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1. Introduction

One of the main goals of music retrieval systems is to find musical pieces in large databases given a
description or an example. These systems compute a numeric score on how well a query matches each
piece in a database and rank the music pieces according to this score. Computing such a degree of re-
semblance between two pieces of music is a difficult problem.Three families of methodologies have
been proposed [16]. Approaches based on index terms generally considerN -gram techniques [4, 26],
which count the number of common distinct terms between the query and a potential answer. Geomet-
ric algorithms [28, 24, 25] consider geometric representations of music and compute distances between
objects. Techniques based on string matching [10] can take into account errors in the query or in the
pieces of music of the database. This property is of major importance in the context of music retrieval
systems since transcription and recognition of audio signal is never completely accurate. Moreover,
some music retrieval applications require specific robustness. Query by humming (QbH), a music re-
trieval system where the input query is a user-hummed melody, is a very good example. Edit-distance
algorithms, mainly developed in the context of DNA sequencerecognition, have been adapted in the
context of music similarity [15]. These algorithms, based on the dynamic programming principle, are
generalizations of a local sequence alignment method proposed by Smith and Waterman [20] in the early
80’s. Applications relying on local alignment are numerousand include cover detection [19], melody
retrieval [15], Query-by-Humming [3], structural analysis, comparison of chord progressions [2],etc.
Local alignment approaches usually provide very accurate results as shown during the recent editions of
the Music Information Retrieval Evaluation eXchange (MIREX) [6].

Symbolic melodic similarity systems generally assume a monophonic context. Therefore, their ap-
plications to polyphonic music require accurate adaptations: the monophonic melody has first to be
defined and extracted from a polyphonic musical audio signal, and then, the properties of two melodies
that induce their similarity to the human mind have to be computed. This second point is closely linked
to perception and cognition.

Monophonic musicis assumed to be composed of only one dominant melody. In a stricter sense,
it implies that no more than one note is sounded at any given time. In music theory,polyphonyis a
texture consisting of two or more independent melodic voices. A music with one dominant melodic
voice accompanied by chords is often calledhomophony. However, in the following, we will consider
homophony as a part of polyphonic music [27]. Thus, in the polyphonic context, more than one note can
sound at a given time. There is no perfect technique to precisely define the melody of such music [27].
Most existing techniques for similarity measurement consider a monophonic context. However, appli-
cations of this similarity measurement may concern more complex musical information. For example,
one might want to retrieve audio tracks similar to an audio query from a polyphonic audio database. In
such applications, the audio example may not be monophonic.In this case, without information about
voice lines, most existing approaches would involve transforming polyphonic music into monophonic
music [27, 17]. A monophonic sequence is derived from a polyphonic source by selecting at most one
note at every time step; this process is called monophonic reduction. In [27], a few existing methods
are proposed for monophonic reduction from a polyphonic source. Experiments lead to the conclusion
that the perfect technique does not exist, and that each algorithm produces significant errors. Another
conclusion is that choosing the highest note of chords yields better results.

Taking into account the approximation induced by the monophonic reduction, we propose here to
consider directly polyphonic musical sequences instead oftrying to transform polyphonic sources into
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monophonic melodies. Such an approach requires a data structure adapted to the constraints induced by
the polyphonic context. In particular, the representationhas to consider that several notes can sound at
the same time.

In this paper, we present a general framework for comparing polyphonic musical pieces by extending
the edit-distance operations introduced by Mongeau and Sankoff [15]. In Section 2, we discuss the
existing symbolic representations for polyphonic music. Then, in Section 3, we present the existing
method for aligning two monophonic musical pieces, and detail the problems due to the polyphonic
context. In Section 4, a general algorithm is proposed for aligning two polyphonic musical pieces.
Musical examples illustrate the improvements induced by the algorithm in Section 5. Finally, we discuss
the limitations and the future work in Section 6.

