
1 General remarks

In order to assess your work quickly, we ask you to follow some simple rules:

• You must send an archive named YOURNAME LabX.tar.bz2 attached to
an e-mail with AIVI in the subject

• We shall be able to decompress this archive with tar xvjf YOURNAME LabX.tar.bz2

and get a directory YOURNAME LabX. This directory will contain all
your work (source code, figures, report if any).

• We must be able to compile your work quickly. Thus provide all the
necessary source code files AND the CMakeLists.txt.

• DO NOT SEND useless files, such as the videos, the executable, the build
directory, the lab pdf file, MACOSX directories, ...

Some recommendations for the source code:

• Clean your code before sending it. In particular, remove all the dead
code. It may be a good idea to also make functions when necessary and
add some comments.

• Correct the warnings produced during compilation. Warnings are here to
help you. In particular, warnings about uninitialized values should hint
you that you will probably not get the expected correct result.

• Check for errors. In particular, if you make system calls (open a file, create
a directory, ...), check for returned error codes, in order to not fail silently.

• Do not hard code paths. We will probably not have the same paths on
our computer.

2 OpenCV

OpenCV is a library aimed at real-time computer vision. It was first developped
by Intel and is now maintained by the russian company Itseez (bought by Intel).

OpenCV provides lots of functionnalities (image processing, object detection,
camera calibration, classification, ...). Some of these functionalities may run on
the GPU (via CUDA or OpenCL code).

The code is mainly in C++ (although bindings exist for python and java).
These labs will be in C++.

These labs require OpenCV version 2.4.x. They will not compile with
OpenCV 3.x.

You can usually check OpenCV version with the following command:

pkg−c o n f i g −−modversion opencv

Currently on the CREMI computers, the version 2.4.9 of OpenCV is in-
stalled. The documentation is available here: http://docs.opencv.org/2.4.

9/.

1

http://docs.opencv.org/2.4.9/
http://docs.opencv.org/2.4.9/

3 CMake

For these labs, CMake is used to configure the build process.
CMake is a software that manages the build process, in conjunction with the

native build environment (make, ninja, Xcode, Visual Studio, ...). On linux, we
will use it to generate a Makefile.

It is recommended to use out-of-place builds, that is we will build our soft-
ware in a different directory than where the sources are (for example a build
directory). This way we can remove all the compiled files easily (we just have
to remove the build directory), or we can compile the sources with different
configurations (Release and Debug mode for example, see below).

CMake uses one or several files named CMakeLists.txt to describe the build
process. In these labs, we have one CMakeLists.txt in the source directory. This
file describes in particular which source files to compile and that the executable
depends on OpenCV.

When you call the cmake executable (from the command line), you just have
to pass the path to the CMakeLists.txt file.

If we are in the source directory, we can configure (that is, produce a Make-
file) and build our project this way:

mkdir bu i ld
cd bu i ld
cmake . .
make

Here we make a directory build in which we will build our project. When we
are in this build directory, the CMakeLists.txt is in the parent directory, that
is “..”. The cmake .. step will produce the Makefile, and then we do make to
compile the project.

If you change one source file, you just have to recompile, i.e., just to type
make.

One interesting parameter of the configuration process is to specify if we
want to compile in Debug or Release mode. In Debug mode, you will be able to
debug your code (with gdb for example) and if you have assert in your code, the
conditions will be checked. In Release mode, the assert will be ignored/skipped,
your code will also be much difficult to debug, but it should execute faster. To
choose the compilation mode during configuration, you can type for example:

cmake . . −DCMAKE BUILD TYPE=Release

It is recommended to first build your project in Debug mode during the design
phase. Then, when your program works correctly, build in Release mode, to
produces the results faster.

Graphical interfaces are also available for cmake: ccmake and cmake-gui.
From the command line, you can use ccmake.

