
DYNAMIC CHORD ANALYSIS FOR SYMBOLIC MUSIC

Thomas Rocher, Matthias Robine, Pierre Hanna, Robert Strandh

LaBRI
University of Bordeaux 1

351 avenue de la Libration F 33405 Talence, France
simbals@labri.fr

ABSTRACT

In this paper, we present a new method for chord recognition
from symbolic music. This method builds a graph of all pos-
sible chords and selects the best path in this graph. A rule-
based approach is adopted to enumerate chord candidates
from groups of notes by considering compatible chords and
compatible keys. The distance proposed by Lerdahl is then
used to compute costs between different chord candidates.
Dynamic programming is also involved to select the best
path among chord candidates. Experiments are performed
on a MIDI song database, divided in different music styles.
Then the proposed system is compared to the Melisma Mu-
sic Analyzer software proposed by Temperley. Results show
that our method has a comparable efficiency and provides
not only the root of the chord, but also its mode (major or
minor). The proposed system is still open and is able to
support more chord types if correct rules to handle them
are specified.

1. INTRODUCTION

Harmonic parameters such as keys or chords are essential
parameters of the Western music. While the key can be in-
terpreted as the tonal center upon which melody and har-
mony are built, the chord progression constitutes the har-
monic structure of musical pieces. Therefore, chord recog-
nition can be used to figure out the general harmonic pro-
gression of a song or a music piece. Such a task is com-
plex, since chords may change in an non-uniform pattern.
Another difficulty is that not all the notes of a song are
harmonic. Some of them may be ornaments, and thus not
belong to the current chord. Possible applications in this
field are numerous. Automatic chord recognition can thus
be integrated in a music editor software, which would au-
tomatically label detected chords. Another possible appli-
cation may be musical effects such as harmonizers, which
could automatically generate an adequate third, fourth or
fifth of the note played, based on the background chord de-
tected. Music Information Retrieval (MIR) can also benefit
from this field of research, by computing a musical similar-
ity based on chord sequences [2].

Most of the studies in the chord recognition field involve
a learning stage, and the use of a hidden Markov model [13],
or HMM, especially when dealing with audio. Sheh and
Ellis use a 12 dimensional chroma vector feature and the
expectation-maximization (EM) algorithm for the training
stage [15]. Bello and Pickens adopt the same approach [8],
and add some musical information in the model by introduc-
ing a transition matrix built on tonal distance considering the
circle of fifths (Figure 5). Lee proposes a different feature,
the tonal centroid, and does not need an EM algorithm in
the training stage [9]. Cabral et al. use a tool that automat-
ically builds an appropriate feature and a adequate learning
process depending on the training database [5]. These tech-
niques are detailed and compared in [12]. In all these works,
a learning stage is required in order to define the probability
of a chord according to a given feature (usually, the chroma
vector). They also all use uniform time segmentation.

In this paper, we focus on symbolic music, where music
is represented as a list of notes. In the symbolic chord de-
tection literature, some statistical approaches, like Paiement
et al.[11] and Rhodes et al.[14] also use training stages.
Since the results of such methods depends on the database
used for training, we have decided to adopt a different ap-
proach. Other systems are rule-based. Rules usually come
from musical theory and the technique of dynamic program-
ming may be used for the implementation. As claimed by
Temperley [17], the dynamic programming approach indeed
provides an efficient way of realizing a preference rule sys-
tem in a ”left-to-right” fashion, so that at each point, the
system has a preferred analysis of everything heard so far
analogous to the process of real-time listening to music. In
1999, Sleator and Temperley propose the Melisma Music
Analyzer [16]. Melisma first uses a meter analysis process,
which gives a chord segmentation of the musical input, be-
fore computing a root estimation for each detected chord by
using dynamic programming. More recently, Illescas et al.
also used dynamic programming to estimate the tonal func-
tion of detected chords[7]. This system requires a correct
pitch spelling as well as meter information.