2. Music Representations and Definitions

In the following, we only consider symbolically encoded pieces of music. Symbolic pieces of music
are defined by musical events, such as beginnings or endings of notes. Each note is then defined by a
few attributes: pitch, duration or onset time. We will focusin the following on representations of pieces
of music as sequences of symbols. Such representations allow the application of algorithms adapted
from the string-matching domain. For example, algorithms based onN -grams are proposed in [26, 4].
Another technique evaluates the best alignment between twopieces [20]. In the monophonic context, this
method has been experimented as one of the most accurate [10], since it easily allows the consideration
of elements of music theorysuch as tonality, passing notes, or strong and weak beats [18].

In order to compare polyphonic music, existing works generally require reduction of a polyphonic
piece [26]. Certain methods [13] reduce polyphonic music asa set of separate tracks. We choose to not
use any information about the voice lines, since they could be missing in the case of polyphonic music
obtained by transcription from audio for example. Other monophonic reductions only consider the note
with the highest pitch in the polyphony, based on two assumptions: firstly the query is the main theme or
the melody of the musical piece searched, and secondly the highest pitches always form the melody. It is
rarely the case in an orchestra, where the polyphony could not be reduced to just the voice of the Western
concert flute for example. In order to avoid such assumption,we propose here to study algorithms that
take into account all the notes of a polyphonic musical piece. One way would be to consider all the
distinct monophonic lines induced by the polyphony. But this naive approach may imply a combinatoric
explosion in the cases of large scores [12].

In order to simplify the adaptations of alignment algorithms to the polyphonic context, we use the
representation of polyphonic music proposed in [9] as a sequence of sets of symbol pairs. Note that the
idea of representing polyphonic music as a sequence of ”simultaneities” has been used for many years
[14, 5]. As for monophonic sequence [15], each pair represents a note and is mainly defined with its pitch
and its duration. Fig. 1 shows an example of an excerpt of a polyphonic musical piece and its related
representation.

According to this representation, we propose to study the algorithm computing the alignment be-
tween two polyphonic musical pieces,i.e. between two sequences of a set of symbol pairs.
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B4E4 G4 B4 D4 r4 C4 E4 G4 D2 A2 G8 B8 D8

Figure 1. An example of a polyphonic musical score and its related sequence of sets of notes. A note is repre-
sented by a pitch and a length, and each note of a same chord belongs to the same set.

3. Aligning Two Pieces of Music

In this section,t and q denote two strings over an alphabetΣ. The cardinality ofΣ is |Σ| and the
lengths oft andq are respectively denoted by|t| and|q|. Theith letter of t is represented byti, that is
t = t1t2 . . . t|t|. We noteti...j the sub-string made of letterstiti+1 . . . tj, if j < i then this sub-string is
equivalent to the empty wordǫ.

3.1. General Sequence Alignment

Sequence alignmentrefers to a method that allows the computation of a one-to-one mapping between
symbols of two sequences that respects symbol order. Scoresare associated with each symbol pair
and each symbol not in a pair. Sequence alignment aims at finding a mapping between symbols that
maximizes the sum of scores. Here is a formal definition of theproblem:

Definition 3.1. (Sequence Alignment)
Let t and q be two sequences over an alphabetΣ, whose respective lengths are|t| and |q|. A valid
alignmentA from t to q is a set of ordered pairs of integers(i, j) satisfying:

1. 1 ≤ i ≤ |t| and1 ≤ j ≤ |q|,

2. for any distinct pairs(i1, j1) and (i2, j2) in A:

(a) i1 6= i2 if and only if j1 6= j2,

(b) i1 < i2 if and only if j1 < j2.

Condition 1 ensures that only character positions of the respective strings are involved in the alignment.
Condition 2(a) ensures that each character position of either string is aligned with at most one character
position of the other string; condition 2(b) ensures that the order between character positions is main-
tained in the alignment. LetI andJ be the sets of positions int andq respectively not involved in any
pair inA.

Let score be an arbitrary scoring function which assigns to each pair(a, b) of Σ∪{ǫ}×Σ∪{ǫ} a real
numberscore(a, b). Let A be an alignment fromt to q, the scoreS(A) associated with the alignmentA

is defined by:
S(A) =

∑

(i,j)∈A

score(ti, qj) +
∑

i∈I

score(ti, ǫ) +
∑

j∈J

score(ǫ, qj).