To see which commands are used during the build process, you can type the
following:

2

make VERBOSE=1

During the configuration process, CMake uses a cache to keep some informa-
tion. If you want to configure your project again, from scratch, you can remove
the following file and sub-directory from your build directory : CMakeCache.txt
and CMakeFiles. For example:

rm −r f CMakeCache . txt CMakeFiles

4 Lab1

4.1 Reading a video file

There is an example in the OpenCV documentation almost doing this: see http:
//docs.opencv.org/2.4.9/modules/highgui/doc/reading_and_writing_images_

and_video.html#videocapture. We just have to modify this example a bit to
read from a video filename and remove useless operations.

Here is an example of code playing a video and saving each color frame:

#include <sstream>
#include <iomanip>

#include <opencv2/ core / core . hpp>
#include <opencv2/ h ighgu i / h ighgu i . hpp>

int
main (int argc , char ∗∗ argv)
{

i f (argc != 2) { // [A]
std : : cer r<<”Usage : ”<<argv [0]<<” v i d e o F i l e ”

<<”\n” ;
return EXIT FAILURE ;

}

const char ∗videoFi lename = argv [1] ;

cv : : VideoCapture cap (videoFi lename) ; // [B]
i f (! cap . isOpened ()) {

std : : cer r<<” Error : Unable to open f i l e ”
<<videoFilename<<”\n” ;

return −1;
}

3

http://docs.opencv.org/2.4.9/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture
http://docs.opencv.org/2.4.9/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture
http://docs.opencv.org/2.4.9/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture

const s i z e t deltaT = de l t a ;

unsigned long frameNumber = 0 ;
for (; ;) {

cv : : Mat frameBGR ; // [C]
cap >> frameBGR ; // [D]
i f (frameBGR . empty ()) {

break ;
}

sd : : s t r i ng s t r eam ss ; // [E]
ss<< ’ ’ f rame ’ ’
<<std : s e t f i l l (’ 0 ’)<<std : : setw(6)<<frameNumber
<< ’ ’ . png ’ ’ ;

cv : : imwrite (s s . s t r () , frameBGR) ; // [F]

++frameNumber ;
}

cap . r e l e a s e () ; // [G]

return EXIT SUCCESS ;
}

A : Minimal verification of program parameters. Reminder: argc is the
number of parameters passsed to the program, including the program
name itself as first paramter.

B : We use a VideoCapture object (from the highgui module) to read the
video file. See http://docs.opencv.org/2.4.9/modules/highgui/doc/
reading_and_writing_images_and_video.html#videocapture. All types
of OpenCV are in the namesapce cv.

C : Mat is for Matrix. It is one of the main types of OpenCV. It is used in
particular to store images.

D : Here, operator >> of VideoCapture is used to get a new frame from
the video, as a Mat. Images are in BGR format by default in
OpenCV. That is, images have three channels: first blue, sec-
ond green, third red. Images are stored in memory as dense arrays
of pixels (that is BGR, BGR, BGR, ...) and not as planes per channel
(that is a plane for Blue B, B, B, ..., a plane for Green G, G, G, ...,
and a plane for Red R, R, R, ...). See http://docs.opencv.org/2.

4.9/modules/core/doc/basic_structures.html#mat for more informa-
tion on Mat class.

4

http://docs.opencv.org/2.4.9/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture
http://docs.opencv.org/2.4.9/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture
http://docs.opencv.org/2.4.9/modules/core/doc/basic_structures.html#mat
http://docs.opencv.org/2.4.9/modules/core/doc/basic_structures.html#mat

E : We want to save each image with a different name (otherwise we would
overwrite the same file each time). We use a stringstream object to build
the filename with the frame number in it. Here, setfill() and setw()

are stream manipulators: they are used to always have 6 digits whatever
the frame number. For example, we will have 000001 for the frame 1.

F : imwrite (also in the highgui module) is used to write a Mat to a file.

G : we close the video file before exiting. Actually, this call is useless as it
will be automatically called by the VideoCapture object destructor.

4.2 ∆t

We want to compute the various measures (MSE, PSNR, ...) between two
luminance frames distance of ∆t frames (∆t > 0). We have to convert the
RGB frames to luminance frames, that is keep only the Y channem of frames
converted to YCrCb. And we have to store ∆t frames. We will then compute
the measure between the first frame and the last frame of our container. To
implement such a FIFO (first-in first out), we can use the C++ queue container.