Here, we propose a new method which, from a symbolic
polyphonic input, estimates a non-uniform chord sequence.
As in Melisma, each detected chord is labeled with a root.
The proposed method also provides a mode (major or mi-

mailto:simbals@labri.fr

Figure 1. An excerpt of Bohemian Rhapsody by Queen.
According to a first possible definition, there are 8 differ-
ent chords in the presented bar (as much as groups of notes
sounding at the same time). According to a second possible
definition, there is only one single chord in this bar (charac-
terized by the Bb6 chord label).

nor). This method relies on dynamic programming to select
a sequence among potential chords. Potential keys are also
considered, as the transition cost between two chords de-
pends on their respective keys. Neither meter information
nor pitch spelling are required. After a discussion on the
chord representation is proposed in Section 2, the proposed
method is exposed in Section 3. Experiments and results are
then presented in Section 4. Finally, Section 5 concludes on
the future studies opened by this work.

2. CHORD REPRESENTATION

A chord can be defined in different ways. A chord can sim-
ply be defined as the perception of several notes sounding
at the same time. However, this first definition is not en-
tirely compatible with the jazz chord notation, where each
bar may be labeled with a chord. In this case, the pianist, for
example, is not supposed to play a whole note of the speci-
fied chord: his only restriction is to play notes or groups of
notes belonging mostly to the specified chord (some orna-
ments might be played, which do not belong to the chord).
The difference between these two possible definitions of a
chord is illustrated in Figure 1. Depending on the definition
adopted, it is possible to see either 8 chords or only a single
one in this excerpt.

In this paper, we choose the second definition, and we
use chord to mean the common label a common sequence of
notes or groups of notes that could sound at the same time
(like the Bb6 chord label in Figure 1). These consecutive
notes or groups of notes within the same chord are called
note segments of this chord. Each note segment of a given
chord may not contain all the notes of the chord, and may
contain ornaments (notes which do not belong to the chord).
For example, both (C,E,Bb) and (C,G) can be note segments
of the C7 chord. In this paper, the 3 parameters of a chord
are:

Figure 2. Above: a musical excerpt. Below: the same ex-
cerpt with an homorhythmic transformation. Note segments
appear bordered in red.

• the root (the note upon which the chord is built),

• the type (the component intervals defining the chord
relatively to the root)

• the mode (major, minor or undefined)

3. DYNAMIC CHORD ANALYSIS

In this section, we first propose a new method for time seg-
mentation by using note segments. The graph of chord can-
didates is then created, before the dynamic process takes
place to select the best path in this graph.

3.1. Time Segmentation

The first issue in the chord detection process is to find an
appropriate time segmentation. Audio based methods [5, 9,
15] use time frames in this purpose. It is possible to adopt
a similar approach in symbolic music, by using MIDI ticks
(or milliseconds) as time units to set the length of an analysis
window. We choose a different approach, and assume that a
new chord could only occur with a new instance, i.e. when
at least one new note starts being played, or stops being
played. We thus chose to perform an homorhythmic trans-
formation, as introduced in [6], in order to make all the notes
sounding at the same time start and end at the same time as
well. Therefore no overlapping between notes occurs. This
time segmentation defines the different note segments, each
of them being formed by notes starting and ending at the
same time. Each of these segments potentially starts a new
chord. It is important to note that this transformation does
not affect the way music is played and heard. An illustration
of this homorhythmic transformation can be found in Fig-
ure 2. Once this transformation completed, the enumeration
of chord candidates can take place for each note segment.

3.2. Graph of Chord Candidates

The note segment constitutes the observation of the dynamic
process. A list of hypotheses is built from each observation,
these hypotheses being the chord candidates. In the method
proposed, a chord candidate is a pair, composed of a com-
patible chord and a compatible key. Rule-based algorithms
are used to determine which chords and keys are compatible
with each note segments. The graph of chord candidates is
then built: each chord candidate of a given segment is linked
to all the candidates of the next segment, thus forming an di-
rected acyclic graph.

3.2.1. Compatible keys

The proposed method enumerates which keys are compati-
ble with each note segment, by using a rule-based approach.
Different rules may be used for that purpose. In this paper,
we choose to define a key as compatible if each note of the
note segment is a component pitch of this key, which means
that each note of the segment must belong to the scale of the
key (melodic scale for the minor mode). For example, if the
note segment is (C,E), the compatible keys are CMa j, FMa j,
GMa j, Amin, Dmin, and Emin, because both C and E belong to
the scales of these keys.

3.2.2. Compatible chords

As for compatible keys, several rules may be defined to de-
termine which chords are compatible with a note segment.
We use the following rules, and define different conditions
for a chord to be compatible with a note segment, depending
on the chord type:

• Maj/min triad chord: such a chord is compatible if
each note in the considered segment belongs to the
chord. For example, the note segment (C,E) has two
compatible triad chords: Amin and CMa j.

