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A quantitative study of discrete-time simulations for a single reed physical model is presented. It is
shown that when the continuous-time model is discretized, a delay-free path is generated in the
computation. A general solution is proposed to this problem, that amounts to operating a geometrical
transformation on the equations. The transformed equations are discretized using four different
numerical methods. Stability properties of each method are assessed through analysis in the
frequency domain. By comparing the discrete and continuous frequency responses, it is studied how
the physical parameters are mapped by each method into the discrete-time domain. Time-domain
simulations are developed by coupling the four digital reeds to an idealized bore model. Quantitative
analysis of the simulations shows that the discrete-time systems produced by the four methods have
significantly different behaviors, even when high sampling rates are used. As a result of this study,
a general scheme for accurate and efficient time-domain simulations of the single reed model is
proposed. ©2002 Acoustical Society of America.@DOI: 10.1121/1.1467674#
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I. INTRODUCTION

Numerical simulations are commonly used by musi
acousticians for investigating experimentally the function
of single reed wind instruments.1–3 A widely accepted ap-
proach divides the instrument into two main function
blocks, the acoustic bore~i.e., the resonator!, and the reed–
mouthpiece system~sometimes referred to as theexciter!.
The resonator can be described through its reflection fu
tion ~see Schumacher1!. In this case, the pressure wav
p2(t) reflected from the bore is obtained as time convolut
of the reflection function with the incoming pressure wa
p1(t). Another technique,waveguide modeling~Smith4!, di-
vides the resonator into adjacent sections. In each section
wave propagation is simulated by means of two delay li
~left- and right-going!. Terminations and junctions, as well a
dissipation phenomena, are taken into account by inser
filtering elements in and between sections. Waveguide m
els are particularly accurate and efficient for simple cylind
cal geometries, such as an idealized clarinet bore.

The airflow through the reed slit can be related to
reed opening and pressure through a nonlinear equation
rived from the Bernoulli law.5 In the simplest approximation
the reed is assumed to move in phase with the driving p
sure and is described only in terms of its stiffness. This
sometimes referred to as thequasistaticapproximation.6 Us-
ing this approximation, the exciter can be described a
nonlinear map that relates flow and pressure at the bore
trance~see McIntyreet al.2!. Despite its simplicity, such a
quasistatic model is able to capture the basic nonlin
mechanisms that generate self-sustained oscillations

a!Electronic mail: avanzini@dei.unipd.it
b!Electronic mail: rocchesso@sci.univr.it
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single reed instrument. Due to its compactness and the
number of parameters, this reed model can be efficie
used for sound synthesis purposes.4

A more accurate model takes into account other m
chanical properties of the reed, namely its mass and the
sipation due to internal losses and air friction. In a first a
proximation, these elements are incorporated in the mode
describing the reed as a damped second-order oscillato1,5,7

This linear mechanical system is coupled with the nonlin
fluid dynamical equation. For clarity, in the following thi
model is referred to as thedynamicreed model.

In order to develop numerical simulations for the d
namic model, one has to overcome two main problems. F
the coupling in the equations typically generates a delay-
path in the computation. Due to the presence of a nonlin
equation, solving this loop is not trivial, unless one resorts
iterative solvers. Second, a numerical technique has to
chosen that preserves with reasonable accuracy the m
properties of the physical system.

Concerning the first problem, many authors~see Gazen-
gel et al.3! compute the discrete-time equations by insert
a fictitious delay in the delay-free path. However, the n
merical error introduced in this way can lead to instabili
especially at low sampling rates. Anderson and Spong8 have
proved analytically that the insertion of a delay element in
dynamical system deteriorates its stability properties. T
second problem, i.e., the choice of an accurate discretiza
technique, is often neglected in the literature, and the eq
tions are usually discretized using simple methods~such as
the Euler method or the impulse invariant method!, that in-
troduce noticeable numerical artifacts in the simulations.

In this paper, an accurate and efficient discretizat
scheme for the dynamic reed model is developed. The de
free loop in the computational scheme is solved by mean
2293293/9/$19.00 © 2002 Acoustical Society of America
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the so-calledK method, recently proposed by Borinet al.9

The method operates a geometric transformation on the
linearity, in such a way that the delay-free path can be co
puted without introducing fictitious delays in the discre
time equations.

