Legal Information Page 1 sur 307

L egal Information

Windows Sockets 2 Application
Programming I nterface

Thisisapreliminary document and may be changed substantially prior to final commercial
release. This document is provided for informationa purposes only and Microsoft makes no
warranties, either express or implied, in this document. Information in this document is subject to
change without notice. The entire risk of the use or the results of the use of this document remains
with the user. The names of companies, products, people, characters, and/or data mentioned
herein are fictitious and are in no way intended to represent any real individual, company, product,
or event, unless otherwise noted. Complying with all applicable copyright lawsisthe
responsibility of the user. No part of this document may be reproduced or transmitted in any form
or by any means, electronic or mechanical, for any purpose, without the express written
permission of Microsoft Corporation. If, however, your only means of access s electronic,
permission to print one copy is hereby granted.

Portions of this document specify and accompany software that is still in development. Some of
the information in this documentation may be inaccurate or may not be an accurate representation
of the functionality of final documentation or software. Microsoft assumes no responsibility for
any damages that might occur directly or indirectly from these inaccuracies.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

©1996-1998 Microsoft Corporation. All rights reserved.

Microsoft, MS, Win32, Windows, and Windows NT are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

Intel is aregistered trademark of Intel Corporation.

All other product and company names mentioned herein are the trademarks of their respective
owners.

Welcome To Windows Sockets 2

This document describes the Windows Sockets 2 Application Programming Interface (API). It
consists, primarily, of information from the Windows Sockets 2 API specification, but also
includes additional information. The information in this document is not presented in exactly the
same waly as specification.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 2 sur 307

Using This Document

This document provides the on-line material needed to create a Windows Sockets application for
the Windows NT and the Windows 95 operating systems, using the Microsoft implementation of
Windows Sockets 2. It isintended as a reference tool and outlines the functions in the Windows
Sockets API.

Y ou should be familiar with Win32 programming concepts to make the best use of this document.
Thus, you may want to refer to other references that provide a more systematic guide to writing
Windows Sockets applications.

Note This documentation is intended for application developers. If you are developing a transport
or service provider, see the "Service Provider Documentation” installed with the Platform SDK.

Overview of Windows Sockets 2

Windows Sockets 2 utilizes the sockets paradigm that was first popularized by Berkeley Software
Distribution (BSD) UNIX. It was later adapted for Microsoft Windows in the Windows Sockets
1.1.

One of the primary goals of Windows Sockets 2 has been to provide a protocol-independent
interface fully capable of supporting the emerging networking capabilities, such as real-time
multimedia communications.

Windows Sockets 2 is an interface, not a protocol. As an interface, it is used to discover and
utilize the communications capabilities of any number of underlying transport protocols. Because
itisnot a protocol, it does not in any way affect the "bits on the wire", and does not need to be
utilized on both ends of a communications link.

Windows Sockets programming previously centered around TCP/IP. Some of the programming
practices that worked with TCP/IP do not work with every protocol. As aresult, the Windows
Sockets 2 API added new functions where necessary.

Windows Sockets 2 has changed its architecture to provide easier access to multiple transport
protocols. Following the Windows Open System Architecture (WOSA) model, Windows Sockets
2 now defines a standard service provider interface (SPI) between the application programming
interface (API), with its functions exported from WS2_32.DLL, and the protocol stacks.
Consequently, Windows Sockets 2 support is not limited to TCP/IP protocol stacks asisthe case
for Windows Sockets 1.1. For more information, see Windows Sockets 2 Architecture.

There are new challenges in devel oping Windows Sockets 2 applications. When sockets only
supported TCP/IP, adeveloper could create an application that supported only two socket types:
connectionless and connection-oriented. Connectionless protocols used SOCK_DGRAM sockets
and connection-oriented protocols used SOCK_STREAM sockets. Now, these are just two of the
many new socket types. Additionally, developers can no longer rely on socket type to describe all
the essential attributes of atransport protocol.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information

Windows Sockets 2 Features

Page 3 sur 307

The new Windows Sockets 2 extends functionality in a number of areas.