• Maj/min 7th chord: such a chord is compatible if each
note in the considered segment belongs to the chord
and if the root and the Maj/min 7th note are present.
Such a rule is to avoid having note segment like (E,G,B)
or (E,G) be compatible with C7

Ma j, for example.

• Maj/min 9th chord: such a chord is compatible if each
note in the considered segment belongs to the chord
and if the root, the 5th note and the 9th note are present,

• Maj/min 11th chord: such a chord is compatible if
each note in the considered segment belongs to the
chord and if the root, the 5th note and the 11th note
are present.

• other chords may also be compatible, like the min75b
chord. For these chords to be compatible, each note is
required (for example, a min 75b chord wold be com-
patible if the considered segment contains the root,
the minor 3rd, the flat 5th and the minor 7th).

The proposed system can be modified in order to accept
more chord types in the future. Therefore, new rules for
any new chord to be compatible with a given note segment
must also be specified.

3.2.3. Chord candidates enumerated

The chord candidates finally enumerated are all the possible
combination of compatible keys and compatible chords. If
n chord and m keys are compatible, n x m pairs are enumer-
ated. For example, with CMa j and Amin as compatible chords
and CMa j and GMa j as compatible keys, the chord candidates
enumerated would be (CMa j,CMa j), (CMa j,GMa j), (Amin,CMa j)
and (Amin,GMa j). If no compatible chord can be enumer-
ated for a given note segment, the hypotheses we choose
to set are the previous note segment chord candidates com-
bined with the compatible keys. This is to keep taking into
account key detection, even if no chord is compatible. If
no compatible key can be built, the hypotheses we choose
to set are the same ones as for the previous note segment.
Both these choices may be justified by the high probability
of having two consecutive note segments being part of the
same chord. Finally, the chord output only mentions a root
and a mode (major or minor). In other words, even if the
type of a chord is supported by our system, only the cor-
responding mode is taken into account. For example, if a
chord is detected as a C7, it is handled by our system as
CMa j. We thus choose to focus on the root and the mode
for now, the evaluation of chord types being part of a future
work.

3.2.4. Chord transition cost

Once the chord candidates are enumerated for two consec-
utive note segments, an edge is built from each of the first
segment’s chord candidates to each of the second segment’s.
This edge is weighted by a transition cost between the two
chord candidates. This transition cost must take into account
both the different compatible chords, and the different com-
patible keys.

We thus choose to use Lerdahl’s distance [10] as transi-
tion cost. This distance is based on the notion of basic space.
Lerdahl defines the basic space of a given chord in a given
key as the geometrical superposition of:

a the chromatic pitches of the given key (chromatic level),

b the diatonic pitches of the given key (diatonic level),

c the triad pitches of the given chord (triadic level),

d the root and dominant of the given chord (fifths level),

e the root of the given chord (root level).

Figure 3 shows the basic space of the CMa j chord in the
CMa j key. If (Cx,Kx) represents the chord Cx in the key Kx,

Figure 3. The basic space of the CMa j chord in the CMa j
key. Levels (a) to (e) are respectively chromatic, diatonic,
triadic, fifths and root levels.

Figure 4. δ ((CMa j,CMa j) → (GMa j,GMa j)) = i + j + k
= 1 + 1 + 5 = 7. The underlined pitches are the non-
common pitches.

Lerdahl defines the transition cost from x = (Cx,Kx) to y =
(Cy,Ky) as follows:

δ (x→ y) = i+ j + k

where i is the distance between Kx and Ky in the circle
of fifths (Figure 5), j is the distance between Cx and Cy in
the circle of fifths and k is the number of non-common pitch
classes in the basic space of y compared to those in the basic
space of x.

The distance thus provides a integer cost from 0 to 13,
and is completely adequate for a transition cost in the pro-
posed method, since both compatible chords and keys are
involved in the cost computation. A calculation of chord
transition is illustrated in Figure 4, from x = (CMa j,CMa j) to
y = (GMa j,GMa j). Here, i= j=1 because 1 step is needed to
go from CMa j to GMa j in the circle of fifths. k=5 is the num-
ber of non-common pitches belonging to the basic space of
of y compared to those in the basic space of x (underlined in
the Figure). The distance is therefore 1+1+5=7.

Figure 5. The circle of fifths.