Here is an example of code playing a video and calling a function to compute
the Mean Squared Error (MSE) between two luminance frames distant of ∆t
frames:

#include <opencv2/ core / core . hpp>
#include <opencv2/ h ighgu i / h ighgu i . hpp>

int
main (int argc , char ∗∗ argv)
{

i f (argc != 3) { // [A]
std : : cer r<<”Usage : ”<<argv [0]<<” v i d e o F i l e deltaT ”

<<”\n” ;
return EXIT FAILURE ;

}

const char ∗videoFi lename = argv [1] ;

const int d e l t a = a t o i (argv [2]) ;
i f (d e l t a <= 0) {

std : : cer r<<” Error : deltaT must be s t r i c t l y p o s i t i v e \n” ;
return EXIT FAILURE ;

}

cv : : VideoCapture cap (videoFi lename) ;
i f (! cap . isOpened ()) {

5

std : : cer r<<” Error : Unable to open f i l e ”
<<videoFilename<<”\n” ;

return −1;
}

const s i z e t deltaT = de l t a ;
std : : queue<cv : : Mat> previousFrames ; // [B]

unsigned long frameNumber = 0 ;
for (; ;) {

cv : : Mat frameBGR ;
cap >> frameBGR ;
i f (frameBGR . empty ()) {

break ;
}

cv : : Mat frameYCbCr ;
cv : : cvtColor (frameBGR , frameYCbCr , CV BGR2YCrCb) ; // [C]

std : : vector<cv : : Mat> planes (3) ; // [D]
cv : : s p l i t (frameYCbCr , p lanes) ;
const cv : : Mat Y = planes [0] ;

i f (previousFrames . s i z e () >= deltaT−1) { // [E]
cv : : Mat prevY = previousFrames . f r o n t () ;
previousFrames . pop () ;

const double MSE = computeMSE(Y, prevY) ;

std : : cout<<frameNumber<<” ”<<MSE<<”\n” ;
}

previousFrames . push (Y) ;

++frameNumber ;
}

cap . r e l e a s e () ;

return EXIT SUCCESS ;
}

A : Minimal verification of program parameters. We have one more param-

6

eter here: ∆t.

B : queue of Mat. Mat is for Matrix. It is one of the main types of OpenCV.
It is used in particular to store images. This queue will help us to store
the ∆t frames.

C : We convert the current frame from BGR color space to YCrCb color space.

D : We are interested only in the Y channel (luminance/luma) of the YCrCb

frame. We split the matrix in three individual planes (Y, Cr, Cb) and
keep only the plane corresponding to Y channel.

E : Here, we have enough (∆t) frames. We can compute the MSE between
the current frame and the first in the FIFO.

4.3 MSE

We want to compute the Mean Square Error (MSE) between two images. To
do that we have to traverse both images and compute the the square of the
difference between the pixels at same coordinates in both images (and sum the
result).

There are several ways to access the pixels (and thus compute the MSE) in
OpenCV. Each way has some pitfalls.

4.3.1 Pixel access

A first method to compute the MSE, that we can qualify of low level method,
consists in accessing all the image pixels, pixel by pixel.

Simple version The following code gives a simple implementation of a func-
tion computing the MSE, pixel by pixel.

double
computeMSE(cv : : Mat m1, cv : : Mat m2)
{

a s s e r t (m1. s i z e () == m2. s i z e ()
&& m1. type () == m2. type ()
&& m1. type () == CV 8UC1) ; // [A]

unsigned long sum = 0 ; // [B]
for (int i = 0 ; i < m1. rows ; ++i) {

for (int j = 0 ; j < m1. c o l s ; ++j) {
const int d i f f = m1. at<uchar>(i , j)

− m2. at<uchar>(i , j) ; // [C]
sum += d i f f ∗ d i f f ;

}
}
const double MSE = sum/(double) (m1. rows∗m1. c o l s) ; // [D]

7

return MSE;
}

Some remarks on this code:

