
Development environment for Deep Learning

Boris Mansencal

15/09/2023

Contents
1 Installation at CREMI 3

2 Installation on a personal computer 4
2.1 Nvidia driver . 4
2.2 CUDA toolkit . 4
2.3 cuDNN library . 5
2.4 Python virtual environment . 6
2.5 Tensorflow . 6

2.5.1 Troubleshooting . 7
2.6 Pytorch . 8
2.7 Other useful packages . 8
2.8 OpenCV library [optional] . 8

1

This document details how to install a python development environment for Deep Learning (mainly tensor-
flow/keras & pytorch with GPU acceleration) on Linux (mainly Debian or Ubuntu).

This document only deals with Nvidia GPUs. If you have an ATI graphics card or an Apple M1/M2 processor,
last versions of tensorflow and pytorch may or may not use hardware acceleration. It is not covered by this
document.

To have GPU acceleration with an Nvidia GPU, you need to have a Nvidia driver, and CUDA and cuDNN
libraries. Pytorch python package already contains a CUDA and cuDNN library, so there is no needd to
install these libraries separately. Tensorflow/keras (up to version 2.13.x included) does not contain CUDA and
cuDNN. You will have to install very specific, compatible versions to have GPU acceleration with tensorflow.

2

1 Installation at CREMI
As of september 2023, CREMI machines use Debian 12 stable.

Most of CREMI machines have an Nvidia GPU. See https://services.emi.u-bordeaux.fr/exam/?page=wol to
list and start the machines available in each room. For example, you can see that machines in room 005 each
have a GTX 1060 (with 6GB), and machines in room 202 have a RTX 3060 (with 12GB).

CREMI machines with a Nvidia GPU use the Nvidia driver 525.125.x. This driver supports up to CUDA 12.0
(according to the output of nvidia-smi).
The CUDA toolkit is already installed. The command nvcc --version indicates that it is CUDA 11.8.

We already have installed all the remaining tools (cuDNN library, tensorflow 2.13.0 and pythorch 2.0), in a
python virtual environment.

To activate the virtual environment, you have to do:
1 source /net/ens/ DeepLearning / python3 / tensorflow2 /bin/ activate

Once activated, your prompt should change and indicate: “(tensorflow2)”.

In this environment, you should be able to launch tensorflow2/keras & pytorch python code.

To deactivate the virtual environment, juste type:
1 deactivate

3

https://services.emi.u-bordeaux.fr/exam/?page=wol

2 Installation on a personal computer
If you have a personal computer with a Nvidia GPU, you may want to install this development environment
on your machine.

WARNING: even if you have a development environment on your personal computer, you
should still check that your code works on CREMI machines. Indeed, your work will only be
evaluated on CREMI computers.

The following documents how to install this deep learning environment on a personal computer with Linux
(mainly Debian or Ubuntu).

As stated earlier, for tensorflow you will need to install specific (compatible) Nvidia driver, CUDA and cuDNN
versions. All this software is proprietary and lust be installed with admin privileges (sudo). Besides, to be
able to download cuDNN, you will also need to create a (free) Nvidia developer account.

We will detail how to install the same versions available at CREMI. Newer versions may be available when
you will read this document.

2.1 Nvidia driver
You should first check if the Nvidia driver is not already installed. You may already have the tool nvidia-smi
or you can for exemple check the list of installed packages sudo dpkg --list | grep -i nvidia | grep ii.

If the driver is not installed, you can probably install it via a package. The version you need to install
will depend on your GPU. You can check what is the newer version proposed on Nvidia website https:
//www.nvidia.fr/Download/index.aspx?lang=fr. If you use the package cuda (see next section), you can skip
this part (the cuda package will install a driver version compatible with the CUDA toolkit) Here, we detail
the commands to install the version 525:

1 sudo apt update
2 sudo apt install nvidia -driver -525
3 sudo /sbin/reboot

Once you have rebooted, you should be able to use the command nvidia-smi. In the top right corner, you can
see the version of CUDA supported by your driver. Here, for driver 525, CUDA 12.0. It means that you can
not use any tool that requires a newer version than 12.0, but you can use tools depending on older versions.

2.2 CUDA toolkit
For a pytorch only installation, you can skip this step. Indeed CUDA toolkit is already packaged in the python
package. However, you may need to know the newer CUDA version supported by your driver to choose the
right pytorch package.
For tensorflow (version 2.13.x or lower), you will need to install CUDA toolkit. For tensorflow 2.14.x, it seems
that they will make packages including CUDA and cuDNN available.

Here, there are two constraints on the CUDA toolkit version.

• You can not install a CUDA toolkit depending on a newer version than the one supported wy the driver
(here CUDA 12.0 for driver 525).