3.3. Dynamic Process

Once the graph between all the chord candidates is formed,
the best path has to be found. This task is achieved by dy-
namic programming [1]. In the graph, from left to right,
only one edge to each chord candidate is preserved. Several
ways to select this edge can be considered. After experi-
ments, we choose to preserve the edge minimizing the cost
to each candidate, as illustrated in Figure 6.c. Other possi-
bilities must be explored in a future work, like preserving
the edge minimizing the total sum of costs along the path to
the candidate.

The number of final paths is the number of chord candi-
dates for the last note segment. The final path minimizing
its total cost sum is then outputted by the program.

3.4. Global Computation

The overall process is illustrated in Figure 6.The construc-
tion of the graph is processed in two steps. First, chord can-
didates for each note segments are determined (Figure 6.a).
Costs are then computed between each candidates for the
latest note segments, and each chord candidates for the first
one (Figure 6.b). After that, the dynamic process takes place:
only one edge to a given chord candidate is preserved (Fig-
ure 6.c). Finally, the path minimizing its total cost sum is
selected (Figure 6.d).

An example of the overall process computation on a mu-
sical excerpt is detailed in Figure 7. For each note segment,
a chord is computed and the consecutive segments having
the same chord identification are then merged, in order to
form the boundaries of each chord. In this example, the de-
tected chords are EbMa j for the first two beats, and AbMa j
for the last two.

4. EXPERIMENTS

In order to perform an evaluation of the proposed method,
we gathered a selection of MIDI songs with a specified chord

(a) (b)

(c) (d)

Figure 6. Illustration of the overall process. Graph con-
struction between two consecutive note segments (NS): the
possible chord candidates (CC) are listed (a), and linked
with weighted edges (b). Dynamic process: only one edge
to each chord candidate is preserved (c). In the end, the best
path is selected (d).

Songs Total MIDI ticks (x1000)
latin 37 1177

classical 8 266
pop 45 1866
jazz 65 2405

Table 1. MIDI database used for experiments.

ground truth. We compared the accuracy of our method to
the one of Melisma Music Analyzer.

4.1. Database

The 155 selected MIDI files are outputs of the software Band-
In-A-Box1. Band-in-a-Box is a MIDI music arranger soft-
ware that creates a background for chord progression used
in Western Music. The Band-In-Box files we use are taken
from Band-In-A-Box Independent Users Group File Archive
2 [3], and are backing tracks. By using these files, we have
access to the chord ground truth (specified by Band-In-A-
Box) and we are able to generate MIDI backing tracks cor-
responding to the chord sequences. The songs are already
classified in 4 different styles in the archive: latin, pop, clas-
sical and jazz. The database is detailed in Table 1.

1http://www.pgmusic.com/products bb.htm

Figure 7. The first bar of Your Song, by Elton John, an-
alyzed by our system. Above is the original score. One
step below, the score with the homorhythmic transforma-
tion. One step below, the note segments. One step below,
the chord candidates. For reading purposes, only the chord
candidates sharing the same key (here, EbMa j) are shown.
The best path is formed by the chord linked to each others.

4.2. Evaluation Procedure

From audio, chord detection methods are often evaluated
frame by frame [8, 9, 15]. For each frame, a chord is es-
timated, and the global accuracy is the ratio between the
number of frames where the estimated chord matches the
ground truth and the total number of frames. In the same
way, we perform a tick by tick evaluation, by comparing for
each MIDI tick the estimated chord and the ground truth,
and this for each song of the database. We propose to test
the accuracy of both Melisma and the proposed method on
this database.

4.2.1. Melisma evaluation

The Melisma Music Analyzer is a software developed by
Sleator and Temperley [16]. Temperley tested the accuracy
of the root extraction of this program on a corpus of excerpts
and the 48 fugue subjects from the Well-Tempered Clavier
by J.S. Bach. The evaluated accuracy on this database is
83.7%.

Since Melisma only provides a root for each detected
chord, the accuracy on a given song is calculated as the
ratio between the number of ticks for which the estimated
root matches the ground truth’s root and the total number of
ticks. To compute a global accuracy for each musical style,
two different kind of means were calculated:

• a tick mean, for which a song accuracy is weighted by
its number of MIDI ticks,

• a song mean, for which each song accuracy has the
same weight

Then, a total accuracy is calculated, by computing the same
two means over all the songs from the database.

