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Abstract—One of the most popular and efficient methods for
conserving energy in Wireless Sensor Networks (WSNs) is data
aggregation. This technique usually introduces an additional
delay in the transmission of data packets. The inherent trade-off
between energy consumption and end-to-end delay imposes an
important decision to be made by the nodes, mainly to deter-
mine the most appropriate time for aggregating local/transiting
packets and forwarding the resulting packet(s) to the next hop
towards the sink. Most of the solutions proposed so far are
either unable to significantly reduce the overhead caused by
the redundant transmissions, or require a long waiting time
before aggregating the received packets. To overcome the above
limitations, we propose a novel scheme that ensures efficient
and fast packets aggregation in WSNs. This scheme defines
optimal decision making policies at the cluster head level (i.e. in
a cluster based topology) to determine the appropriate waiting
time before aggregating the local data sampling, as well as
data sampling received from other neighbor cluster heads. The
obtained evaluation results confirm the efficiency of our scheme in
terms of the achieved end-to-end transmission delay for periodic
packets and the reduced overhead. These results reveal also
that our scheme outperforms other three literature schemes
(no aggregation, randomized waiting and full aggregation) as
it ensures the best compromise for aggregation saving and delay
reduction.

Keywords – WSNs, Data aggregation, Periodic packets trans-
mission, Dynamic waiting time, Spatial correlation.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) [1] involve a large
number of sensors that collaboratively collect, process and
report various events to fulfil a common task. However, due
to the large-scale deployment of such sensors for monitoring
purpose, and the resulting overlap of events detection ranges in
WSN, the data collected by several sensors could be redundant,
with highly correlated or copied data. Moreover, sensor nodes
are most likely to be battery-powered, therefore power saving
represents a real concern in these networks. The energy
consumption is associated primarily with communication; in
fact, it is often the most expensive activity in terms of power
supply, as stated in [2].

In-network data aggregation represents an efficient way for
reducing the energy consumption in WSNs by reducing the
communication overhead. In-network aggregation is defined
as the process of gathering the data, pre-processing and com-
puting it in the network itself and transmitting the extracted
and required data to the sink. Hence, the energy is conserved
by eliminating redundancy and minimizing the transmission

of raw data to the sink [3]. Deferring the transmission of data
packets in order to wait for more information from neighboring
nodes increases the degree of aggregation and leads to better
data aggregation opportunities. This method has been widely
adopted in many data aggregation approaches such as [4] and
[5], however, it causes long end to end transmission delays,
especially in monitoring applications where the timing strategy
is critical.

Nowadays, the new generation sensor nodes have been
enhanced with significant energy-efficient storage, processing
capabilities, and data management abilities [6]. Hence, sensor
nodes can be endowed with energy-efficient storage such as
the new-generation flash memory with several gigabytes of
storage and low-power consumption [7] [8]. In addition, [9]
shows that transmitting data over a radio channel consumes
200 times more energy than storing the same amount of data
locally on a sensor node, and radio reception uses 500 times
more energy than reading the same amount of data from local
sensor buffer [7].

This emergence of low-cost, high-capacity flash storage
and processing requires the design of novel data aggregation
schemes that leverage those new features to achieve higher
efficiency. In this scheme, each intermediate Cluster Head
(CH) stores a copy of every local and transiting aggregated
sampling for future aggregation purpose based on spatial
correlation properties. However, due to the limited storage
capacity of sensor nodes, a CH may not be able to store all
the received and/or aggregated samples to provide the suitable
aggregation level. Therefore, our goal is to design a decision
making mechanism that defines the optimal waiting time at a
CH level before aggregating a set of packets, sent by spatially
correlated CHs, reporting the same parameters.

The proposed mechanism ensures a balanced trade-off be-
tween the incurred communication overhead and the achieved
end-to-end delay by reducing the number of unnecessary re-
dundant transmissions, while meaningful (i.e. aggregated) data
packets are sent as soon as the reported value is confirmed. Our
mechanism is suitable for monitoring applications that require
real-time information such as military applications, road traffic
monitoring applications etc.