Finally, the alignment scorealignt(t, q) betweent andq is defined as:

alignt(t, q) = Max(S(A) for all valid A between t and q).
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A pair of two identical symbols in the alignmentA is called amatch. A pair of two different symbols
is called amismatch. Symbols not involved in the alignment are calledgaps. Thus the score ofA is the
cost of the match and mismatch pairs, added to the cost of gaps.

The alignmentA from t to q is usually represented by two sequencest′ andq′ of the same length over
the alphabetΣ∪ {−}. t andq are respectively obtained by suppressing the symbols− from respectively
t′ andq′. Let us consider the following alignment from the wordMUSIC to the wordQUICK:

position: 0 1 2 3 4 5

M U S I C -

Q U - I C K

score: -1 2 -1 2 2 -1

In this example, we have a mismatch in position 0, a match in positions 1, 3 and 4 and two gaps in
positions 2 and 5. If the score for a match is +2 and -1 for a mismatch or a gap then the alignment score
is 3.

The alignment scorealignt(t, q) from t to q may be computed rapidly (in time proportional to|t|×|q|
by recurrence). The recurrence equation from1 ≤ i ≤ |t| and1 ≤ j ≤ |q| is (see Fig. 2-left):

alignt(t1...i, q1...j) = Max











alignt(t1...i−1, q1...j) + score(ti, ǫ)

alignt(t1...i, q1...j−1) + score(ǫ, qj)

alignt(t1...i−1, q1...j−1) + score(ti, qj)

(1)

The computation can be done by computing a tableM of size(|t| + 1) × (|q| + 1) where the value
M [i][j] representsalignt(t1...i, q1...j). The first row (resp. column) contains scores of the alignment
betweent1...i (resp. q1...j) and ǫ. The time complexity of this algorithm isO(|t| × |q|) in time and
O(min(|t|, |q|)) in memory as we can make the computation using only one row or column [20].

Several variants of the global alignment definition (Def. 1)have been proposed in the literature [8].
The most well known are:

• local alignment:finding factors ofq andt having the best alignment score

• best fit:finding the factor oft that has the best alignment score withq.

These variants are computed in a similar way to global alignment and the present work can be easily
adapted to local and best-fit polyphonic alignment.

When comparing monophonic pieces of music one limitation ofthe alignment approach is that it only
allows one-to-one association. Actually, in musical pieces, a single note in one sequence may sometimes
be split into two or more notes in the second sequence. To avoid this limitation, Mongeau and Sankoff
[15] introduced a new operation, calledmergeallowing the replacement of several characters by a single
character and the replacement of one character by several. The motivation for this new operation, is the
fact that a whole note can be replaced by four quarter notes ofthe same pitch, which is not very costly.

The definition of an alignment is then modified as follows:

Definition 3.2. Let t andq be two sequences over an alphabetΣ, whose respective lengths are|t| and|q|.
A valid alignmentA from t to q is a set of pairs of ordered pairs of integers((is, ie), (js, je)) satisfying:
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1. 1 ≤ is, ie ≤ |t| and1 ≤ js, je ≤ |q|; andie > is andje > js,

2. ie 6= is + 1 ⇒ je = js + 1 andje 6= js + 1 ⇒ ie = is + 1,

3. if ((i′s, i
′
e), (j

′
s, j

′
e)) and((i′s, i

′
e), (j

′
s, j

′
e)) are any two distinct elements ofA:

(a) i′s cannot be equal tois,

(b) if i′s < is theni′e ≤ is andj′e ≤ js,

(c) if i′s > is theni′s ≥ ie andj′s ≥ je.

Condition 1 ensures that only character positions of the respective strings are involved by the align-
ment; Condition 2 ensures that a sequence of two non consecutive character positions in a string is
associated with at most one character position; Conditions3 ensure that the order between character
position is maintained in the alignment.

To take into account the merge operation in the recurrence 1,the following cases must be added to
the recurrence formula (see Fig. 2-right):

2 ≤ k ≤ i : alignt(t1...i−k, q1...j−1) + score(ti−k...i, qj),

2 ≤ l ≤ j : alignt(t1...i−1, q1...j−l) + score(ti, qj−l...j).
(2)

wherescore(ti−k...i, qj) andscore(ti, qj−l...j) are the predefined weights associated to the merge oper-
ations.

