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Abstract. We introduce,extend and apply some relationships between formal lan-
guage theory and surface theory. First we show how boundaries of languages topol-
ogized with the Cantor metric can be mapped to sets of curves on surfaces, namely
laminations. Second we present how and when endomorphisms of free monoids, i.e.
substitutions, can be mapped to automorphisms of surfaces, so that DOL-systems corre-
spond to iterations of these automorphisms. Third, we apply these ideas to construct
sets of non-periodic irreducible automorphisms of surfaces following [43, 35, 14|, so
that the involved proofs do not use any differential or algebraic tools, but, accordingly,
substitution and DOL-system theory of [11, 12, 37, 31, 32] — mainly the decidabil-
ity for a DOL-language [12] to be strongly repetitive or not. This construction also
yields effective symbolic descriptions of the stable sets of curves associated with these
automorphisms.
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1 Introduction

This paper introduces, extends and apply several relationships between formal language
theory and surface theory:

1. Boundaries of languages [4, 32| are related to specific sets of curves on surfaces,
i.e. laminations — see definitions in Sections 2.1 and 2.3.

2. Endomorphisms on words (substitutions) are related to specific transformations
of surfaces, i.e. surface automorphisms.

3. Iterating endomorphisms, i.e. using DOL-systems (e.g. [39, 40]) — see exact defi-
nition in Section 3.1 — is related to iterating automorphisms of surfaces.

The idea of representing curves by words, and transformations of curves by transforma-
tions of words is quite old, probably coming first from Dehn and Morse [8, 10, 29, 30].
It is still in use (see e.g [2, 3]). With respect to this, the above relationships are an at-
tempt to go one step further by showing how specific results of formal language theory
— here, substitutions and DOL-system theory — directly apply to such symbolic repre-
sentations. From the surface theory point-of-view, the stakes are to obtain proofs with
a minimum need of geometric, differential or measure theoretic tools, and to obtain
full constructive proofs with tractable algorithms. On the other hand, from the formal
language theory point-of-view, classical notions could be treated in new ways by using
geometric representations.

The first above relationship involves languages and sets of curves on surfaces. These
sets are made of non self-intersecting pairwise disjoint infinite curves called laminations
(see e.g. [43, 7, 19, 27]), which are closely related to singular foliations. Laminations
can be combinatorially described by using graphs — also called train-tracks (see e.g. [19,
2, 36]) — on which curves can be continuously deformed; one then says that curves are
carried. When the carrying graphs are labelled, it becomes possible to code carried sets
of curves into languages : curves are just represented by the labels of the admissible
paths on which they can be deformed. By using the classical topology on words, our
first results state how and when boundaries of languages (see [4, 32]) are lamination
codings. Informally, these results can be summed up as follows (see Theorem 2.7 for a
full statement):

Theorem: Let [' be a directed graph embedded in a surface M. Let L be the coding
language of a set of simple finite pairunse disjoint curves carried by I'. Then, a mazimal
lamination in M rel. to I' corresponds to the boundary of L.

The second above relationship is based on the fact that surface automorphisms,
i.e. bijective bicontinuous maps of a surface onto itself, can be conjugated to automor-
phisms of free groups by using graph maps (or train-track maps, see e.g. [2, 3]). Here
we focus on those which can directly be conjugated to morphisms of free monoids, in
fact endomorphisms on words, i.e. substitutions (an idea already in [22, 25, 23]). With
respect to this, the main result we get is an extension of the above one which leads to
effective descriptions of laminations (see Theorem 3.3):

Theorem: Let I be a directed graph embedded in a surface M, invariant under an
automorphism h of M. Then there is a lamination which is stable under h and which



corresponds to the boundary of a language obtained by iterating a substitution, i.e. the
boundary of a DOL-language.

The third above relationship is based on the following fact: if iterating an auto-
morphism conjugates to iterating a substitution, results in DOL-systems theory (see
e.g. [39, 40]) apply. Here we use these relationships to study the group of automor-
phisms of a compact oriented surface. These automorphisms have been classified a long
time ago as periodic, reducible or non-periodic irreducible [33]. More recently, this clas-
sification has been made more precise [15, 28, 18, 7, 43]. In particular, non-periodic
irreducible automorphisms were proved to enjoy the property of setwise fixing two lam-
inations. Much effort has been dedicated to finding systematic constructions of these
automorphisms and their fixed laminations [1, 13, 35, 43, 7, 34, 41], with the recent
achievement of obtaining procedures of decision for the three families [26, 3, 17]. Within
this framework, we here focus on a generic construction of non-periodic irreducible au-
tomophisms indicated by Thurston [43], and generalized by Penner [35, 14]. Based on
the above results, the novelty of our proof is that it makes only use of symbolic tools,
i.e. results about substitutions and DOL-system theory found in [11, 12, 37, 31, 32],
instead of differential, measure theoretic or linear algebraic tools. Another benefit of
this approach is to yield an effective description of the associated fixed laminations:
individual curves and all subcurves with prescribed finite lengths can be described by
computable words. The results we obtain can be then stated as (see Theorems 4.1
and 4.13):

Theorem: For every compact surface M, semi-groups of non-periodic irreducible
automorphisms can be obtained, so that their fired laminations are described by bound-
aries of DOL-languages.

Our proof of this goes as follows: Given a compact surface M, two mutually transverse
finite sets of pairwise disjoint simple closed curves C' U D are embedded in M. These
curves can be associated with basic automorphisms called Dehn twists. The above
theorem is then the consequence of the fact that every positive composition involving
at least once each of these twists is a non-periodic and irreducible automorphism of
M. The first steps we take to prove this follow the classical ones [35]: We consider the
labelled directed graph I' arising from C'UD. It is shown invariant under the application
of the associated set of Dehn twists. As a consequence, Dehn twists can be interpreted
as graph maps. The next steps are different as we stick to symbolic tools: given an
automorphism A described in terms of the considered Dehn twists, we apply our above
relationships to obtain one of the two corresponding fixed laminations. Its coding is
accordingly a set of two-way infinite words given by the boundary Bi(L;) of a DOL
language Lj, based on the iterations of a substitution 6, associated with h (see [32]).
The properties of h are thus checked against those of 6: Since 6}, is strictly expanding
(strongly growing), h cannot be periodic. Next, deciding irreducibility of h is shown
to be the same as deciding whether or not Bi(L,) contains periodic words. This
is equivalent to deciding whether or not the corresponding DOL-language is strongly
repetitive, so that one can use the decidability result of Ehrenfeucht and Rozenberg [12].
This amounts in our case to checking that 8, is a primitive, elementary, and non-cyclic
substitution. As a final step, we also show how to build the other fixed lamination of A
by “inverting” 6, an operation made possible since 8}, is also recognizable (see [37, 31]).



2 Curves and Words

2.1 Basic Definitions

A surface M is a topological space locally modelled after R?, that is a 2-manifold. We
here consider only closed oriented surfaces with negative Euler-Poincaré characteristic,
i.e. those without boundary having a finite triangulation with negative Euler charac-
teristic. Such a surface, a one with two holes is pictured in Fig. 7. These surfaces
have metrics for which the universal covering is the hyperbolic plane; from now on we
always assume M has been given such a metric.

