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1. Introduction

One of the main goals of music retrieval systems is to find caligpieces in large databases given a
description or an example. These systems compute a nuncerie an how well a query matches each
piece in a database and rank the music pieces accordingstedbie. Computing such a degree of re-
semblance between two pieces of music is a difficult probl@imee families of methodologies have
been proposed [16]. Approaches based on index terms glsneoakider /NV-gram techniques [4, 26],
which count the number of common distinct terms between tlegygand a potential answer. Geomet-
ric algorithms [28, 24, 25] consider geometric represématof music and compute distances between
objects. Techniques based on string matching [10] can ta&keaccount errors in the query or in the
pieces of music of the database. This property is of majooitapce in the context of music retrieval
systems since transcription and recognition of audio $ignaever completely accurate. Moreover,
some music retrieval applications require specific rolsgtn Query by humming (QbH), a music re-
trieval system where the input query is a user-hummed meiedyvery good example. Edit-distance
algorithms, mainly developed in the context of DNA sequeramognition, have been adapted in the
context of music similarity [15]. These algorithms, basedtioe dynamic programming principle, are
generalizations of a local sequence alignment method peapby Smith and Waterman [20] in the early
80’s. Applications relying on local alignment are numeramsl include cover detection [19], melody
retrieval [15], Query-by-Humming [3], structural analyscomparison of chord progressions [&l¢
Local alignment approaches usually provide very accuegelts as shown during the recent editions of
the Music Information Retrieval Evaluation eXchange (MIMRHES].

Symbolic melodic similarity systems generally assume aopbonic context. Therefore, their ap-
plications to polyphonic music require accurate adaptatiothe monophonic melody has first to be
defined and extracted from a polyphonic musical audio sjgal then, the properties of two melodies
that induce their similarity to the human mind have to be coteg. This second point is closely linked
to perception and cognition.

Monophonic musiés assumed to be composed of only one dominant melody. Irickestsense,
it implies that no more than one note is sounded at any givea.tiln music theorypolyphonyis a
texture consisting of two or more independent melodic wicA music with one dominant melodic
voice accompanied by chords is often callemmophony However, in the following, we will consider
homophony as a part of polyphonic music [27]. Thus, in thgplabnic context, more than one note can
sound at a given time. There is no perfect technique to plgctefine the melody of such music [27].
Most existing techniques for similarity measurement cd&sa monophonic context. However, appli-
cations of this similarity measurement may concern moremexnmusical information. For example,
one might want to retrieve audio tracks similar to an audiergdrom a polyphonic audio database. In
such applications, the audio example may not be monophdmithis case, without information about
voice lines, most existing approaches would involve tramsing polyphonic music into monophonic
music [27, 17]. A monophonic sequence is derived from a guyiic source by selecting at most one
note at every time step; this process is called monophouigct®n. In [27], a few existing methods
are proposed for monophonic reduction from a polyphoniccsauExperiments lead to the conclusion
that the perfect technique does not exist, and that eachitalgoproduces significant errors. Another
conclusion is that choosing the highest note of chords gib&tter results.

Taking into account the approximation induced by the mooophreduction, we propose here to
consider directly polyphonic musical sequences insteadyofg to transform polyphonic sources into
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monophonic melodies. Such an approach requires a datéust@dapted to the constraints induced by
the polyphonic context. In particular, the representatian to consider that several notes can sound at
the same time.

In this paper, we present a general framework for comparatgpponic musical pieces by extending
the edit-distance operations introduced by Mongeau an#d®afi5]. In Section 2, we discuss the
existing symbolic representations for polyphonic musidef, in Section 3, we present the existing
method for aligning two monophonic musical pieces, andidéia problems due to the polyphonic
context. In Section 4, a general algorithm is proposed fignalg two polyphonic musical pieces.
Musical examples illustrate the improvements induced byalgorithm in Section 5. Finally, we discuss
the limitations and the future work in Section 6.

2. Music Representations and Definitions

In the following, we only consider symbolically encodedg@e of music. Symbolic pieces of music
are defined by musical events, such as beginnings or endingstes. Each note is then defined by a
few attributes: pitch, duration or onset time. We will fogoghe following on representations of pieces
of music as sequences of symbols. Such representations thdoapplication of algorithms adapted

from the string-matching domain. For example, algorithrasda onV-grams are proposed in [26, 4].