The time complexity of the algorithm with the merge operation isO((|t|×|q|)(|t|+ |q|)). In practice,
the number of consecutive merged notes is bounded by a constant L which leads to a complexity of
O(|t| × |q| × L) [15].

Figure 2. On the left, the dynamic programming table for the alignment oft andq. The arrowsa, b andc represent
the three cases of recurrence 1 for the computation ofM [i + 1][j + 1]. On the right, the computations added by
Mongeau and Sankoff algorithm (Formula 2). Arrowsd correspond to merge int, arrowse correspond to merge in
q.

So far, to define an accurate algorithm, a scoring function must be defined. A naive scoring scheme
like constant operation scores or a complex scoring scheme can produce significantly different results
[10]. Setting these parameters is tricky and generally leads to a scoring table that contains the scores
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between each possible pitch difference. Indeed, substituting one pitch with another one has more or less
influence on the general melody. As introduced in [15], scores are thus determined according to conso-
nance. In particular, interval scores decrease for Westerntonal music in order of decreasing dissonance:
unison, fifth, third, sixth, fourth, seventh and second.

In the monophonic case, a good scoring scheme between two notes ti andqj is often reached by
using a functionscorep on pitches (its values are coded into a table) and a functionscored on durations,
such as:

score(ti, qj) = α × scorep(pitch(ti), pitch(qj))

+β × scored(duration(ti), duration(qj)).

For a merge operation the weightscore(ti−k...i, qj) is computed similarly as:

score(tk...i, qj) = α ×

i
∑

l=k

scorep(pitch(tl), pitch(qj))

+β × scored(
i

∑

l=k

duration(tl), duration(qj)).

Usually, the cost associated to a gap only depends on the noteduration.

3.2. Polyphonic Case

A lot of problems arise, when dealing with polyphonic music alignment. Actually, the definition of an
alignment in the polyphonic case is not a straightforward application of the monophonic comparison.

Figure 3. Arpeggiated chord above, with its interpretationbelow. The notes are played successively from the
lowest to the highest pitch, and not simultaneously.

Since many notes may be played at the same time, relative encoding cannot be used. Thus, poly-
phonic music can be represented by a sequence of sets of notes. A set can contain a single note or a chord.
A direct consequence is that transpositions cannot be treated by the relative encoding. This problem has
been addressed in [1] and requires computing simultaneously multiple matrices, one for each possible
transposition value.

Furthermore, as presented before, setting up a scoring scheme in the monophonic case (i.e. fixing
a score for two notes) is a difficult problem. This task becomes harder when comparing two chords.
Indeed, in one octave there are 12 possible pitch values for achord made of a single note (in practical
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applications, it is common to work only on one octave), then12 × 11 for two note chords . . .
(

12
p

)

for p

note chords, which means the scoring scheme will be represented by a matrix of size212 × 212.
Moreover, complex note rearrangements may occur between two similar polyphonic pieces, and tem-

poral deviations may appear between a score and its interpretation. Fig. 3 shows such an example: in the
notation score, the chord has to be arpeggiated, and the related interpretation is transcribed as successive
notes. In this case, a comparison system has to detect the similarity between the chord indicated in the
musical score and the successive notes interpreted.

(a)

(b)

(c)

Figure 4. Similarity despite permutations (a) Main motif ofthe 14th string quartet in C# minor opus131 by
Beethoven (1st movement, bar 1). The motif is composed by 4 notes (sequence (1 2 3 4)). (b) First theme of the
7th movement, bar 1. The 4 last notes of the two groups are permuted notes of the main motif, sequence (1 4 3
2) and (1 4 2 3) (c) Second theme of the7th movement, bar 21. The 4 notes are again a permutation of the main
motif, sequence (3 2 4 1).

More generally, we have to deal with notes/chords merging and local rearrangements. For example,
composers may choose to change the order of the notes in a melodic motif during a musical piece. Fig. 4
shows three excerpts from a piece by Beethoven: the second (b) and third (c) excerpts correspond to a
rearrangement of the main motif (a) with swapped notes.