• you need to install a CUDA toolkit version and a cuDNN version that are compatible with the tensorflow
python package. You can have a look here https://www.tensorflow.org/install/source#linux, in the
GPU section, to see the pairs of CUDA/cuDNN version compatible with a specific tensorflow version.

4

https://www.nvidia.fr/Download/index.aspx?lang=fr
https://www.nvidia.fr/Download/index.aspx?lang=fr
https://www.tensorflow.org/install/source#linux

For example, you can see that tensorflow 2.12.x-2.13.x require CUDA toolkit 11.8 and cuDNN version
8.6. For tensorflow 2.5.x-2.11.x, you will need CUDA toolkit 11.2 and cuDNN 8.6.

As our driver supports CUDA 12.0, we will install the CUDA and cuDNN versions supported by the newest
tensorflow version with CUDA <= 12.0, that is tensorflow 2.13.x with CUDA 11.8 and cuDNN 8.6. (On
CREMI machines, CUDA toolkit 11.8 was already installed (as indcated by nvcc --version output).)

Instructions to install CUDA toolkit 11.8 are available here: https://developer.nvidia.com/cuda-11-8-0-
download-archive?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=22.04&
target_type=deb_local.

1 wget https :// developer . download .nvidia.com/ compute /cuda/repos/ ubuntu2204 /
x86_64/cuda - ubuntu2204 .pin

2 sudo mv cuda - ubuntu2204 .pin /etc/apt/ preferences .d/cuda -repository -pin -600
3 wget https :// developer . download .nvidia.com/ compute /cuda /11.8.0/

local_installers /cuda -repo -ubuntu2204 -11-8- local_11 .8.0 -520.61.05 -1
_amd64.deb

4 sudo dpkg -i cuda -repo -ubuntu2204 -11-8- local_11 .8.0 -520.61.05 -1 _amd64.deb
5 sudo cp /var/cuda -repo -ubuntu2204 -11-8- local/cuda -*- keyring .gpg /usr/share/

keyrings /
6 sudo apt -get update

Here we can choose:

• We install the Nvidia driver and the CUDA toolkit: sudo apt-get -y install cuda It will force the
update of the driver you may previously have.

• Or we can install only the CUDA toolkit (considering we already have a compatible driver): sudo apt-
get install cuda-toolkit-11-8 Choose this option if you have installed the driver manually.

Once installed you should have a /usr/local/cuda" directory (linked to the actual installed version, for example
/usr/local/cuda-11.8).

You can add /usr/local/cuda/bin to your PATH and /usr/local/cuda/lib" to your LD_LIBRARY_PATH.
For exemple export PATH=/usr/local/cuda/bin:$PATH and export LD_LIBRARY_PATH=/usr/local/cuda
/lib:$LD_LIBRARY_PATH. (You can add it to your .bashrc for exemple). You should then be able to do:
nvcc --version.

2.3 cuDNN library
You will need to create a (free) Nvidia developer account: https://developer.nvidia.com/login. Then you can
download the desired cuDNN version from https://developer.nvidia.com/rdp/cudnn-download (see “Archived
cuDNN Releases” for older versions).

Here we want the version corresponding to the CUDA toolkit and the targeted tensorflow version. So cuDNN
8.6.0 for CUDA toolkit 11.8 and tensorflow 2.13.x.

So we click Download cuDNN v8.6.0 (October 3rd, 2022), for CUDA 11.x and download the desired package.
On Debian 12 (not listed) you can get Local Installer for Linux x86_64 (Tar), On Ubuntu 22.04 you can get
Local Installer for Ubuntu22.04 x86_64 (Deb)

For Ubuntu 22.04, you can install the package with this commands:
1 sudo dpkg -i cudnn -local -repo -ubuntu2204 -8.6.0.163 _1.0-1 _amd64.deb

5

https://developer.nvidia.com/cuda-11-8-0-download-archive?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=22.04&target_type=deb_local
https://developer.nvidia.com/cuda-11-8-0-download-archive?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=22.04&target_type=deb_local
https://developer.nvidia.com/cuda-11-8-0-download-archive?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=22.04&target_type=deb_local
https://developer.nvidia.com/login
https://developer.nvidia.com/rdp/cudnn-download

2 sudo cp /var/cudnn -local -repo -ubuntu2204 -8.6.0.163/ cudnn -local -FAED14DD -
keyring .gpg /usr/share/ keyrings /

3 sudo apt -get update
4 sudo apt install libcudnn8 -dev libcudnn8

For Debian, you may copy the .tar.gz in /usr/local and untar it there. It will write its content in /usr/local/cuda.
1 unxz cudnn -linux -x86_64 -8.6.0.163 _cuda11 - archive .tar.xz
2 tar xvf cudnn -linux -x86_64 -8.6.0.163 _cuda11 - archive .tar

2.4 Python virtual environment
Once the Nvidia driver, CUDA & cuDNN compatible versions are installed, you can now create a python
virtual environment with all the deep learning python packages.

