

Arduino

https://www.arduino.cc

Microprocessor vs Microcontroller
Comparison Microprocessor Microcontroller

Content A CPU made up of a
single silicon chip
comprising an ALU, CU
and registers

Consist of microprocessor,
memory (RAM, ROM), I/O
ports, counters, interrupt
control unit, etc.

Characteristic Dependent unit Self-contained unit

System bus External Internal

I/O Ports Does not contain built-
in I/O port

Built-in I/O ports are
present

Type of operation
performed

General purpose in
design and operation

Application oriented or
domain specific

Targeted for High end market Embedded market

Clock frequency Very high (GHz) Low to medium (kHz to MHz)

Interrupt latency Instruction throughput
is given higher priority
than interrupt latency

Optimized by design

Use in real time
systems

Generally not used as
they depend on other
components

Handle real time tasks as
they are single programmed
and self sufficient

Power consumption Provides less power
saving options

Includes more power saving
options

µproc vs µctrl Architecture

What is Arduino?

● Arduino is an open-source electronics platform
based on easy-to-use hardware and software

● Arduino boards are able to read inputs (e.g.,
light on a sensor, a finger on a button, or a
Twitter message) and turn it into an output (e.g.,
activating a motor, turning on an LED,
publishing something online)

How to use it?

● You can tell your board what to do by sending a set of
instructions to the microcontroller on the board

● To do so you use the Arduino programming langage
– based on Wiring: http://wiring.org.co/

– Wiring is an open-source programming framework for
microcontrollers

● and the Arduino Software (IDE)
– based on Processing: https://processing.org/

– Processing is a flexible software sketchbook and a language
for learning how to code within the context of the visual arts

http://wiring.org.co/
https://processing.org/

Benefits

● Inexpensive
– Arduino boards are relatively inexpensive compared to other microcontroller platforms (<€50)

● Cross-platform
– The Arduino Software (IDE) runs on Windows, Macintosh OSX, and Linux operating systems

● Simple, clear programming environment
– The Arduino Software (IDE) is easy-to-use for beginners, yet flexible enough for advanced

users to take advantage of as well. It's conveniently based on the Processing programming
environment.

● Open source and extensible software
– The Arduino software is published as open source tools, available for extension by

programmers. The language can be expanded through C++ libraries, and people wanting to
understand the technical details can make the leap from Arduino to the AVR C programming
language on which it's based. Similarly, you can add AVR-C code directly into your Arduino
programs if you want to.

● Open source and extensible hardware
– The plans of the Arduino boards are published under a Creative Commons license, so circuit

designers can make their own version of the module, extending it and improving it.

Programming Language

● Functions
– for controlling the Arduino board and performing computations

● Variables
– Arduino data types and constants

● Structure
– the elements of Arduino (C++) code

● Libraries
– https://www.arduino.cc/en/Reference/Libraries

● https://www.arduino.cc/reference/en/

https://www.arduino.cc/en/Reference/Libraries
https://www.arduino.cc/reference/en/

Principle

Board Anatomy

1. Digital pins : Use these pins with digitalRead(), digitalWrite(), and analogWrite(). analogWrite() works only on the
pins with the PWM symbol.

2. Pin 13 LED : The only actuator built-in to your board. Handy target for the blink sketch and useful for debugging.

3. Power LED : Indicates that your board is receiving power. Useful for debugging.

4. ATmega microcontroller : The heart of your board.

5. Analog in : Use these pins with analogRead().

6. GND and 5V pins : Use these pins to provide +5V power and ground to your circuits.

7. Power connector : This is how you power the board when it’s not plugged into a USB port for power.

8. TX and RX LEDs : These LEDs indicate communication between the board and a computer. Useful for debugging.

9. USB port : Used for powering the board, uploading your sketches, and for communicating with your sketch (via
Serial. println() etc.).

10. Reset button : Resets the microcontroller

Arduino Software (IDE)

● The Arduino Integrated Development Environment (IDE) contains a text editor
for writing code, a message area, a text console, a toolbar with buttons for
common functions and a series of menus

● It connects to the Arduino hardware to upload programs and communicate with
them

● Programs written using Arduino Software (IDE) are called sketches
● These sketches are written in the text editor and are saved with the file

extension .ino
● The message area gives feedback while saving and exporting and also

displays errors
● The console displays text output by the Arduino Software (IDE), including

complete error messages and other information
● The bottom righthand corner of the window displays the configured board and

serial port
● The toolbar buttons allow you to verify and upload programs, create, open,

and save sketches, and open the serial monitor

Sketchbook

● The Arduino Software (IDE) uses the concept of a
sketchbook
– a standard place to store your programs (or sketches)

● The sketches in your sketchbook can be opened from the
File > Sketchbook menu
– or from the Open button on the toolbar

● The first time you run the Arduino software, it will
automatically create a directory for your sketchbook

● You can view or change the location of the sketchbook
location from with the Preferences dialog

Tabs, Multiple Files, Compilation

● Allows you to manage sketches with more than
one file (each of which appears in its own tab)