4. Polyphonic Alignment

We propose hereafter a general algorithm to align two polyphonic musical pieces. The main characteris-
tic of this algorithm is that it is based on a scoring scheme inmonophonic music.

4.1. Chord Comparison

In many cases, an arbitrary order is given to the notes composing the chords of a musical sequence.
To avoid this arbitrary choice, one can consider chords as sets. The cost for substituting one chord by
another one leads to the problem of computing the best permutation between both chords. Fig. 5 shows
an example of two cadences that sound similar, but that can beestimated as very dissimilar because of the
different order of the notes in the chords. To avoid this sortof problem, we suggest that chords should
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be considered as unordered sets and the best permutation should be found. This optimization method
allows the estimation of a high similarity between these twosequences of chords.

Figure 5. Similarity between inverted chords. These successive two perfect cadences in C major are similar
despite the different order of the notes in the chords composing the cadences.

This optimization problem is actually a maximum score maximum bipartite matching problem and
can be modeled as a weighted maximum matching algorithm [7].A similar approach has been proposed
in the case of a geometric representation of musical pieces [23].

Let C1 andC2 be two chords of sizen andm. We denote byscorebpg(C1, C2) the score between
these two chords. To computescorebpg(C1, C2) as the maximum score maximum bipartite matching
problem, we consider the following graphG(v,w) = (V,E) (Fig. 6):

1. vertex set: V = {s, t, e1, e2} ∪ {s1
1, s

2
1, . . . s

n
1} ∪ {s1

2, s
2
2, . . . s

m
2 }, wheres is the source,t is the

sink,{s1
1, s

2
1, . . . s

n
1} and{s1

2, s
2
2, . . . s

m
2 } are the notes of the chordsC1 andC2 ande1, e2 represent

ǫ;

2. edge set: (s, sk
1), (s, e1), (e2, t), (sl

2, t) with a score0, (sk
1 , s

l
2) with scorescore(sk

1 , s
l
2), and

(sk
1 , e) with scorescore(sk

1 , ǫ). All the edges have a capacity of 1 except(e, t) which capacity is
n − m.

G is then a graph whose edges are labeled with integer capacities, non-negative scores inR, and the
maximum flowf∗ = n + m. The score of the maximum flow is actually the scorescorebpg(C1, C2)
and the complexity of computing local score is due to this maximum score maximum flow computation.
This problem can be solved by the Edmonds and Karp’s algorithm [7] improved by Tarjan [21] whose
complexity isO(|E||f∗| log2(|V |)). For our graph, the maximum flow isf∗ = n + m, the number
of edges is|E| = n × m + 2n + 2m + 3 and the number of vertices is|V | = n + m + 4. Finally
the complexity of the score computation between two chords is bounded byO(n3 × log2(n)) wheren

represents the maximum number of notes in a chord.
In conclusion, computing alignment between two stringst andq leads to a total time complexity of

O(|t| × |q| × C3 × log2(C)) whereC is the maximum number of notes in a chord int or q. In practical
applications the parameterC is generally bounded by4.

4.2. Extending Mongeau-Sankoff Operations

As we already stated, an accurate algorithm for music alignment must take into account both local rear-
rangements and merging operations. We thus propose allowing the merging of sub-sequences in bothq

andt simultaneously.
Music alignment between two sequences is then extended as follows:
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ts

0

0

e1

−∞

score(s4
1, s

3
2)

e2

s3
2

s2
2

s1
2

score(s4
1, s

1
2)

score(s1
1, s

1
2)

s1
1

s2
1

s3
1

s4
1

Figure 6. Resolution of the optimal permutation as a maximumscore flow problem.

Definition 4.1. (Extended Music Alignment)
Given two sequencest andq of sets of symbols overΣ. A valid extended alignmentXa betweent andq

is a set of pairs of sub-sequences oft andq, that isXa = {((is, ie), (js, je))} and respects the following
for all ((is, ie), (js, je)) ∈ Xa:

1. 1 ≤ is < ie ≤ |t| and1 ≤ js < je ≤ |q|,

2. ∀((i′s, i
′
e), (j

′
s, j

′
e)), ((i

′
s, i

′
e), (j

′
s, j

′
e)) ∈ Xa such thati′s 6= is:

(a) if i′s < is thenie ≤ is andj′e ≤ js,

(b) if i′s > is theni′s ≥ ie andj′s ≥ je.