The remainder of this paper is organized as follows: in
Section II we present the related contributions on data aggre-
gation in WSNs, in structured and structure free topologies,
and highlight their limitations. In Section III, we present our



scheme in detail and evaluate its effectiveness in Section IV.
Finally, we conclude the paper and discuss the future work in
Section V.

II. RELATED WORK

In this section, we review the most significant existing
works on data aggregation in WSNs that have investigated ei-
ther structured or structure-free approaches. Data aggregation
combines data from different sources (i.e. sensor nodes) and
forwards it to the sink using functions such as suppression (i.e.
eliminating duplicates), min, max and average [10]. The data
aggregation phase presents many advantages in eliminating
redundancy from neighbouring nodes due to the high spatial
correlation in WSNs, leading to reduction of the overall
communication overhead, increase in the network lifetime, and
improved utilization of the available bandwidth.

Organizing sensor nodes into clusters has been widely
pursued by the research community in order to improve the
network performance. Two surveys [3], [11] have explored the
most significant contributions dealing with data aggregation
based on cluster approaches; such as, [12] [13]. Most of the
contributions presented in these two surveys are based on
structured approaches, and the most important work among
them is Low Energy Adaptive Clustering Hierarchy (LEACH)
[12]. In this latter, two main phases are defined: a setup phase
during which the network is organized into clusters and the
cluster heads are chosen, and a steady phase in which the
data is aggregated and transmitted to the sink. HEED [14]
is another protocol which extends LEACH by incorporating
communication range limits and intra-cluster communication
cost information. The initial probability for each node to
become a tentative cluster head depends on its residual energy,
and final heads are selected according to the cost.

The authors of [15] have proposed EAST algorithm to
perform near real-time data collection based on spatial and
temporal correlations. In this algorithm, the sensor nodes
are grouped into correlation regions according to the spatial
correlation property. The CH performs the temporal correlation
suppression and forwards the readings to the sink only when
they exceed a certain threshold. This algorithm is suitable
for aggregating event-driven messages; however the dynamic
cluster formation process may represent an issue, in terms
of the computation and communication overhead incurred by
CHs election process, as it may delay the transmission of
emergency messages and increase the energy consumption.
Besides, this solution is not appropriate for periodic messages
transmissions. For further reading on data aggregation chal-
lenges in WSNs, the reader may refer to [16], [17] and [18].

The authors of [19] have proposed the first structure-free
data aggregation technique for event detection in WSNs. They
use structure-less approach in which the messages are not
exchanged explicitly; the nodes do not know where they
should send packets to and how long they should wait for
aggregation. In this work, two methods were proposed; one
for improving spatial correlation and the other for temporal
convergence. Indeed, spatial and temporal correlations are key

factors to improve the aggregation efficiency in the network.
These two factors are leveraged in structured approach based
solutions by letting nodes transmit packets to their parents in
the aggregation tree, and the parents wait for packets from
all their children before transmitting the aggregated packets.
In contrast, the proposed scheme in [19] achieves high aggre-
gation efficiency without incurring high overhead caused by
the construction and maintenance of structure. However, this
scheme does not maintain its high efficiency when the network
gets larger. Moreover, the random waiting time adopted in
this scheme is not an efficient solution, especially when nodes
close to the sink select a small waiting time.

In monitoring applications, the end-to-end latency is re-
quired to be as low as possible since it affects the offered
QoS. It is well known that an optimal waiting time, before
performing the aggragtion, decreases (resp., increases) the
data transmission latency and the energy consumption (resp.,
accuracy). To this end, [20] proposed a dynamic timeout for
data aggregation in WSNs by dynamically varying its value
according to the amount of currently accumulated data at a
given node, achieving an efficient trade-off between energy
consumption and latency in the network.

