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ABSTRACT. This paper® introduces a generalized way of defining languages of infinite words by topo-
logical means. It focuses on languages generated by iterating morphisms on free semi-groups (also called
substitutions or DOL-systems). The main result is an effective construction of the boundary of such lan-
guages which leads to a bijective mapping of the boundary onto a regular language. Among the obtained
properties are the uncountability of the boundary and the strict quasiperiodicity of its words. We also
investigate the decidability of the boundary equality problem and the dynamical system induced by the
inversed morphism.
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1 INTRODUCTION

Morphisms on free semi-groups are simple transformations which replace single genera-
tors by words made of generators. In formal language theory, they are either called sub-
stitutions or DOL-systems, i.e. parallel deterministic context-free systems. For instance,
with the generators {a, b}, the so-called Thue-Morse morphism is given by replacing in
a word all the a’s by ab and all the b’s by ba (e.g. the word abba is transformed into
abbabaab).

Iterating morphisms is a classical way of generating infinite words. The first who
investigated this possibility seemed to be Thue [31]. Later, Morse [22, 23] made use of
it to obtain bi-infinite words which represented geodesics on surfaces of negative curva-
ture. This was the founding to what was called symbolic dynamics [24]. Indeed, sets of
asymptotic words coming from infinite iterations of morphisms were shown as one of the
simplest way of constructing minimal sets and strict ergodic systems by the orbit-closure
of a shift (see for instance [14, 4, 20, 27]). In formal language theory, one-way infinite
words were generated as fixed points of morphisms (see [29, 30, 6]), and analysis of the
subword structure of such words led to a distinct field of research in word combinatorics.
From a different point of view, as soon as extensions of reqularity were given for infinite
words, topological means of getting infinite words were devised. In particular, bound-
aries 2 of languages were introduced [2, 17, 18]. Originally, these asymptotic languages
contained only words going to infinity to the right, but extensions to include both ways
have more recently been made [13, 10].

The aim of this paper is to introduce a generalized and effective way of defining the
boundary of a language. The main new structural feature about this boundary is that it
inherently contains both one-way and bi-infinite words. We shall focus here on studying
such boundaries for languages of finite words generated by iterating morphisms. For
that purpose, the boundary of a morphism is defined as the boundary of the language
obtained by finitely iterating this morphism starting from each generator.

The first result to be presented is that the construction of this boundary can be
made effective. This is different from the just cited dynamical-oriented works where
non-constructive closure operators were directly used. The point we shall exploit here
is that, since the space of all words over a finite alphabet endowed with the bi-infinite
product topology is compact, the closure of its subspaces can be obtained by applying
a completion. The idea is therefore to find a procedure which generates all the needed
Cauchy sequences. This is implemented by what we call the embedding map which
systematically embeds finite words into larger ones. This map has been inspired by an
idea coming from tiling theory by R. Robinson [28, 16], and formally developed by N.G.
De Bruijn [7, 8. With the assumption that morphisms are ezpansive, i.e. morphism
iterations starting from every generator lead to arbitrarily long words, the first theorem
is the following:

THEOREM. The boundary of an expansive morphism on a free semi-group can be
effectively constructed by the embedding map.

Since the embedding map can be represented as a forest of infinite trees with a
systematic branching structure, the boundary can be mapped onto a regular language of
right-infinite words. An important case is when this map is injective, since this leads to a

2In the language theory literature, they are called adherence sets, although the topological concept of
boundary has been actually considered.
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regular coding of the boundary. This property is shown to hold whenever the morphism
is circular, i.e. locally invertible. This concept was first introduced by Mignosi and
Séébold [21], and is closely related to recognizability [20, 27, 25]. A consequence is the
second main result which is:

THEOREM. The boundary of an expansive and circular morphism on a free semi-
group can be bijectively mapped onto a regular language of right-infinite words.

In other words, the completion of a language generated by iterating a morphism can
be done automatically. According to this theorem, the boundary can be studied through
its regular coding language. In particular, we show that this set can be uncountable,
and that it only contains strict quasiperiodic words. Also, the study of the dynamical
system on the boundary induced by the inversed morphism is made much more easier:
for instance periodic coding words represent periodic orbits. Finally, by making a strong
use of a result from Culik and Harju [5], the problem of knowing whether or not two
boundaries are equal is shown decidable for primitive morphisms.

The first part of this paper introduces the topology on pointed and unpointed words,
as well as the definition of the boundary of a language, and the on-focus languages
generated by iterating morphisms. The second part introduces the embedding map and
its representation as a forest of infinite trees whose ends consist of boundary words.
This leads us to the first theorem. We also discuss how the asymptotic sets of words in
dynamical systems and in D(0L-systems theories can be related to our way of defining the
boundary. Finally, the third part presents how the boundary can be coded into a regular
language: First, the forest of trees is labeled and shown regular. Next the circularity
property is shown sufficient and necessary so that each path of the embedding trees leads
to a distinct boundary word. This gives the second theorem. Its consequences are then
discussed.

2 NOTATIONS, DEFINITIONS

2.1 WORDS

N denotes the positive integers with zero,

N~ denotes the negative integers with zero,

Z denotes the integers,

w is the cardinality of the countable,

A denotes a finite alphabet of generators or symbols,
AT denotes the free semi-group generated by A,

Definition 1 A pointed word on A is a map w : I — A, where I is any interval of 7 which
includes zero.

w(n) is abbreviated wy,,
wp 18 called the origin or the base point of W,
|i] is the length of w, and is equal to the cardinality of its source set.
Ifw: I — Ais a pointed word over A, then,
if T is finite, then @ is said finite,
if NC I, I # Z, then @ is said right infinite,
if N C I, I # Z, then @ is said left infinite,
if I = Z, then 1 is said bi-infinite.
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% 4% denotes the language of all the pointed words over A,
A¥ denotes the language of all the pointed right-infinite words over A.
Any subset L of ® A% is called a pointed language,
|L| is the cardinality of the language L.
A boldface character indicates the origin of a pointed word. For example, the finite
pointed word @W = aaabbabbb is not equal to ¥ = aaabbabbb.
Let @ : I — A, then ¥ C @ means that © : I’ C I — A where I’ is an interval of Z
included in I. In this case, the word ¥ is said to be a block or a factor of w. Moreover,
ifI=A{k,.,l}, kez,leZU{w}, and I' = {k,...,I'},I' <1, 0 is a left factor.
if I = {k), ..,l}, kezZu {—w}, l€Z,and I = {kl, ..,l},k < k:', U is a right factor.
If I contains zero, then v is a pointed factor.

-~

To homogenize ®° A%, all the words which are not yet bi-infinite are padded to both
infinities with some dummy symbol not already in A. This will be useful for the metric
definition. Also, this allows us to consider the shift operator o on *°A®:

o(Wp) = @ni1, Vn € L. (1)

Because of the padding, the n-fold shift operation o”(w), n > 0, is well-defined iff
w_, € A, i.e. the word cannot be pointed on its padded part. The shift induces an
equivalence relation on *° A:

U ~, w iff there exists n € Z such that v = o™ (w).

Definition 2 An unpointed word is an equivalence class in ©A®/ ~,.

The set *©A* consists of all unpointed words. If @ is a pointed word, then w denotes
its equivalence class (up to now, symbols with hats will always indicate pointed words
and pointed languages). Any subset L of A is called a language. If L C ©A™ is
considered, its pointed counterpart, f/, consists of all the different pointings of the words
in L, so that L = L/ ~, holds.

Let us remark that the finite and the one-way infinite pointed words have a canonical
writing for their equivalence classes. This comes from the fact that they have at least one
end, which may be used as a distinctive point. For example, the word aab is the equiv-
alence class of {aab, aab,aab}, and ababbaaa.... is in the equivalence class ababbaaa.....
This is not the case for bi-infinite words which cannot in general be written down.

2.2 THE METRIC STRUCTURE

The interest in using pointed words is that there exists a convenient metric, i.e. there is
an easy way of structuring % 4% into a topological space.

To compare two pointed words, the following metric relies on the length of the longest
common factor around their origins: let 4,7 be in °°121\°°, then

0 iff u=72

27" otherwise

amm:{ (2)
where n is the largest nonnegative integer such that uy = wyg, |k| < n. Note that the
padding with the dummy symbol allows finite and infinite words to be compared. For
instance, if 4 = aaaabbabbb and ¥ = - - - bbbbaaaabbabbb - - -, then d(7,?) = 273. The map
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d is the definition of an ultrametric since it satisfies the following triangle inequality: let
Uu,V,w be in A%, then

d(u, w) < maz{d(u,v),d(v,w)}.
Here are the main properties of the metric space (0021\00, d):

e Since d is an ultrametric, the space (®A®,d) is totally disconnected in R (see for
instance [12]), i.e. the connected component of each point contains only this point.
As a consequence, it iS zero-dimensional.

e Since A is finite, the space (A%, d) is compact.
e The finite words in ® A are isolated points.

e The set of infinite words in © A% is perfect [24], i.e. each word is an accumulation
point, and therefore is homeomorphic to the Cantor set.