We define the setGt (resp.Gq) as the set of positions oft (resp.q) not involved inXa, that is

Gt = {1, . . . , |t|}\
⋃

((is ,ie),(js,je))∈Xa

{is . . . ie}.

The score associated withXa is defined as follows:

S(Xa) =
∑

((is,ie),(js,je))∈Xa

score(tis...ie , qjs...je
) +

∑

i∈Gt

score(ti, ǫ) +
∑

j∈Gq

score(ǫ, qj).

The adaptation of the alignment algorithm is straightforward. The recurrence 1 is modified by adding
the following cases:

∀(k, l) ∈ {2..i} × {2..j} : alignt(t1...i−k, q1...j−l) + score(ti−k...i, qj−l...j). (3)
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In the dynamic programming table, the value of a given position M [i][j] is obtained from any
caseM [k][l] for 1 ≤ k ≤ i, 1 ≤ l ≤ j. We thus need to consider the computation of the value
score(ti−k...i, qj−l...j) (ie. the cost of aligning the sequence of chordsti−k...i and the sequence of chords
qj−l...j).

For the comparison of two polyphonic sequencest andq, we propose to define a scoring scheme
based on the scoring scheme presented in Section 3.1. However, in this case, we are dealing with se-
quences of chords instead of single chords and we thus need a way to encode several chords into a single
one.

Let us consider the sequence of chordstis...ie that must be encoded (and that will be compared to
a sequence of chordsqjs...je

in q). The pitch oftis...ie is then defined as the setTp of all the different
pitches that are present in this sequence. The duration of this sequence of chords is equal toTd the
duration elapsed from the beginning oftis to the end oftie .

For example, in Fig. 1, the sequence of 4 chords:

({G4, B4}, {D2}, {A2}, {G8, B8, D8})

is encoded by the chord:
({A,B,D,G})

with a duration of 16.
Finally, a sequence of chords is only represented by a singleset of unordered pitches and a single

duration. To compare these chord representations the approach described in Section 4.1 andscorep to
weight the edges of the bipartite graph are used. Then, the score between two sequences of chords is
given by:

score(tis...ie , qjs...je
) = α × scorebpg(Tp, Qp) + β × scored(Tp, Qd)

{A1} {C2,G2} {C1,E1,B1}

... ... ... ...

{G4,B4} ... a b

{D2} ... c d

{A2} ... e f

{G8,D8,B8} ... X

Table 1. Example of merged notes that must be considered for one step (X) of the alignment algorithm.

Now let us consider the computation of the dynamic programming tableM . We propose to illustrate
the computation of a caseM [i][j] of this table through the example in Tab. 1. The score in position X is
obtained either fromf which implies the computation of scoresscorebpg({A}, {C,G}) andscored(2, 2)
or:

• from e which implies the computation ofscorebpg({A}, {A,C,G}) andscored(2, 3).

• from d which implies the computation ofscorebpg({A,D}, {C,G}) andscored(4, 2).



12 J. Allali, P. Ferraro, C. Iliopoulos, P. Hanna, M. Robine / Toward a General Framework for Polyphonic Comparison

• from c which implies the computation ofscorebpg({A,D}, {A,C,G}) andscored(4, 3).

• from b which implies the computation ofscorebpg({A,B,D,G}, {C,G}) andscored(8, 2).

• from a which implies the computation ofscorebpg({A,B,D,G}, {A,C,G}) andscored(8, 3).

One can observe that from one computation ofscorebpg to another one, we just add vertices in the
bipartite graph. So, it is not necessary to recomputescorebpg from scratch. Toroslu and̈Uçoluk give
in [22] an incremental algorithm to compute the assignment problem inO(V 2) whereV is the number
of vertices in the bipartite graph. Using this algorithm in our approach the time complexity of the
computation of all possible merges for the casei, j is bounded byO(

∑C
i=1 i2) = O(C3) whereC is

number of different pitches int1...i andq1...j . The time complexity of the alignment becomesO(|t|2 ×
|q|2 × C3) whereC is the number of different pitches int andq.