In the same context, the authors of [21] and [22] proposed
an algorithm that aims to minimize the latency and ensure high
data accuracy based on an efficient selection of the waiting
time. In [21], the authors assumed that the aggregation tree
already exists before the scheduling process starts. However
in this solution, the base-station has to inform the network
nodes by flooding a request message, every time there is a
change in the frame duration Tmax. The waiting time at the
sensor node is then periodically adjusted depending on the
received Tmax and the number of children is updated.

In [22] the authors defined the data accuracy as the optimal
number of data Nopt participating in the final aggregation
result. The authors assume that the data aggregation tree
is already constructed. The base station adjusts the frame
duration Tmax based on the number of the received data at
the current and the previous frame, the Nopt and a predefined
threshold. Once the Tmax is computed, the base station will
broadcast it to the nodes in the network, which, in their turn,
compute their waiting time according to the Tmax value. It is
worth mentioning that broadcasting and periodic flooding of
messages in the above solutions have a negative impact on the
energy consumption and the collision rate in the network.

In contrast to the above discussed solutions, we design, in
this work, an original mechanism that ensures an appropriate
selection of the waiting time at the CH nodes in order to
minimize the end-to-end delay as well as the energy consump-
tion. To that end, this mechanism leverages the content of the
received packets along with the spacial correlation properties.
Moreover, a copy of resulting packets from the aggregation
process at the CH is stored in its buffer to confirm the accuracy
of the transmitted data towards the sink.



Figure 1: Clustering topology with Local and Global aggrega-
tion

III. SYSTEM DESIGN

In our scheme, the sensors measure different parameters and
report them periodically to the sink. We classify the collected
data into different categories according to their content type
and criticality level. For example, in road traffic monitoring
scenario, reporting vehicles speed periodically represents the
category with the highest priority, while traffic flow density
and weather conditions such as temperature, humidity or snow
level on the road are less critical compared to the first category.
We consider that the sensors are organized into clusters to
make the aggregation and the communication easier and more
efficient. Each CH is in charge of gathering readings from its
Cluster Members (CMs) and/or other CHs, and aggregating
them before sending the resulting packet(s) toward the sink.
Note that our solution is based on a static clustering approach
in which the CHs election process is performed at the network
initialization only, mitigating the computation and communi-
cation overhead incurred in the legacy schemes.

We define two different types of aggregation: Local and
Global as shown in the Figure 1. The local aggregation
is performed first by the CHs which gather readings from
their CMs as cited in [23]. The CHs gathering time before
aggregation is defined by a Local Waiting Time (WTLocal)
which is a dynamic time value that determines when the
CHs should aggregate the received readings and forward the
resulting packet (s), before the end of the monitoring period.
These aggregated readings are then sent onwards toward the
sink via a multi-hop routing path. When the CHs further
up the chain receive the aggregated reading, they wait again
for a period of time (WTGlobal) to receive other transiting
aggregated readings from neighbouring CHs, based on spatial
correlation properties, before they aggregate the data and
forward it to the next hop. We can reasonably call this process
global aggregation. We assume that these sensors are equipped
with buffer memory and queue capability.

A CH buffer is used for storing samples either received
from its own CMs or from adjacent CHs. Each CH waits for

the required minimum number of samples reporting data from
the same category before it starts the aggregation process.
The aggregated samples are then stored in the CHs buffer.
These copies of aggregated samples are used for aggregating
future samples received from other sources (i.e. CMs, or ad-
jacent CHs), according to their content and spatial correlation
properties. Next, the forwarding queue is used for storing the
aggregated packets which are ready to be sent over the medium
to the sink.

The samples stored in the buffer have a limited storage
time due to the limited energy of the sensors. Therefore, we
define a Time out (Tout) for the different packets stored in
the buffer. This Tout represents the maximum storage time for
each packet in the buffer.

Our focus in this work is to design a dynamic local and
global waiting time and a Tout mechanism for the packets in
the buffer such that they optimize the energy usage, buffer
storage time, and transmission delay of packets with different
priority levels, and finally reduce the overall traffic load in the
network.