A : this is a good practice to check that the matrix size and type are really
what is expected. Indeed, OpenCV will not warn you if you access a matrix
with the wrong element type or out-of-bounds. The macro assert()

(available in cassert header) can help. Here, in particular, we check that
the type of the matrices or images is CV 8UC1. That is we have only one
channel (represented by C1) and each element (or pixel) of the channel is of
type unsigned char or uchar (represented by 8U, for 8-byte unsigned).
Other types are available. For example, our BGR frames are of type
CV 8UC3 : 3 channels and each pixel of type uchar. We could also have
for example a matrix of type CV 32FC4, that is 4 channels and each pixel
of type float (represented by 32F).

B : watch out for the type used for accumulation. We will store square
of differences thus positive values, and we will accumulate a lot of them
(m1.rows*m1.cols), so we should use a big enough (unsigned) type.

C : here my matrices are of type CV 8UC1, so elements are of type unsigned

char or uchar. We access elements/pixels with the at<uchar>() ma-
trix method. Accessing pixels with at<>() is not necessarily the fastest
method (see Advanced version below). Watch out for the type used to
store the difference. The two values are unsigned chars, but the difference
will be signed and potentially bigger than unsigned char. So we should
use a big enough signed type.

D : watch out for the divide operation. We have used integer types (for sum
and m1.rows*m1.cols) but we want a floating point divide.

One remark on performances:

• OpenCV 2D Matrices are stored row-by-row in memory. That is, first we
have all the data (that is the values of each column) for row 0, then all the
data for row 1, and so on. This layout has an influence on how you should
access your matrix for maximum performance. Indeed, when you access
a given address, your processor will put in its cache(s) some of the data
at the following addresses. Then if you access these following addresses
data, access will be faster as it is already in the cache. In our case, as
2D Matrices are stored row-by-row, when we access an element of a given
row, the cache will hold some of the following elements of the row. Thus
if we traverse our matrices row-by-row, we take advantage of the cache,
and it is faster than to access them column-by-column (for example). So
if you look at the code above, it takes care to traverse the matrix row-by-
row. That is we have a first for loop on the rows, then a for loop on the
columns. You should respect this order in your code when you

8

traverse the whole image: the first for loop is on the rows, the
second for loop is on the columns.

Advanced version The following code gives a more efficient implementation
of a function computing the MSE, pixel by pixel. It does not use the rather
costly at<>() matrix method, and takes into account that pixels allocated for
matrices are contiguous in memory.

To fully understand this code, I encourage you to read OpenCV documen-
tation about cv::Mat here http://docs.opencv.org/2.4.9/modules/core/

doc/basic_structures.html#mat, and in particular the paragraph beginning
with: “The next important thing to learn about the array class is element

access”.

double
computeMSE(const cv : : Mat &m1, const cv : : Mat &m2)
{

a s s e r t (m1. s i z e () == m2. s i z e ()
&& m1. type () == m2. type ()
&& m1. type () == CV 8UC1) ;

unsigned long sum = 0 ;

int rows = m1. rows ;
int c o l s = m1. c o l s ;
i f (m1. i sCont inuous () && m2. i sCont inuous ()) { // [A]

c o l s ∗= rows ;
rows = 1 ;

}
for (int i = 0 ; i<rows ; ++i) { // [B]

const unsigned char ∗p1 = m1. ptr<unsigned char>(i) ; // [C]
const unsigned char ∗p2 = m2. ptr<unsigned char>(i) ;
for (int j = 0 ; j<c o l s ; ++j) {

const int d i f f = p1 [j]−p2 [j] ;
sum += d i f f ∗ d i f f ;

}
}
const double MSE = sum / (double) (m1. rows∗m1. c o l s) ;
return MSE;

}

• The same remarks than for the simple version of the code apply, in par-
ticular about types.

A : first, try to understand the code without this if. This if block is
a clever way to traverse the matrix data as one big row if the data is

9

http://docs.opencv.org/2.4.9/modules/core/doc/basic_structures.html#mat
http://docs.opencv.org/2.4.9/modules/core/doc/basic_structures.html#mat

contiguous. Instead of traversing rows rows of cols pixels, we traverse 1

row of cols*rows pixels if the data is contiguous.