● These can be normal Arduino code files (no
visible extension), C files (.c extension), C++
files (.cpp), or header files (.h)

Uploading

● Before uploading your sketch, you need to select the correct items from the
Tools > Board and Tools > Port menus

● On Linux, the serial port should be /dev/ttyACMx, /dev/ttyUSBx or similar
● Once you've selected the correct serial port and board, press the upload button

in the toolbar
– or select the Upload item from the Sketch menu

● Current Arduino boards will reset automatically and begin the upload
– With older boards (pre-Diecimila) that lack auto-reset, you'll need to press the reset

button on the board just before starting the upload

● On most boards, you'll see the RX and TX LEDs blink as the sketch is uploaded
– The Arduino Software (IDE) will display a message when the upload is complete, or

show an error
● When you upload a sketch, you're using the Arduino bootloader, a small program that has been

loaded on to the microcontroller on your board. It allows you to upload code without using any
additional hardware. The bootloader is active for a few seconds when the board resets; then it starts
whichever sketch was most recently uploaded to the microcontroller. The bootloader will blink the
on-board (pin 13) LED when it starts (i.e. when the board resets)

Serial Monitor

● The monitor displays serial sent from the Arduino board over
USB or serial connector

● To send data to the board, enter text and click on the "send"
button or press enter
– Choose the baud rate from the drop-down menu that matches the

rate passed to Serial.begin in your sketch

– Note that on Windows, Mac or Linux the board will reset (it will rerun
your sketch) when you connect with the serial monitor

● The Serial Monitor does not process control characters
– if your sketch needs a complete management of the serial

communication with control characters, you can use an external
terminal program and connect it to the COM port assigned to your
Arduino board

Boards

● Before uploading, you must select the proper board hardware
● The board selection has two effects

– it sets the parameters (e.g. CPU speed and baud rate) used when
compiling and uploading sketches

– and sets the file and fuse settings used by the burn bootloader command

● Some of the board definitions differ only in the latter, so even if
you've been uploading successfully with a particular selection
you'll want to check it before burning the bootloader

● Arduino Software (IDE) includes the built-in support for the boards
based on the AVR Core
– The Boards Manager included in the standard installation allows to add

support for the growing number of new boards based on different cores
like Arduino Due, Arduino Zero, Edison, Galileo and so on

Boards Comparison

● https://www.arduino.cc/en/Products/Compare
● Most boards contain AVR MCUs (e.g., ATmega328) made

by Atmel (now Microchip Technology)
– https://en.wikipedia.org/wiki/AVR_microcontrollers

● Some boards (e.g., MKR1000) contain ARM-based MCUs
– https://en.wikipedia.org/wiki/Atmel_ARM-based_processors

● The SAMD21 SoC contains an ARM Cortex-M0+ core
(ARMv6-M architecture)
– https://en.wikipedia.org/wiki/ARM_Cortex-M#Cortex-M0+

https://www.arduino.cc/en/Products/Compare
https://en.wikipedia.org/wiki/AVR_microcontrollers
https://en.wikipedia.org/wiki/Atmel_ARM-based_processors
https://en.wikipedia.org/wiki/ARM_Cortex-M#Cortex-M0

Memory

● There are three pools of memory in the microcontroller
used on AVR-based Arduino boards
– Flash memory (program space), is where the Arduino sketch is

stored

– SRAM (static random access memory) is where the sketch
creates and manipulates variables when it runs

– EEPROM is memory space that programmers can use to store
long-term information

● Flash memory and EEPROM memory are non-volatile
(the information persists after the power is turned off)

● SRAM is volatile and will be lost when the power is cycled

Running Out of RAM

● If you run out of SRAM, your program may fail in unexpected ways; it will
appear to upload successfully, but not run, or run strangely

● To check if this is happening, try commenting out or shortening the strings
or other data structures in your sketch (without changing the code). If it
then runs successfully, you're probably running out of SRAM

● To address this problem
– If your sketch talks to a program running on a (desktop/laptop) computer, you can

try shifting data or calculations to the computer, reducing the load on the Arduino

– If you have lookup tables or other large arrays, use the smallest data type
necessary to store the values you need; for example, an int takes up two bytes,
while a byte uses only one (but can store a smaller range of values)

– If you don't need to modify the strings or data while your sketch is running, you
can store them in flash (program) memory instead of SRAM, to do this, use the
PROGMEM keyword

● To use the EEPROM, see the EEPROM library
– http://www.arduino.cc/en/Reference/EEPROM

http://www.arduino.cc/en/Reference/EEPROM

Digital Pins

● The pins on the Arduino can be configured as either inputs or outputs
● Arduino pins default to inputs, so they don't need to be explicitly

declared as inputs with pinMode() when used as inputs

● Pins configured this way are in a high-impedance state
● Input pins make extremely small demands on the circuit that they are

sampling
– equivalent to a series resistor of 100MΩ in front of the pin

● Thus, it takes very little current to move the input pin from one state to
another
– this can make the pins useful for such tasks as implementing a capacitive

touch sensor or reading an LED as a photodiode

● In order to steer an input pin to a known state if no input is present, add
a pullup resistor (to +5V), or a pulldown resistor (resistor to ground) on
the input
– A 10kΩ resistor is a good value for a pullup or pulldown resistor

Pins Configured as INPUT_PULLUP

● There are 20K pullup resistors built into the Atmega chip that can be accessed from software.
These built-in pullup resistors are accessed by setting the pinMode() as INPUT_PULLUP
– This effectively inverts the behavior of the INPUT mode, where HIGH means the sensor is off, and LOW

means the sensor is on.