Given a general solution to noncomputability problem
four different numerical methods are used for discretizing
mechanical differential equations. The so-obtained ‘‘digi
reeds’’ are analyzed in the frequency domain and compa
to the continuous-time system. Then, the digital reeds
connected to a waveguide model of an ideal cylindrical bo
and the resulting systems are compared in the time dom
through numerical simulations.

The choice of the discretization method is usually co
sidered to be noncritical when simulations are run at h
sampling rates. However, the results presented here s
that this choice does affect the behavior of the numer
models noticeably, even at a sampling rate of several ten
kHz ~e.g., 44.1 kHz!. Among the considered techniques, t
1-step weighted samplemethod is found to be the most sui
able choice for discretizing the dynamic reed model. T
method accurately preserves the properties of the phys
system, and its low computational costs make it suitable
real-time applications.

Section II describes the dynamic reed model. Numer
techniques are discussed in Sec. III. The frequency ana
presented in Sec. IV compares the digital reeds with
continuous-time system. Finally, Sec. V discusses results
tained from time-domain simulations.

Notation and symbols. Table I summarizes the symbo
used throughout the paper. The parameter values are t
from Schumacher.1 Each time-varying variablex is written as
x(t) andx(n), respectively, in the continuous and discre

TABLE I. Variables and constants in the reed model.

Quantity Symbol Value

Sampling period Ts ~s!
Sampling rate Fs Hz!
Frequency of the continuous-time system vc ~rad/s!
Frequency of the discretized systems vd ~rad/s!
Reed opening h ~m!
Reed equil. opening h0 0.4•1023 m
Reed displacement yr ~m!
Reed equil. displ. y0 ~m!
Maximum allowed displ. ym ~m!
Reed mass/area m r 0.0231 kg/m2

Effective flow surface Sr 1.46•1024 m2

Reed resonance freq. v r 23 250 rad/s
Reed damping gr 3 000 s21

Amplitude parameter A 0.079 7 m3/~N2/3 s!
Mouth pressure pm ~Pa!
Mouthpiece pressure p ~Pa!
Pressure drop Dp ~Pa!
Mouthpiece vol. flow u ~m3/s!
Flow through the slit uf ~m3/s!
Wave impedance of the bore Z0 2 290 133 kg/m4 s
Speed of sound c 347 m/s
Length of the bore L ~m!
Bell cutoff freq. f co 1•103 Hz
Pr. wave from the bore p2 ~Pa!
Pr. wave to the bore p1 ~Pa!
2294 J. Acoust. Soc. Am., Vol. 111, No. 5, Pt. 1, May 2002
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time domains. The transforms of the continuous and discr
time signals are written, respectively, asX(s) andX(z).

II. THE PHYSICAL MODEL

A. Exciter

The dynamic model described below relies on the f
lowing assumptions: under normal playing conditions, os
lations occur mainly in the vertical direction, therefore
single degree of freedom~i.e., the reed tip vertical displace
ment! can be reasonably assumed; the reed resonance
well above the main frequency component of the drivi
pressure; therefore, only the effect of the first reed resona
needs to be modeled; the reed dimensions are small
respect to typical wavelengths in the resonator; thus, pres
can be thought of as constant along the reed internal surf
See Fig. 1.

Consequently, many authors1,5,7 approximate the reed a
a harmonic oscillator, driven by the pressure dropDp5pm

2p across the slit. When the reed beats~i.e., when it strikes
the mouthpiece! an inelastic collision occurs:

ÿr~ t !1gr ẏr~ t !1v r
2@yr~ t !2y0] 5Dp~ t !/m r ,

if yr,ym ,
~1!

yr~ t !5ym and ẏr~ t !50, if yr>ym.

The total airflow u at the mouthpiece is the sum of tw
components. The first one is given by the flowuf through the
slit. The second component is produced by the reed mo
and depends on the reed velocity. This component is
sumed to beSr ẏr , whereSr is the effective surface assoc
ated with the flow. Hence, the total flowu is given by

u~ t !5uf~ t !1Sr ẏr~ t !. ~2!

The flow uf through the slit is related to the pressure dr
Dp and to the openingh via the nonlinear equation

Dp5F~uf ,h!ªA2a sgn~uf !uuf ua/h2. ~3!

With the valuea52, Eq.~3! is the Bernoulli equation for an
ideal fluid in the static regime. Using experiments on re
instruments, Backus5 found empirically a value fora differ-
ent from the theoretical one, namelya53/2. Backus sug-
gested that this discrepancy could be due to the partic
shape of the slit. More recently, Hirschberget al.10 ques-
tioned the validity of Backus’ experiments. These auth
developed a flow model that uses the standard Berno
equation~with a52!.