A. Local aggregation

As mentioned above, the local aggregation is carried out by
each CH in the network. After network initialization phase,
the CMs start measuring given parameters and forward the
corresponding readings to the CHs. We assume that the local
measurements are periodic and all the CMs start collecting
data at the same time (i.e. the beginning of each period). In
what follows, we define an algorithm for local aggregation
based on a dynamic waiting time.

The local periodic sensing happens during the sampling
period as shown in Figure 2. At the end of each sampling
period, the CMs start forwarding their readings (e.g. CMn

forward Pn: an aggregated readings). The arrival time of
the readings at the CH level and the access to the wireless
channel for all the CMs are random, following the CSMA/CA
scheme. The aggregation process starts after receiving these
first samples. The CHs stop waiting for more samples at every
available transmission epoch.

In algorithm 1, we describe the proposed mechanism that
defines the appropriate waiting time before aggregating the
received packets by each CH. This mechanism uses parameters
such as the minimal number of samples received by the CH
(M ), the mean of the received sample values, and the standard
deviation (σth), to decide about the appropriate time to start
aggregating the received packets and forward the resulting
packet (s). Once the first samples are received by the CHs,
they start the aggregation process, computing the mean and
standard deviation (σcal) of the received values, and comparing
them with σth. If the minimal number of required samples is
reached, and σcal is larger than σth, then the CH waits for
more samples. Otherwise, the samples can be aggregated and
the resulting aggregated sample can be sent since the received
readings have approximately similar values. On the other hand,
if a received sample reports a value exceeding a given upper
bound (V aluemax) of the measured parameter (e.g. a vehicle



Figure 2: Representation of a sampling period and the decision process for the aggregation

speed exceeding the speed limit in a given road segment), this
sample is forwarded immediately as an emergency message.
Once the conditions on minimal number of required samples
and σcal are met, the CH waits until the channel is sensed idle
and then at the next available transmission epoch (D) forwards
the aggregated packet (s), as shown in Figure 2.

B. Global aggregation

Once the CHs aggregate the data locally, this data is then
forwarded to the sink via other intermediate CHs in the
network. These latter (i.e. CHs relays) are usually located in
the core of the network, they are in charge of aggregating the
data received from other CHs, as well as the data sent by their
local CMs. Notice here that the aggregation of data sent by
other CHs is performed according to the spatial correlation
among those CHs, meaning that the packets received from
CHs spatially correlated are aggregated together to generate
the final packet(s) to be forwarded towards the sink.

Whenever a packet is received by the CH relay from
one of its children CHs, it checks the cluster ID of the
received packet, and based on which the set of neighbouring
CHs spatially correlated with the sender of this packet are
determined. In our scheme, the CHs deployed in a specific
monitored area or within a given distance from each other
are more likely to measure similar values of some parameters,
therefore they are spatially correlated, as shown in Figure 3.
For example: CH16 and CH12 are both one hop away from
CH4, if the CH4 receives packets from these two CHs, it will
then aggregate them together as they monitor the same area
and their reported values are more likely to be redundant.

In our scheme, before the CHs relay forward any packet re-
ceived from their neighbours (i.e. children CHs), they wait for
a period of time WTGlobal, computed and updated according
to Algorithm 2. For example, in a scenario where WSNs are
deployed on the road to periodically measure and report the
traffic volume and speed of vehicles, each sensor on the road
represents a CM, and each lane represents a cluster or a set of
clusters. The information sent by sensors deployed on lanes
belonging to the same road segment should be aggregated
together in order to accurately estimate its state. Moreover, the
set of lanes in the same road segment are aggregated by the
same CH; which is defined by the global aggregation scheme.