1 virtualenv --system -site - packages tensorflow2

It will create a directory tensorflow2, with a subdirectory bin and the script activate in it.

If cuDNN was not installed in a standard location (not in /usr/local/cuda), you may need to change the
activate script to specify its path. For example:

1 echo "export LD_LIBRARY_PATH =/ net/ens/ DeepLearning /stow/cudnn -linux -x86_64
-8.6.0.163 _cuda11 - archive /lib /: $LD_LIBRARY_PATH " >> tensorflow2 /bin/
activate

You can then activate the virtual environment:
1 source tensorflow2 /bin/ activate

(If you want to install several versions of python packages, you can create several virtual environments. But for
tensorflow, currently, du to CUDA and cuDNN versions constraints, we could only install 2.12.0 and 2.13.0).

2.5 Tensorflow
In the virtual environment, you can install tensorflow package compatible with CUDA & cuDNN versions
(here 2.13.0):

1 pip install tensorflow ==2.13.0

To check the installed tensorflow version, you can do:
1 python3 -c 'import tensorflow as tf; print(tf. __version__)'

To check that the GPU is usable by tensorflow, you can do:
1 python3 -c 'from tensorflow .python.client import device_lib ; print(

device_lib . list_local_devices ())'

It should list all the GPUs available on your computer.

6

2.5.1 Troubleshooting

• On some machines, event if the right versions of CUDA and cuDNN are installed, cuDNN initialization
may fail when running a tensorflow program and you get a CUDNN_STATUS_INTERNAL_ERROR
error message. (At CREMI, it happened in the past on machines with RTX 2060 and driver 440.100. . .)
It seems that adding the following lines near the beginning of the script helps [on a machine with only
one GPU]:

1 physical_devices = tf.config. experimental . list_physical_devices ('GPU ')
2 tf.config. experimental . set_memory_growth (physical_devices [0], True)

• Tensorflow 2.x by default is very verbose. You can reduce tensorflow verbosity with the
TF_CPP_MIN_LOG_LEVEL environment variable. You can for example add the following
lines before importing tensorflow/keras in your python code:

1 import os
2 os. environ [' TF_CPP_MIN_LOG_LEVEL ']='1'
3 # '0' for DEBUG=all [default], '1' to filter INFO msgs , '2' to filter

WARNING msgs , '3' to filter all msgs

• If you have a computer with several GPUs, you have to take care to only use the GPUs and the GPU
memory you need. By default, tensorflow or keras used with tensorflow backend uses all the memory of
all the GPUs. So, if your program is not explicitly multi-GPUs, it will actually only use the first GPU
but reserve the memory on all three GPUs and so the two remaining GPUs will be unavailable to other
users.

There are several ways to mitigate this problem. At CUDA level, you can limit the available GPUs with the
environment variable CUDA_VISIBLE_DEVICES. - You can set this variable before launching your program.
For example:

1 export CUDA_VISIBLE_DEVICES ="2"

Here, only the GPU 2, that is the third GPU, is available. Or:
1 export CUDA_VISIBLE_DEVICES ="0 ,2"

Here, both GPU 0 and 2, that is the first and third GPUs, are available. - You can also set this environment
variable inside your python program:

1 import os
2 os. environ [" CUDA_VISIBLE_DEVICES "] = '2'

Setting CUDA_VISIBLE_DEVICES allows to reduce available GPUs, but tensorflow will still use all the
available memory on these GPUs.

At the keras/tensorflow 2.x level, you can specify to use only the required GPU memory with the following
code (to add at the beginning of your python code) :

1 import tensorflow as tf
2
3 gpus = tf.config. list_physical_devices ('GPU ')
4 if gpus:
5 try:
6 for gpu in gpus:

7

7 tf.config. experimental . set_memory_growth (gpu , True)
8 except RuntimeError as e:
9 print(e)

2.6 Pytorch
pytorch comes with CUDA and cuDNN already packaged. You don’t need to install specific versions. You can
see the available versions here: https://pytorch.org/get-started/locally/.

In the virtual environment, for CUDA 11.8 for example, you can do:
1 pip3 install torch torchvision torchaudio --index -url https :// download .

pytorch .org/whl/cu118

You should then be able to list the available GPUs with the following code:
1 import torch
2 for i in range(torch.cuda. device_count ()):
3 print(torch.cuda. get_device_properties (i).name)

2.7 Other useful packages
In the python virtual environment, you can also install other useful python packages. For example:

1 pip install gpustat
2 pip install pillow
3 pip install matplotlib
4 pip install scikit -learn
5 pip install scikit -image
6 pip install scikit -video
7
8 pip install jupyter

. . .

2.8 OpenCV library [optional]
You may need to install OpenCV and a newer version than the one available with your package manager.
In particular, it should be possible to compile OpenCV from scratch and have GPU acceleration for certain
processing operations.