A simple curve on M is a non self-intersecting curve, i.e. an injective continuous
map from an interval of the real line or from the circle to M. Surfaces as defined
above possess many subsets of pairwise disjoint simple curves (see e.g. [15, 5, 42]). For
instance, solutions of differential equations give rise to such sets of curves. Here we
shall consider sets of curves which can be constructed in a combinatorial way.

Let I' = (V, E) be a finite directed graph embedded in M with set of vertices V'
and set of edges E. An admissible path in [' is an indexing map from an interval of Z
towards FE, such that the end of an edge is the origin of the following one. It inherits
in an obvious way an orientation. According to if the interval is finite, half-infinite or
all of Z, a path is respectively said to be finite, one-way infinite or two-way infinite. It
is said to be closed if it is defined by a two-way infinite periodic indexing map.

Two curves 7, 7' on M are said homotopic rel. endpoints, or for short just homotopic,
if there is a uniformly continuous deformation fixing their endpoints (if any) which sends
v to 7' (see e.g. [38]). Uniformity is here required to allow one to speak about infinite
paths and curves: uniform homotopy is equivalent to ask that two homotopic curves
have lifts to M’s universal covering at bounded distance from each other. A curve
in M is said to be carried by a graph I' if it is homotopic to an admissible path in I'.
An example is shown in Figure 1. Graphs like I used to carry curves are often called

Figure 1: A cylinder-like piece of a surface M where a piece of a curve (dashed style)
is carried by a piece of an embedded graph (normal style) along the path labelled zxy.

train-tracks (see e.g. [20, 19, 36]). Note however that we consider only globally directed
graphs so that all the carried curves inherit that global orientation. From the set of
curves viewpoint, this implies no loss of generality up to considering orientation double
coverings (see e.g. [16]) of the carrying graphs.

A geodesic lamination of M is a closed set of complete simple geodesics (see e.g. [7]).
Up to homotopy there is another equivalent definition based on embedded graphs (close
to the one defined in [19]): A lamination is a set £ of pairwise disjoint, pairwise non-



uniformly homotopic, simple infinite curves called leaves, carried by some graph I' such
that £ is maximal with respect to inclusion. Given ' and the lamination, we say that
the lamination is maximal rel. to I'.

2.2 Coding Sets of Curves into Languages

Let the edges of the graph I be injectively labelled over an alphabet A. The coding of an
admissible path of I' is the word obtained by concatenating the edges labels according
to the indexing map. An embedded graph I is said to be free if it does not have distinct
admissible paths which are homotopic on M. A necessary and sufficient condition to
be free is that no disk or annulus component in M \ I has its boundary made of two
admissible paths. Given a free graph, the coding of a carried leaf ¢, denoted by cod(¥),
can be defined as the coding of its unique homotopic admissible path. By extension,
the coding of a carried set of curves C is the language of the codings of all the curves
of C.

Note that this coding process can be seen as if ' would be an embedded finite Biichi
automaton with all its states being final. Accordingly, cod is then a correspondence
from a maximal lamination £ rel. to I" to the whole recognized language. However, even
if a lamination is maximal with respect to inclusion, cod has no reason to be surjective
since leaves must be pairwise disjoint, which is a geometric constraint inducing a strict
subset of all the admissible paths.

2.3 Set of Curves and Boundaries of Languages

Let L be a language of finite words over an alphabet A. Its so-called pointed language
L is obtained by giving every possible origin to each word of L indexing its remaining
letters accordingly. These finite words can be assumed to be padded to both infinities
with some dummy symbol, say ¢, not already in A. The language L becomes then a
subset of (AU {§})” and inherits the topology of this set with the usual Cantor metric
defined as follows: let ... w_jwow;... and ...v_1v9v; ... be two-way infinite words,
then their distance is 0 if they are equal, and 27" if they are not, where n > 0 is the
largest integer for which wy = vy, |k| < n.

The boundary of L (see [32]) is the set of completion points of L in (A U {6})%.
It is a set of one-way and two-way infinite words over A. The shift of a word w =
~w(—1)w(0)w(1)... is defined as o(w)(i) = w(i + 1), ¢ € Z. A pointed language can
be “unpointed” by using the equivalence relation: w ~ w' iff there is a power n € Z
such that o™(w) = w’. We denote by Bi(L) a set of representatives of the quotient by
~ of the boundary of L.

The above could seem quite intricate for the single purpose of obtaining asymptotic
languages, but there is no simple way of directly defining a meaningful topology on
the set of unpointed words. For curves it is easier as a topology already exists for M:
one can readily use the Hausdorff topology for closed sets in M. For this topology a
sequence of closed sets {v,} in M converges to some set -y iff for each point = of ~
there is a sequence of points x,, € 7, such that z, converges to x and conversely all
such converging sequences of points have their limits in . If the ~, are curves carried
by an embedded graph I' no pointing is needed in these definitions.



The next technical lemma shows the relationship between sets of finite curves carried
by a graph I, their closures for the Hausdorff topology, and the associated coding
words. It can be seen as a combinatorial and topological version of the classical result
about geodesic laminations, saying that the closure of any non-empty disjoint union of
geodesics is a geodesic lamination (see e.g. [7]).

An embedded graph I is said to be coherent iff for every vertex of I" all its incoming
edges are adjacent (so that all its outgoing edges are as well). From the set of curves
viewpoint, coherence is not a restrictive assumption. Indeed, given a set of curves
C carried by I', every vertex not satisfying the coherence condition can be split into
n vertices each satisfying this condition, where n is the number of maximal sets of
adjacent edges being either incoming or outgoing. These vertices are linked in the
natural way so to make an n-gon in M \ ' together with some of its diagonals, in such
a way that C is still carried. If I' is free, every coherent graph obtained from I' by this
operation remains free

Lemma 2.1 Let I' = (V, E) be a free coherent directed graph labelled over A and em-
bedded in a surface M. Let L be a language of finite words over A, and let Cp, be a set
of finite simple curves in M carried by I' such that:

- Each word is the coding of a curve in Cp, and vice-versa;

- Up to moving their extremities in an arbitrarily small neighbourhood of T'’s vertices,
all the curves in Cr, can be made simultaneously pairwise disjoint on M;

- The boundary of L is not empty.

Then Bi(L) is the coding of a closed set of curves C which are pairwise disjoint, pairwise
non-homotopic and two-way infinite.

Proof.

Step 1 (Construction of a closed regular neighbourhood of T" in M):

Since I' is assumed coherent and directed, to each vertex v € V, we associate a
closed unit square whose two opposite sides are respectively labelled (v, origin) and
(v, end). These sides correspond respectively to the incoming and outgoing edges of I" at
v. Next, to each edge n € E with origin v; and end vy, we associate the symmetry axis
of a closed Euclidean isosceles trapezium of height 1, whose base lines are respectively
labelled (vy, origin) and (ve, end). The lengths of the base lines of the trapezia can be
fixed so that the sums of the lengths of the base lines with same common label equal 1
(this is the advantage of using trapezia). Trapezia are then glued with squares along
their identical labelled sides following the same adjacencies as I'’s edges. This yields
a surface N which is a closed regular neighbourhood of T in M (see Figures 3 and 4
for a local appearance of N). Note that N is fibered with arcs parallel to the trapezia
bases.