B : the way we traverse the image data has an impact on performances.
Here, we take advantage of the processor cache. The first for loop is
on the rows, the second for loop is on the columns.

C : Here, we get a pointer on the row i. We can then access directly the j-th
column with an array access. It is faster than accessing with at<uchar>()

(that has to do a multiplication).

4.3.2 Matrix operations

We can also compute the MSE using high level matrix operations.
One way to compute the MSE is the following:

double
computeMSE(cv : : Mat m1, cv : : Mat m2)
{

a s s e r t (m1. s i z e () == m2. s i z e ()
&& m1. type () == m2. type ()
&& m1. type () == CV 8UC1) ;

cv : : Mat m;
cv : : a b s d i f f (m1, m2, m) ; // [A]

m. convertTo (m, CV 32S) ; // [B]
m = m. mul (m) ;

const double sum = (cv : : sum(m)) [0] ; // [C]

const double MSE = sum / m. t o t a l () ; // [D]
return MSE;

}

Some remarks about this code:

A : cv::absdiff is used to compute the absolute difference between two
matrices. The type of the result matrix m is the same than m1 and m2,
that is CV 8UC1, and there is no loss of precision or truncation as the
absolute difference of two unsigned char is still an unsigned char.

B : as the square of the values of m (the differences) will not fit in an
unsigned char, we first convert the matrix to a larger type. The next
command m = m.mul(m) compute the square of values and they fit in a
int type.

10

C : cv::sum is used to compute the sum of all channels of a given matrix. It
returns a vector and as we have only one channel, we take its first element.

D : m.total() is equivalent to m.rows*m.cols.

This code may be slower than the pixel-by-pixel version as we traverse several
times the matrices.

The following code shows an other implementation

double
computeMSE(cv : : Mat m1, cv : : Mat m2)
{

a s s e r t (m1. s i z e () == m2. s i z e ()
&& m1. type () == m2. type ()
&& m1. type () == CV 8UC1) ;

m1. convertTo (m1, CV 32FC1) ;
m2. convertTo (m2, CV 32FC1) ;

cv : : Mat e ;
cv : : subt rac t (m1, m2, e) ; // [A]

e = e . mul (e) ;

const double sum = (cv : : sum(e)) [0] ;

const double MSE = sum / e . t o t a l () ;
return MSE;

}

A : Here, we first convert each matrix to a floating point type and then
compute the difference with cv::subtract.

The following code shows an other implementation

double
computeMSE(cv : : Mat m1, cv : : Mat m2)
{

const double l 2 = cv : : norm(m1, m2, cv : : NORM L2) ; // [A]

const double MSE = (l 2 ∗ l 2)/ (m1. rows∗m1. c o l s) ;
return MSE;

}

A : Here, we use the cv::norm() function to compute the L2 norm of m1−
m2.

11

The following code shows an incorrect implementation

double
computeMSE WRONG(cv : : Mat m1, cv : : Mat m2)
{

a s s e r t (m1. s i z e () == m2. s i z e ()
&& m1. type () == m2. type ()
&& m1. type () == CV 8UC1) ;

cv : : Mat m;
cv : : pow(m1−m2, 2 , m) ; // [A]

const double MSE = cv : : sum(m) [0] / m. t o t a l () ;
return MSE;

}

A : there is two errors here. First we compute a temporary matrix m1−m2
that will have the same type than m1 and m2 (CV 8UC1) and thus will
not have enough precision to store the difference. Then we compute the
square with cv::pow(), that will store its result in a matrix of the same
type than m1−m2, that is CV 8UC1, that will not have enough precision
to store the square value.

4.4 PSNR

PSNR is easily computed from MSE. We can have the following implementation:

double
computePSNR(double MSE)
{

a s s e r t (MSE > 0) ;
const double PSNR = 10∗ l og10 ((255∗255)/MSE) ;
return PSNR;

}

4.5 Entropy

Same as for MSE, there are several ways to compute the Entropy.