2.3 THE BOUNDARY

The boundary of a language is defined as the familiar topological notion, that is, if
L C A,

OL = Closure(L) N Closure (Complement (L) in *A)

Since (°°21\°°, d) is compact, the closure of its subsets can be obtained by a completion,
i.e. by considering every limit of every Cauchy sequence. Recall that such a sequence
{an}nen in ®A>, denoted by (ay,), is such that:

Ve >0, Jk such that d(an,an) <€, Vn,m > k. (3)

Note also that since (OOAOO, d) is ultrametric, Cauchy sequences have a simple form which
is such that d(ay,,@,+1) — 0. Besides, we can use the convention that «q is a single
letter in A so that it corresponds to the origin of all the a;’s. Such a sequence can be
described by identifying longer and longer factors of the «,’s around their origins:

Example 2.1 If ap = b and «a;, = a(2n_1_1)ba(2"_1)b, for n. > 0, then this sequence can
be represented as:

aaabaaaaaaab
abaaab
bab
b

Its limit word is Yaba®.

Therefore, a Cauchy sequence (a,) in (A%, d) is determined by an identified factors
sequence denoted by (o), such that o), C ay, for all n € N and such that:

1. af):aoE;l,

2. o), C o, for all n € N, such that
Apt1 = 6n’)’na;y8n77na ;Bna')’na 5na77n € A+, or are empty,
a;H—l = ’Ynaglﬂna
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In the last example, the identified factors are given by o, = a7 =Dbga(2"=1). The next
example suggests that limits of Cauchy sequences are not necessarily bi-infinite:

Example 2.2 If ap = a and o, = bab™, for n > 0:

babbb
babb
bab

a

Here, its limit word is bab“.

Clearly the limit words may be either right, left or bi-infinite words. R
Now let us denote by (L) the set of all distinct limits of Cauchy sequences in L.

The completion points of L consists of every word which is in (L) but not in L, i.e. the

points of (L) \ L.

Remark 2.3 Let L C A*. Then, 8L = $(L) \ L.

Proof.  Every finite word is isolated in (°°ﬁ°°, d). Therefore, its complementary language

in ® A% is closed, and a word which belongs to the boundary cannot belong to A™. {

Corollary 2.4 Let LCAT be of finite cardinality. Then oL = 0.

Corollary 2.5 Let LC A* be of infinite cardinality. Then, AL consists of the set of the
limits of the Cauchy sequences (o) on L such that lim, o (o) is an infinite word.

Corollary 2.6 Let L C At be of infinite cardinality. Then, oL # 0.

In view of the Cauchy sequence examples, the boundary oL decomposes into three sets
respectively containing only right, left or bi-infinite completion words, and respectively
denoted by LOL, ROL and BidL, that is:

0L = LOL U ROL U BidL.

Let us define the unpointed boundary sets. First, it is necessary to have a shift
invariance property:

Remark 2.7 Let L C ®A® and L C ©A™ its pointed counterpart. Then
if @ € 8L then o™(®) € OL, ¥Ym € Z.

Proof. Ifw € 82, there is a sequence (ay,), such that lim, , (o) = W, and the
identified factor sequence («!,) must have a growth function |o,| which strictly increases
with n. Hence, if ™ (w) is well-defined, i.e. the origin is a letter in A, there is an
index p > 0 such that the origin of 0" (@) is included in a;,. Hence, just define another
sequence ((,) where (p is equal to the origin of ™ (@) and ¢, = ap4y, for alln > 0. &

This allows us to define the respective unpointed boundary sets:

Definition 3 Let L C *°A™ and L C A% jts pointed counterpart. The unpointed bound-
ary OL of L is given by (OL/ ~,). Equivalently,
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LOL = LOL/ ~,, ROL=ROL/~,, BidL = BidL/~,.

Here are two general remarks about the boundary definitions:

1) These definitions can be related to the familiar ones in formal language theory
literature (see for instance [2, 13]) but in a slightly different form. First, they were called
“adherences”, although this was somewhat misleading since this notion is equivalent to
the whole closure. Next, these sets were defined according to their factor sets: they
were implicitely unpointed for the one-way boundary sets and pointed for the two-way
boundary set.

2) The unpointed sets are not always interesting in regard to the actual metrical
quotient spaces: they can be reduced to one point, i.e. to the trivial topology. Indeed,
quotient spaces of languages in (ooﬁoo,d) are metrically unseparated whenever their
words have comparable sets of factors: they cannot be locally distinguished. For instance,
this occurs when languages are locally isomorphic [19]. Details about this fact can be
found in [3] since these languages are instances for which the C*-algebra framework is
proved more informative than the classical topological view. We shall not get further into
this, but just indicate when results about pointed boundaries can readily be extended to
unpointed ones.

2.4 ITERATED MORPHISMS ON FREE SEMI-GROUPS AND SUBSTITUTIONS

A maph: A— AT is a morphism on the semi-group AT when extended to h: AT — AT,
the following holds for all w € A™:

h(w) = h(s1...8n) = h(s1)...h(sn), s; € A.

Applying a morphism on some word is also called a substitution. For instance, with the

letters {p, ¢}, the morphism h(p) = ppq, h(q) = pq is such that h(pgp) = ppgpqgppq. The
n-fold composition is denoted by h".

Definition 4 Let A be a finite alphabet and h be a morphism on A'. The letter substitu-
tion language is given by:

L,={we A" | h"(s)=w, neN, sec A}. (4)

If w in L, is generated by h™(s), then the letter s is called the father letter and 7 is

the order of this way of generating w. The letter substitution sub-language of order n is
defined as:
Lt={weAt| h'(s)=w, sec A} (5)

The letter substitution sub-language with father s is defined as:
L,(s)={we AT | hA"(s)=w, ne€N}L (6)
The image set of every letter by h, that is L!, is denoted by h(A).
We shall make use of the following kinds of morphisms:

e primitive if there exists a finite power n such that all letters of A are included in
h™(s), for all s € A.

e n-power free, if each word in L, does not contain any factor u" withu € AT, n > 1.
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e expansive, if for every s € A, |h"(s)| may be arbitrarily large.

We shall call the boundary of a letter substitution language L;, the boundary of the mor-
phism h. Note that the expansive property of a morphism ensures that f/h is an infinite
language included in j*‘, and therefore that 8L, # (. Note also that letter substitution
languages are directly related to a classical type of substitution languages [29, 30] ob-
tained from a single starting word: A D0L-language [29, 30] is given by a 3-tuple (4, h, t)
such that substitution iterations start from a single word ¢ in A", that is:

DOL,(t) ={we AT | A"(t) =w, n€N}L
Hence, L;, = U, g4 DOL,(s).

2.5 REGULARITY FOR INFINITE WORDS

Regular languages will be on use here for finite and right-infinite words. We recall here
some basic definitions:

A finite Biichi automaton for finite words is a 5-tuple (Q, I, F, E, A) where:

@ denotes the set of states,

1, F C Q are the sets of initial and final states,

E is the set of edges included in the set () x A X @,

A is as usual the set of labels or letters.
The sets ), E and A are assumed to be finite. A path in the automaton is a sequence of
consecutive edges (g;, gi,gi+1) of E and its label is the word g = gggi...gn included in A
(respect. g = gog1-.. in A“). To accept a finite word label, its corresponding path must
start from some state of I, i.e. gy € I, and must end in a state of F, i.e. g, € F.

For the infinite case, a new set called a table set T'ab included in the power set of the
final states F' is added to the automaton: such a 6-tuple (Q, I, F, E, A,Tab) is called a
Muller automaton [26] To accept a right-infinite word label, its corresponding path must
start from some state of I and the set of states which are infinitely visited must belong
to T'ab.

The set of finite (respect. infinite) words included in A™ (respect. in A“) which are
accepted by a given automaton is called the recognized language. This language is said

regular.

3 THE EFFECTIVE CONSTRUCTION OF THE BOUNDARY

3.1 THE EMBEDDING MAP

A word of 9L, is given by the limit of a Cauchy sequence which is an infinite word.
Therefore, if there is a systematic way of defining all these sequences, it would lead to an
effective description of the set OL,. This will be implemented for most boundary words
by a simple process which relies on a constrained way of embedding words in each other.
Since @ € L,, there exists a symbol s € A such that h"(s) = w (recall that w is the
associated ~,-class of @); thus a set of words which contains @ as a factor is given, first,
by determining all the possible choices of embedding the letter s in the words of h(A),
i.e. the morphism image of the single letters, second, by applying h" to these words. As
a consequence, this leads to a map which sends the letter sub-language of order n with
father letter s, i.e. Zg(s), onto a subset of the letter sub-language of order n + 1, that is
to the power set of L1
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Definition 5 Let h be a morphism defined on A'. Its embedding map is defined for all
n € N and s € A as a function

Emb, : L™(s) — Power set of L™t
W +— {0€ L |0 =h"(u)® h"(u'), usu' € h(A)}.