● The value of this pullup depends on the microcontroller used
– On most AVR-based boards, the value is guaranteed to be between 20kΩ and 50kΩ. On the Arduino

Due, it is between 50kΩ and 150kΩ. For the exact value, consult the datasheet of the microcontroller on
your board

● When connecting a sensor to a pin configured with INPUT_PULLUP, the other end should be
connected to ground
– In the case of a simple switch, this causes the pin to read HIGH when the switch is open, and LOW

when the switch is pressed

● The pullup resistors provide enough current to dimly light an LED connected to a pin that has
been configured as an input
– If LEDs in a project seem to be working, but very dimly, this is likely what is going on.

● The pullup resistors are controlled by the same registers (internal chip memory locations) that
control whether a pin is HIGH or LOW. Consequently, a pin that is configured to have pullup
resistors turned on when the pin is an INPUT, will have the pin configured as HIGH if the pin is
then switched to an OUTPUT with pinMode()

– This works in the other direction as well, and an output pin that is left in a HIGH state will have the pullup
resistors set if switched to an input with pinMode()

Pins Configured as OUTPUT

● Pins configured as OUTPUT with pinMode() are said to be in a low-
impedance state

● They can provide a substantial amount of current to other circuits
– Atmega pins can source (provide positive current) or sink (provide negative

current) up to 40 mA of current to other devices/circuits

● This is enough current to brightly light up an LED (don't forget the series
resistor), or run many sensors
– but not enough current to run most relays, solenoids, or motors

● Short circuits on Arduino pins, or attempting to run high current devices
from them, can damage or destroy the output transistors in the pin, or
damage the entire Atmega chip
– this will result in a dead pin in the microcontroller but the remaining chip will still

function adequately

● For this reason always connect OUTPUT pins to other devices with 470Ω
or 1k resistors
– unless maximum current draw from the pins is required for a particular application

Analog Input Pins

● The ATmega controllers used for the Arduino contain an onboard multi-channel analog-to-digital
(A/D) converter. The converter has 10 bit resolution, returning integers from 0 to 1023. Analog
pins are used to read analog sensors
– analog pins also have all the functionality of general purpose input/output (GPIO) pins (the same as digital

pins 0 - 13)

● Analog pins can be used identically to the digital pins, using the aliases A0 (for analog input 0),
A1, etc
– pinMode(A0, OUTPUT); // set analog pin 0 to an output

– digitalWrite(A0, HIGH); // set it to HIGH

● Analog pins also have pull-up resistors, which work identically to pull-up resistors on the digital
pins
– pinMode(A0, INPUT_PULLUP); // set/enable pull-up on analog pin 0

● Be aware however that turning on a pull-up will affect the values reported by analogRead().
● Details and Caveats

– The analogRead command will not work correctly if a pin has been previously set to an output, so if this is
the case, set it back to an input before using analogRead. Similarly if the pin has been set to HIGH as an
output, the pull-up resistor will be set, when switched back to an input.

– The ATmega datasheet also cautions against switching analog pins in close temporal proximity to making
A/D readings (analogRead) on other analog pins. This can cause electrical noise and introduce jitter in the
analog system. It may be desirable, after manipulating analog pins (in digital mode), to add a short delay
before using analogRead() to read other analog pins

Pulse-Width Modulation

● Technique for getting analog signals with digital means
● Digital control is used to create a square wave, a signal

switched between on and off
● This on-off pattern can simulate voltages in between full on

(5V) and off (0V) by changing the portion of the time the
signal spends on versus the time that the signal spends off

● The duration of on time is called the pulse width
● To get varying analog values, you change, or modulate,

that pulse width
● If the on-off pattern is repeated fast enough, the result is

as if the signal is a steady voltage between 0 and 5V

PWM Example

● Green lines represent a
regular time period

● This period is the inverse
of the PWM frequency

● analogWrite() is on a
scale of 0 – 255

– analogWrite(255)
requests a 100% duty
cycle (always on)

– analogWrite(127)
is a 50% duty cycle (on
half the time)

Hacking Arduino

● Arduino Project Hub
– https://create.arduino.cc/projecthub

● Arduino IoT Cloud
– https://www.arduino.cc/en/IoT/HomePage

● Arduino forum
– https://forum.arduino.cc/

● Extending and developing it
– https://www.arduino.cc/en/Hacking/HomePage

https://create.arduino.cc/projecthub
https://www.arduino.cc/en/IoT/HomePage
https://forum.arduino.cc/
https://www.arduino.cc/en/Hacking/HomePage