Another technique evaluates the best alignment betweepieges [20]. In the monophonic context, this
method has been experimented as one of the most accuratsifidd it easily allows the consideration
of elements of music theosych as tonality, passing notes, or strong and weak bedts [18

In order to compare polyphonic music, existing works gelheraquire reduction of a polyphonic
piece [26]. Certain methods [13] reduce polyphonic musia ast of separate tracks. We choose to not
use any information about the voice lines, since they coelthissing in the case of polyphonic music
obtained by transcription from audio for example. Other opionic reductions only consider the note
with the highest pitch in the polyphony, based on two assiamgit firstly the query is the main theme or
the melody of the musical piece searched, and secondly gihesti pitches always form the melody. Itis
rarely the case in an orchestra, where the polyphony couldeneduced to just the voice of the Western
concert flute for example. In order to avoid such assumptianpropose here to study algorithms that
take into account all the notes of a polyphonic musical pie©ae way would be to consider all the
distinct monophonic lines induced by the polyphony. Bus tiive approach may imply a combinatoric
explosion in the cases of large scores [12].

In order to simplify the adaptations of alignment algorithto the polyphonic context, we use the
representation of polyphonic music proposed in [9] as aesacpiof sets of symbol pairs. Note that the
idea of representing polyphonic music as a sequence of fgineities” has been used for many years
[14, 5]. As for monophonic sequence [15], each pair repitsseenote and is mainly defined with its pitch
and its duration. Fig. 1 shows an example of an excerpt of gppohic musical piece and its related
representation.

According to this representation, we propose to study tgerdthm computing the alignment be-
tween two polyphonic musical piecas®. between two sequences of a set of symbol pairs.
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Figure 1. An example of a polyphonic musical score and itsteel sequence of sets of notes. A note is repre-
sented by a pitch and a length, and each note of a same chortjseb the same set.

3. Aligning Two Pieces of Music

In this section,t and ¢ denote two strings over an alphal¥et The cardinality ofY is |X| and the

lengths oft andq are respectively denoted I and|q|. Thei'” letter oft is represented by, that is

t = tity...ty. We notet; ; the sub-string made of lettetgt; ,; ... ¢;, if j < i then this sub-string is
equivalent to the empty word

3.1. General Sequence Alignment

Sequence alignmemefers to a method that allows the computation of a one-®+oapping between
symbols of two sequences that respects symbol order. Seoeeassociated with each symbol pair
and each symbol not in a pair. Sequence alignment aims ahdjralimapping between symbols that
maximizes the sum of scores. Here is a formal definition opttodlem:

Definition 3.1. (Sequence Alignment)
Let t and ¢ be two sequences over an alphabgtwhose respective lengths ajteé and |¢|. A valid
alignmentA from ¢ to ¢ is a set of ordered pairs of integdiisj) satisfying:

1.1 <i<|Jtlandl < 5 <|q|,
2. for any distinct pairgiq, ji) and ¢z, j2) in A:

(@) i1 # io ifand only if j; #£ jo,
(b) i1 < igifandonly if j; < jo.

Condition 1 ensures that only character positions of theaets/e strings are involved in the alignment.
Condition 2(a) ensures that each character position ofregtning is aligned with at most one character
position of the other string; condition 2(b) ensures thatahder between character positions is main-
tained in the alignment. Let and.J be the sets of positions inandq respectively not involved in any
pair in A.

Let score be an arbitrary scoring function which assigns to each(patr) of SU{e} x X U{e} areal
numberscore(a,b). Let A be an alignment fromto g, the scoreS(A) associated with the alignmert
is defined by:

S(A) = Z score(t;, q;) + Z score(t;, €) + Z score(e, qj).

(i,j)EA iel jed

Finally, the alignment scorelign'(t, q) betweent andq is defined as:

align'(t,q) = Maxz(S(A) for all valid A between t and q).
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A pair of two identical symbols in the alignmeditis called anatch A pair of two different symbols
is called amismatch Symbols not involved in the alignment are caltpabs Thus the score ofl is the
cost of the match and mismatch pairs, added to the cost of gaps

The alignmentA from ¢ to q is usually represented by two sequentéemdq’ of the same length over
the alphabek U {—}. ¢t andq are respectively obtained by suppressing the symbdtem respectively
t" andq’. Let us consider the following alignment from the wavtl/ SIC to the wordQUICK:

position: 0 1 2 3 4 5

M U S [ C -
Q U - | C K
score: -1 2 -1 2 2 -1

In this example, we have a mismatch in position 0, a match sitipos 1, 3 and 4 and two gaps in
positions 2 and 5. If the score for a match is +2 and -1 for a mismor a gap then the alignment score
is 3.