Algorithm 1 Local Waiting Time Algorithm

1: M : the required minimum number of samples received by
the CHs

2: σcal: The computed Standard deviation
3: σth: Standard deviation threshold
4: V aluemax: threshold of the measured value of a given

parameter
5: Pi : packet sent by the CMi

6: while (the number of received pkts ≤ M ) do
7: Upon reception of a pkt (Pi) do
8: if (the received value ≥ V aluemax) then
9: CH generates and forwards an emergency pkt

10: else
11: CH keeps copy of Pi
12: Update the number of received pkts
13: Wait for the next packet
14: CHs compute the mean and the σcal
15: end if
16: end while
17: Compare the σcal with σth to extend the waiting time or

not
18: if (σcal < σth) then
19: Aggregate the received pkts
20: Forward the resulting pkt
21: Keep copy of the forwarded pkt
22: CHs keep waiting for other CMs’ pkt
23: else
24: if (number of received pkts equals to cluster size) then
25: Aggregate the received pkts (Algo ended)
26: else
27: Wait for the next packet // the CHs wait for more

packets
28: Go to step (18)
29: end if
30: end if



Figure 3: Clustering topology illustrating the Global aggrega-
tion, the number of hops separating CHs from the sink

Global Waiting Time Computation: WTGlobal is another
parameter that differs from WTLocal, and is calculated by the
CHs relay only. Each of those CHs computes the WTGlobal
based on the WTLocal of the first received packet for each
spatially correlated set of CHs, and updates it according to
the WTLocal of the subsequently received packets belonging
to the same set, as long as the aggregated packet(s) has not
been forwarded yet.

In our scheme, each CH child adds the time it has awaited
for before aggregating the received readings from its CMs
(i.e. WTi) to the transmitted packet Pi (i.e. the resulting
packet from the aggregation) towards its parent CH. Once a
CH parent (e.g. CH5 is the parent of CH1, CH2, CH3 and
CH4 as shown in Figure 4) receives the first packet with its
corresponding WTi, it waits WTi (i.e. WTGlobal =WTi) for
receiving other packets from its other children belonging to
the same correlated set. If another packet Pj from this set is
received the CH parent checks the WTj of the actual packet
and compares it with the previous WTi. If it is greater, the
WTGlobal is updated as per Algorithm 2. Whenever WTGlobal
expires the CH parent aggregates the received packets from the
same set, forwards the resulting packet, and stores its copy in
its local buffer for future aggregation purposes.

The stored copy is used in case a CH children’s transmission
has been delayed or its packet is lost, to prevent unnecessary
redundant transmissions. After expiration of WTGlobal, if a
delayed packet from a CH children is received, the CH parent
compares its reported value with the content of the previously
forwarded packet, as a result of the aggregation, and decides
if this packet needs to be forwarded or not.

In our scheme, the CHs aggregate the readings sent by
their CMs and send the resulting packet (s) towards the sink
before the end of the monitoring period; this approach might
be beneficial for some applications, such as road traffic moni-
toring, since this enables early prediction of the traffic jam, for
example. Furthermore, in our scheme the aggregator sensors
store a copy of the resulting packet from the aggregation
process (i.e. the packet forwarded towards the sink), so that
it is used to validate the correctness and accuracy of early

aggregated packets generated before the end of the monitoring
period.

To explain the key principle of our global aggregation
strategy, we consider the topology shown in Figure 4 where
CH1, CH2, CH3, CH4 are children of CH5 belonging to the
same spatially correlated set. In this example, CH5 waits for
packets from its children and aggregates them together. Let
us further assume that CH1, CH4, CH2 sent their packets
with the corresponding WT1, WT2, WT4, respectively. Every
time CH5 receives a packet it updates its WT5 according to
Algorithm 2. Once WT5 expires, CH5 aggregates the received
packets and forwards the resulting packet towards the sink.
The CH5 will also, as discussed previously, store a copy
of the forwarded packet in its buffer, for aggregating future
received packet. For instance, when the delayed CH3 is packet
is received at CH5, this latter compares the received packet’s
value with the stored copies value. If they are equal then CH3

s packet is dropped, otherwise, if the difference exceeds a
given threshold then this packet is forwarded.