FIG. 1. Schematic representation of the reed–mouthpiece system.
Federico Avanzini and Davide Rocchesso: Discrete-time simulations
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In order to account for air inertance the termMeu̇f must
be added to the right-hand side of Eq.~3! ~Me being the
effective mass through the slit!. The inclusion of this term
complicates the model, since the computation ofu̇f is re-
quired. According to many authors,2,3,11 the effect ofMe is
generally small and this additional term can be neglected

In summary, the dynamic reed model adopted in t
work is fully described by the set of equations~1!, ~2!, ~3!.

B. Resonator

The acoustical bore can be described by means of p
sure wavesp6, which by definition are related to pressu
and airflow via the equationsp5p11p2 and u5(p1

2p2)/Z0 . If cylindrical geometry is assumed and bounda
losses are neglected, then the pressure wavep1 coming from
the mouthpiece propagates freely with speedc until it
reaches the open end, terminated by the bell. The bell ac
a low-pass filter, reflecting low-frequency components ins
the bore and radiating high-frequency components. Typ
values for the cutoff frequencyf co of the bell are between 1
and 1.5 kHz. The pressure wavep2 reflected from the bore
to the mouthpiece is thus given by

P2~s!52Rc~s!exp~2s 2L/c!P1~s!. ~4!

Rc(s) is the low-pass transfer function of the bell. The te
exp(2s 2L/c) accounts for the delay 2L/c in the trip along
the bore.

The waveguide model simulates the propagation w
two delay lines. The lengthmL of each line is chosen in suc
a way thatmLcTs5L. In the discrete domain the delay ter
exp(2s2L/c) is therefore replaced byz22mL. The low-pass
bell filter is designed with standard techniques:13 first an ana-
log filter is designed using a fourth-order Butterworth re
ization; then, a digital equivalentRd(z) is obtained with
usual methods from digital signal processing, such as
bilinear transformation

Rd~z!5RcS 2Fs

12z21

11z21 D . ~5!

Summarizing, the digital bore model takes the incom
pressure wavep1 from the exciter, and reflects it as an ou
going pressure wavep2 given by

P2~z!52Rd~z!z22mLP1~z!. ~6!

III. NUMERICAL TECHNIQUES

The waveguide techniques outlined in Sec. II B provi
a model for the resonator in the discrete time-space dom
This section discusses the discrete-time approximation of
dynamic reed model. Equations~1!, ~2!, and~3! generate the
system

ẇ~ t !5Aw~ t !1Bu~ t !1cDp~ t !,
x~ t !5Dw~ t !1Eu~ t !1fDp~ t !,
Dp~ t !5F~x~ t !!,

~7!

where
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w5FhḣG , u5F h0

pm

p2
G , x5Fuf

h G , ~8!

and

A5F 0 1

2v r
2 2gr

G , B5F 0 0 0

v r
2 0 0G , c5F 0

21/m r
G , ~9!

D5F0 2Sr

1 0 G , E5F0 1/Z0 22/Z0

0 0 0 G , f5F21/Z0

0 G .
~10!

The beating condition in Eq.~1! turns into

w50, if h<0. ~11!

A. Solving the delay-free loop

When the first equation in system~7! is discretized, the
structure of the resulting difference equation is found to

w~n!5w̃~n!1 c̄Dp~n!. ~12!

The vectorw̃(n) is a linear combination of all the terms tha
are computable at timen @namely,u(n) and past values ofw,
u, andDp#, while the vectorc̄ weights the dependence ofw
on Dp(n). Explicit expressions for bothw̃(n) and c̄ depend
on the numerical method actually used. The remaining eq
tions in system~7! can thus be written as

x~n!5 x̃~n!1kDp~n!,
Dp~n!5F~ x̃~n!1kDp~n!!, ~13!

wherek5(Dc̄1f). The vectorx̃(n)5Dw̃(n)1Eu(n) does
not depend onDp(n) and is therefore computable at ea
step. In the second equation~13!, the termDp(n) depends
implicitly on itself. In order to compute this equation, theK
method is used.9 This method uses the implicit mappin
theorem to operate a geometric transformation on the non
ear functionF, and turns the second equation~13! into an
explicit dependence

Dp~n!5F~ x̃~n!1kDp~n!!,

°
K method

Dp~n!5F̄~ x̃~n!!. ~14!