5. Experimentation and Results

5.1. An Illustrative Example

In order to illustrate the algorithm, we propose to compare the following sequence of chords:t =({G4},
{B4},{D2,A2},{G8},{D8},{B8}) (cf. Fig. 1) and an arpeggiated version of this sequence:q =({G4,B4},
{D2},{A2},{G8,D8,B8}). The distance betweent and q is computed using the following scoring
scheme. Let us consider two notesa andb:

• score(a, a) = 2,

• score(a, b) = 1 if a 6= b,

• score(a, ǫ) = score(ǫ, b) = −1,

In this example, we suppose the score between two notes does not depend on the pitch and the duration of
the notes. The dynamic programing table computation is represented in Tab. 2. We then can observe, for
instance, that the score between the subsets of notes ({G4},{B4},{D2,A2}) and ({G4,B4},{D2},{A2}),
is obtained from the merge of chords ({G4},{B4}) and ({G4,B4}) on one hand and on the other hand
from the merge of the chords ({D2,A2}) and ({D2},{A2}). This score (i.e. 8) is actually computed by
summing the score of the permutation between{D2,A2} and{D2,A2} (i.e. 4) and the score between the
chords ({G4},{B4}) and ({G4,B4}) (i.e. 4).

The final score between the two global sequences of chordst andq can be obtained either by merging
all the chords oft to the chords ofq (which corresponds to the cost of the optimal bipartite matching
between ({G4,B4,D2,A2,G8,D8,B8}) and ({G4,B4,D2,A2,G8,D8,B8}); or from the cost described pre-
viously (between ({G4},{B4},{D2,A2}) and ({G4,B4},{D2},{A2}) for which the cost is 8) plus the
cost of merging ({G8,D8,B8}) and ({G8},{D8},{B8}).

5.2. A First Evaluation

The evaluation of similarity measure systems is a very difficult task because different human listeners do
not always have the same opinion on similarity between musical pieces. However, this section presents
a preliminary evaluation of the general framework for polyphonic comparison.
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ǫ {G4} {B4} {D2,A2} {G8} {D8} {B8}

ǫ 0 -1 -2 -4 -5 -6 -7

{G4,B4} -2 1 4 2 1 0 -1

{D2} -3 0 3 5 4 3 2

{A2} -4 -1 2 8 7 6 5

{G8,D8,B8} -7 -4 -1 5 8 11 14

Table 2. Example of a dynamic programming table for the comparison between the sequence of chords
({G4},{B4},{D2,A2},{G8},{D8},{B8}) and ({G4,B4},{D2},{A2},{G8,D8,B8})

During MIREX 20061, the second task of the symbolic melodic similarity contestconsisted in re-
trieving the most similar pieces from mostly polyphonic collections given a monophonic query. Note
that our approach is more general since it allows comparing two polyphonic musical pieces.

Two collections were considered, and11 queries (hummed or whistled) were proposed. Themixed
collection is composed of10000 randomly picked MIDI files that were harvested from the Web and
which include different genres. Thekaraokecollection is composed of about1000 .kar files (Karaoke
MIDI files) with mostly Western popular music. Tab. 3 presents the results obtained with these two col-
lections and analyzed using our general polyphonic alignment algorithm and the adaptation of the Smith
and Waterman algorithm [20] to music applications [10]. Algorithms have been evaluated according to
two measures: theaverage precision, and theprecision atN documents(N is the number of relevant
documents).

Collection General Polyphonic Framework Classical Alignment

Karaoke AP 0.78 0.36

PND 0.83 0.33

Mixed AP 0.67 0.52

PND 0.66 0.55

Table 3. Average Precision (AP) and Precision atN Documents (PND) obtained by edit-distance based retrieval
systems for MIREX 2006 databases and queries. The ClassicalAlignment column presents the results obtained by
Uitdenbogerd during MIREX).