The alignment scorelign'(t, q) from ¢t to ¢ may be computed rapidly (in time proportionaltpx |q|
by recurrence). The recurrence equation frbri i < |t/ and1 < j < |q| is (see Fig. 2-left):

align®(t1._i—1, qi.5) + score(t;, €)
align'(t1..i,q1..5) = Mazx § align'(t_s,q1.5-1)  + score(e, q;) 1)
alignt(tl___i_l,q1___j_1) + score(ti,qj)

The computation can be done by computing a taldlef size(|t| + 1) x (|¢| + 1) where the value
M{i][4] representsilign®(t1..i,q1. ;). The first row (resp. column) contains scores of the aligrtmen
betweent; ; (resp. ¢i..;) ande. The time complexity of this algorithm i€(|¢| x |¢|) in time and
O(min(t|,]q|)) in memory as we can make the computation using only one rowlanm [20].

Several variants of the global alignment definition (Defhaye been proposed in the literature [8].
The most well known are:

¢ local alignment:finding factors ofy andt¢ having the best alignment score
e best fit:finding the factor ot that has the best alignment score wjth

These variants are computed in a similar way to global algmnand the present work can be easily
adapted to local and best-fit polyphonic alignment.

When comparing monophonic pieces of music one limitatioheflignment approach is that it only
allows one-to-one association. Actually, in musical pge@esingle note in one sequence may sometimes
be split into two or more notes in the second sequence. Ta dk limitation, Mongeau and Sankoff
[15] introduced a new operation, calletergeallowing the replacement of several characters by a single
character and the replacement of one character by sevdralm®tivation for this new operation, is the
fact that a whole note can be replaced by four quarter notdseafame pitch, which is not very costly.

The definition of an alignment is then modified as follows:

Definition 3.2. Lett andq be two sequences over an alphabetwhose respective lengths dteand|q|.
A valid alignmentA from ¢ to ¢ is a set of pairs of ordered pairs of integéfs, i. ), (js, je)) Satisfying:
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1. 1 <igi. <|t|andl < js, je < |¢|; andi. > i andj. > js,
2. 0. Fis+1=>j.=js+1andj. # js +1 =i, =is+ 1,
3. if ((4,1)), (4%, 72)) and((i.,4.), (5., 7.)) are any two distinct elements df.

(a) 4, cannot be equal ta,,
(b) if i, < is theni, < iz andj. < js,
(c) if i, > i s theni, > i, andj’ > j..

Condition 1 ensures that only character positions of theaes/e strings are involved by the align-
ment; Condition 2 ensures that a sequence of two non comgealtaracter positions in a string is
associated with at most one character position; Condit®essure that the order between character
position is maintained in the alignment.

To take into account the merge operation in the recurrendgeelfpllowing cases must be added to
the recurrence formula (see Fig. 2-right):

2 k<i: align®(t1_i—k,qu.j—1) + score(ti—g i, q;), @
2 1<j

align®(t1._i—1,q1..j—1) + score(ti, gj—i.. ;).

IA A

wherescore(t;_j. i, q;) andscore(t;, q;—;.. ;) are the predefined weights associated to the merge oper-
ations.

The time complexity of the algorithm with the merge openai®O ((|¢| x |¢|)(|t|+|¢|)). In practice,
the number of consecutive merged notes is bounded by a abrdstahich leads to a complexity of
O([t] x [q] x L) [15].

tip  t ti.1 &
e
kX N 7 |
N7 - ~\/
9 | 9 ==
C

Figure 2. Onthe left, the dynamic programming table for fignanent oft andg. The arrows:, b andc represent
the three cases of recurrence 1 for the computatial/ @f+ 1] + 1]. On the right, the computations added by
Mongeau and Sankoff algorithm (Formula 2). Arrodvsorrespond to merge in arrowse correspond to merge in

q.

So far, to define an accurate algorithm, a scoring functiostrba defined. A naive scoring scheme
like constant operation scores or a complex scoring schemegmduce significantly different results
[10]. Setting these parameters is tricky and generallydeada scoring table that contains the scores
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between each possible pitch difference. Indeed, substitone pitch with another one has more or less
influence on the general melody. As introduced in [15], ssare thus determined according to conso-
nance. In particular, interval scores decrease for Westeia music in order of decreasing dissonance:
unison, fifth, third, sixth, fourth, seventh and second.