Windows Sockets 2 Featur es

Access to protocols other than TCP/IP

Overlapped /O with scatter/gather

Protocol -independent name resol ution
facilities:

Protocol -independent multicast and
multipoint:

Quality of service

Other frequently requested extensions

Conventions for New Functions

Windows Sockets 2 allows an application to use the
familiar socket interface to achieve simultaneous
access to a number of installed transport protocols.

Windows Sockets 2 incorporates the overlapped
paradigm for socket I/O and incorporates
scatter/gather capabilities as well, following the
model established in Win32 environments.

Windows Sockets 2 includes a standardized set of
functions for querying and working with the myriad
of name resolution domains that exist today (for
example DNS, SAP, and X.500).

Windows Sockets 2 applications discover what type
of multipoint or multicast capabilities a transport
provides and use these facilities in a generic manner.

Window Sockets 2 establishes conventions
applications use to negotiate required service levels
for parameters such as bandwidth and latency. Other
QOS-related enhancements include mechanisms for
network-specific QOS extensions.

Windows Sockets 2 incorporates shared sockets and
conditional acceptance; exchange of user data at
connection setup/teardown time; and protocol -
specific extension mechanisms.

Windows Sockets 2, with its expanded scope, takes the socket paradigm beyond the original
design. Asaresult, anumber of new functions have been added. These have been assigned names
that begin with "WSA." In all but afew instances, these new functions are expanded versions of

existing functions from BSD sockets.

The new functions are described in the reference section of the document, following the
conventions of the Platform SDK. The new functions are also listed in Summary of New

Functions.

M icrosoft Extensions and Windows Sockets 2

The Windows Sockets 2 specification defines an extension mechanism that exposes advanced
transport functionality to application programs. For more information, see Function Extension

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm

09/12/2003

Legal Information Page 4 sur 307

Mechanism.

The following Microsoft-specific extensions were added to Windows Sockets 1.1. They are al'so
available in Windows Sockets 2.

AcceptEx

GetAcceptExSockaddrs

TransmitFile
WSARecvEX

These functions are not exported from the WS2_32.DLL; they are exported from
MSWSOCK.DLL.

An application written to use the Microsoft-specific extensions to Windows Sockets will not run
correctly over a Windows Sockets service provider that does not support those extensions.

Socket Handles for Windows Sockets 2

A socket handle can optionally be afile handle In Windows Sockets 2. It is possible to use socket
handles with ReadFile, WriteFile, ReadFileEx, WriteFileEx, DuplicateHandle, and other
Win32 functions. Not all transport service providers will support this option. For an application to
run over the widest possible number of service providers, it should not assume that socket handles
arefile handles.

Windows Sockets 2 has expanded certain functions used for transferring data between sockets
using handles. The functions offer advantages specific to sockets for transferring data and include
WSARecv, WSASend, and W SADuplicateSocket.

New Concepts, Additions and Changes for
Windows Sockets 2

This section summarizes Windows Sockets 2 and describes the major changes and additions it
contains. Windows Sockets 2 differs from Windows Sockets 1.1 in several ways, particularly in
the architecture. The new architecture, discussed in Windows Sockets 2 Ar chitecture, provides
the foundation for many of the new concepts that have been incorporated into Windows Sockets
2.

An overview of the additions and changes in Windows Sockets 2 follows the discussion of the
new architecture.

Many of the functionsin Windows Sockets 2 are the same as in the other versions of sockets.
However, there are several new functions, which are summarized in Summary of New
Functions. For detailed information on how to use a specific function or feature, refer to the

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 5 sur 307

Reference section.

Windows Sockets 2 Architecture

A number of Windows Sockets 2 features required a substantial change in the Windows Sockets
architecture. The resulting architecture is considerably different from previous versions, but the
benefits are numerous. Foremost among these is Simultaneous A ccess to Multiple Transport
Protocals, explained in detail in the following section.

Other features include the adoption of protocol-independent name resolution facilities, provisions
for layered protocols and protocol chains, and a different mechanism for Windows Sockets
service providers to offer extended, provider-specific functionality.