(7)

The indexation of the factors h™(u) and h"(u') is induced by @.

Example 3.1 Consider the morphism defined by h(p) = ppq, h(q) = pq, then Emb,(p) =
{pPpq,ppq,pq} and Emb,(q) = {ppa,pa} (recall that the boldface letters indicate the
origins of the words). Consider also the case where W = ppq, where W has father p,
i.e. w = h(p), then take all the possibilities of embedding p in h(A) (which is ezactly

Emb,(p)) to obtain Emb,(ppq) = {pPappqpq, ppappqpq, ppapq}-

We stress here that the embedding map is not related to a forward application of the
morphism: e.g. the word ppgpg belongs to Emb, (ppq).

The embedding map can be recursively iterated: Since each word of Emb? ()
defines its own subset included in the power set of L', then Emb,(Emb!~'(@)) is
given by

Emb () = U {t € Emb,(0)}. (8)

ue Emb; ™" ()
3.2 THE EMBEDDING FOREST

Iterations of the embedding map can be represented as a graph structure:

e The set of nodes is a subset of L, x A x N, where a node (W, s,n) means that
w=h"(s),s€ A, neN

e The edges are defined such that (w,s,n) is bound to (v,¢,n + 1) whenever v €

Example 3.2 Again considering h(p) = ppq, h(q) = pq, we can see that (p,p,0) is bound

to (ppg,p, 1), (pPY,p, 1), and (pq; g, 1); also, the node (ppg, p, 1) is bound to (pPgppapq; p, 2),
(ppappygpq, p,2), and (pPgpq, q,2). This can be observed in Figure 1.

Let us prove three remarks about this graph:

Remark 3.3 Let h be a morphism on AT. Then, iterations of the corresponding embed-
ding map Emb, can be represented as a forest of trees.

Proof.  Consider a node (w,s,n) with n > 0. The knowledge of the father letter s
implies that w has a unique factorization determined by h(s) € h(A), i.e.

if h(s) = 51...8m, 8; € A then w = A" 1(s1)..h" 1 (s,,). (9)
Let i € {1..m} be such that A" (s;) contains the origin of @. Hence,
w=h""(s1..5;1)h" "1 (5) A" "1 (Si41--5m),

which corresponds to the embedding us;u’, with u = s1..8,_1 and ' = s;41..8p,- Denote
by © the pointed occurrence of A" !(s;) induced by its embedding in @. Therefore, the
node (@, s,n) has a unique father node given by (v, s;,n — 1).
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1
(Ppappapa,p,2) — 2 = ...
\43

1 (pPaPpPapy,p,2) /

3
92) —>—= .- cen
~__ (Prapaa?) =7 %
(Ppap,l) 74 1 (PPAPPAPAPPAPPAPAPPIPY,P;3) T4>
/ / (PPaPPAPa,P,2) 2ﬂll(ppqppqpqpPqppqpqppqpq,p,3) — 2= ...
3
1 (PPAPPAPAPPAPY,q,3) ——= ---
P.p,0) —(pPa,p,l) —=(ppapPapa,p,2) —gz= e -
4 B8 . (PPAPPAPAPPAPPAPAPPAPA,p,3) = °°
(PPapP9,q;2) = T
(Paal) 4 1 (ppappapapPapaa,3) ——=
= (ppappqPa,p,2) —2_ 5
5 3 } ee
=
(PPaPa,a,2) ——
(ppQPPapa,p,2) —o 1 15
/ 4 s (pPPapPQPAPPAPPAPAPPAPY,P,3) — 4 ...
1
(ppq,p,1)2/ (PPappPQPa,p;2) %2(ppqppqpqppqppqpqppqpq,1)3)142
V ) 3 T L.
3 3 (PPapPQpPAPPAPY,d,3) ——=-..
—_ ...
(q,a,0) (ppQPa,q,2) 5
5 %
3
e e (ppqpquQPQ)i
b))
T ... 1
5 4 /2
/3/(ppqppqpqppqppqpqppqpq,p, ) =
(ppapq,q,2) — 4 4
(ppappapappaprq,q,3)

Figure 1: The beginnings of the embedding forest of h(p) = ppq, h(q) = pq (the origins
are boldfaced). The labeling is deduced from the connector map given later on in the text.

Applying recursively this process eventually leads to a node of type (s, s,0), s € A.
The result follows.

This forest is called the embedding forest of the morphism and the number of its
trees is just the cardinality of A. In Figures 1 and 2 are illustrated the beginnings of the
embedding forests of the morphisms h(p) = ppq, h(q) = pq and h(a) = b, h(b) = ab.

In the embedding forest, the nodes of level n contain exactly the words of the pointed
counterpart of the letter substitution sub-language of order n:

Remark 3.4 Let h be a morphism on A™. Then, in its corresponding embedding forest,
we have for a ﬁzed n:

= {@ € L, | (@,s,n) € the embedding forest, s € A}.
Proof. Cons1der a word W in L,Tf, such that A"(s) = w, s € A. From Remark 3.3, one
can deduce that there exists an unique path of length n from the node (@, s,n) to the
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3/ cee
37 (abbab,b,3) <
(bab,b,2)

3
/ N (baba3) —2— ...
2

(2,2,0) —= (ab,b,1)
4 e
™ (aba2) 2= (abbab,b,3<
1 cee

g
3/(abbab,b,3) <

T~ (bab,a,3) 2

— e

3/(bab,b,2)

; (ab,b,1) 37
/ 1\ (ab,a,,2) 2% (abbabybz'?’) <”,

3 .ee
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1\(bab,a,3) 23

(b,a,0)

Figure 2: The beginnings of the embedding forest of h(a) = b, h(b) = ab (the origins are
boldfaced). The labeling is deduced from the connector map given later on in the text.

root node (wq,wo, 0), where wy is the origin of w. {

Another property of the embedding forest is the translation property of its finite
paths; a node (., s,n) denotes the set of nodes of type (w, s, n):

Remark 3.5 Let h be a morphism on AT. Consider a path in its embedding forest from
a node of type (.,s,mn) to a node of type (.,t,m). Then, there is a path from any node of
type (., s,n + k) to any node of type (.,t,m + k), for every k > 0.

Proof.  Let the node (w,s,n) be bound to (v,t,m), with w = h"(s), v = h™(¢),
m > n. Hence, according to the definition of the embedding map, there is a sequence of
embeddings of @ which starts by an embedding of its father letter s into h(A) by usu'.
This gives another word A" (u)wh"(u') of order n + 1 with another father letter, say ¢;.
If m > n+ 1, then again, the letter ¢; is embedded into h(A), say by uit;u}, which gives
h™(u1)h"™ (w)@h™(u')h™ (u}). This is carried on (m —n — 2) times until we get to ¥ with ¢
as father letter. This sequence of embeddings is only determined by the sequence of the
father letters. ¢

Note that father and order informations are necessary to ensure the forest-type struc-
ture:

Example 3.6 For h(a) = b, h(b) = ab (see Figure 2): the nodes (ab,a,1) and (ab,b,?2)
reflect the fact that there are two different ways of generating ab; thus, the result through
the embedding map is not the same. On the other hand, for h(a) = ab, h(b) = c,
h(c) = b, the nodes (b,b,2) and (b,b,4) correspond to two instances of b which do not
give the same result through the embedding map. The last case cannot occur for expansive
morphisms.
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3.3 THE ENDS OF THE EMBEDDING FOREST

According to the definition of E'mb,, the words inside successive nodes in any path of
an embedding tree are metrically closer and closer. Recalling that the space (*°A™,d)
is ultrametric and compact, each infinite path in the embedding forest can be looked at
as a Cauchy sequence. It is then natural to define the ends of the embedding forest as
containing the limit pointed words of their corresponding Cauchy sequences. The set
Ends,, consists of all these words which are infinite. Hence, by definition of the boundary
of a morphism h, the following holds:

Ends, C OL,. (10)

The aim of the next sections is to show in what respect the set of ends may be equal
to the boundary, justifying the use of the embedding map. In particular, we shall focus
on expansive morphisms where just a simple set must be added to gndsh in order to get
the whole boundary OL,.

3.4 THE RECOVERY OF THE PATH BY SUCCESSIVE FACTORIZATIONS

This section solves the problem of recovering the path of the words in SAndsh. The proof
of Remark 3.3 uses a backward way which makes a strong use of the information included
in each node (the father letter and the order). On the contrary, the words of Ends, have
not such information, since only the word part of the nodes is ensured to be convergent.
Nevertheless, they contain their “embedding history”, i.e. their successsive embedding
steps around their origins.