In the monophonic case, a good scoring scheme between tes tatnd ¢; is often reached by
using a functiorscore,, on pitches (its values are coded into a table) and a funetiore,; on durations,
such as:

score(t;, qj) = a x scorey(pitch(t;), pitch(q;))
+ x scoreq(duration(t;), duration(q;)).

For a merge operation the weightore(t;_x. 4, q;) is computed similarly as:

(2
score(ty.. i,qj) = a X Z scorep(pitch(t;), pitch(q;))
1=k
i

+3 % scored(z duration(t;), duration(q;)).
1=k

Usually, the cost associated to a gap only depends on thelncdégon.

3.2. Polyphonic Case

A lot of problems arise, when dealing with polyphonic mudigrament. Actually, the definition of an
alignment in the polyphonic case is not a straightforwarngliagtion of the monophonic comparison.

[ u

o oLl N
V AN 20 S
| €« Y1 VI
sV b9
Dy,
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K

»
ES

il vI

ef

Figure 3. Arpeggiated chord above, with its interpretati@ow. The notes are played successively from the
lowest to the highest pitch, and not simultaneously.

Since many notes may be played at the same time, relativadeigcoannot be used. Thus, poly-
phonic music can be represented by a sequence of sets of Agtescan contain a single note or a chord.
A direct consequence is that transpositions cannot beetidnt the relative encoding. This problem has
been addressed in [1] and requires computing simultangoositiple matrices, one for each possible
transposition value.

Furthermore, as presented before, setting up a scoringngcirethe monophonic cased. fixing
a score for two notes) is a difficult problem. This task becermarder when comparing two chords.
Indeed, in one octave there are 12 possible pitch values dboed made of a single note (in practical
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applications, it is common to work only on one octave), thenx 11 for two note chords . (1;) for p
note chords, which means the scoring scheme will be repiebéry a matrix of size!? x 212,

Moreover, complex note rearrangements may occur betwessitailar polyphonic pieces, and tem-
poral deviations may appear between a score and its intatiore Fig. 3 shows such an example: in the
notation score, the chord has to be arpeggiated, and thedafderpretation is transcribed as successive
notes. In this case, a comparison system has to detect thilargyrbetween the chord indicated in the
musical score and the successive notes interpreted.

(@)
$ ﬂu#u 1 |
I e T
Y] | I

(b)

9 ﬂu#u — 171 Iy T  — —
5 +° <+ §o o ® > &
(©)

\‘vy 1 1

Figure 4. Similarity despite permutations (a) Main motiftbé 14th string quartet in C# minor opu81 by
Beethoven (1st movement, bar 1). The motif is composed bytdsrisequence (1 2 3 4)). (b) First theme of the
7th movement, bar 1. The 4 last notes of the two groups are pedmates of the main motif, sequence (1 4 3
2) and (1 4 2 3) (c) Second theme of ti ¢ movement, bar 21. The 4 notes are again a permutation of the ma
motif, sequence (324 1).

More generally, we have to deal with notes/chords mergirlacel rearrangements. For example,
composers may choose to change the order of the notes in dimglotif during a musical piece. Fig. 4
shows three excerpts from a piece by Beethoven: the sec@rahdhbthird (c) excerpts correspond to a
rearrangement of the main motif (a) with swapped notes.

4. Polyphonic Alignment

We propose hereafter a general algorithm to align two payphmusical pieces. The main characteris-
tic of this algorithm is that it is based on a scoring schem@@mophonic music.

4.1. Chord Comparison

In many cases, an arbitrary order is given to the notes comgpdke chords of a musical sequence.
To avoid this arbitrary choice, one can consider chords s Jée cost for substituting one chord by
another one leads to the problem of computing the best pationtbetween both chords. Fig. 5 shows
an example of two cadences that sound similar, but that castbeated as very dissimilar because of the
different order of the notes in the chords. To avoid this sbgiroblem, we suggest that chords should



J. Allali, P. Ferraro, C. lliopoulos, P. Hanna, M. Robine Aard a General Framework for Polyphonic Comparison9

be considered as unordered sets and the best permutatiold $ffgofound. This optimization method
allows the estimation of a high similarity between these $&quences of chords.