Step 2 (Existence of a closed set of two-way infinite curves C in M, all carried by T,
and derived from Cr):

According to the hypothesis, the curves in C;, can be moved in N so to be pairwise
disjoint with extremities fixed at the base lines of the trapezia (recall that a finite curve
carried by I" must have its endpoints on I'’s vertices). This move can also be achieved
so that each curve point lies at distance at least € > 0 from the boundary of N in M,
and we can also assume that each segment of curve crossing a quadrilateral of N is
linear.



We take the closure of C;, in M with respect to Hausdorff topology for the closed
sets in M (each curve in Cy, is compact). We claim that this closure can also be seen as
a set of curves: a limit point in the interior of a quadrilateral (); of NV is the limit of a
sequence of points on linear segments in the quadrilateral, hence the limit point itself
belongs to a unique linear segment ¢ disjoint from the arcs induced by C;. Moreover
all the points of ¢ lie in the closure. Now, keeping in mind the definition of Hausdorft
topology and the relative positions of the curves of C; in N, we look at the two adjacent
quadrilaterals ();, Q, containing ¢’s extremities. Only two cases may occur: either
there are two other linear limit segments in (); and @), which fit at £’s extremities, or
only one in either ); or Q) (this case corresponds to a sequence of curves in C;, with
one extremity lying in the same quadrilateral). Inductively applying this reasoning to
the limit segments through adjacent quadrilaterals yields curves: the former above case
yields two-way infinite curves and the latter one-way infinite curves. This is so since
the boundary of L is assumed not empty: C;, must be made of infinitely many curves
for which there is only a finite number of them which have a smaller length than any
specified value.

We consider only the two-way infinite curves and we denote the set they form by
C. Again by definition of convergence in the Hausdorff topology a converging sequence
of points belonging to two-way infinite curves necessarily converges to a point on a
two-way infinite curve. Hence C is closed as a set of points in M.

Step 3 (The coding of C can be made to be exactly Bi(L)):

By construction, the coding of a curve 7 in C has its subwords in L. Thus, by
definition of the boundary of L, and after choosing an adequate origin for +, its coding
belongs to Bi(L).

Conversely, take a pointed two-way infinite word w € Bi(L). Consider a sequence
of words in L converging to w. There is a corresponding sequence s,, of finite curves
in C;, with an origin fixed on them. We must prove that it determines a limit curve
belonging to C: Consider the trapezium () corresponding to the edge labelled with the
origin letter of w. We can extract from s, a sequence whose intersection segments
with () converge to some segment because () is compact. Next the same is done for
the quadrilaterals adjacent to () and the preceeding extracted sequence and so on, thus
obtaining a decreasing sequence (in the setwise sense) of sequences. Using a diagonal
argument, the sequence formed by the n-th curve of the n-th sequence gives a sequence
of finite curves which converges to a limit curve with origin marked in ) and whose
coding is w.

Step 4 (Making C a set of non-pointed simple pairwise disjoint limit curves):

We have proved that the closed subset C of the closure of C;, can be seen as a set of
two-way infinite curves. However, these need not be pairwise disjoint, nor even simple.
An intersection component of two curves must be also a curve, finite or not, with at
least one endpoint on a base line of one of the quadrilaterals making N. Recall also
that N can be fibered by arcs parallel to the trapezia bases.

Now, consider the intersection of C with |V/| fibers, one for each unit square of N
linking trapezia together. Since C is closed its intersection with these fibers is closed,
hence the complement is open, and so this complement is an at most enumerable dis-
joint union of open intervals whose closures we call here transverse segments. Consider
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all of them and follow them by parallel translation towards the two possible directions,
subject to the following rules: (1) If in this process a transverse segment hits a trapez-
ium corner, just stop; (2) Else if a transverse segment shrinks to a single point, mark
this point as an intersection curve endpoint; (3) Else if the process never stops towards
both directions, do nothing. Rule (2) exhausts all the intersection curves endpoints.
Hence, there are at most an enumerable number of them. We then cut open along all
these curves starting from their marking points (an idea already used in [19]), and we
undergo again the process of translating the transverse segments. But this time only
the conditions of rules (1) and (3) may occur. The former means that the two curves
visiting the endpoints of the translated segment are non-homotopic. The latter means
that these two curves are homotopic: performing this homotopy in M makes one curve
out of the two. After these transformations, the curves in C are pairwise disjoint and
pairwise non-homotopic.

We now look for the conditions to ensure that C is a lamination, maximal rel. to the
graph [' which carries it. For this purpose, we introduce two graph transformations.
First, the trimming of ' rel. to a set of two-way infinite curves C consists of the
removing of every edge and vertex of I' not used to carry curves in C. The second
transformation is the cutting and involves several definitions:

- An in-vertex cutting of v (see Figure 2) is defined by a 3-tuple (ay, ag, b1) where ay,a;
are two distinct adjacent incoming edges at v, and b; is an outgoing edge linking v to
another vertex v’. The in-vertex cutting of v consists in splitting v into two vertices
v1, Vg, erasing b; and replacing it with two edges b, and b, linking v; to v’ for j =1, 2,
linking a; to v; for j = 1,2, and in distributing the remaining incident edges of v so
that the former adjacency relation around v is kept from a; to b; for j =1, 2.

- A mid-vertex cutting of v (see Figure 2) is similarly defined by a 4-tuple (a1, as, b1, b2)
where a1, ay (resp. b1,be) are two adjacent incoming (resp. outgoing) edges of v. The
difference is that after the splitting of v, the edge b; is linked to v; for j = 1,2. -

Figure 2: To the left, an in-verter cutting, and to the right, an mid-vertex cutting.

A cutting curve p is a curve carried by I' starting at a vertex v where two adjacent
incoming edges are marked, and ending at a vertex v’ where two adjacent outgoing edges
are marked. Cutting along p consists then in applying in-vertex cuttings successively
to every vertex along the admissible path in I' associated with p, fixing the incoming
pair of edges as the two edges resulting from the preceding split edge. This is done
until the last vertex, at which a mid-vertex cutting is applied. If v = ¢, the cutting
curve is of length 0 and amounts to a plain mid-vertex cutting.

- A cutting curve rel. to C is a one such that after cutting along it, the curves in C are
all still carried by the resulting graph. Such a move is similar to the so-called collision
used in the framework of measured train-tracks theory (see e.g. p.119 of [36]).
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- The cutting of a graph I' rel. to C amounts to performing all the cuttings along a
maximal set of cutting curves rel. to C. If a cutting creates new edges, the labelling of
the new graph is extended so that each edge has again a distinct label.

Now, cutting is related to the notion of maximality rel. to a carrying graph as
follows:

Lemma 2.2 Let C be a closed set of pairunse disjoint, pairwise non-homotopic and two-
way infinite curves carried by I'. If a cutting curve rel. to C exists, then there ezists
a carried simple two-way infinite curve v non-homotopic to any curve of C, and such
that {v} UC is still a set of pairwise disjoint curves.