First, let us see how such a direct recovery may work for finite words: Consider a
word @ which belongs to f/h. The path in the embedding forest must starts at the node
(wg, wp, 0) where wy is the origin of @. Thus the first step of embedding is determined
by finding how wy is embedded in some word of h(A), i.e. f/,ll, which is included into w.
For that purpose, i is factorized into words of L}:

. . 1
W = Ty 1.--T0,1---Tny 1, With  z;1 € Ly, mi,n1 €N, (11)

where the factor o contains wy, i.e. zg; = uwev, with u,v € AT or empty. Since
Zo,1 € L,ll, there is a letter, say sg 1, such that h(so1) = zo,1. This gives the first step of
the corresponding path in the embedding forest as

(wo,wo,0)  —  (@o,1,50,1,1)-
For a second step, the word @ must be factorized into words of order 2, i.e. which belongs
to Lg:
W = T my,2.--%0,2++-Tny,2, with Ti2 € Lz, ma,no €N, (12)

where the factor zp2 contains the factor zg 1. As well, 2o has a father letter, say s 2,
and this gives a second step of the path as:

(zo,1,80,1,1)  —>  (z02,502,2)
By factorizing @ into words in L, it is possible to recover the next steps of the path for
0 <k <nby:
(Zok S0k k) —>  (Tok+1,S0,k+1,k +1).
The last step is given when k = n— 1 which gives a node of type (@, son,n). A graphical
representation of how the factors zg; are successively embedded around the origin is
shown in Figure 3.
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Figure 3: A graphical representation of the successive embeddings around the origin.

Example 3.7 Consider again h(p) = ppq, h(q) = pq and the word ppgppqpqppqpq of order
3. Its factorization into words of h(A) is given by /ppq/ppq/pPq/ppq/pq/ where slashes
symbolize separations between factors. Thus, o1 = pq and so,1 = q, which gives the first
step as (p,p,0) — (pg,q,1). Then, the factorization into words of order two is given
as /ppqppqpq/ppapq/ and xo2 = ppqppgpq and soo = p which generates the next step
as: (pq,q,1) — (ppappgpq,p,2). The last step is then given by: (ppgppgpq,p,2) —
(pPapPaPaPPIPY; 4; 3)-

This way of recovering the path does not make use of the father and the order
informations. As a consequence, it can be used on the infinite words belonging to Ends,:
the successive factorizations are just given by:

W = T o o Ty ooy With  z;p € LK. (13)

Of course, since the factorizations are not necessarily unique, they may lead to ambi-
guities. This will be handled in a following section. However, at this time, the obvious
existence of at least one such sequence of factorizations for every word in fj’ndsh is suffi-
cient for the next results.

3.5 THE ONE-WAY BOUNDARY WORDS BY THE EMBEDDING MAP

As a preliminary result about the converse of Ends, C BLh, this section will show that
the one-way infinite words in the boundary BLh are contained in & nds,. For this purpose,
we shall use the natural decomposition of the ends words by:

EAndsh:Rgndsh u Léndsh U Bigndsh,

where respectively andsh, Lgndsh, and Bigndsh denote the right, left and bi-infinite
words of c‘jndsh.

Now note that the full recursive Definition 2 of a Cauchy sequence is too general
when one has to deal a priori with one-way infinite words. If a sequence (o) is known
to converge to an one-way infinite word, it can be simplified to be of the following form
(the left case is symmetrically handled): let (a),) be the sequence of identified factors,
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for which o, C ay, for all n € N, so that

. ~
ap =g € A,

o), C o, +1 for all n > 0, such that .

Qni1 = A Bnfn, Bn € AT, 1, € AT or is empty,
a;H—l = O‘;Lﬂm

(14)

A letter a is said right-recurrent (respect. left recurrent) if there exists some integer
p such that h”(a) = av (respect. hP(a) = va), v € AT. The power of a recurrent letter
is the least integer giving the last equality.

The next lemma shows that the one-way infinite boundary words are essentially the
same as the ones obtained by the fixed-point method of generating one-way infinite words
(see for instance [30]):

Lemma 3.8 Let h be an expansive morphism on AT. Then, the word @ = aw' belongs
to ROL,, with a € A (respect. 4 = u'a € LOL,), iff the letter a is right-recurrent (resp.
left-recurrent).

Proof. Let us prove the result for right-infinite words. First, if the letter a is right-
recurrent, then there exists a power p such that h?(a) = av. This means that h%(a) =
RP(hP(a)) = hP(a)hP(v). More generally, h™(a) = h(*~1P(a)h("~1P(y). Hence, consider
a sequence (ay) such that a, = h™(a), n > 0, pointed on the recurrent letter a, so
that the identified factor sequence (a/,) is just equal to (o). Since h is expansive, (o)
converges to an infinite word. Finally, because of the shift invariance property of the
boundary (see Remark 2.7), the limit word may be pointed on any letter of the infinite
word.

Conversely, take a sequence (o) whose limit is in ROL,. Since the alphabet A is
finite, there is a fixed letter s such that, the sequence (a;,) may be replaced by one of
its subsequence so that a,, = h¥"(s), for all n > 0 and k,, € N. Because of the simplified
form of Cauchy sequences in Equation (14), every word «y, can be written as auy, for all
n> 1, with u, € A", and a € A. Hence, for all n € N,

Qni1 = QuBnfn, Pn € AT, n, € AT or is empty,
QUnp+1 = Gunﬁnnna

which means that,
RFnt1 (3) =hfn (S)ﬁnnna
B+t (s)zhkmrkn (hkn (3))[3”””

Therefore, h¥n+1=kn (a) = av, v € AT and ky11 — ky, is just a multiple of the recurrence
power of the letter a, say p. It is then possible to redefine the sequence (o) without
impairing the limit word as:

o = h"P@E), n>1

where [ is an integer sufficiently large so that the origin of the original limit word is
already included in h'(a) = a;. The result follows. ¢

A consequence of the last lemma is that the cardinality of the unpointed right (re-
spect. left) boundary words is equal to the number of right (respect. left) recurrent
letters in A, i.e.

|ROL,| = |{a is right-recurrent,a € A}|
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and
|LOL,| = [{a is left-recurrent,a € A}|.

Let us prove now that the one-way boundary words are contained in the set of ends
Ends,, of the embedding forest:

Proposition 3.9 Let h be an ezpansive morphism on A™. Then,
REnds, = ROL, and Lénds, = LOL,.

Proof. Let us show the result for right boundary sets. By definition of the ends of
the embedding forest, we have that REnds, C ROL,. Conversely, consider a word @ in
ROL,. According to Lemma 3.8, the word @ must start by a right-recurrent letter, say
a, with power p, and can be generated by a sequence defined by ag = wg and a; = hl(a)
where [ is a power such that wy C h!(a) and a,, = h("*DP(q), for n > 1. Now, we know
that

Qnil = Qupp, up € AT. (15)
Hence, @ can factorized into words in L,(:H_l)p , where the first factor is a,. Using the

factorization method allows us to conclude that there is a path from the origin wg to «a,
for all n > 0. Moreover, because of the translation property (see Remark 3.5) there is a
path from «, to ap41 for all n. $

3.6 THE BI-INFINITE BOUNDARY WORDS AND THE PASTED SET

Up to now, we learned that EAndsh C Bf/h, and the last section proves that Raih -
Rgndsh and L(?Eh C Lgndsh. We shall show now that we have to add a simple set of
bi-infinite words to Bi€nds,, so that we obtain the equality with BidL,.

The pair set Pairs(L;,) contains all the factors of length two in words of L,. The
pasted set of L, is defined by pasting unpointed one-way limit words:

PasL, = {w € A% | w = vu, where v =1v'z € LOL,,

u=yu' € ROL,, zy € Pairs(Ly;)}. (16)

The words zy € Pairs(L;) of the last definition, i.e. the words such that z is left-
recurrent and y is right-recurrent, are called the pasting pairs.

Remark 3.10 The pasted set PasL, is a finite language.
Proof. According to Lemma 3.8, ROL, and LOL, are finite sets. Pairs(L,) as well. {

Note that the pointed counterpart Pasflh is obtained by setting origins on a letters
which are at a finite shift power from the pasting pair.

Lemma 3.11 Let h be an ezpansive morphism on AT. Then, Pasf/h C 3Eh.