Therefore, at each time-stepn the vectorx̃(n) is computed
first, thenDp(n) is obtained through the new nonlinear r
lation F̄. Although F̄( x̃) is not available in closed form in
most cases, an implementation can still be obtained with
resorting to iterative solvers, by storing the multivariab
function F̄ as a set of precomputed tables.14

B. Discretizing the equations

The K method provides a robust and general mean
compute the difference equations~13! accurately. Given such
a method, different discretization techniques for system~7!
can be compared.

Typical choices in the literature are the Euler meth
and the impulse invariant method. However, both these te
niques introduce artifacts in the numerical systems. Gaze
et al.3 discuss the use of a fourth-order Runge–Kutta solv
2295ico Avanzini and Davide Rocchesso: Discrete-time simulations
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This method, although very accurate when high samp
rates are used, turns out to be unstable at lowFs . Moreover,
it has high computational costs, since four evaluations of
nonlinear functionF(x(n)) are needed at each time step. V
Walstijn15 uses a hybrid backward-centered scheme that
proximates the first derivative with the backward Euler ru
and the second derivative with a centered difference. O
advantage of this approach is that the vectorsc̄ andk in Eqs.
~12! and~13! are both zero; therefore, no delay-free paths
created in the discrete-time equations. However, at each
stepn the Newton–Raphson method is used for comput
iteratively the flowu(n), and nine iterations are typicall
required.

The following techniques are used in the rest of t
paper.

~i! 1- and 2-step Adams-Moulton methods~AM1, 2 from
now on!. These are linear multistep methods, who
stability and accuracy properties are known from t
numerical analysis literature.16

~ii ! 1- and 2-step weighted sample methods~WS1, 2 from
now on!. These have been introduced recently by W
and Schneider.17 They are designed for generic line
systems, and are based on a polynomial interpola
of the input.

Higher-order methods are not used for two main reasons~1!
stability properties tend to deteriorate with increasing ord
and ~2! the computational costs become higher.

As Schneideret al.18 have pointed out, AM methods ca
be easily seen ass-to-z mappings in the complex plane

~AM1 ! s52Fs

12z21

11z21 , ~15a!

~AM2 ! s512Fs

12z21

518z212z22 . ~15b!

Note that the mapping~15a! associated to the AM1 metho
is the bilinear transformation.

Applying the AM methods to the first equation in syste
~7! amounts to Laplace-transforming it and substituting e
occurrence ofs with the corresponding mapping~15a! or
~15b!. Therefore, the differential equation is turned into
second-order and a fourth-order difference equation, by
AM1 and the AM2 methods, respectively. If system~7! is
time-invariant, then the AM methods provide a tim
invariant discrete system. If some of the reed parameters
varied over time, then the discrete system coefficients n
to be updated at a suitable control rate.

Wan and Schneider17 have shown that thek-step WS
method turns the first equation in system~7! into the differ-
ence equation

w~n!5F~Ts!w~n21!1WuSu
~k!F u~n!

]

u~n2k!
G

1WDpSDp
~k!F Dp~n!

]

Dp~n2k!
G , ~16!
2296 J. Acoust. Soc. Am., Vol. 111, No. 5, Pt. 1, May 2002
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wherek51,2. Therefore, the differential equation is turne
into a second-order and a third-order difference equat
respectively, by the WS1 and the WS2 methods.

Details about the computation of the matrices can
found elsewhere.17,19 The matricesSu

(k) andSDp
(k) are interpo-

lation matrices that depend only on the orderk of the
method, whileF(Ts) is the exponential matrix defined from
F(t)5exp(At). Computation ofWu ,WDp involves calcu-
lation of thek11 integrals*0

TF(Ts2t)•t l dt ~for l 51¯k
11!. Therefore, computation of the coefficients in the diffe
ence equation~16! requires computation of transcenden
functions.

If system~7! is time-invariant, then computation of ma
trices F(Ts), Wu , andWDp can be performed off-line,
while these matrices need to be updated at control rate w
time-varying control parameters are used. In this latter c
the WS methods have higher computational costs than
AM methods, and this is a potential drawback for real-tim
applications. However, in the case of low-order metho
(k51,2), only a small number of coefficients needs to
updated. Moreover, Wan and Schneider17 show that the com-
putational costs can be lowered usingad hoc techniques
~e.g., the columns ofW can be computed iteratively!.