Proof. Let N be a regular neighborhood of I' as described in the proof of Lemma 2.1.
A cutting curve p is a finite curve within N carried by I', and its extremities can be
moved so to lie in corners of IV, so to be respectively the intersections of trapezia @;, Q;
and Qy, Q; (see Figure 3). Assume that following the orientation of I, the trapezium

Figure 3: Inserting a curve vy (dashed bold style) when a cutting curve p exists (bold
style).

Qi is above @); and @ is above Q. Let Vi, (respect. Yimqes) be the minimum (respect.
maximum) curve passing through @; (respect. @;). A curve 7 is then constructed as
the cutting curve stretched by following v, in one direction and 7, in the other.
This curve has the announced properties.

Lemma 2.3 Let C be as in Lemma 2.2. Then there is most a finite number of cutting
curves rel. to C which are pairwise non-homotopic and pairwise disjoint after homotopy
m N.

Proof.  Since the cutting curves can be taken pairwise disjoint in NV, cutting along
anyone of these curves leaves the other cutting curves unchanged. In particular, these
remain cutting curves for the resulting graph. Now, each cutting along a cutting curve
implies at least one strict decreasing of the incoming (respect. outgoing) degree of its
starting (respect. ending) vertex) without increasing the others. Thus, the number of
cutting curves is bounded by the number of edges of I'.

Corollary 2.4 A cutting rel. to C can involve only a finite number of cutting curves.

Lemma 2.5 Let I be a free directed graph embedded in M. After trimming and cutting,
the resulting graph is still a free graph (so that the coding of its carried leaves is still
well-defined).



Proof. This is clear for trimming. For cutting, first consider in-vertex cuttings: they
do not change the type of any component of M \ I'. After a mid-vertex cutting, a
priori a disk or an annulus could be created, but this is impossible since this would
imply the existence of a disk in M \I" with its boundary made of two admissible paths,
contradicting that I is free. {

Lemma 2.6 Let C be as in Lemma 2.2. Let the carrying graph " be a free and coherent
directed graph embedded in M on which trimming and cutting have been applied rel. to
C. Then C s a maximal lamination rel. to I.

Proof. Let v be a two-way infinite curve carried by I', missing C and not parallel to
any of its curves. We put v in the regular neighbourhood N defined as in the proof of
Lemma 2.1.

We claim there is a transverse segment [z, 2"] which has a point = of intersection
with v and such that (see next Figure 4) there are two curves 7' and 7" (not necessarily
distinct) in C going respectively through z' and z”.

Begin with any tranverse segment [z’ "] meeting . If both endpoints lie on curves
of C the claim is proved. If not, at least one among z', 2", say z", is visited by some
curve in C. This is because I is trimmed, hence there is at least one two-way infinite
curve going through every trapezium. In this case the other endpoint of the segment,
2', lies on the boundary of N. If translation of [2/, "] can be undergone forever towards
one direction, ", hence v will both be homotopic to a boundary component of N, and
necessarily the same one: a contradiction. So translation must stop somewhere, and it
can stop only when a translate of [z', 2"] hits a trapezium corner. A trapezium corner
can be hit in two ways: either by the interior of a segment, or by one of its endpoints. In
the former case, if ¢y is such a corner, [¢y, '] will define a segment transverse to a whole
quadrilateral of N visited by no curve of C, which contradicts [' being trimmed. So only
the latter occurs, and we have a segment of the type [co, '] which can be streched from
co towards the direction opposite to z’ in a quadrilateral (). Again because there is no
trimming left, this streching will hit the lowest leaf 4" in @ at a point z” (the lowest
leaf exists because as a set of points C N Q is compact). Then [z, co] U [co, 2] = [2, 2"]
is a transverse segment as promised.

Now we translate the segment [z', 2"] of the above claim. But note that this time,
if a trapezium corner is hit it must be hit by the interior of the segment translate. If no
translate hits any trapezium corner towards any of the two directions, then 4" and ~"
are either distinct homotopic curves in C, which is not possible, or a single curve, but
then v must be homotopic to it, which is a contradiction. So let ¢ be the first trapezium
corner hit by the open segment (z’,z"). This is in fact the only one: towards the other
direction the translates of (z',z") cannot hit again any other corner. As a matter of
fact, if it did, say at some corner ¢y, this would allow a finite curve missing C to be
carried by I' — with endpoints ¢ and ¢y —, in contradiction with the fact that cutting
has been applied to I'.

So let ¢ be the unique corner hit. Assuming that ¢ belongs to the translates of the
subsegment (x,z"), we translate the other subsegment (z',x). Again we claim that it
cannot hit any other corner. Indeed, suppose there is such a hit at ¢’. The curve ~
must travel under ¢, through a trapezium . Here too since C is compact, there is a
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highest curve in each trapezium of N. Let 7., be the one in (). By construction it
must lie under 7.

Figure 4: The attempt of inserting a curve vy (bold dashed style).

So consider the transverse segment J whose endpoints belong to 4" and ¥4z, and
which hits ¢. Its interior must meet . But again, since cutting have been applied to
I, the translates of J cannot hit any other corner than ¢’. Therefore, it reaches the
initial segment (z', 2"): this is a contradiction since 7,4, is then a curve of C meeting
the interior of (2/,z"). Hence v is parallel to 4/, contradicting the assumption. So C is
a maximal lamination. <

Theorem 2.7 Let I', L and C be defined as in Lemma 2.1. Let trimming and cutting
be applied to I" rel. to C, so that by Lemma 2.6, C becomes a maximal lamination. If
cutting involves at most mid-vertex cuttings, Bi(L) remains the coding of C. Otherwise,
Bi(L) is the image of a bijective projection of the coding of C.

Proof. 'Trimming means reducing the alphabet only to the necessary letters: it has
no effect on the coding of C. Cutting involving only mid-vertex cuttings generates no
new edges, so that the coding is left fixed.

Otherwise by Lemma 2.5, there is a coding Bi'(L) of C rel. to the transformed graph.
The projection from Bi'(L) to Bi(L) is defined by inverting the sequence of cuttings
along the cutting curves, and by projecting the labels of the two edges created by each
in-vertex cutting towards the label of the initial edge. Injectivity of the projection is
ensured since homotopy classes are left stable by cutting or uncutting. Surjectivity is
ensured since every curve carried by I is still carried after transformation.