Proof. Let w belongs to PasL,. This means that @ has been generated by pasting a
right-infinite boundary word, say yu', with y € A, and a left-infinite one, say v'z, with
z € A, so that the pasting pair of @ is zy. The claim is that W = v'zyu’ € dL,. From
Lemma 3.8, we know that the letter z must be left-recurrent for some power p; and
that y must be right-recurrent for some other power ps. Define p as the least common
multiple of p; and po, thus for all n > 0, the following holds:

R (zy) C BTIP (y). (17)
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Thus consider the following Cauchy sequence (ay,): let ap = wy, let ag be a word of
L, which contains wo and which is in the class of h'(zy) ( I is a power such that
wy C hP(zy)). Finally, define a4y = h"DP(zy) pointed on the same wy. Since h is
expansive, (a;,) converges to w. <

Now, we can check that Paszh is not necessarily included in fj'ndshz

Example 3.12 Consider the following morphism on the alphabet A = {a,b,c} where
h(a) = aa, h(b) = ab, h(c) = abac, and consider the Cauchy sequence (o) where
ay, is equal to h™(c) pointed on the letter a to the right of the first b from the left, i.e.

aaaaaaabaaaaaaabaaabac
aaabaaabac
a

This sequence converges to “abaa”. By applying the factorization method, the factors
Zok, k > 0 which contain the origin are stopped by the central letter b and converge
to aa¥. On the other hand, if the origin would have been set to the other side of this
“resistant” b, then the factors xoy, k > 0, would converge to “ab. Note that the letter a
is right-recurrent and b is left-recurrent. In fact, since for every n > 1 and m > 0, the
words ™aba™ do not belong to L, the word “abaa® strictly belongs to Paszh.

Theorem 3.13 Let h be an exzpansive morphism on AT. Then,

32,, = gndsh U PaslA}h.

Proof.  Because of Proposition 3.9, it is sufficient to consider only the bi-infinite asymp-
totic sets. We know that Bzé‘ndsh C BzBLh holds. Then, according to Lemma 3.11, the
remaining thing to prove is that

Bz'@f/h C Bz'gndsh u Paszh.

So, assume that @ is a word in BidL,. Apply to w the method of recovering the path
by successive factorizations, that is using Equation (13) for all £ > 0:

W= o Top ke ZOk T ke with T;1 € L’;. (18)

The result is an infinite Cauchy sequence (u,) where pu, = zoy,, n > 0. Since h is
expansive, limy oo |pin| = 00. Now there are two cases:

If the words of (i) have their lengths increasing to infinity to both directions, then
limy, o0 i, = W. Hence, according to the definition of the embedding map, @ belongs to
Bigndsh.

Otherwise, (u,) has its words going to infinity only to one side, say the right side.
In this case, there exists an index ng > 0, such that the words u,, are identified on a left
factor:

Pntl = pnBn, Bn € At, for n > ny.
This means that lim,_, . un, belongs to R{“)Zh. Denote this resulting limit word by o.

The situation is depicted on the next figure where only one side of @ was covered by ().
Now put temporarily the origin on some letter of x_ ,,,, where my is sufficiently large



3 THE EFFECTIVE CONSTRUCTION OF THE BOUNDARY 17

T_1,4 Z0,3
T-1,3 ,1‘0,2
€T _
2 r_1 Zo,1
wo | | -
] S—% @

)

the pasting pair

Figure 4: Graphical representation of the factors embeddings for a pasted word.

so that this factor is in the other side of ¥. Apply the factorization method of recovery:
the result is an infinite Cauchy sequence (v;,) where v, = _1 y4m,, » > 0. Again since
h is expansive, limy_00|Vn| = 00, and there exists an index ny > 0 such that:

Vn41 = YnVn, Yn € A+, for n > ng + mg.

This means that lim,,_, . v, belongs to Lﬁfjh. Remove the origin from the limit word of
(vn), index it according to U, and paste it to ¥: this is a word which belongs to PasL,,.

o

One may generalize the last result for unpointed boundaries:
Corollary 3.14 Let h be an expansive morphism on A™. Then,

oL, = (Ends,/ ~,) U PasL,.

Proof. Using the factorization method, there is a path in some tree of the embedding
forest from the root to every zp , in Equation 18. This means that if the origin is shifted
within these factors, there is still a path in the embedding forest (see Remark 3.4).
Hence, the shift invariance property holds also for EAndsh, that is

if @ € Ends, then o™ (@) € Ends,, VYm € L.

The set & nds, can be independently quotiented, and by construction, the pointed pasted
set as well.

Note that there are cases where fndsh N Paszh = () does not hold:

Example 3.15 The morphism h(a) = aa has the word “a¥ in its boundary, and it belongs
to Ends, N PasL,,.

Before going for the direct use of the construction of Bih, let us investigate some
relationships with other frameworks:
3.7 THE BOUNDARY AND THE CLOSURE OPERATOR

Sets of asymptotic bi-infinite words were generated from the beginning of symbolic dy-
namic theory [22, 23, 24, 15, 14, 4]. One of the ways was by first obtaining a word in
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ROL,ULSL, (using the fact that iterating a morphism from, say a right-recurrent letter,
then prefixes are stable), and second, by applying the shift o to move the origin. In this
section, BiL denotes the set of the bi-infinite words included in a language L. According
to the definition of the boundary, we have that if @ € ROL, U L8Eh, then

Bi(Closure({o™(@),n € Z})) C BidL,.
More generally,
Bi(Closure({c™(®%), n € Z, @ € ROL, ULAL,})) C BidL,.
However this can be a strict inclusion:

Example 3.16 Consider the morphism h(a) = ab, h(b) = ba, and h(c) = aca: the letter
¢ is not recurrent and so one cannot obtain the whole boundary from ROL, U LOL, only.

One of the important cases where the two sets of bi-infinite words coincide is when
h is a primitive morphism (i.e. there exists a finite power n such that all letters of A
are included in h"(s), for all s € A). The interest in Closure({o"(w),n € Z}) for the
primitive case is that the dynamical system on this set induced by the action of the shift
o has many properties, as for instance strict ergodicity.

Remark 3.17 Let h be a primitive morphism on AY. Then, for any @ € ROL, U LalALh,
Bi(Closure({o™(@),n € 7.})) = BidL,.

Proof. 1If h is primitive, then clearly the set of factors of @ is equal to the set of factors
of the whole language L,. This is sufficient to generate the bi-infinite boundary words.

¢

Bi-infinite words were also directly generated [15, 14, 4] and this was managed through
the pasting pair idea. Indeed, taking a pair of two letters where one is left-recurrent and
the other right-recurrent, successive applications of the morphism let stable the suffixes
of the former and the prefixes of the last (see the proof of Lemma 3.11). For identical
reasons as for the one-way case, the following holds:

(Closure({c™ (@), n € Z, & € PasL,}) C BidL,.

3.8 THE BOUNDARY OF DOL-SYSTEMS

Let us also prove that Theorem 3.13 can be translated into the DOL language framework.
Let the subalphabet A; be the set of letters which appear during the iterations of A on
the word t € AT, that is Ay, ={s€ A|3In >0, s C h"(¢)}. Let also the morphism A’ be
the restriction of h to A;: hence, DOL,(t) = DOL,(t).

Now the only important difference from the letter substitution language case lies in
the fact that, ¢ being any word in A™, the set Pairs(zhf) is not necessarily equal to
Paz’rs(f/h). Hence, PasL, can be strictly included in PasDOL, (t). However, by the

same arguments as in the proof of Theorem 3.13, one can conclude that,
Corollary 3.18 Let h be an expansive morphism on A™. Then, for allt € AT,
ODOL,(t) = Ends,s U PasDOL,, (t).
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4 THE REGULAR CODING

In this section, we shall use the effective construction of the boundary to bijectively send
it onto a regular language.

4.1 THE LABELLING OF THE EMBEDDING FOREST

Because of the translation property of the embedding forest (see Remark 3.5), the trees
must present a systematic branching. Indeed, the translation property was proved by
using the fact that, each time Emb, is applied to some word with s as father letter,
the obtained words correspond to all the ways of embedding s into the image of the
letters by h, i.e. h(A). So, a distinct letter of some new finite alphabet T, called the
connector alphabet, can be assigned to each kind of embedding. This is implemented by
the connector map [7], a bijection denoted by f,, which maps the pointed counterpart of
h(A) to I':

foih(4) — T

(usu') — g (19)

where the word usu’ corresponds to an embedding of s. The connector map induces a
labelling of all the edges of the embedding forest: for a node (@, s,n), the arc going to
(0,t,m + 1) is labeled by f,(usu’) if usu’ is the embedding of the letter s in h(A) such
that A" (usu') = v.

Example 4.1 Consider again the morphism h(p) = ppq, h(q) = pq, with the connector
map can be defined as:

fa(ppg) =1 fulppg) =2 fulppq) =3 fu(pg) =4 fr(pq) =>s. (20)

Revisiting Example 3.7, then for example, (p,p,0) is bound to (pgq,q,1) by an edge that
is labeled f,(pq) = 4. Next the node (pgq,q,1) is bound to (ppgppqpq,p,2) by an arc
whose label is f,(ppq) = 3 since this reflects how pq is embedded into ppgppqpq. Hence,
the label path of (ppqppgpy,p,2) can be considered to be the word ”43” (see Figure 1).