= =

=4

& & R4

|
—¢
[

0o]e

>

Figure 5. Similarity between inverted chords. These sigieedwo perfect cadences in C major are similar
despite the different order of the notes in the chords compgdke cadences.

This optimization problem is actually a maximum score maxmmbipartite matching problem and
can be modeled as a weighted maximum matching algorithmA[8jmilar approach has been proposed
in the case of a geometric representation of musical pie&t3js [

Let Cy andC- be two chords of size andm. We denote bycorey,,(C1, C2) the score between
these two chords. To computeorey,,(C1,C2) as the maximum score maximum bipartite matching
problem, we consider the following gragi(v, w) = (V, E) (Fig. 6):

1. vertex set V = {s,t,e1,ea} U {s},s3,...s7} U {sd, s3,... 50"}, wheres is the sourcet is the
sink, {s1,s% ... s} and{si, s2,... sh"} are the notes of the chord§ andC, ande;, e; represent
€

2. edge set (s, st), (s,e1), (e2,t), (sh,t) with a score0, (s¥,sb) with scorescore(sk, sb), and
(5%, e) with scorescore(s¥, €). All the edges have a capacity of 1 excéptt) which capacity is
n—m.

G is then a graph whose edges are labeled with integer caasmaibn-negative scoreslity and the
maximum flow f* = n 4+ m. The score of the maximum flow is actually the sceeerey,,(C1, Cs)
and the complexity of computing local score is due to thisimaxn score maximum flow computation.
This problem can be solved by the Edmonds and Karp’s algorif] improved by Tarjan [21] whose
complexity isO(|E||f*|log,(|V])). For our graph, the maximum flow i§* = n + m, the number
of edges iSE| = n x m + 2n + 2m + 3 and the number of vertices |¥| = n + m + 4. Finally
the complexity of the score computation between two chasd®unded by)(n? x log,(n)) wheren
represents the maximum number of notes in a chord.

In conclusion, computing alignment between two stringsidq leads to a total time complexity of
O(Jt] x |q] x C? x logy(C)) whereC is the maximum number of notes in a chord ior ¢. In practical
applications the parametéris generally bounded by.

4.2. Extending Mongeau-Sankoff Operations

As we already stated, an accurate algorithm for music alegirmust take into account both local rear-
rangements and merging operations. We thus propose afjawinmerging of sub-sequences in bgth
andt simultaneously.

Music alignment between two sequences is then extendedlasgo
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score(s%,gé)

score(s, s}

Figure 6. Resolution of the optimal permutation as a maxinsaare flow problem.

Definition 4.1. (Extended Music Alignment)
Given two sequencesandgq of sets of symbols ovex. A valid extended alignmenX® betweent andg
is a set of pairs of sub-sequenceg ahdg, that isX® = {((is, i), (s, je))} @and respects the following

for all ((is,ie), (Js, je)) € X%

1.1<is<i.<|tjandl < j5 < je < |gq

2. 9((i4, 1), (72..30)) (84,10, (71, 42)) € X such that, # i,:

(a) if i, < istheni, <isandj. < js,
(b) if il > is theni’, > i. andj. > je.

We define the setr; (resp.G,) as the set of positions of(resp.q) not involved in.X“, that is
Gy ={1,...,[t]}\ U {is. . ic}.
((is,ie),(js,je))EXa

The score associated witti® is defined as follows:

S(XY = Y score(ti i Gj,.5) + ) score(tie) + Y score(e,q;).

((isyie)y(]‘sJe))EX“ ith jEGq

The adaptation of the alignment algorithm is straightfoxva he recurrence 1 is modified by adding
the following cases:

V(k?J) € {22} X {2--j} : alignt(tl...i—k,Q1...j—1) + Score(ti—k...iaQj—l...j)' 3)
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In the dynamic programming table, the value of a given pmsitl/[:][j] is obtained from any
caseMIk|[l] for 1 < k < 4,1 <1 < j. We thus need to consider the computation of the value
score(ti—k. i,q;—1..5) (ie. the cost of aligning the sequence of chotds; ; and the sequence of chords
Qj—l...j)-

For the comparison of two polyphonic sequen¢esd ¢, we propose to define a scoring scheme
based on the scoring scheme presented in Section 3.1. Hovretkis case, we are dealing with se-
guences of chords instead of single chords and we thus neay ®wncode several chords into a single
one.