C. Properties of the methods

Stability properties of an AM method are summariz
by the shape of its region of absolute stabilityRA ~see
Lambert!.16 If the continuous-time eigenvaluesl l ( l
51,...,N) of a stable,N-dimensional continuous system li
insideRA , then the discretized system is stable. As far as
bilinear transformation is concerned, it is known thatRA is
the whole left-halfs-plane. Therefore, continuous-time e
genvaluesl l with Re(ll),0 are mapped into discrete-tim
eigenvaluespl with upl u,1, and stability is preserved at an
sampling rate. The AM2 method has worse stability prop
ties, since its region of absolute stability is the finite sub
of the left-half s-plane shown in Fig. 2. This means th
stability is preserved only at high sampling rates, so that
eigenvalues of the continuous system lie insideRA .

For the k-step WS methods, Wan and Schneider h
shown that the discrete-time eigenvalues are the roots of
characteristic polynomialp(z)5zk21uzI2F(Ts)u. There-
fore, continuous-time eigenvaluesl l map into discrete-time
eigenvaluespl through the relation

pl5exp~l lTs!. ~17!

If Re(ll),0, thenupl u,1; therefore, stability is preserved a
any sampling rate. Note that the same relation~17! between
discrete- and continuous-time eigenvalues holds for the
pulse invariant method. Indeed, it can be verified that the
method withk50 is completely equivalent to the impuls
invariant method.

Concerning accuracy, it is a general result that the k-s
AM method has orderk11. This means that the method
provide a global truncation error in time which has ord
Ts

k11. For the WS methods, Wan and Schneider have gi
experimental results showing that a k-step method has o
k11, the same as the corresponding AM method.
Federico Avanzini and Davide Rocchesso: Discrete-time simulations
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IV. THE DIGITAL REEDS

This section is devoted to frequency analysis of the d
tal reeds obtained using AM and WS methods. Such anal
permits comparison of the different discretization techniqu
by studying how the physical parameters are mapped into
discrete-time domain.

Consider the transfer functionHc(s) of the relative dis-
placementyr2y0 versus the pressure dropDp. From Eq.
~1!, this is seen to be the harmonic oscillator

Hc~s!5
1

m r

1

s21grs1v r
2 . ~18!

The frequency response is given byHc( j vc). A meaningful
comparison between the numerical methods amounts to
lyzing how they preserve this frequency response in
discrete-time domain. The study is performed for vario
Fs . Typical audio sampling ratesFs522.05 kHz and
Fs544.1 kHz are taken as reference values. Following id
developed by Gazengelet al.,3 the analysis is focused o
three physically meaningful parameters of the dynam
model: the resonance frequencyv r , the oscillator stiffness
~defined asuHc(0)u215m rv r

2!, and the damping coefficien
gr .

Typical values forv r lie in the high-frequency region
and this parameter is therefore considered to be noncritic
helping self-sustained oscillations. Indeed, self-sustained
cillations occur even when there is no resonance at all, a
the quasistatic approximation~see Sec. V B in the following!.
However, as pointed out by Thompson,12 the reed resonanc
has a role in adjusting pitch, loudness, and tone color, as
as helping transitions to high regimes of oscillation, such
the clarion register or the reed regime~‘‘squeaks’’!. Stiffness
characterizes the reed response in the low-frequency re
and is therefore an important parameter, since the fundam
tal frequency of the oscillation always lies in this regio
Concerning the damping coefficient, the relati
gr5v r /Qr holds for the harmonic oscillator~18!, where
Qr5v r /(v12v2) is the quality factor andv1,2 are the 3-dB
cutoff frequencies. Therefore,gr5v12v2 for the
continuous-time oscillator~18!.

FIG. 2. Region of absolute stabilityRA for the AM2 method.
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When using AM and WS methods,Hc(s) is turned into
a digital filter which is not a harmonic oscillator. Therefor
the parametersv r , m r , gr cannot be deduced from the co
efficients of the discrete-time transfer functions. Instead, t
are extrapolated from the shape of the discrete-time
quency responses. In particular, following Gazengelet al.3

the digital damping coefficient is defined in the following
gd5vd12vd2 , wherevd1,d2 are the 3-dB cutoff frequencie
for the response of the discrete-time system.