The other example in Figure 2 where h(a) = b, h(b) = ba has the following connector
map:

fub) =1 fu(ab) =2 fu(ab) =3 (21)

Remark 4.2 Let h be a morphism on A, f, be its connector map with T' the connector
alphabet. Then, the set of nodes (except the roots) of the embedding forest is injectively
mapped onto the semi-group T'T.

Proof. First, consider a node (w, s,n), with n > 0 and let us use the same argument as
in the proof of Remark 3.3 in order to recover its path label. Its father letter s implies
that @ has an unique decomposition

h(s) = 81...8m, 8;i € A, then w=h""1(s1)...h" 1 (s), (22)

with an index i € {1..m} such that A" ! (s;) contains the origin of @, and this corresponds
to the embedding us;u’. Hence, the nth label of the path is recovered, that is g, =
f»~Y(usju'). The (n — 1)th label is obtained by applying this process on A" ~!(s;), and
recursively, the whole path label g;...g, can be recovered.

Now, consider two nodes (w, s,n) and (@,t,m). Since the length of the path label is
equal to the order, if m # n, their path labels cannot be equal. Now, since f, is bijective,
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if s # t, then the recovery of the nth labels must be different. Hence, w = v, and if
W # v, they may differ only by their pointings. But, by Equation 22, the factors which
contain their origins are reduced until being the origins themselves. Thus, v = @.

4.2 THE EMBEDDING FOREST IS REGULAR

Let Codf,h C I'" denote the set of all finite path labels of the embedding forest. Recall
that a finite type language of order n is a language which can be specified by its set of
factors of length n: Let X be a subset of {w € I'" | jw| = n}, then the corresponding
finite type language is given by {v € 't | all factors of v are in X}. Such a language is
known to be regular.

Remark 4.3 Let h be a morphism on AT and let T be the connector alphabet. Then,
CodL, is a finite type language of order 2 included in T'T.

Proof. First, remind that the edges starting from a specific node (@, s,n) depend only on
the father letter s, and this independently to @ and n. Each of these differently labeled
edges leads to another node, and the following edges correspond to the embeddings of
its father letter. Hence, a pair ¢j may occur in a path label if the embedding of type 4
leads to a word with a father letter included in the embedding of type j. Moreover, after
the embedding ¢, the embedding j is always possible. Thus Codf/h is a language which
is specified by these pairs. {

Thus the paths of the embedding forest can be “folded” into a Biichi automaton
which recognizes CodL,: the set of states is the alphabet A, the sets of initial and final
states are all the states, the set of labels is the connector alphabet I', the set of edges
consists of the edges (s, g,t) such that s is included in h(t), i.e. h(t) = usu’, and labeled
by f.(usu') = g. Note that if the set of initial states is restricted to a single state, say
s, then the recognized language corresponds to the nodes of the single embedding tree
with root (s, s,0).

Let us extend this to the set & nds,. Denote by CodéE: nds;, the set of the corresponding
infinite path labels. This is a set included in the right-infinite words over I', denoted by
Iv:

Lemma 4.4 Let h be a morphism on A" and let T' be the connector alphabet. Then,
C’odgndsh is a Muller-recognizable language included in T'“.

Proof. Let F be the set of all states which corresponds to an embedding for which there
is an increasing of the length, i.e. |h(s)| > 1, s € A. Consider the automaton which
recognizes CodlA}h, and constrain it by a table set defined as the power set of F'. This
gives a Muller automaton which recognizes every path leading to an infinite word, i.e.
to a word in gndsh. &

The corresponding Muller automata of the morphisms of Figures 1 and 2 are shown
in Figure 5.

Corollary 4.5 Let h be an ezpansive morphism on AT and let T be the connector alphabet.
Then, Cod€nds, is a finite type language of order 2 included in T'“.

Proof. 1If h is expansive, then the table set of the Muller automaton can be defined as
the power set of all states. {

The aim now is to investigate the cases where the regular language CodEnds, is
injectively mapped to Endsy,.
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Figure 5: The respective automata recognizing the ends of the morphisms h(p) = ppq,
h(q) = pq, and h(a) = b, h(b) = ab. The final states are indicated by a double circle.

4.3 THE RECOVERY OF THE PATH LABEL BY SUCCESSIVE FACTORIZATIONS

In this section, we give a final version of the recovering method (after section 3.4) which
allows us to obtain the path label of a word in Ends,.
Recall that the recovery of the path relies on successive factorizations for each k£ > 0:

W = Ty oo TO oo T ey With T € L, (23)

where the factors z;; are assumed to include the factors z; ; 1, and where z; o = w;, for
all 7 € Z. Now each factor z;; has at least one father letter. Concatenating all these
letters, one obtains a word, called the ancestor, which belongs to the k-fold inversion of
h, ie. h™%: for each k > 0,

eS8y keSO k- S fer € B E(@)  with six €A, and hk(si,k) = Tk, (24)

where s; g = w;, for all 7 € Z. Since @w belongs to gndsh, the image of the inversion is
not empty, but can be multiple.

Recovering one letter of the label path is equivalent to knowing how exactly zo x—1 is
embedded into xgj (this is the point we skipped in section 3.4). This can be translated
into knowing how h_(k_l)(wo,k_l) (which is equal to a letter sgj—1) is embedded into
B~ (z04) (which is equal to some usg _1u' in h(A)): the kth letter of the label path
is f, " }(usox_1u'). Summarizing, the recovery algorithm of the label path is:

To recover the kth letter of the path label, factorize h~*~1(@) into h(A), and find how
its origin so x—1 45 embedded into the factor which contains it.

This procedure is equivalent to successively applying h~!(®@), factorizing it into h(A)
and finding how the origin is embedded into the factor of h(A) which contains it.

Example 4.6 With h(p) = ppq, h(q) = pq, the instance of Example 21 can be applied to
a word W = ...pgPPYPPYPYPPYPq... in gndsh. Indeed, its factorization into h(A) is given
by ...pq/ppq/ppa/Pq/pPa/pPY/-..; S0 so0 = p, and the first label is given by applying the
connector map to pq, i.e. fo(pq). Then, h™(...pqgppgppapappapq...) = ...qppqpq..., so
s0,1 = g, and its factorization into h(A) is ...q/ppa/pq/...; the second label is given by
fu(ppa).
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4.4 THE CIRCULARITY PROPERTY

Injecting Codgndsh into gndsh clearly depends on the uniqueness of the inversion, i.e.
k™! must be a map.

Lemma 4.7 When used for the recovery of a path label of a word in fj’ndsh, the inversion
h™! can be restricted to Ends,.

Proof. Assume that for some @ € Ends,, h~ (@) has a word ¥ in (® A\ Ends,). This
would mean that h~!(@) contains at least one finite factor, say u, which is not in L,.
Now the label path of @, except its first letter, may be obtained by applying the recovery
method to 7, i.e.:

W @) =0 = ..a’ oo o Ty, oy With @i € LF, k> 0. (25)

Since W € SAndsh, the sequence (xf)’n) must ultimately cover all 7. Hence, for some &k > 0,
x(),k covers u. But, this means that we have reached a deadend since the connector map
cannot be applied on x{),k. &

Thus the uniqueness of the factorization involved in the recovery method is not
exactly related to code theory [1]. Indeed, the condition that Ends, must be stable
through A™! is related to the morphism itself. In particular, if A is not injective on the
letters of A, then h(A) becomes a multiset, without necessarily impairing the uniqueness
of the recovery method.

That is why one must look for a more precise notion. Let us first slightly extend
the factorization operation: let w be any finite factor in L, then this word admits a
factorization w = uz1zs...x,v where z; € h(A), and u and v are respectively a right and a
left factor of two words g, Z,41 in k(A). Its ancestor is then given by A~ (w) = sg...Sp11,
where h(s;) = z;, for i € {0..(n + 1)}. Now we are ready to introduce the following
definition due to Mignosi and Séébold [21]:

Definition 6 A morphism h on AT is circular with synchronization delay K if for all finite
factors w in L, if w admits two factorizations, say

W = UL T Tpv = U'T) Th... ) V',
with Sg...Sp41 and sg...s;, (1 as ancestors which are factors of Ly, then whenever
luz1zo...xi—1| > K and |Tit1...xnv| > K (26)
there exists an indez k such that
uT1To...7; = u'T\Th..T)  with s; = s),. (27)

Circularity with synchronization delay means that if the word whereto apply the
inverse morphism is sufficiently long, then the factorization is uniquely determined ex-
cluding the first and last K letters.

Example 4.8 In the figure 6, we can graphically observe how the circularity works: |uzizs|

K and |zgv| > K, and then, for i = 3,4,5, uri1ze..x; = u'z}..xi_, such that s; = si_4,

and x; = 7._,. In particular, the factor which contains the origin is uniquely determined.
i—1
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Figure 6: Graphical representation of an example of two synchronized factorizations of
some word whenever circularity holds.