4.2.2. System evaluation

Since our system estimates not only the root, but also the
mode (major or minor), it has been decided to perform two
different evaluations. The first one is identical to Melisma’s
evaluation: only the root is taken into account and compared
to the ground truth. The second one calculates the accuracy
of both root and mode (major or minor) of the estimated
chord, according to the following rule: if the chord speci-
fied in the ground truth has a mode, it is compared to the
estimated chord’s mode; but if the chord specified in the
ground truth has an undefined mode (dim and sus chords for
example), only the roots are compared, as in Melisma’s eval-
uation. By performing both these evaluations, it is possible
to make a direct comparison with Melisma’s accuracy.

We also performed a set of evaluations in order to deter-
mine which chord types (triads, 7th, 9th, 11th, 13th) to take
into account to optimize the system accuracy.

4.3. Results

This section first presents the results of the system handling
different chord types. A comparison between the results of
the proposed method and Melisma on the the root estimation
are presented. Finally, results of the system evaluated on the
root and the mode of detected chord are exposed.

4.3.1. Supported chord types optimization

Extending the number of supported chords increases the num-
ber of potential chord candidates for each note segment. By
doing so, the probability of having the same two chord can-
didates in two consecutive segments is also increased. And
so is the probability of making the system choose to keep the
same chord candidate, even if a change of chord occurs be-
tween the two considered note segments (Figure 8). A bal-
ance thus needs to be found between extending the number
of supported chords and adding errors due to this extension.

The search for optimization in the supported chord types
seems to be reached for 11th chords, according to the results
presented in Table 2. We note that handling 7th chords has

Figure 8. Example of supported chord type extension caus-
ing an error. The final chosen path is best (according to the
ground truth) when 13th chord are not supported.

a great effect on the global accuracy. The latin and jazz
styles are especially affected (scores for these two styles be-
ing increased by 19% and 16% respectively). This is mostly
because those two styles involve a lot of chords more elab-
orated than triad chords. Handling 9th chords seem only
really profitable to these same two musical styles (whose
scores gain an extra 4%). Handling 11th chords has a very
small effect on the overall scores. Finally, when handling
the 13th chords, the overall scores drop notably, especially,
once again, on the latin and jazz styles (scores for these two
styles being decreased by 8% and 5% respectively). An ex-
planation could be illustrated by a simple example: when
considering the note segment (A,C,E,G), Amin is the only
compatible chord if supported chords are triads, 7th, 9th and
11th. But when considering 13th chords, (A,C,E,G) can be
analyzed as a C13

Ma j without any 7th, 9th or 11th. Therefore,
when handling 13th chords, a note segments like (A,C,E,G)
can have both Amin and CMa j as compatible chords, which
may led to some errors, as illustrated by Figure 8. That is
the reason why we choose to limit the system to triads, 7th,
9th and 11th chords as supported chords.

4.3.2. Comparison on the root estimation

The comparison between the proposed system and Melisma
can be found in Table 3. If Melisma is more accurate on jazz
songs (according to the tick mean score only), the proposed
system gets the best results on pop, classical and latin songs,
as well as jazz songs when considering the song mean. The
difference is especially noticeable on the classical and latin
styles. On the overall results, our system is very comparable
to Melisma, the difference being quite small (less than 1%
based on the overall MIDI tick mean, and less than 2% based
on the overall song mean).

It is also possible to analyze these results in a different
way. Figure 9 presents two histograms showing the num-
ber of songs depending on the calculated accuracy. The
two profiles are close, but not identical. Melisma small-
est score for a given song is 41.9%, when our system’s is
36.5%. The highest score reached for the two systems is

Triads (5th) 5th+7th 5th+7th+9th 5th+7th+9+11th 5th+7th+9th+11th+13th
T.M. S.M. T.M. S.M. T.M. S.M. T.M. S.M. T.M. S.M.

latin 60.6 66.4 79.4 82.4 83.6 86.8 84.1 87.4 76.4 82.5
classical 71.7 72.4 86.5 86.0 87.0 86.4 86.8 86.3 85.0 85.6

pop 79.7 76.2 86.1 85.2 87.2 86.8 87.4 87.2 85.4 84.0
jazz 53.4 52.4 69.0 68.2 72.9 72.0 73.1 72.3 67.9 66.0
Total 63.3 63.7 77.6 77.4 80.4 80.6 80.7 80.9 76.2 76.2

Table 2. Accuracy (evaluated for the chord root, and shown in %) depending on the supported chord types. T.M. stands for
Tick Mean, and S.M. for Song Mean. The best accuracy is reached for triads, 7th, 9th and 11th chords.