The currently last OpenCV version available is 4.8.0. You should be able to compile OpenCV with GPU
acceleration on Ubuntu (22.04). On Debian 12 stable, the version of gcc is to new (12.2.0) and does not work
with CUDA toolkit 11.8.

To install OpenCV 4.8.0, you need to dowload it from https://github.com/opencv/opencv/releases and
you can get the additional modules from https://github.com/opencv/opencv_contrib/tags. You can the
uncompress (outside the python virtual environement):

1 tar xzf opencv -4.8.0. tar.gz
2 tar xzf opencv_contrib -4.8.0. tar.gz
3 rm -f opencv -4.8.0. tar.gz opencv_contrib -4.8.0. tar.gz

8

https://pytorch.org/get-started/locally/
https://github.com/opencv/opencv/releases
https://github.com/opencv/opencv_contrib/tags

Then if you are on Ubuntu, you can compile with:
1 cd opencv -4.8.0
2 mkdir build
3 cd build
4
5 cmake .. -DCMAKE_INSTALL_PREFIX =/ net/ens/ DeepLearning /stow/opencv -4.8.0 -

DOPENCV_EXTRA_MODULES_PATH =/ net/ens/ DeepLearning / opencv_contrib -4.8.0/
modules -DCMAKE_BUILD_TYPE = Release -DWITH_CUDA =ON -DBUILD_EXAMPLES =ON -
DINSTALL_C_EXAMPLES =ON -DDINSTALL_PYTHON_EXAMPLES =ON -DCUDNN_LIBRARY =/
net/ens/ DeepLearning /stow/cudnn -linux -x86_64 -8.6.0.163 _cuda11 - archive /
lib/ libcudnn .so -DCUDNN_INCLUDE_DIR =/ net/ens/ DeepLearning /stow/cudnn -
linux -x86_64 -8.6.0.163 _cuda11 - archive / include

Here we specify the absolute paths to cuDNN headers and library (as there are not installed in a standard
location).

You can compile with:
1 make -j 4
2 make install

(choose the numbers of threads according to you processor)

If you are on Debian 12, it will produce an error:
1 [1%] Building NVCC (Device) object modules /core/ CMakeFiles / cuda_compile_1

.dir/src/cuda/ cuda_compile_1_generated_gpu_mat .cu.o
2 In file included from /usr/ include / cuda_runtime .h:83,
3 from <command -line >:
4 /usr/ include /crt/ host_config .h :132:2: error: #error -- unsupported GNU

version ! gcc versions later than 11 are not supported ! The nvcc flag '-
allow -unsupported -compiler ' can be used to override this version check;
however , using an unsupported host compiler may cause compilation
failure or incorrect run time execution . Use at your own risk.

5 132 | #error -- unsupported GNU version ! gcc versions later than 11 are
not supported ! The nvcc flag '-allow -unsupported -compiler ' can be used

to override this version check; however , using an unsupported host
compiler may cause compilation failure or incorrect run time execution
. Use at your own risk.

6 | ^~~~~
7 CMake Error at cuda_compile_1_generated_gpu_mat .cu.o. Release .cmake :220 (

message):
8 Error generating
9 /net/ens/ DeepLearning /opencv -4.8.0/ build/ modules /core/ CMakeFiles /

cuda_compile_1 .dir/src/cuda /./ cuda_compile_1_generated_gpu_mat .cu.o

You can then configure to not use GPU acceleration:
1 cmake .. -DCMAKE_INSTALL_PREFIX =/ net/ens/ DeepLearning /stow/opencv -4.8.0 -

DOPENCV_EXTRA_MODULES_PATH =/ net/ens/ DeepLearning / opencv_contrib -4.8.0/
modules -DCMAKE_BUILD_TYPE = Release -DWITH_CUDA =OFF -DBUILD_EXAMPLES =ON

9

-DINSTALL_C_EXAMPLES =ON -DDINSTALL_PYTHON_EXAMPLES =ON -DOPENCV_DNN_CUDA =
OFF

then:
1 make -j 4
2 make install

You can then add the OpenCV python module path to your python virtual environment:
1 echo "export PYTHONPATH =/ net/ens/ DeepLearning /stow/opencv -4.8.0/ lib/ python3

.11/ dist - packages : $PYTHONPATH " >> tensorflow2 /bin/ activate

You can then activate the virtual environment:
1 source tensorflow2 /bin/ activate

and should be able to display the OpenCV version:
1 python3 -c 'import cv2; print(cv2. __version__)'

10

	Installation at CREMI
	Installation on a personal computer
	Nvidia driver
	CUDA toolkit
	cuDNN library
	Python virtual environment
	Tensorflow
	Troubleshooting

	Pytorch
	Other useful packages
	OpenCV library [optional]