3 Automorphisms of Surfaces and DOL-systems

3.1 Basic Definitions

A homeomorphism is a bijective bicontinuous map X — Y between two topological
spaces X,Y. When X =Y, it is called an automorphism. Dehn twists are basic
automorphisms of an oriented surface M (see [9, 10, 7, 38]) which are built from simple
closed curves — called twist curves — which are homotopically non-trivial, i.e. not
continuously deformable into a single point. A Dehn twist along v can be described by
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three steps: M is cut along -y, one (or more) turn(s) are applied to one of the separated
parts, and finally M is pasted back along ~ (see Figure 5). More formally, a Dehn
twist applies to a parametrized annulus {(r,€*®) | r € [ro,m1],0 < 1o < 11, € [0,27)}

embedded in M and is homotopic to f, : (r,e"®) — (r, e e'®) for some n € Z.
According to n’s sign, a Dehn twist is said positive or negative. The annulus is used to
describe a neighborhood of a homotopically non trivial simple closed curve . This is
well-defined since f,,’s restriction to the boundary is the identity, and different annuli
neighbourhoods yield homotopic maps. Thus Dehn twists can be considered locally on
the surface. When performing a Dehn twist on a surface along a curve we shall always
assume that this neighbourhood has been fixed.

The effect of a Dehn twist on curves running on M is to drag those which are
transverse to the twist curve along itself. An example is shown in Figure 5.

Figure 5: A cylinder-like piece of a surface M where one can observe the local effect
of a twist along v (bold style) on a transverse curve (dashed style) intersecting v at p:
applying one turn of the twist drags the curve along v from p.

Edges of an embedded graph I' could also be transverse to twist curves, and applying
associated Dehn twists induces graph transformations of I'. This idea can be formalized
and generalized as follows: let I' and I'” be two directed graphs; then a directed graph
map sends vertices of " to vertices of I/, and directed edges of ' to admissible paths of
[". An automorphism h of M always induces a graph map up to homotopy from T" to
some I"”. In case this graph map sends I' to itself, we say that I is invariant under A.

A substitution! @ over an alphabet A is a transformation which sends the letters
of A to words over A, and which extends to every one-way and two-way infinite word
e W;Wiy1... With w; € A by sending it to ...0(w;)0(w;y1).... On finite words, a substitu-
tion is simply an endomorphism on the free monoid spanned by A, henceforth denoted
by A*. A DOL-system is a 3-tuple (A, #, w) where 6 is a substitution over A and w is a
nonempty word of A* on which 6 is iterated (see e.g. [39, 40]).

3.2 Coding Automorphisms into Substitutions

A direct consequence of the last sections is that applying automorphisms to laminations
can be studied after their graph representation, i.e. from the induced graph maps.
These can be related to substitutions:

!Substitutions are here taken in the restricted sense they have in symbolic dynamics (see e.g. [37]).
In formal language theory, a substitution may be also non-deterministic, and its image words are not
necessarily over the origin alphabet (see e.g. [40]).
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Lemma 3.1 Let I be a free directed graph labelled over A and embedded in M. Let T be
inwvariant under an automorphism h of M. Let C be the whole set of curves carried by
[' and let cod be the map which assigns to each curve of C its coding. Then h induces
a unique substitution 6y, over A such that cod(h(C)) = O, (cod(C)).

Proof.  Let g, be the directed graph map induced by h. For each edge n of I', we
define 6,(cod(n)) as cod(gn(n)). This is well-defined because of three properties: the
invariance of ', the fact that I' is free, and every edge is assumed to have its own
distinct label. Now, consider a finite or infinite admissible path v = ..n_1mom;... in I'.
Then gn(y) = -.-9n(n-1)gn(m0)gn(m)..., i.e. gn must preserve concatenation since it is
induced by A. On the other hand,

On(cod(y)) = ...0h(cod(n_1))0x(cod(no))Bn(cod(n)).-..

since any simplification would mean that there is a subword coding an admissible path
homotopic to the identity, a contradiction with the fact that I' is free. Thus 6, is a
substitution and the commutation holds. <

A generic instance of what happens in Lemma 3.1 is shown in Figure 6.

Figure 6: A cylinder-like piece of a surface M where one can observe the local effect
of a twist along v (bold style) on a transverse curve (dashed style) intersecting vy at
p, coded by zy and carried by T' (normal style): applying one turn of the twist drags
the curve along v from p and results in a curve coded by zxy still carried by I'. More
generally, I' is invariant by the twist as the image curve of the edge coded by y can be
sent to the admissible path coded by xy. This yields a substitution which sends y to xy
leaving all the other letters fized.

Note that the above lemma is not new in itself. It is already known that auto-
morphisms of surfaces on embedded graph induce automorphisms of free groups (see
e.g. [2, 3]). However here we focus on those which can be seen as endomorphisms of
free monoids, i.e. substitutions.. Note that substitutions are obtained here since we
consider directed graphs: our invariance definition includes admissible paths, prevent-
ing any back and forth movements for the carried curves which would induce group
relations.

A full example is described in Figure 7 where M is a two-holed torus with an
embedded graph I' and a set of five associated twists. The graph I' can be checked
to be invariant under each of these twists. Substitutions can thus be computed for
each of them. For instance, the twist along v, intersects the edge z;, and applying it
drags x; along y,y, before it could go along x;. As a result, the associated substitution
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sends x; to y1y2x1. Hereafter we give the five associated substitutions (6, denotes the
substitution associated with the twist along 7, and only letters whose images are not
the identity are indicated):

971 (l"l) = Y1Y271, 971 (Zl) = Y2Y121,

972 (ZQ) = S251%9, (9,72 (tl) = 8182t1,

05,(y2) = z120y2, 05,(52) = 2221592, (1)
05, (1) = z1y1,

053(51) = t181.

Composing invariant automorphisms leads to invariant automorphisms. For instance,

Figure 7: In the upper part is pictured a two-holed torus with an embedded graph T’
with its edges labelled over A = {x1,y1,Ys, 51, S2,t1, 21,20}. In the lower part, five
twists curves (bold style) {v1, 72,01, 02,03} have been added. T is invariant under each
one. Note that 61 can be readily seen in the same relative position as v in Figures 5
and 6.

based on the twists of Figure 7, we define:
h = h’h h’72h51h52h(53’ (2)

where h, denotes the twist along . The graph I' is still invariant under A, and the
associated substitution 6, over A is obtained by composing the respective substitutions
found in Eq. (1), that is:

On (1) = Y191,

eh(yl) = Y1Y2T1Y1,

eh(yQ) = Y2Y121528122Y2,

On(s1) = s18at151, 3)
On(s2) = s25122Y2Y12152,

Oh(tl) = 81891,

eh(zl) = Y2Y121,

eh(z2) = S251%2



3.3 Stable Sets of Curves and Boundaries of DOL-Languages

The DOL-language of a DOL-system (A, #, w) is defined as {v € A* | v = 0" (w),n € N}.
Given a substitution 6, the associated language of @ is the union of the DOL-languages
whose starting words are the letters of the alphabet A, i.e. Ly = {v € A* | v =
0"(s),s € A,n € N}.

Lemma 3.2 Let 6 be any substitution over A. Then the set Bi(Lg) of the two-way
infinite boundary words of Ly is stable up to shift under 6.

Proof. Recall that Bi(Ly) is defined as a set of representatives of the quotient by the
shift of the boundary of the corresponding pointed language i\g (cf. Section 2.3). Let
w be in Bi(Ly) and be a representative of v,,: there is a Cauchy sequence {wy, }nen of
finite pointed words in E, whose limit is w. .