Our System Melisma
T.M. S.M. T.M. S.M.

latin 87.0 89.1 85.2 86.1
classical 86.1 85.5 80.7 80.3

pop 89.1 89.5 88.5 88.8
jazz 76.9 77.3 77.6 75.7
Total 83.4 84.1 82.9 82.2

Table 3. Results on the Band-In-A-Box database. The ac-
curacy is in %. T.M. stands for Tick Mean, and S.M. stands
for Song Mean. Only the root of the chords are evaluated.
Our system performs a comparable accuracy to Melisma.

100%, but for different songs. Out of 155 songs, our sys-
tem gets 102 songs above 80% accuracy when Melisma gets
92 songs. More remarkable, the 3 songs maximizing the
score difference between the two systems are all better an-
alyzed by our system: April Joy (90% to 51.2%), A Taste
Of Honey (86.4% to 42.1%) and The Entertainer (95.5% to
41.2 %). It is also interesting to note that these 3 songs have
been categorized in 3 different musical styles. On the other
hand, Melisma sometimes gets better results, for example on
Alone Together (84.2% to 63.7%) and April Showers (95.3%
to 75.6 %).

Such statistics show that even if the two compared meth-
ods get comparable scores, they seem to use different kinds
of information. The use of a meter analysis in Melisma, as
well as its handling of ornamental notes are two major dif-
ferences between the two systems that may explain why the
two methods get different results.

4.3.3. Root and mode estimation

Table 4 presents the results of our system when evaluated
on the root and the mode of the detected chords. In the pop,
latin, and classical databases, the results are slightly bet-
ter than Melisma evaluated on the root only (83.3%). The
overall result calculated with a song mean is also slightly
better than Melisma. Our system is thus very comparable to
Melisma when it comes to accuracy, and provides not only
a root, but also a mode for each detected chord.

Figure 9. Histograms representing the number of files
per interval of evaluated accuracy for the proposed system
(above) and Melisma (below). The two systems seem to
carry different kind of information.

Our System
Tick Mean Song Mean

latin 86.8 88.9
classical 84.2 83.2

pop 88.8 89.1
jazz 75.3 76.0
Total 82.5 83.3

Table 4. Results on the Band-In-A-Box database. The ac-
curacy is in %, and both the root and the mode of the chords
are evaluated. The system shows a comparable accuracy to
Melisma evaluated on the root only.

5. CONCLUSION AND FUTURE WORK

We propose a new method for chord estimation from sym-
bolic polyphonic data. This method involves non-uniform
time segmentation, dynamic programming, Lerdahl’s chord
transition cost and rule-based chord candidates enumera-
tion for each note segment. Experiments have been per-
formed in order to evaluate the accuracy of the proposed
method. A comparison has been proposed between the pro-
posed system and Melisma Music Analyzer. Results show
that the proposed method has a slightly better accuracy than
Melisma when evaluated on the root only. When evaluated
on the root and the mode of the detected chords, the accu-
racy is comparable to the root detection accuracy of Melisma.

These results seem promising, especially when the pro-
posed system may be extended, by handling a larger num-
ber of supported chord types, taking into account a larger
set of rules, choosing a different way to select the best path
in the graph of chord candidates or using a different dis-
tance for chord transition cost. Detection of key change,
as studied in [4] is also planned, since compatible keys are
determined for each note segment. A large database of sym-
bolic music with key change annotations will be needed for
evaluation. Evaluating the type of chord is also possible,
since each chord could be handled by the system with a
given type. Possible applications to Music Information Re-
trieval (MIR) and adaptation to audio chord recognition are
under progress.

6. ACKNOWLEDGMENT

This work is part of the SIMBALS project (JC07-188930),
funded by the French National Research Agency (ANR),
and is also supported by the Aquitaine Regional Council.

7. REFERENCES

[1] R. Bellman, Dynamic Programming. Princeton Uni-
versity Press, 1957.

[2] J. Bello, “Audio-based Cover Song Retrieval using
Approximate Chord Sequences: Testing Shifts, Gaps,
Swaps and Beats,” in Proc. of the 8th International
Conference on Music Information Retrieval (ISMIR),
Vienna, Austria, 2007, pp. 239–244.