A. Adams–Moulton methods

Using the AM methods, the digital transfer function
HAM1(z) and HAM2(z) are obtained by substitution of th
correspondings-to-z mapping@~15a!, ~15b!# in Hc(s). The
corresponding frequency responses are given by evalua
at z5exp(jvd /Fs). From Sec. IV,HAM1(z) andHAM2(z) are
known to have order 2 and 4, respectively.

The frequency responsesHAM1 and HAM2 of the
discretized systems are plotted in Fig. 3 for the ca
Fs522.05 kHz and Fs544.1 kHz. Responses obtaine
with the Euler method are also plotted as a term of comp
son.

The Euler method is seen to provide poor accuracy e
at Fs544.1 kHz. In particular, a noticeable numerical dis
pation is introduced, so that the resonance is heavily atte
ated. Results for AM methods are in good agreement w
theoretical predictions. Both the magnitude and the ph
responses ofHAM1 exhibit a known ‘‘frequency warping’’
phenomenon: the induced map between the continu
frequencyvc and discrete frequencyvd is ~see Mitra!13

vd52Fs arctan(vc /2Fs). High frequencies are thereb
compressed, and this phenomenon becomes more notice
as the sampling rate decreases; atFs522.05 kHz the reso-
nancev r of HAM1 has shifted from the original value 23 25
rad/s to the value 21 300 rad/s~i.e., from 3700 Hz to 3390
Hz!.

The AM2 method provides different results: there is
significant warping, but the magnitude of the resonance
amplified. The amplification is small atFs544.1 kHz, but
becomes unacceptable atFs522.05 kHz ~the peak magni-
tude is 4.7•1025 m/Pa!. This phenomenon is a direct cons
quence of stability properties. Indeed, it can be seen t
using the values listed in Table I, the method becomes
stable atFs.19 kHz. This explains the strong amplificatio
and the phase distortion exhibited byHAM2 at
Fs522.05 kHz.

Both the methods preserve stiffness@the equalities
HAM1(0)5HAM2(0)5Hc(0) hold#. Finally, qualitative
analysis shows that both methods lead to a digital damp
gd5vd12vd2 that is smaller than the physical one, and d
creases with decreasingFs . For HAM1 this is a consequenc
of frequency warping, which causes the resonance bandw
to reduce, and the quality factor to increase conseque
For HAM2 this is due to the resonance amplification rath
than to warping.

B. Weighted sample methods

The 1- and 2-step WS methods do not define as-to-z
mapping; therefore, the discrete-time transfer functio
2297ico Avanzini and Davide Rocchesso: Discrete-time simulations
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ing
HWS1(z) and HWS2(z) are not obtained by substitution. In
stead, they are computed directly from the general equa
~16!. From Sec. IV, it can be seen thatHWS1(z) andHWS2(z)
have order 2 and 3, respectively.

Results are summarized in Fig. 4. Responses obta
with the Euler method are plotted as a term of comparis

The discrete-time responsesHWS1 and HWS2 show ex-

FIG. 3. Frequency responses from AM methods, withFs

522.05,44.1 kHz.Hc ~solid line!, Euler method discretization~dashed!,
HAM1 ~dotted!, HAM2 ~dot-dashed!.
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ed
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cellent agreement withHc , even at low sampling rates. Bot
methods preserve the resonancev r without introducing
warping. Stiffness is preserved as well. Numerical dissi
tion is introduced, which is more significant for the 1-st
method. This can be noticed by observing that the dig
amplitude responses lie below the continuous one. Due
this dissipation, the digital damping coefficientgd is larger
than the physical one and increases with decreasingFs , for
both HWS1(z) and HWS2(z). Phase responses are well pr
served by both methods.

Summarizing, the frequency analysis developed in t
section has shown that the WS methods better approxim
the reed frequency response than AM methods. It would
pear that the WS methods are preferable. However, this c
jecture is not confirmed from the time-domain analysis d
veloped in the next section.

V. TIME-DOMAIN SIMULATIONS

In order to obtain time-domain simulations, each of t
four digital reeds is coupled to the same resonator~the wave-
guide cylindrical bore described in Sec. II! to form a com-
plete instrument. Comparisons of simulations lead to t
main results, which are not evident from the frequen
analysis of Sec. IV.

~i! the systems can behave differently even at high sa
pling rates, where the reed frequency responses
indistinguishable;

~ii ! both the 1-step methods approximate the continu
system accurately, while the 2-step methods exh
artifacts.