Let us consider the sequence of chotgs;, that must be encoded (and that will be compared to
a sequence of chords, . ;. in ¢). The pitch oft;. ;. is then defined as the sé}, of all the different
pitches that are present in this sequence. The durationiokéguence of chords is equalfp the
duration elapsed from the beginningtgf to the end ot;_.

For example, in Fig. 1, the sequence of 4 chords:

({G4, B4},{D2},{A2},{G8, B8, D8})

is encoded by the chord:
({A,B,D,G})

with a duration of 16.

Finally, a sequence of chords is only represented by a ss&jlef unordered pitches and a single
duration. To compare these chord representations the agipaescribed in Section 4.1 ascbre), to
weight the edges of the bipartite graph are used. Then, tre setween two sequences of chords is
given by:

score(ti,. io, Qjs..j.) = @ X scoreppg(Ty, Qp) + 5 % scoreq(Ty, Qq)

| | | (A1 | {c2Ga | {C1LELBY |

Gy | .| « | o

(D2} .| d

{A2} e f
(G8,D8,B8 | .. X

Table 1. Example of merged notes that must be consideredhéostep (X) of the alignment algorithm.

Now let us consider the computation of the dynamic programgntéble/. We propose to illustrate
the computation of a cas¥ [¢][j] of this table through the example in Tab. 1. The score in posi is
obtained either fronf which implies the computation of scoresorey,,({A}, {C, G}) andscoreq(2,2)
or:

e from e which implies the computation 6torey,,({A}, {4, C,G}) andscoreq(2,3).

e from d which implies the computation Giorey,,({A, D}, {C,G}) andscorey(4,2).
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e from ¢ which implies the computation Gicorey,,({A, D}, {A, C,G}) andscoreq(4, 3).
e from b which implies the computation 6torey,,({A, B, D,G},{C,G}) andscoreq(8, 2).
e from a which implies the computation akorey,,({A, B, D,G}, {A,C,G}) andscoreq(8, 3).

One can observe that from one computationsafre,,, to another one, we just add vertices in the
bipartite graph. So, it is not necessary to recompute-e;,, from scratch. Toroslu andcoluk give

in [22] an incremental algorithm to compute the assignmeoblem inO(V2) whereV is the number
of vertices in the bipartite graph. Using this algorithm iar @pproach the time complexity of the
computation of all possible merges for the casg is bounded b)O(ZiC:1 i?) = O(C?) whereC'is
number of different pitches ity ; andg;.. ;. The time complexity of the alignment becom@§|t|? x

lq|? x C3) whereC is the number of different pitches irandg.

5. Experimentation and Results

5.1. An lllustrative Example

In order to illustrate the algorithm, we propose to comphesfollowing sequence of chords=({ G4},
{B4},{D2,A2},{G8},{D8},{B8}) (cf. Fig. 1) and an arpeggiated version of this sequeqce{{G4,B4},
{D2},{A2},{G8,D8,B8). The distance betweehand ¢ is computed using the following scoring
scheme. Let us consider two noteandb:

e score(a,a) = 2,
e score(a,b) =1if a # b,
e score(a,e) = score(e, b) = —1,

In this example, we suppose the score between two notes dbdspend on the pitch and the duration of
the notes. The dynamic programing table computation issgmted in Tab. 2. We then can observe, for
instance, that the score between the subsets of nggel ((B4},{D2,A2}) and {G4,B4},{D2},{A2}),

is obtained from the merge of chords34},{B4}) and {G4,B4}) on one hand and on the other hand
from the merge of the chord§®2,A2}) and {D2},{A2}). This scorei(e. 8) is actually computed by
summing the score of the permutation betw¢B2,A2} and{D2,A2} (i.e. 4) and the score between the
chords {(G4},{B4}) and {G4,B4}) (i.e. 4).

The final score between the two global sequences of cli@addq can be obtained either by merging
all the chords of to the chords of; (which corresponds to the cost of the optimal bipartite tmaty
between {G4,B4,D2,A2,G8,D8,BB) and (G4,B4,D2,A2,G8,D8,BY); or from the cost described pre-
viously (between {G4},{B4},{D2,A2}) and (G4,B4},{D2},{A2}) for which the cost is 8) plus the
cost of merging{G8,D8,B8) and (G8},{D8},{B8}).