This property has been derived from the dynamically-oriented literature where it
appears in a slightly weaker version called recognizability [20, 27, 25]. Circularity is
different from recognizability since the last only ensures separation indexes between
factors without explicitely determininig them. In particular, circularity do not require
injectivity of the morphism for A. This comes from the fact that the ancestor is assumed
to be a factor in L,, an hypothesis in accordance with Lemma, 4.7.

Circularity is the notion we shall use to prove properties about unique recovery of the
path labels of the boundary words of fndsh. The next theorem syntesizes all the links
we shall need in the sequel. It is mainly a direct consequence of results due to Mignosi
and Séébold [21] and to Ehrenfeucht and Rozenberg [11]. These were proved in the DOL
languages framework, but recall that letter substitution languages are just finite unions
of DOL languages.

Remind that a morphism is said n-power free if every word in L, does not contain
any factor u™ with u € AT, n > 1. Recall also that a word i is periodic if there exists
some p > 0 such that w; = w;4, for all ¢ € Z where w;, w;4, belong to A. If 7 is a cyclic
permutation of A, then a morphism is said (4, r)-cyclic if

1. for each s € A, h(s) = s1...8y, then s; 41 = 7w(s;), with 1 <i <m — 1,

2. for each pair s,t € A such that 7(s) = ¢, then w(last(h(s))) = first(h(t)), where
first(w) extracts the first letter of w, and last(w) its last one.

The important point of this definition is that the word v = s7r(s)7r2(s)...7r|A‘*1(s , with
s € A, is such that v™ is a factor of h"(v), for all n > 0 [11](see Lemma 6.11). For
instance, h(a) = ab, h(b) = ¢, h(c) = abe, is cyclic with 7(a) = b, 7(b) = ¢, (c) = a:
here, v = abc.

Theorem 4.9 Let h be an ezpansive morphism on AT. Then, the following conditions
are equivalent:

1. h is circular.
2. h is n-power free, for some n > 1.

3. There is no periodic word in 8f/h.
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4. b~ is a map on oL,.
5. The recovery of the path label is unique for each word in fj’ndsh.

Proof. The fact that (1) <=> (2) has been proved by Mignosi and Séébold in [21](see
Corollary 1).

For (3) => (2), let h be not n power-free for some n. Hence, for all n > 1, there is
a word u € AT such that u™ is a factor of L,. This implies [11](Theorem 2) that there
exists a factor v of L,, such that for any n > 1, v" is also a factor of L,. Thus “o¥
belongs to OL,.

Conversely, (2) => (3) holds since, if @ is a periodic word in Ends,, then its Cauchy
sequence must have an identified factor sequence which is a subsequence of {v"},¢n, for
some v which is factor in L,.

For (1) => (4), one must just consider that if h~' is not a map on &L,, then there
is at least two different words in its image: there is a place where the factorization into
h(A) words is not unique.

Let us then prove that (4) => (3). Again, this is derived from a result in [11].
Indeed, assume that @ in gndsh is periodic, for instance “v*“. This means that there
exists arbitrarily large powers of v as factor in L,. Let the subalphabet A, be the set
of letters which appear in v. We can conclude [11] (see Lemma 6.12) that there is a
restriction of h on s, which is (A4,,)-cyclic. Thus there is a periodic word “u“ in gndsh
(may be different from @), where u = s7r(s)7r2(s)...7r|A”‘*1(s), with s € A,. Since h
is expansive, there is a power k£ such that u is included in hk(s) , for all s € A,. This
implies that the origin of “u“ can be enclosed in any h*(s). Hence, “u* cannot factorized
uniquely in L¥ and so h™" cannot be a map on Ends,.

The claim (4) <=> (5) restricted on Ends,is clear from the recovery method and
from the fact that the connector map f;, is bijective. Since the pasted words of Pasih
are made of two words which are in Ends », and which are independant in their successive
factorizations, the claim holds also for ™! acting on all af,h.

¢

Corollary 4.10 Let h be an expansive and circular morphism. Then, its corresponding
Ends,, is bijectively mapped onto a Muller-recognizable language of right-infinite words
Cod€Ends,,.

Proof. Just put together the theorem and Lemma 4.4. {

Example 4.11 The simplest example of a non-circular morphism was already given in
Ezample 8.15 and is just h(a) = aa. This morphism has a binary embedding tree,
although the only word in Bz'azh is clearly “aaa”. The two ways of factorizing this word
into subwords aa implies that there are infinitely many paths of the embedding forest
leading to it.

Example 4.12 An other example of a non-circular morphism is given by h(a) = aba,
h(b) = bab, which is clearly ({a,b},n)-cyclic. The boundary 0L, contains the word
“(ab)ab(ab)¥, and there is no way of distinguishing between the factors aba, bab or aba.

Corollary 4.13 Let h be an expansive and circular morphism. Then

Ends, N PasL, = 0.
Proof. This is just a consequence of the uniqueness of the factorization implied by
circularity: it holds for pasted words too. <
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4.5 DECIDABILITY OF CIRCULARITY

Sufficient conditions for circularity are given by code theory [1]: if the morphism image
of the letters, i.e h(A), is a synchronous, limited or circular code, then circularity of the
morphism is ensured. The morphisms h(p) = ppg, h(q) = pq and h(a) = b, h(b) = ab
whose embedding forests are shown in Figures 1 and 2 can easily be checked circular by
this argument. However,

Example 4.14 The morphism h(a) = acb, h(b) = acb, h(c) = cb is circular without being
injective.

Deciding circularity can be nevertheless fully solved for expansive morphisms: this is
obtained by the following result given in [11]:

Theorem 4.15 (Ehrenfeucht, Rozenberg). Let h be a morphism on AT. Then, it is
decidable whether or not h is n-power free for some integer n.

Corollary 4.16 Let h be an expansive morphism on A'. Then, it is decidable if h is
circular.

Proof. This is deduced from the result of Mignosi and Séébold in [21] which solved the
equivalence (1) <=> (2) in Theorem 4.9. <

4.6 THE CODING OF THE BOUNDARY

We have obtained a regular coding of the language Ends,. Now according to Theo-
rem 3.13, a full coding of the boundary must involve the pasted set as well. Recall that
the finite unpointed one-way boundaries RAL, and LOL, have been shown to consist
of the words obtained by respectively iterating right-recurrent and left-recurrent letters.
Their pointed counterparts R(’?Eh and L@Eh are both included in &: ndsy,, since they were
shown equal to RéEnds, and LEnds, (see Proposition 3.9).

Lemma 4.17 Let h be an ezpansive and circular morphism on AT. Then, each pointed
counterpart of each word in ROL, U LOL, is bijectively mapped to a Muller-recognizable
language included in CodEnds,,.

Proof. Let us consider the right boundary set. For each letter s which is right-recurrent,
define the subset of the connector alphabet T' by : T's = {g € T'| £, }(g9) = su, u € A*}.
Consider a right recurrent letter with its corresponding right unpointed infinite word.
A pointed occurrence of this word has a label path in the embedding forest which must
ultimately have only letters in I';. This is easily translated by constraining the original

Muller automaton recognizing Cod€Ends, by putting its table set equal to the power set
of T';. &

Co/[ollary 4.18 Let/\h be an expansive and circular morphism on AT. Then, Lgndsh,
REnds,, and PasL,, are each bijectively mapped to a Muller-recognizable language in-
cluded in Cod€Ends,,.

Proof.  Since regularity is stable under union [26], the result holds for L&nds, and
REnds,. For PasLh, each word is made of a word in LEnds, or REndsh, plus a pasted
pair. Recall that the pasting pairs is a subset of Pairs(L,) which is finite. Let us
denote it by PasPazrs( ). The > pasted set is then coded by a regular language made
of PasPairs(L;) % (LEnds, U REnds,). ¢

Thus we can go for one of the main results:
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Theorem 4.19 Let h be an ezpansive and circular morphism on AY. Then, Bf/h can be
bijectively mapped to a Muller-recognizable language of right-infinite words.

Proof. This is a direct consequence of Corollaries 4.10 and 4.18 because of the relation-
ship 0L, = Ends;, U PasL;, which was proved in Theorem 3.13.

Note that this result can also be stated in more topological terms, i.e. the closure of a
letter substitution language L, in the metric space (*° A%, d) can be done automatically.

4.7 TUNCOUNTABILITY AND STRICT QUASIPERIODICITY OF THE BOUNDARY WORDS

The first consequence of the effective construction of the boundary can be now obtained:

Proposition 4.20 Let h be an ezpansive and circular morphism on AT. Then, the bound-
ary OL, is uncountable.