A. Threshold pressure

A first simulation study concerns the threshold press
pt , defined as the value of mouth pressure above wh
stable oscillations take place. A rough estimate for
threshold pressure,pt.h0m rv r

2/3, can be derived using th
quasistaticapproximation~see Hirschberget al.6 and Sec.
V B!. With the values listed in Table I, the ‘‘quasistatic es
mate’’ is pt.1664 Pa. However, as observed by Keefe,20 this
value underestimates the truept .

In this section such a quasistatic estimate is compa
with experimental results from simulations. First, a ‘‘d
namic estimate’’ is found by running simulations at very hi
sampling rates~up to 500 kHz!. For such sampling rates, a
the systems are found to have the same threshold pres
pt51802 Pa. This is therefore assumed to be the ‘‘tru
value. Then, simulations are run at lower sampling rates:
measuredpt are given in Table II, from which some remark
can be made.

~i! For all the digital reeds,pt converges to the dynami
estimate 1802 Pa as the sampling rate is increa
The convergence of AM2 is not evident from Table
since it occurs atFs.200 kHz.

~ii ! The pt estimates obtained from both the 1-step me
ods exhibit robustness with respect to the sampl
rate. AtFs530 kHz, the deviation ofpt from the true
value is less than 1% for both AM1 and WS1.
Federico Avanzini and Davide Rocchesso: Discrete-time simulations
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~iii ! The 2-step methods are less robust: even at high s
pling frequencies, the threshold pressures for the c
responding systems are far from the true value.
particular, simulations with AM2 hardly reach stead
state oscillations forFs,35 kHz. For this reason the
AM2 column in Table II provides results only fo
Fs.50 kHz.

FIG. 4. Frequency responses from WS methods, withFs

522.05,44.1 kHz.Hc ~solid line!, Euler method discretization~dashed!,
HWS1 ~dotted!, HWS2 ~dot-dashed!.
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Consider the frequency responseHWS2 at Fs

544.1 kHz: from Fig. 4, this is seen to be indistinguishab
from the original one. However, the estimatedpt is still no-
ticeably higher than the true value. An analogous rem
holds for AM2 with Fs5100 kHz. Therefore, the 2-ste
methods exhibit poor accuracy even when the reed resp
is well approximated.

These results show that the discrete-time frequency
sponse does not provide sufficient information on the dig
reed when this is coupled with the nonlinearityF(uf ,h) and
with the bore. Due to the nonlinearity, the whole syste
exhibits sensitive dependence on small deviations in the
quency response.

B. Dynamic versus quasistatic

In this section, the dynamic model is compared with t
quasistaticreed approximation. This approximation provid
a simplified description of reed motion by exploiting the fo
lowing: the reed resonance is noticeably higher than
playing frequency of any playable note on the clarinet; the
fore, the spectrum ofDp is confined to the low-frequency
region, where it is reasonable to assume a flat reed resp
~see Figs. 3, 4!. The responseHc( j vc) is therefore approxi-
mated by the zero-frequency responseHc(0)51/(m rv r

2),
and in this approximation the reed moves in phase with
pressure drop according to the relation

@yr~ t !2y0#5Hc~0!Dp~ t !. ~19!

Substituting Eq.~19! in Eq. ~3!, and recalling thath5ym

2yr , a few calculation steps yield

uf5A~h02Dp/~m rv r
3!!4/3

• sgn~Dp!uDpu2/3. ~20!

The properties of this memoryless model have been stu
by many authors.2,4,6,21

A first comparison between the quasistatic and the
namic models amounts to plotting the corresponding ph
diagrams for the steady-state signalsuf and Dp. Figure 5
shows an example of such phase diagram, obtained f
numerical simulations with the WS1 method with a mou
pressurepm52265 Pa. This value is the maximum value f
nonbeating conditions.

The phase diagram for the quasistatic model is sim
the plot of Eq. ~20!, while the dynamic model exhibits a
more interesting behavior:uf andDp move along a hyster-
etic path. This is due to the presence of memory in the eq
tions: when the reed dynamics is taken into account, t
Eqs. ~19!, ~20! do not hold, andh and uf depend onDp
together with its derivatives. In other words, the attractor
the dynamic reed model is not a curve in the plane,
instead a closed orbit in a higher-dimensional phase spa

Another important difference in the behavior of qua
static and dynamic simulations concerns transitions to h
regimes of oscillation. As Thompson12 and Wilson and
Beavers7 have pointed out, bothv r andgr play a key role in
helping transition to the second register~clarion register!.
Experiments with artificial lips and real clarinets have sho
that the clarion register can be produced without opening
register hole, if the reed resonance matches a low harm
of the playing frequency and the damping is small enou
2299ico Avanzini and Davide Rocchesso: Discrete-time simulations
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TABLE II. Measured threshold pressures from time-domain simulations.