All the shifted versions of a two-way pointed word w are in the boundary of Lyg.
So, without loss of generality, we can define the application of # on a pointed word
... w_iwowi ... by setting the origin on the first letter of #(wy). So for all n, Q(wn)/is

also in f/;, and {0(wy,) }nen is also a Cauchy sequence which converges to a word in Ly,
which is a pointed representative of 0(v,). ¢

A substitution # is said to be strongly growing if for every s € A, the length of
0™ (s) with n € N becomes arbitrarily large. This is a sufficient condition so that Ly is
infinite and Bi(Ly) is not empty.

Theorem 3.3 Let T be a free coherent directed graph labelled over A and embedded in M,
which is invariant under an automorphism h of M. Let 0, be its associated substitution
over A and assume that it is strongly growing. Then the boundary set Bi(Lg,) is the
coding of a mazimal lamination invariant under h.

Proof.  Consider a regular neighbourhood N of I' in M as defined in the proof of
Lemma 2.1. Let N’ be another closed neighborhood of I" contained in the interior of
N. We assume that N and N’ contain respectively two neighbourhoods Ny and N, of
the set V of I's vertices, as small as one wants and with the same inclusion property.

Let C© be a set of pairwise disjoint simple finite curves on M with extremities in
Ny{,, which are contained in the interior of N’ and homotopic to exactly one of each
edge of I up to moving their extremities within N{,. These are coded by the letters of
A, and clearly, they satisfy the first two properties of Lemma 2.1.

Suppose next that we have obtained the set C(™ corresponding to a set of finite
curves on M with the same geometric properties as C(%) and homotopic to each admis-
sible path corresponding to the language {w € A* | w = 0™(s),s € A,0 <m < n}, i.e.
the words up to the n-th iteration of 6, on the letters of A.

Since A is a homeomorphism, the set h(C™) is also a set of pairwise disjoint simple
finite curves. Moreover, by continuity and invariance of I', the extremities of h(C™)
can still be assumed to be in N}, and we can push h(C™) into the interior of N’
preserving the fact that they are still pairwise disjoint after these homotopies.

Now consider a set of curves contained in N \ N’ and homotopic to C® up to
moving their extremities within Ny. By construction, this set has no intersection with
h(C™). But these can also be pushed inside N’ without impairing disjointness. Thus
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Cc(ntl) = ¢ y h(C™) is also a set of curves satisfying the same geometric properties
as C and coded by {w € A* | w = 0™(s),s € A,0<m <n+1}.

Using this construction inductively, we can therefore obtain an infinite set of finite
curves Cr, satisfying the first two conditions of Lemma 2.1 and coded by the associated
language Ly of 6, i.e. {w e A* | 6"(s),s € A,n € N}. Since 6, is assumed strongly
growing, the third condition of Lemma 2.1 is also satisfied, so that a set of pairwise
disjoint, pairwise non-homotopic and two-way infinite curves C can be obtained.

Now if there is a cutting curve p of non-zero length rel. to C, consider h"(pUC) =
h™(p) U A™(C). This is a set of curves homotopic to h™(p) U C, where h"(p) is disjoint
from C because h" is a homeomorphism. This implies that for every n > 0, h"(p) is also
a cutting curve rel. to C. But according to Lemma 2.3, there is at most a finite number
of cutting curves which are pairwise disjoint, pairwise non-homotopic. So there exists
at least some ng and some cutting curve py such that up to homotopy, A™(ps) = po-
Since py is carried by I', it has a coding word v = cod(py). According to Lemma 3.1,
the coding of h™(p) is the coding of 6;°(cod(py)) which must be then equal to v. This
is impossible since 6, has been assumed strongly growing.

Thus, according to Lemma 2.6, the set C is a maximal lamination up to applying
trimming and at most mid-vertex cuttings to I'. So, according to Theorem 2.7, Bi(Ly,)
is the coding of C.

For instance, the automorphism A given in Eq. (2) leaving stable the embedded
graph I' pictured in Figure 7, i.e. h = h,, h,,hs hs,hs,, has a substitution 6, given
in Eq. (3) which is clearly strongly growing. Thus the language Bi(Ly,) describes a
maximal lamination on the two-holed torus rel. to I'.

4 Application: Construction of Non-Periodic Irre-
ducible Automorphisms

4.1 Basic Definitions

An automorphism A of a surface M is called periodic when there is some n > 0 such
that A™ is homotopic to the identity. It is called reducible when it is homotopic to
an automorphism which fixes a finite set of pairwise disjoint simple closed curves. An
automorphism is called pseudo-Anosov if it is homotopic to one which fixes a pair of
measured transverse laminations without closed leaves, being expansive on the measure
of one and shrinking on the measure of the other with mutually inverse coefficients.
The relative classification theorem is the following (see [33, 15, 28, 18, 7, 43]):

Theorem (Nielsen-Thurston). Let M be a closed orientable surface with negative
Euler characteristic. Then every automorphism of M is homotopic to one which is of
the above three types, i.e. periodic, reducible or pseudo-Anosov.

In particular this theorem asserts that non-periodic irreducible automorphisms are
pseudo-Anosov. A generic way of constructing semigroups of pseudo-Anosov automor-
phisms up to homotopy comes from Thurston and Penner [43, 35]. It relies on systems
of curves in a surface M, i.e. unions of pairs of finite sets of pairwise non-homotopic
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and disjoint oriented simple closed curves, denoted by C' and D, such that the com-
ponents of M \ C'U D are homeormorphic to disks (i.e. C'U D fills M) with not less
than three vertices on their boundaries (i.e. C hits D efficiently), and such that the
orientation given by (c,d) at any point of cNd, ¢ € C and d € D, agrees with that of
M.

A system of curves C'U D can be considered as a directed graph I" embedded in M:
its set of vertices V' is C'N D and its set of oriented edges E' is the set of segments of
C' U D between consecutive intersection points. This graph is directed and coherent.
Accordingly, a system of curves is said to be free if its associated graph I' is. For
instance, in the upper part of Figure 7, the considered graph comes from a free system
of curves where C' consists of the curves coded by y;y2 and s;s2, and D consists of x4,
tl and Z129.

Given a system C'UD, another copy of it can be put in general position with respect
to M'’s orientation and the original C' U D, either slightly over it or slightly under it.
This copy is considered as a set of twist curves such that it defines a set of Dehn twists
Tcup on M. This is what is illustrated in the lower part of Figure 7 where five Dehn
twists along {71, 72, 91,2, 03} are defined after having put C' U D under T'.

Now consider the following semigroup of automorphisms of M:

HY(C,D) = {t; 0...0t;,, ti; € Toup, where each twist of Toup occurs at least once}.

The sequel of the paper is dedicated to present an alternative proof of the following
result (see [35, 14]):

Theorem 4.1 Let C U D be a free system of curves. Then each automorphism in
H*(C, D) is homotopic to one which is non-periodic and irreducible (i.e. pseudo-
Anosov).

4.2 A Proof Based on Formal Language Theory

Lemma 4.2 Let I' be an embedded graph defined by a free system of curves C' U D on
M. Then T is invariant under every h € H*(C, D).

