sequences
converge without any subsequence extraction, as does then T . �

In order to illustrate the above proposition, the simplest non-trivial examples are
given by the primitive substitutive case (see p. 12):

Corollary 5.2.2 Let L be a shift associated with an aperiodic primitive substitution.
Then Proposition 5.2.1 applies to L.

Proof. Aperiodic primitive substitutions have associated shifts which are aperi-
odic minimal with linear complexity [Pan84], and uniquely ergodic [Qué10]. �
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That is, using no 
subsequence extraction. 



Note that in this primitive substitutive case, the limit measure of each cylinder
can also be computed from the substitution itself [Qué10, Section 5].

Example 5.2.3 Reconsider the Thue-Morse substitution θtm (see Examples 3.2.6,
3.2.11, and 3.2.12). Since θtm is aperiodic primitive, Corollary 5.2.2 applies to
its associated shift Ltm. In the following picture we show the graph of T100 from
the converging sequence T = {Tn}n>1 approximating the IET TLtm with BLtm
as set of separation points. The intervals converging to their respective I

(k)
Ltm

of

PARTLtm,I are indicated for the first k, by the associated v(k) determining the
corresponding cylinders of PARTLtm (see Lemma 3.2.5 and Example 3.2.6). As
expected from the Examples 3.2.11 and 3.2.12, two accumulations of discontinu-
ity points can be observed, where non-injectivity holds. Note first that, in this
Thue-Morse case, the limit measure of each involved cylinder can be directly ob-
tained from [Dek92]. Second, this example suggests existing connections with
constructions of infinite permutations obtained from shifts associated with aperi-
odic primitive substitutions [Mak09, AFP15].
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This limit measure can 
be determined by the 
factor frequencies in L 
(see [Que10]).  
Proposition 5.1.3 inclu-
des this case, but its 
relationships with it are 
still to be investigated. 



Example 5.2.4 Here are other examples of approximated infinite IETs from linear
complexity shifts associated with aperiodic primitive substitutions. The pictures
below are the T100 graphs from the convergent sequences T = {Tn}n>1 given
by Corollary 5.2.2 for: (i) the Tribonacci substitution, i.e. θ(a) = ab, θ(b) = ac,
θ(c) = a; (ii) the Tetranacci substitution, i.e. θ(a) = ab, θ(b) = ac, θ(c) = ad,
θ(d) = a; (iii) the Rudin-Shapiro substitution, i.e. θ(a) = ab, θ(b) = ac, θ(c) = db,
θ(d) = dc; (iv) the Fibonacci substitution, i.e. θ(a) = ab, θ(b) = a. In this last
example, Lθ is known to be the shift given by the natural coding of the minimal
finite IET T over two intervals, where B = D = {0, 1ρ}, and ρ is the golden
ratio [Fog02]. Note then that in accordance with Corollary 3.3.4, the drawn
graph is an approximation of the graph of T and of the graph TLθ too, while the
construction of TLθ describes it with an infinite set BLθ of separation points.

(i) Tribonacci (ii) Tetranacci

(iii) Rudin-Shapiro (iv) Fibonacci
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