Figure 4: Clustering topology illustrating the Global aggrega-
tion and the number of hops separating CHs from the sink

IV. PERFORMANCE EVALUATION

Table I: Summary of simulation parameters

Parameters Value
Routing Protocol AODV
Propagation mode TwoRayGround
Packet Size 64 Bytes
Number of nodes 25, 50,100, 200
Inter-node distance 10 meters
Monitoring period interval 15 s, 30 s, 60 s, 120 s
CsThreshold 25 meters
RxThreshold 12 meters
Simulation time 180 minutes
No. of simulation runs 100
Topology grid

In this section, we evaluate and discuss the performance
of our proposed partial data aggregation scheme. We have
compared this scheme (Partial Aggregation: PAgg) to three
other schemes: Full Aggregation (FAgg), Randomized Waiting
Aggregation [19] (RWAgg), and Aggregation Off (AggOff ).
In FAgg scheme, the CHs wait to receive packets from all
their CMs or their spatially correlated children CHs, before
they aggregate them and forward the resulting packet towards
the sink. Unlike the (FAgg) scheme, the CHs in AggOff



Algorithm 2 Global Waiting Time Algorithm

1: k: Number of Children belonging to the same Spatially
Correlated Set (SCS)

2: Childj : j th child of a CH, where j = 1, ..., k
3: Pkts−recv: Total number of received packets by the CH

from a given set of spatially correlated children
4: Timeremaining: The remaining time in the WTGlobal

associated with the SCS to which the sender CH belongs.
5: Initialization: pktsrecv = 0
6: Upon reception of the first pkt from (Childj) do
7: WTGlobal = WTj
8: Pktsrecv ++
9: while ((WTGlobal 6= 0) && (Pktsrecv < K)) do

10: Upon reception of a pkt from (Childj) do
11: Pktsrecv ++
12: CH updates its WTGlobal for the corresponding SCS
13: if (WTj > WTGlobal) then
14: WTGlobal = WTj - WTGlobal + Timeremaining
15: else
16: WTGlobal= Timeremaining (1+ SCF )
17: SCF (Spatial Correlation Factor)= 1- Pktsrecv

k
18: end if
19: end while
20: Aggregate the received pkts
21: Forward the resulting pkt towards the sink
22: Keep copy of the forwarded pkt

scheme disable the aggregation mechanism and forward the
received packets immediately upon their reception. In our
PAgg scheme, a smart way to aggregate the received packets
from CMs or a spatially correlated set of children is designed,
as described by Algorithms 1 and 2, in order to ensure faster
transmission of the reported values by the sensors, while
achieving a good level of aggregation and maintaining the
energy consumption usage as low as possible. As opposed to
our scheme, in RWAgg scheme, the CHs wait a random time
before aggregating the received packets.

We have conducted our simulation using the NS-2.35
network simulator in which we have implemented the four
schemes and run simulations for several scenarios. We have
also modified and adapted the default implementation of
AODV protocol such that routing paths are comprised of CH
nodes only so that all transmitted packets will be aggregated at
the right node. Since our solution is based on a static clustering
approach, the measured evaluation metrics do not include the
cost of clusters deployment and maintenance. During each
periodic monitoring interval, the CM nodes randomly generate
and transmit their packets towards the corresponding CHs. The
packets values are selected uniformly from a defined interval
and used for aggregating the packets based on the rules defined
in Algorithms 1 and 2. We have set the spacial closeness in
the global aggregation to 25 meters, the minimum number of
samples received by the CHs from its CMs to 20 % of the total
number of CMs, and the coefficient of variation σ

µ to 0.25.