Proof.  Let 7 be the twist curve associated with the twist ¢, in 7oup. Since Toup
has been defined by a copy of C'U D in general position, 7 hits efficiently a set of
edges of I'. Take one of them, say n. Thus n N~ must be one point p. The effect of
performing ¢, on 7 is to drag it along <, beginning at p. In case the general position
of Teup rel. to C'U D is under (respect. over), the resulting curve must be homotopic
to the path which first visits the admissible cycle homotopic to v and next 1 (respect.
first 7 and next ). So I is invariant under each individual twist in 7cyp. Since each
h € HT(C, D) is a composition of these twists, the result follows. <

Therefore, according to Lemma 3.1, there is a substitution 6, associated with each
h € H*(C, D) over the alphabet A consisting of the labels of T'.

Lemma 4.3 Let T be as in Lemma 4.2 and let h € HY(C, D). Then the associated
substitution 0y is strongly growing.
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Proof. By the above lemma, applying ¢, to n results in a curve carried by an admissible
path of length at least 2. Thus the asssociated substitution has an image of length at
least 2 on the letter coding 7. Now, according to the construction of 7oyup, each edge
of T' is at least in intersection with one twist of 7oup. Since an automorphism A in
H*(C, D) must be such that each twist of Toup occurs at least once, and since the
associated substitution 6, is the composition of the substitutions associated with the
individual twists, each letter of the label alphabet A as an image by 6, whose length
is at least 2. &

Proposition 4.4 Let C' U D be a free system of curves on M. FEvery automorphism
h € H*(C, D) is non-periodic (up to homotopy).

Proof.  If there exists some n > 0 such that A™ is homotopic to the identity, its
corresponding substitution 6, must be the identity too. Since 6, must be strongly
growing, this is impossible.

Proposition 4.5 Let T be as in Lemma 4.2 and let h € HT(C, D). Let 6}, be its asso-
ciated substitution. Then the boundary set Bi(Lg,) is the coding of a lamination Ly,
carried by I' and invariant by h.

Proof. A graph I" defined by a free system of curves CUD is directed and coherent. By
the above lemmas I' is invariant under h, and 6}, is strongly growing. Thus Theorem 3.3

applies.

Now we study reducibility of the automorphisms in H*(C, D). We shall use DOL-
system theory, and so we need more properties to characterize substitutions. A sub-
stitution @ is said to be:

- primitive (see e.g. [37]) if there exists a finite primitivity power K such that for all
s € A, alph(0%(s)) = A, where alph(w) is the set of letters that occur in w;

- strongly closed on A’ C A if for all s € A, alph(0(s)) = A’;

- cyclic if there exists a cyclic permutation 7 of the alphabet A, such that for each
s € A, 0(s) = $1...5m, then s;41 = 7(s;), with 1 < ¢ < m —1; and for each pair s,t € A
such that 7(s) = t, then w(last(0(s))) = first(6(t)), where first(w) extracts the first
letter of w, and last(w) its last one;

- simplifiable if there exists an alphabet B, such that |B| < |A|, where |.| denotes the
cardinality, and morphisms f : A* — B* and g : B* — A* such that § = gf.

- elementary if it cannot be simplified;

- strongly repetitive if there is a non-empty word u such that for each & > 1, u*f =
wuu...u is a subword of a word in Ly = {w € A* | w =0"(s),s € A,n € N}.

We also shall need a known result of lamination theory (see [19], Lemma 2.4 and
Proposition 2.5) that we here state relatively to our framework:

Lemma 4.6 Let h be in H*(C, D), and Ly, be a fized lamination as obtained in Propo-
sition 4.5. If Ly, does not contain any closed curve, h is irreducible.

In the symbolic world, following the definition of the boundary of a language we have
that (see [32]):
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Lemma 4.7 There is a periodic word in Bi(Ly,), i.e. a closed curve in the coded lami-
nation, iff 0y is strongly repetitive.

Proof. To a periodic word w = “u* in Bi(Ly,) corresponds a sequence of finite words
in Ly, which must contain u* with k larger and larger. Conversely, construct a sequence
of pointed words of Ly, with synchronizing u*’s which grow to the two directions so
that the limit is w = “u*.

Finally, there is an important result in DOL-system theory coming from Ehrenfeucht
and Rozenberg [12] (see also [21]) stating that it is decidable whether a substitution is
strongly repetitive. It is based on the following Lemma (see [12], Claim 6.11):

Lemma 4.8 (Ehrenfeucht-Rozenberg). An elementary strongly growing substitution over
A is strongly repetitive iff it is strongly closed and cyclic over a subalphabet A" C A.

The purpose of the next results is to be able to apply this lemma.

Lemma 4.9 Let I' be as in Lemma 4.2 and let h € HT(C,D). Then the associated
substitution 0, is primitive.
Proof. A system of curves on a surface M is such that the components of M \ ' are
disks, so I' is certainly connected when seen as a non-directed graph. But since every
edge of I' belongs to a cycle, all the vertices of the boundary of each of these disks
must also be connected by a path on the directed graph I'.

Now, recall that each edge I' is in intersection with the curve of some twist in Toyup.
So begin with an edge 7, and add to it the edges and vertices corresponding to the
twist curve in intersection with it. Do the same thing in the obtained graph with all
the added edges one by one, and carry on this process until no more new vertex or
edge can be added. If the last graph obtained is a strict subgraph of I' there is another
component in its complement and no two vertices of these two components can be
joined by a path, by construction. So the last graph is all of I'. In view of Lemma 4.2
we can rephrase this by saying that applying to n the twists in the order they appear
in the above inductive construction produces a path visiting all the edges of I'.

By definition of H*(C, D), every twist of 7cup must appear in the definition of h,
so according to the above arguments there is a power n > 0 such that h"(n) yields a
curve whose admissible path contains every edge of I' (in fact any n > |Tcup| will do).
From the symbolic point-of-view, this means that 67 (e), e being the label of 7, contains
every letter of A, which proves the lemma.

Lemma 4.10 Let T be as in Lemma 4.2 and let h € H*(C, D). Let L}, be a lamination
as in Proposition 4.5. Then exactly three types of length-2 edge-subpaths of the paths
coding Ly, go through each vertex v of I.

Proof. Since 6, is primitive, the paths coding £, visit all of I’s edges. So, the two only
possible length-2 edge-subpaths making a turn at each vertex v of ' must appear since
Ly is made of two-infinite curves pairwise disjoint. These are indicated in Figure 8
by two pieces of curves v and +'. Now, there must be two twists of Toup near v
respectively hitting v and +'. By definition of HT(C, D), these two twists must appear
in the decomposition of h. Looking for the last occurence among these two twists
determines the twist which drags either v or 7' along its curve. This also determines a
straight length-2 edge-path going through v (also indicated in Figure 8).
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Figure 8: The two possible 3-tuples length-2 edge-paths going through v.

Corollary 4.11 Let I' be as in Lemma 4.2. No cutting is necessary on I' rel. to Ly

Proof. According to the proof of Theorem 3.3, if cutting is necessary, only mid-vertex
cuttings can occur. But mid-vertex cuttings depends on the subwords of length-2
centered at each vertex v of I': for a graph defined by a system of curves C' U D,
at most two subwords among the four possible ones must occur to imply a cutting.
According to the above Lemma 4.10, this cannot be the case. {

Proposition 4.12 Let C' U D be a free system of curves on M. FEvery automorphism
h € H*(C, D) is irreducible.