[3] A. M. Birch and O. Anon, Band-In-A-Box In-
dependent Users Group File Archive 2, Avail-
able: http://groups.yahoo.com/group/Band-in-a-Box-
Files2/, 2004.

[4] E. Chew, “The Spiral Array: An Algorithm for Deter-
mining Key Boundaries.” in Proc. of the Second Inter-
national Conference ICMAI 2002, Springer, 2002, pp.
18–31.

[5] G. Cabral and F. Pachet and J. Briot, “Automatic X
Traditional Descriptor Extraction: The Case of Chord

Recognition,” in Proc. of the 6th International Con-
ference on Music Information Retrieval (ISMIR), Lon-
don, U.K., 2005, pp. 444–449.

[6] P. Hanna, M. Robine, P. Ferraro, and J. Allali, “Im-
provements of Alignment Algorithms for Polyphonic
Music Retrieval,” in Proc. of the CMMR08, Interna-
tional Symposium on Computer Music Modeling and
Retrieval, Copenhagen, Denmark, 2008, pp. 244–251.

[7] P. Illescas, D. Rizo, and J. M.Iesta., “Harmonic,
Melodic, and Functional Automatic Analysis,” in
Proc. of the International Computer Music Conference
(ICMC), Copenhagen, Denmark, 2007, pp. 165–168.

[8] J. P. Bello and J. Pickens, “A Robust Mid-Level Rep-
resentation for Harmonic Content in Music Signals,”
in Proc. of the 6th International Conference on Music
Information Retrieval (ISMIR), London, U.K., 2005,
pp. 304–311.

[9] K. Lee and M. Stanley, “Acoustic Chord Transcription
and Key Extraction from Audio Using Key-Dependent
HMMs Trained on Synthesized Audio,” The IEEE
Transactions on Audio, Speech and Language Process-
ing, vol. 16, no. 2, pp. 291–301, 2008.

[10] F. Lerdahl, Tonal Pitch Space. Oxford University
Press, 2001.

[11] J.-F. Paiement, D. Eck, and S. Bengio, “A Probabilis-
tic Model for Chord Progressions,” in Proc. of the 6th
International Conference on Music Information Re-
trieval (ISMIR), London, UK, 2005, pp. 312–319.

[12] H. Papadopoulos and G. Peeters, “Large-scale Study
of Chord Estimation Algorithms Based on Chroma
Representation and HMM,” in Proc. of the 5th Inter-
national Conference on Content-Based Multimedia In-
dexing, Bordeaux, France, 2007, pp. 53–60.

[13] L. Rabiner, “A tutorial on hidden markov models and
selected applications in speech recognition,” in Read-
ings in speech recognition, 1990, pp. 267–296.

[14] C. Rhodes, D. Lewis, and D. M’́ullensiefen, “Bayesian
Model Selection for Harmonic Labelling,” Mathemat-
ics and Computation in Music, 2007.

[15] A. Sheh and D. P. W. Ellis, “Chord Segmentation
and Recognition Using EM-Trained Hidden Markov
Models,” in Proc. of the 4th International Conference
on Music Information Retrieval (ISMIR), Baltimore,
U.S.A., 2003, pp. 183–189.

[16] D. Temperley and D. Sleator, “The Melisma
Music Analyzer,” http://www.link.cs.cmu.edu/
music-analysis/.

[17] D. Temperley, The Cognition of Basic Musical Struc-
tures. The MIT Press, 1999.

http://www.link.cs.cmu.edu/music-analysis/
http://www.link.cs.cmu.edu/music-analysis/

	1 Introduction
	2 Chord Representation
	3 Dynamic Chord Analysis
	3.1 Time Segmentation
	3.2 Graph of Chord Candidates
	3.2.1 Compatible keys
	3.2.2 Compatible chords
	3.2.3 Chord candidates enumerated
	3.2.4 Chord transition cost

	3.3 Dynamic Process
	3.4 Global Computation

	4 Experiments
	4.1 Database
	4.2 Evaluation Procedure
	4.2.1 Melisma evaluation
	4.2.2 System evaluation

	4.3 Results
	4.3.1 Supported chord types optimization
	4.3.2 Comparison on the root estimation
	4.3.3 Root and mode estimation

	5 Conclusion and Future Work
	6 Acknowledgment
	7 References