5.2. A First Evaluation

The evaluation of similarity measure systems is a very diffimsk because different human listeners do
not always have the same opinion on similarity between ralipieces. However, this section presents
a preliminary evaluation of the general framework for pblgpic comparison.
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| | ¢ | {c4 | {B4} | {D2,A2} | {G8} | {D8} | {B8} |

¢ 0| -1 -2 -4 -5 -6 -7
{GaBay | 2| 1 4 2 1 0 -1
{D2} 3] 0 3 5 4 3 2
{A2} 4 -1 2 8 7 6 5
{c8psBg | -7 | -4 -1 5 8 11 14

Table 2. Example of a dynamic programming table for the caiepa between the sequence of chords
({G4},{B4},{D2,A2},{G8},{D8},{B8}) and (G4,B4},{D2},{A2},{G8,D8,B8)

During MIREX 20086, the second task of the symbolic melodic similarity contesisisted in re-
trieving the most similar pieces from mostly polyphoniclections given a monophonic query. Note
that our approach is more general since it allows compavitegoblyphonic musical pieces.

Two collections were considered, ahtl queries (hummed or whistled) were proposed. Trteed
collection is composed of0000 randomly picked MIDI files that were harvested from the Wel an
which include different genres. Tha&raokecollection is composed of abotif00 .kar files (Karaoke
MIDI files) with mostly Western popular music. Tab. 3 preseifie results obtained with these two col-
lections and analyzed using our general polyphonic aligriralgorithm and the adaptation of the Smith
and Waterman algorithm [20] to music applications [10]. &ithms have been evaluated according to
two measures: thaverage precisionand theprecision atN documentg NV is the number of relevant
documents).

Collection General Polyphonic Framework | Classical Alignment
Karaoke AP 0.78 0.36
PND 0.83 0.33
Mixed AP 0.67 0.52
PND 0.66 0.55

Table 3. Average Precision (AP) and PrecisiovaDocuments (PND) obtained by edit-distance based retrieval
systems for MIREX 2006 databases and queries. The Clagdigament column presents the results obtained by
Uitdenbogerd during MIREX).

Resulté presented in Tab. 3 clearly show that the algorithm allowimgjtiple transpositions and
several types of edit operations improves retrieval systeased on the alignment principle. Concerning
the karaokecollection, the average precision is nga80 whereas it is only0.36 when considering
a monophonic alignment. This difference (although less\guaced) is also observed for thaxed
collection. The average precision 067 instead 0f0.52. Although voices are not separated in the
musical pieces, this improvement remains notable.

"http://www.music-ir.org/mirex2006/index . php/MIREX2006_Results
2The complete results obtained by the different methods qeeg during MIREX 2006 can be found http://www.
music-ir.org/mirex/2006/index.php/Symbolic_Melodic_Similarity_Results
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In order to confirm these first promising results, other expentations have to be performed with a
more important number of pieces and melodies in our codiacti

6. Conclusion

In this paper, we proposed a general alignment algorithnthi@icomparison of two polyphonic pieces
of music. This method is based on an extension proposed by&éanand Sankoff [15], in order to
compare two monophonic musical pieces. In particular, dlgsrithm only requires a scoring scheme
between notes (and not chords). Although new edit opemati@ve been introduced, the algorithm
remains quadratic, if the number of different pitches in ardhand the number of merged chords are
bounded by constants.

The string-to-string alignment problem consists of detenng the distance between two strings as
measured by the minimum cost sequence of edit-operaticededeo change one string into the other.
The edit operations generally allow changioge symbobf a string intoanother single symbplor
inserting asingle symbobr deleting a single symbolDue to our domain of application, we have firstly
generalized this notion to the comparison of sequencestsfagesymbols: an edit operation allows
modifying a set of symbols. While the cost of symbol comparig/as stored in aalignment tablenow
to compare two sets of symbols, a maximum score maximum lingtgnoblem must be solved.

Another key element introduced in this paper is the notiomefge also known as consolidation and
fragmentation operations [15]. This operation is différfEom the deletions and insertions familiar in
sequence comparison and from the compression and expartditime warping in automatic speech
recognition [11]. This new transformation involves thelaggment of several elements of the initial
sequence by several elements of the final sequence. Hovedtherugh this new definition differs from
the one proposed by Mongeau and Sankoff and increases tharaiorics, it allows us to compute a
more accurate similarity measure between patyphonic musical pieceas polynomial time.

Applications of this algorithm could be extended to any kimdequences in which time is essentially
a quantitative dimension (rhythm, in music) and not simplyaadinal parameter. However, further
studies might be carried out in a more general frameworkdeioto evaluate the proper accuracy of this
approach.
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