Proof. To simplify the associated substitution #, amounts to being able to factorize the
words 6;,(A) into less subwords than |A| such that each subword is over a subalphabet
A" of A and such that the rest can be written over A\ A’. In terms of edge-paths of the
associated graph I', this means that some of them can be replaced by single edges. But
this implies cutting since all the single edges are originally in I' followed by a vertex
which is a switch. So by Corollary 4.11, 6, is elementary.

Cyclicity implies that every letter in the image of 6,(s), s € A can be followed by
only one distinct letter. But according to Lemma 4.10, this cannot be the case since
there are letters (in fact, as many as there are vertices in I') which are followed by two
different ones.

Finally, according to Lemma 4.9, 6, is primitive. Hence, there is some finite power
m > 0 —the primitivity power—, such that 6} is strongly closed on A, and clearly there
is no proper subalphabet A" C A such that 6" could be strongly closed. Primitivity
implies also that Bi(Lg,) = Bi(Lep), i.e. the same lamination is obtained. Moreover,

W is still elementary and non-cyclic.

So, we can apply the Ehrenfeucht-Rozenberg Lemma 4.8. No two-way infinite
periodic word can occur in Bi(Ly, ), i.e. no closed leaf occur in £,. Lemma 4.6 gives
then the result.

Combining the above Proposition 4.12 with Propositions 4.4 and 4.5 gives a proof of
Theorem 4.1. In our terms, this theorem becomes :

Theorem 4.13 For every compact surface M, semi-groups H*(C, D) of non-periodic
wrreducible automorphisms can be obtained such that their fized laminations Ly are
described by Bi(Ly, ), i.e. by boundaries of DOL-languages.
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Thus, for instance, the automorphism A given in Eq. (2) is pseudo-Anosov. Its sub-
stitution 6, given in Eq. (3) leads to a language Bi(Lg, ) which describes a lamination
fixed by h.

A consequence of the above proof is that one can either extract codings of individual
leaves of L}, by simply iterating @, or systematically extract all the codings of individual
leaves by the procedure described in [32]. Another possibility is given by the following
corollary (in [24], we present how to compute the exact number of the involved subwords
for every lamination £, with h € H*(C, D)):

Corollary 4.14 For every h € H*(C, D) and every n > 0, all the length-n edge-paths
homotopic to subcurves of the leaves in Ly can be described in an effective way.

Proof.  Since the associated substitution #, is primitive, each coding word of the
individual leaf in £} has the same set of subwords. These must also appear recurrently
with bounded gaps (see [37]). Moreover those gaps can be effectively bounded [6]. So
by finitely iterating 6, on any letter s € A gives a word which contains all the possible
subwords. <

4.3 Remarks about the Proof

A non-periodic and irreducible automorphism setwise fixes two transverse laminations.
The lamination £, used above is one of them. The other one can also be described
through formal language theory as follows. Denote by I'™! a copy of T' with its arcs
labelled over the same alphabet but with orientations reversed, and in general position
rel. to I'. The graph I'"! is invariant under A~! for the same reason T is under h.
Consider the associated lamination £;,-1. By construction, it is transverse to £,. We
claim that it is also invariant under A. This can be seen as follows: denote by 6},-1
the substitution associated with h~!; to apply h on £,-1 corresponds on languages to
apply the inverse of 6,-1 on Bi(Lg, _, ), i.e. to apply the symbolic transformation which
consists in slicing the words of Bi(Ly, _, ) into the image words {0,-1(s), s € A} of the
alphabet A, and then replacing these occurences by the letters whose images they are
(see e.g. [37, 31, 32]). Existence and uniqueness of such a slicing for two-way infinite
words generated by a non-strongly repetitive and injective substitution on the letters
is proved in [31] (Theorem 3.1bis). Since elementarity implies injectivity (see [11]) ;-1
has all the required properties. Finally, by using the same arguments as in Lemma 3.2
Bi(Lg, _, ) is stable under this slicing transformation. We therefore have two transverse
laminations stable under h.

Measure can be also considered on these two laminations so that h is respectively
expanding on one and shrinking on the other one by factors inverse to each other
(see [15, 28, 18, 7, 43]). We have been able to avoid these considerations in the whole
paper. However, measure is readily at disposal by using the symbolic coding and results
in [37]. Indeed, the substitution @, has a linear abelianized representation M whose
entries m; ; denote the number of letters s; appearing in 6(s;). Primitivity of # implies
that there is some power of M so that all its entries are positive. Perron-Frobenius’s
Theorem says then that there is a largest real eigenvalue A > 1. Using [37], one can con-
clude that the expanding coefficient of h over Bi(Ly,) is A, and the Perron-Frobenius
eigenvector gives the relative occurences of the letters of every word in Bi(Ly, ). Simi-
larly to the intersection form on a surface, there is a non-singular bilinear form on the
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vector space generated by C U D’s edges which describes intersections among edges,
and it is invariant under the action induced by any homeomorphism h € H*(C, D)
(via the linear abelianized representation of its associated substitution). This implies
that M~! and the transposed of M are conjugate, hence that M and M~! have the
same eigenvalues. But the substitution §,-1 has a matrix conjugate to M~! as linear
representation (the conjugacy uses a matrix which inverses some edges orientations),
hence the linear representations of 8, and 6,1 have the same Perron-Frobenius eigen-
value \. In particular this implies that A~! is the shrinking coefficient of the inverse
slicing transformation of 6,-1 .

Transforming an automorphism of a surface into a substitution has been done here
for constructing effective and tractable representations of non-periodic irreducible au-
tomorphisms. The originality of the method is to use morphisms on monoids instead
of morphisms on groups as in [2, 3] with the benefit that DOL-system theory readily
applies. The consequence is the ability of easily describing an infinite set of pseudo-
Anosov automorphisms for every closed oriented surface with negative Euler-Poincaré
characteristic. However, in view of the classification theorem of Nielsen-Thurston which
says that an automorphism is either periodic, irreducible, or pseudo-Anosov, we did not
present an answer to the decision problem as in [3, 17]. As a matter of fact it is known
that the Thurston-Penner construction, even without the restriction to “free systems
of curves”, does not yield every possible pseudo-Anosov automorphism of a surface
M [35]. Even if the method presented here can be applied to more general invariant
orientable embedded graphs with no 0-gons or 1-gons components in their complements
(as it is originally done in [35, 14]), this is not sufficient to fill the gap yet. In order
to solve the whole classification problem it remains to handle the backtrackings that
leaves could make in the graphs when both positive and negative twists occur. As a
matter of fact, we could use monoid morphisms because only positive twists were al-
lowed, hence that directed graphs were sufficient. It seems however that backtrackings
can be handled, with the stakes that solving the full classification problem of automor-
phisms in the vein of the present paper would lead to full effective constructions of the
objects that characterize each class.
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