4.5.1 Pixel access

Here are two implementations of Entropy computation with pixel accesses.

Simple version Slow implementation with at<>() calls for pixel access.

12

double
computeEntropy (cv : : Mat m)
{

a s s e r t (m. type () == CV 8UC1) ;

//− compute his togram
const int s i z e = 256 ;
long h i s t [s i z e] = {0} ; // [A]

for (int i = 0 ; i < m. rows ; ++i) {
for (int j = 0 ; j < m. c o l s ; ++j) {

h i s t [m. at<uchar>(i , j)] += 1 ;
}

}

//− compute entropy
double entropy = 0 . 0 ;
for (int i =0; i<s i z e ; ++i) {

i f (h i s t [i] > 0) {
const double pi = (h i s t [i]) / (double) (m. rows∗m. c o l s) ;

entropy −= pi ∗ l og2 (p i) ;
}

}

return entropy ;
}

A : Here hist is a simple static array. We use the special initialization that
sets all the values of the array to zero.

Advanced version Here is a most efficient version of the same code:

double
computeEntropy (cv : : Mat m)
{

a s s e r t (m. type () == CV 8UC1) ;

//− compute his togram
const int s i z e = 256 ;
long h i s t [s i z e] = {0} ;

int rows = m. rows ;
int c o l s = m. c o l s ;
i f (m. i sCont inuous ()) {

13

c o l s ∗= rows ;
rows = 1 ;

}
for (int i = 0 ; i < rows ; ++i) {

const unsigned char ∗p = m. ptr<unsigned char>(i) ;
for (int j = 0 ; j < c o l s ; ++j) {

h i s t [p [j]] += 1 ;
}

}

//− compute entropy
double entropy = 0 . 0 ;
const double norm = 1 . /(double) (rows∗ c o l s) ;
for (int i =0; i<s i z e ; ++i) {

i f (h i s t [i] > 0) {
const double pi = (h i s t [i]) ∗ norm ;

entropy −= pi ∗ l og2 (p i) ;
}

}

return entropy ;
}

4.5.2 Matrix operations

Entropy computation can also be implemented with higher level matrix opera-
tions.

double
computeEntropy (cv : : Mat m)
{

a s s e r t (m. type () == CV 8UC1) ;

//− compute his togram
const int h i s t S i z e = 256 ;
const f loat range [] = { 0 , 256 } ;
cv : : Mat h i s t ;
const f loat ∗ histRange = { range } ;
const bool uniform = true ;
const bool accumulate = fa l se ;

cv : : c a l c H i s t (&m, 1 , 0 , cv : : Mat () , h i s t , 1 , &h i s t S i z e ,
&histRange , uniform , accumulate) ; // [A]

14

//−compute entropy
h i s t /= m. rows∗m. c o l s ; // [B]

cv : : Mat logP ;
cv : : l og (h i s t , logP) ; // [C]
cv : : d i v i d e (logP , l og (2) , logP) ;

double entropy = −(cv : : sum(h i s t . mul (logP))) [0] ; // [D]

return entropy ;
}

A : Here we use cv::calcHist() to compute the histogram. See http://docs.
opencv.org/2.4.9/modules/imgproc/doc/histograms.html#calchist

for details about the parameters. The produced hist will be a matrix of
size 256x1 (i.e., a column vector) and of type CV 32F.

B : Here the matrix is divided by a scalar. As hist is already of type CV 32F,
there is no problem of truncation.

C : As there is no log2 matrix operation in OpenCV, we compute log(x)/log(2).

D : Here we compute hist∗ logP with mul method of cv::Mat, and then sum
all its elements with cv::sum(), and take the first element of the returned
vector.

15

http://docs.opencv.org/2.4.9/modules/imgproc/doc/histograms.html#calchist
http://docs.opencv.org/2.4.9/modules/imgproc/doc/histograms.html#calchist

	General remarks
	OpenCV
	CMake
	Lab1
	Reading a video file
	t
	MSE
	Pixel access
	Matrix operations

	PSNR
	Entropy
	Pixel access
	Matrix operations