Proof. We shall prove that the embedding forest of an expansive morphism always
contains a tree which has at least a binary tree as subtree. According to the definition
of the embedding map, this is equivalent to saying that there is ¢ in A and k € N such
that h*(a) contains at least two occurrences of a.

For this purpose, associate to each letter ¢ in A an integer k4, such that h¥a(a)
contains at least two occurrences of some letter, say s,. Such integer exists for each
letter since h is expansive. Then consider the graph where the nodes are the letters of
A and where each letter a is bound to s,. Denote by k the least common multiple of
{ku|la € A}. Hence, applying h* is the same as moving in the graph through one edge.
Now since A is finite, the graph must have a cycle, so the claim follows.

Corollary 4.21 Let h be an expansive and circular morphism on AT. Then, the unpointed
boundary OL, is uncountable.

Proof. The equivalence classes have a countable number of words. {

Another consequence is related to the non-periodicity of the words in the boundary.
A word w is said quasiperiodic if all its factors occur in bounded gaps, i.e. if v is a factor
of w such that |v| = n, then there exists m, > 0 so that if u is any factor of w with
|u| > mp, then u contains v. Clearly a periodic word is aperiodic. Thus we say that w
is strictly quasiperiodic if it is quasiperiodic but not periodic. The next result relies on
a well-known result in dynamical-oriented literature:

Proposition 4.22 (see [27](Chapter 5)). Let h be a primitive morphism on A*. Then,
every word in LOL, U ROL, is quasiperiodic.

Proposition 4.23 Let h be a primitive and circular morphism on A™. Then, every word
in OL, is strictly quasiperiodic.

Proof.  First, note that a primitive morphism is expansive. Then, a consequence of
Theorem 4.9 is that boundary words cannot be periodic. Now from the last proposi-
tion, the result follows since extension of the words to both ways does not impair the
quasiperiodicity in the primitive case.
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4.8 THE CODING OF THE UNPOINTED BOUNDARY

The unpointed boundary (8L,/ ~.) induces an equivalence relation for the regular coding
of L,. The following result was hinted at by Robison (see [28, 16]):

Proposition 4.24 Let h be an ezpansive and circular morphism on AY. Let @ and v be
two words in 0L, in the same ~,-class. Then, their corresponding path labels in the
embedding forest differ by a finite prefiz.

Proof.  Without loss of generality @w and ¢ can be assumed as belonging to Ends,.
Being in the same ~-class means they are the same word with two different pointings.
Consider the finite factor u between the two origins. Making use of the recovery method,
consider the sequence {zo ;}ren as in Equation (24) associated to @, and the sequence
{x} 1. }ken associated to U. Since h is circular and since @ is just a shifted occurrence of
# then ok = m;hk, for some iy, € Z. The factors z; must ultimately cover all @, and ¥
too. Hence, as soon as the factor u is included in zg j, for some ng € N, then zg , = xf)’n,
for all n > ng, and the recovered labels are equal. {

This leads to an equivalence relation on the one-way infinite path labels: words with
a different prefix of same finite length are identified. More precisely, let u,v be two
path labels, then u = v iff there is a right-infinite word w and two prefixes u’,v' € A™,
|u'| = |v'| such that v'w = u and v'w = v.
Thus, the unpointed version of Theorem 4.19 follows from Corollary 3.14 and from

the following:

Corollary 4.25 Let h be an ezpansive and circular morphism on AY. Then, there is a
bijective map from the unpointed Ends;, to (CodEnds,/ =).

Note however that for primitive morphisms, every factor of a word in Bih must also
appear in all the other words of OL, and in bounded gaps. This property is also called
local isomorphism in quasicrystal theory [19]. This implies that comparison of finite fac-
tors cannot generate an interesting metric (ijh / ~.). In fact, as it was already discussed
in the introduction (Section 2.3), the quotient metric space is metrically unseparated [3]
in this case, thus giving the trivial topology.

4.9 A STEP TO THE DECIDABILITY OF THE BOUNDARY EQUALITY

The boundary equality problem can be stated as follows: given two morphisms h; and
ho, one must decide whether the corresponding boundaries 0L,, and 8L,, are equal.
Here, we shall give a partial answer to this problem: by using a result of Culik and
Harju saying that the DOL language equality problem is decidable [5], the boundary
equality is proved decidable for primitive morphisms.

Theorem 4.26 The boundary equality is decidable for primitive morphisms on A™T.

Proof.  Consider two primitive morphisms hi and hg over the same alphabet A. The
result from [5] says that the equality DOLr;(a) = DOLny(a’), with a,a’ € A, is decidable,
whenever a and a' are recurrent letters. Hence, the equality

Raihl U Laihl == Razh2 U Laihz (28)

is decidable. Remark 3.17 says that each of these unions is sufficient to generate all the
bi-infinite words of the boundary. Hence, 0L,, = 0L, holds iff Equation (28) holds. {
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4.10 THE INDUCED DYNAMICAL SYSTEM

A dynamical system is a pair (X, f) where X is a metric space and f is a continuous map
from X to X. By definition, circularity implies that ™! lets stable the boundary, that
is h’l(aih) C 0L,. Moreover, the map k' is continuous on 0L, if two words are close,
then they have long similar factors around their origins and their images by A™! as well.
Hence, the pair ({“)Zh, h~') defines a dynamical system. Moreover, the followings hold:

h~Y(Ends,) C Ends,, and h~'(PasL,) C PasL,.

We may thus study these dynamical systems by looking at the regular coding of the Ends,
into the set CodEnds, (for the system (PasL,, h '), pasting pairs of PasPairs(L,) must
be also taken into account (see Corollary 4.18)).

Let us first define the left shift map for right infinite words:

T(wp) = (Wn+1), VYn €N

Its difference from the shift operator ¢ defined in the introduction (see Equation 1)
is its non-reversibility: the first letter wq is definitely discarded from @ by 7(w). Now
according to the recovery method, we have that T(Codg nds,) C Cod€nds, (see the proof
of Lemma 4.7). The map 7 is clearly a continuous function. Recall also that CodEnds,, is
a finite type language (see Corollary 4.5). This implies that the pair (Cod€nds,,T) is a
classical dynamical system called a subshift of finite type (see for instance [9], Chapter 17).

Denote by C'od the map which bijectively sends fj’ndsh onto Cod€ nds,. A consequence
of the recovery method of the label path is that the following holds for every w € Ends,:

Cod(h™Y(®)) = 7(Cod(w))
In other words, this means that the following diagram is commutative:

& nds;, 4 Codé: nds;,
p—1 i \l/ T
& nds;, 4 CodéE: nds;,

Within a system (X, f), a point z € X is said p-periodic if there exists an integer
p > 0 such that fP(z) = z. A l-periodic point z is said to be a fized point. A direct
consequence of the commutativity of the diagram is that:

Remark 4.27 The periodic points of (fndsh, h_l) are in bijection with the periodic words
of Cod€nds,,.

However, note that the diagram does not define a topological conjugacy, that is the
bijection C'od is not necessarily a homeomorphism. In fact, C'od is continuous only from
3Eh to Codgndsh, but Cod~! may be not continuous.

Note also that the dynamical system (5 nds,, h™1) is a generalization of the fact that
the one-way infinite recurrent words obtained in the DOL-system theory [30, 6, 27] were
called fized points.
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A ERRATA

e In the proof of Lemma, 4.4, the table set of the Muller automaton must be defined
as the power set of the set of states () minus the power set of the complementary
of F in Q.

Note that this has no influence on Corollary 4.5.

e In the proof of Lemma 4.17, dual automata must be used.

We here explain in details what this means and implies: Strict growth of the words
along the paths of the embedding trees can be directly checked as it is done in
Lemma 4.4 (non-growing means a letter a such that h(a) is also a single letter, i.e.
a state which has a single incoming arc). But this is not anymore the case to handle
the way words grow rel. to their endpoints as it is necessary in Lemma 4.17, and one
must consider dual automata instead: Let A = (@, I, F, E, A) be an automaton;
then, its dual A’ = (Q',I', F', E', A") is given by:

QI = A’

AI = Q’

i' € I' C Q' iff there exists (i,7',.) in E where i € I,

f' € F' C Q' iff there exists (., f/, f) in E where f € F,

(a,qo,b) € E' iff there exists (.,a,q2) and (g2, b,.) in E.
Now, I's = {g € T'|f; *(9) = su, u € AT} can be defined as a set of states in the
dual automaton A’ of the Muller automaton A recognizing the set of ends. Also
define T fipire = {9 € F|fh_1(g) =8, s € A}. Then for the right boundary set,
the table set of A’ is equal to the power set of I'y UT finte minus the power set of

r finite-

Misprints appearing only in the printed version:
e In Example 3.2 one should read “Fig. 1”7 instead of “Fig. 2”.
e In Lemma 4.17, one should read ROL, U LOL,, instead of R@Eh U Laf/h

e The bibliography didn’t appear in a strict alphabetical order.