Results2 presented in Tab. 3 clearly show that the algorithm allowingmultiple transpositions and
several types of edit operations improves retrieval systems based on the alignment principle. Concerning
the karaokecollection, the average precision is near0.80 whereas it is only0.36 when considering
a monophonic alignment. This difference (although less pronounced) is also observed for themixed
collection. The average precision is0.67 instead of0.52. Although voices are not separated in the
musical pieces, this improvement remains notable.

1http://www.music-ir.org/mirex2006/index.php/MIREX2006_Results
2The complete results obtained by the different methods proposed during MIREX 2006 can be found athttp://www.
music-ir.org/mirex/2006/index.php/Symbolic_Melodic_Similarity_Results
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In order to confirm these first promising results, other experimentations have to be performed with a
more important number of pieces and melodies in our collection.

6. Conclusion

In this paper, we proposed a general alignment algorithm forthe comparison of two polyphonic pieces
of music. This method is based on an extension proposed by Mongeau and Sankoff [15], in order to
compare two monophonic musical pieces. In particular, thisalgorithm only requires a scoring scheme
between notes (and not chords). Although new edit operations have been introduced, the algorithm
remains quadratic, if the number of different pitches in a chord and the number of merged chords are
bounded by constants.

The string-to-string alignment problem consists of determining the distance between two strings as
measured by the minimum cost sequence of edit-operations needed to change one string into the other.
The edit operations generally allow changingone symbolof a string intoanother single symbol, or
inserting asingle symbolor deleting a single symbol. Due to our domain of application, we have firstly
generalized this notion to the comparison of sequences of sets of symbols: an edit operation allows
modifying a set of symbols. While the cost of symbol comparison was stored in analignment table, now
to compare two sets of symbols, a maximum score maximum matching problem must be solved.

Another key element introduced in this paper is the notion ofmerge also known as consolidation and
fragmentation operations [15]. This operation is different from the deletions and insertions familiar in
sequence comparison and from the compression and expansions of time warping in automatic speech
recognition [11]. This new transformation involves the replacement of several elements of the initial
sequence by several elements of the final sequence. However,although this new definition differs from
the one proposed by Mongeau and Sankoff and increases the combinatorics, it allows us to compute a
more accurate similarity measure between twopolyphonic musical piecesin polynomial time.

Applications of this algorithm could be extended to any kindof sequences in which time is essentially
a quantitative dimension (rhythm, in music) and not simply an ordinal parameter. However, further
studies might be carried out in a more general framework in order to evaluate the proper accuracy of this
approach.
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[4] Doraisamy, S., Rüger, S.: Robust Polyphonic Music Retrieval with N-grams,Journal of Intelligent Informa-
tion Systems, 21(1), 2003, 53–70, ISSN 0925-9902.

[5] Dovey, M.: An algorithm for locating polyphonic phraseswithin a polyphonic musical piece,Proceedings
of the AISB’99 Symposium on Musical Creativity, Edinburgh, 1999.

[6] Downie, J. S., Bay, M., Ehmann, A. F., Jones, M. C.: Audio Cover Song Identification: MIREX 2006-2007
Results and Analyses,Proceedings of the 9th International Conference on Music Information Retrieval
(ISMIR’08), September 14-18 2008.

[7] Edmonds, J., Karp, R. M.: Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems,
Journal of the Association for Computing Machinery, 19, 1972, 248–264.

[8] Gusfield, D.:Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology,
Cambridge University Press, January 1997, ISBN 0521585198.

[9] Hanna, P., Ferraro, P.: Polyphonic Music Retrieval by Local Edition of Quotiented Sequences,Proceedings
of the 5th International Workshop on Content-Based Multimedia Indexing (CBMI), Bordeaux, France, 2007.

[10] Hanna, P., Ferraro, P., Robine, M.: On Optimizing the Editing Algorithms for Evaluating Similarity Between
Monophonic Musical Sequences,Journal of New Music Research, 36(4), 2007, 267–279.

[11] Kruskal, J. B.: An orverview of sequence comparison, in: Time Wraps, Strings Edits, and Macromolecules:
the theory and practice of sequence comparison(D. Sankoff, J. B. Kruskal, Eds.), chapter 1, Addison-Wesley
Publishing Company Inc, University of Montreal, Montreal,Quebec, Canada, 1983, 1–44.
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