Once the CHs receive the first packets; they start the ag-
gregation process, by computing the standard deviation (σcal)
of the received packets values and comparing it with a σth,
in order to decide when the aggregated packets should be
sent. Once the conditions described in the above algorithms
are met, the CHs forward the resulting packet (RESpacket)
from the aggregation. At the end of each monitoring period,
if one or more packets (from other CMs or other children
CHs belonging to the same spatially correlated set of the
senders of the aggregated packets) are received after sending
the RESpacket, with values substantially different from the
sent one in RESpacket, then a new packet is generated and
sent towards the sink to report these values.

We summarize in Table I the default parameters used in the
simulation. The primary metrics evaluated are:

(i) The Average Aggregated Ratio (AAR) in the interme-
diate nodes (i.e. aggregator nodes), defined as the ratio of
the number of packets sent by the intermediate nodes to the
number of packets that they have received, as described in Eq.
1:

AAR = 1− #PktsSent

#PktsRecv
(1)

(ii) The Aggregation Efficiency (AE) at the sink level, de-
fined as the ratio of the number of packets received by the sink,
using an aggregation scheme (i.e. FAgg , PAgg , or RWAgg),
to the packets received with no aggregation performed (i.e.
AggOff scheme ), as described by Eq.2:

AE = 1− #PktsRecv(Agg On)

#PktsRecv(Agg Off)
(2)

(iii) The Average End-to-End (E2E) transmission delay of
all the packets, which represents the average time needed for
a packet sent by the source (CHs/CMs) to cross the network
and reach the sink.

(iv) The Energy Saving (ES) is defined as the ratio of the
total energy saved (i.e remaining) when the aggregation is
enabled to the total energy saved when the aggregation is
disabled. It is calculated using the following formula:

ES =
Energyremaining(Agg On)

Energyremaining(Agg Off)

=
EnergyI − Energyconsumed(Agg On)

EnergyI − Energyconsumed(Agg Off)
(3)

Where:
• EnergyI : initial energy of a sensor node.
• Energyconsumed: the energy consumed for packets trans-

mission/forwarding.
The results plotted in Figure 5 compare the Average Aggre-

gation Ratio (AAR) under various values of the monitoring
period. In this particular scenario we have set the network
size to 200 nodes. The results depicted in this Figure reveal
that with a partial aggregation we achieve a lower average
aggregation ratio compared to the FAgg and RWAgg . This
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Figure 6: Impact of Network size on Average Aggregation
Ratio: monitoring period interval = 60 s

is explained by the early aggregation used in our scheme.
However, the difference between the PAgg and the two other
schemes is approximately 20% in average, this small differ-
ence demonstrates the efficiency of our scheme. We noticed
also that the achieved AAR in the three schemes decreases
with the increase of the monitoring period interval. When the
monitoring period is long, the packets are more likely to be
aggregated and sent before the end of this period, which will
reduce the aggregation ratio. Also, when the period is short the
aggregator nodes will wait till the end to send their packets,
leading to an increase of their AAR.

In Figure 6, we varied the network size and set the mon-
itoring period to 60 s. We see similar results to Figure 5,
where FAgg and RWAgg schemes perform better than the
PAgg scheme in terms of the achieved AAR, this is due to
the same reasons explained above. However, we observe that
higher network densities have little influence on AAR, in all
the schemes.

The results plotted in Figures 7 and 8 show the aggregation
efficiency (AE) at the sink level. These results reveal that the
FAgg and RWAgg achieve a higher level of AE compared

to our scheme. However, the difference is very small and
equals to 2% in Figure 7 when we vary the Period. On
the other hand, as shown in Figure 8, with 15% difference
between the two approaches at a network size of 25 nodes,
the gap converges and the three approaches show a very close
aggregation efficiency (less than 2%) at a network size of 100
and above.
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Figure 8: Impact of Network size on Aggregation Efficiency
in the network: monitoring period interval = 60 s