Fs ~kHz!

pt ~Pa!

Q. Static AM1 WS1 AM2 WS2

20 1664 1816 1761 ¯ 3346
25 1664 1808 1774 ¯ 2842
30 1664 1807 1784 ¯ 2554
35 1664 1807.5 1790 ¯ 2365
40 1664 1807.5 1795 ¯ 2233
45 1664 1804 1796 ¯ 2136
50 1664 1804.5 1797 3781 2063
55 1664 1805 1798 3516 2008
60 1664 1805.5 1799 3278 1960
65 1664 1806 1799.5 3148 1932
70 1664 1803.5 1800 3026 1906
75 1664 1804 1800.5 2908 1881
80 1664 1804.5 1801 2841 1865
85 1664 1805 1801.5 2887 1848
90 1664 1803 1802 2737 1832
95 1664 1803.5 1802 2692 1816

100 1664 1803.5 1802 2643 1802
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Moreover, extremely low damping causes the reed reg
~‘‘squeaks’’! to be produced. From a musical standpoi
squeaks are often explained as a consequence of insuffi
breathing, while the fundamental register comes in as mo
pressure is increased.

All these effects are reproduced using the dynam
model, while the quasistatic model does not provide con
over such effects. Figure 6~a! shows examples of transition
from numerical simulations with the WS1 method. T
clarion register is obtained by matchingv r to the seventh
harmonic of the playing frequency and loweringgr to 1400
s21. In Fig. 6~b! the reed regime is achieved by givinggr a
value as low as 300 s21. Squeaks are more easily obtained
simulations by driving the reed with low blowing pressure

VI. CONCLUSIONS

In this paper, a simulation scheme for the single re
system was proposed, resulting in two conclusions. F
analysis of the discrete-time frequency responses was
formed in order to study how theoretical properties of t
numerical methods, such as stability, accuracy, and

FIG. 5. Phase diagrams foruf vs Dp. Quasistatic model~solid line!, and
dynamic model ~dotted line! discretized with the WS1 method
(Fs544.1 kHz, pm52265 Pa).
oc. Am., Vol. 111, No. 5, Pt. 1, May 2002
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quency warping, affect the reed behavior in the digital d
main. It has been shown that 1-step methods, such as
bilinear transformation or the 1-step weighted sam
method, can approximate the system with good accur
while keeping the computational costs low. Second, tim
domain simulations were obtained by coupling the sin
reed to a simple bore. These have shown that the analys
the reed frequency responses do not provide enough in
mation on the properties of the whole system due to non
ear coupling in the equations. Indeed, the discrete-time m
els have significantly different behaviors even when

FIG. 6. Transitions to high regimes of oscillation~WS1 method,
Fs544.1 kHz!; ~a! clarion register (v r52p•2020 rad/s,gr51400 s21,
pm51800 Pa); ~b! reed regime (v r52p•3150 rad/s,gr5300 s21,
pm51900 Pa).
Federico Avanzini and Davide Rocchesso: Discrete-time simulations
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frequency responses of the digital reeds are almost indis
guishable. Furthermore, the 2-step methods introduce
facts in the digital domain while 1-step methods better
proximate the original system.

These two results show that the 1-step weighted sam
method provides the most accurate reed simulations. Du
its low computational costs, it can be used as an efficient
for sound synthesis purposes, in combination with the
method. Moreover, low sampling rates can be used with
introducing instability or serious artifacts. This is importa
in emerging applications such as structured audio codin22

where instrument models are encoded and transmitted w
out precise knowledge of the computational power of
decoder.

The present study has focused on the accurate sim
tion of the instrument exciter. Good sound quality from n
merical simulations can only be achieved if also the reso
tor is modeled accurately~dissipation and dispersion
toneholes, radiation from the bell, etc.!;23 therefore, the bore
model presented in Sec. II B is far too poor to provide sa
factory sound quality. Nonetheless, sound examples obta
from numerical simulations24 show that reed physical param
eters allow effective and realistic control over the digital
strument.
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