We kept the same scenarios described above and ran our
simulation for the four algorithms - full aggregation, random-
ized waiting aggregation, partial aggregation, and no aggrega-
tion to evaluate the impact of the monitoring period duration
and network size on the achieved average E2E delay. The
corresponding results of this scenario are plotted in Figures 9
and 10 respectively, from which we can observe that with no
aggregation scheme the E2E delay is very low (in the order
of ms) due to the immediate forwarding of the packets by the
CHs. However, with PAgg , a short E2E delay of the packets
is achieved compared to FAgg and RWAgg , where the E2E
delay is high. This results from the early aggregation and
transmission of the packets in our scheme. The improvement



achieved in some cases exceeds 40% and 50% compared to
RWAgg and FAgg , respectively. For example in Figures 5 and
9 where the Period is set to 120 s, the E2E delay is equal
to 168.17 s with an aggregation ratio of 39.65 % using the
FAgg scheme. On the other hand, with RWAgg , the E2E delay
is equal to 136.18 s with 34.92 % aggregation ratio; while
our scheme achieves an E2E delay equals to 79.41 s with
an aggregation ratio of 15.32 %. Therefore, we notice that
our scheme achieves lower aggregation ratio compared to the
FAgg and the RWAgg but the packets arrive much earlier.

Under the same conditions used in the previous plots, we
have plotted some results showing the Energy Saving (ES) in
terms of the total number of packets sent. In these results, we
use the AggOff as a reference to compare the PAgg with the
RWAgg and the FAgg .

The results plotted in Figures 11 and 12 show that the
achieved ES using the PAgg scheme is almost similar to
that achieved in RWAgg and FAgg . However, in Figure 11
the ES decreases with the longer duration of the monitoring
period interval, as it is more likely for the aggregator node to
receive more packets and aggregate them together. Moreover,
the frequency of sending aggregated packets when the period
is long is lower than that of shorter monitoring periods. From
the Figure 12 we also notice that the ES is proportional
to the network size since the AAR and the AE increase
when the network gets larger. This explains the impact of the
aggregation on the energy usage of the network.
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Figure 9: Average End-to-End delay under varying monitoring
period interval: Network Size = 200 nodes

Recall that the objective of our work is to achieve a lower
E2E delay of the packets transmission, while keeping fair
aggregation ratio and energy saving in the network. From the
above results, we conclude that FAgg and RWAgg schemes
outperform our proposed scheme in terms of the achieved ag-
gregation ratio and aggregation efficiency, but we compensate
this with the lower E2E delay that PAgg ensures compared
to these two schemes, which is very important metric for
real-time monitoring applications. Also our scheme achieves
higher E2E delay in comparison with the AggOff scheme,
but ensures the aggregation of the packets and important
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Figure 10: Average End-to-End delay under varying Network
size: monitoring period interval = 60 s

ES in the network. Finally, it is worth mentioning that our
proposed PAgg scheme ensures a good trade-off between the
E2E transmission delay, the aggregation ratio in the network,
and the energy consumption.

 0

 2

 4

 6

 8

 10

 12

15 30 60 120

E
n

e
rg

y
 S

a
v
in

g
 (

%
)

Period (s)

P_Agg
RW_Agg
F_Agg
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V. CONCLUSION

In this work, we have investigated the problem of long
end to end transmission delays incurred by the aggregation
of periodic packets in cluster based WSNs. We have pro-
posed a new data aggregation scheme based on a dynamic
waiting time, which uses judicious decision making policies
at the aggregator nodes level in order to determine the most
appropriate time for aggregating the received packets, and
forwarding the resulting packet towards the sink. Due to our
novel way of setting the waiting time before aggregation (by
leveraging the spatial correlation properties), the dissemination
delay of periodic packets is reduced by roughly 50% on
average as compared to randomized waiting/full aggregation
schemes while the energy consumption is almost at the same
level as these two schemes, which makes our scheme suitable
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for most of real-time monitoring applications using WSNs
technology. The performance evaluation results highlight the
effectiveness of our scheme in terms of the achieved end to
end delay, energy saving, aggregation ratio and efficiency.
The proposed scheme can also address other aspects, for
instance, aggregating emergency messages and scheduling
packets transmission, which will be the focus of our future
work.
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