Simultaneous Accessto Multiple Transport Protocols

In order to provide simultaneous access to multiple transport protocols, the architecture has
changed for Windows Sockets 2. With Windows Sockets 1.1, the DLL that implements the
Windows Sockets interface is supplied by the vendor of the TCP/IP protocol stack. The interface
between the Windows Sockets DLL and the underlying stack was both unique and proprietary.
Windows Sockets 2 changes the model by defining a standard service provider interface (SPI)
between the Windows Sockets DLL and protocol stacks. In this way, multiple stacks from
different vendors can be accessed simultaneously from a single Windows Sockets DLL.
Furthermore, Windows Sockets 2 support is not limited to TCP/IP protocol stacksasitisin
Windows Sockets 1.1.

The Windows Open System Architecture (WOSA) compliant Windows Sockets 2 architecture is
illustrated as follows:

Windowes YWindowes
Sockets 2 Sockets 2
Application Application
Windows
Sockets 2 AP
Transport Mame Space
Functions Functions
WS2 32.0LL
YWindows Sockets 2 YWindows Socke
Transport 2P Marme Space 5
Transport Transport Marne Space Mame Space
Service Service Service Service
Provider Provider Provider Provider

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm

09/12/2003

Legal Information Page 6 sur 307

Windows Sockets 2 Architecture

With the Windows Sockets 2 architecture, it is not necessary, or desirable, for stack vendorsto
supply their own implementation of WS2_32.DLL, sinceasingle WS2_32.DLL must work across
all stacks. The WS2_32.DLL and compatibility shims should be viewed in the same way as an
operating system component.

Backward Compatibility For Windows Sockets 1.1 Applications

Windows Sockets 2 has been made backward compatible with Windows Sockets 1.1 on two
levels: source and binary. This maximizes interoperability between Windows Sockets applications
of any version and Windows Sockets implementations of any version. It also minimizes problems
for users of Windows Sockets applications, network stacks, and service providers. Current
Windows Sockets 1.1-compliant applications will run over a Windows Sockets 2 implementation
without modification of any kind, aslong as at least one TCP/IP service provider is properly
installed.

Sour ce Code Compatibility

Source code compatibility in Windows Sockets 2 means, with few exceptions, that all the
Windows Sockets 1.1 functions are preserved in Windows Sockets 2. Windows Sockets 1.1
applications that make use of blocking hooks will need to be modified since blocking hooks are
no longer supported in Windows Sockets 2. (For more information, see Windows Sockets 1.1
Blocking routines & EINPROGRESS.)

Thus, existing Windows Sockets 1.1 application source code can easily be moved to the Windows
Sockets 2 system by including the new header file, WINSOCK2.H, and performing a
straightforward relink with the appropriate Windows Sockets 2 libraries. Application developers
are encouraged to view this asthe first step in afull transition to Windows Sockets 2 because
there are numerous ways in which a Windows Sockets 1.1 application can be improved by
exploring and using the new functionality in Windows Sockets 2.

Binary Compatibility

A major design goal for Windows Sockets 2 was to enable existing Windows Sockets 1.1
applications to work, unchanged at a binary level, with Windows Sockets 2. Since Windows
Sockets 1.1 applications are TCP/IP-based, binary compatibility implies that TCP/IP-based
Windows Sockets 2 Transport and Name Resolution Service Providers are present in the
Windows Sockets 2 system. In order to enable Windows Sockets 1.1 applications in this scenario,
the Windows Sockets 2 system has an additional "shim" component supplied with it: aVersion
1.1-compliant WINSOCK.DLL.

Installation guidelines for Windows Sockets 2 ensure there will be no negative impact to existing

Windows Sockets-based applications on an end user system by the introduction of any Windows
Sockets 2 components.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 7 sur 307

Wind o Wind o
Sockets 2 Sockets 1.1
Application Application
l Wyindowes

Sockets 1.1 AP

WIS OCK DLL (16 bit)
WS OCKI2. DLL (32 bit)

¥ Wyird o
Sockets 2 API

WS2_32.DLL (32 bit

Wyindowes
Sockets 2 5PI's
TCR/P TCRAP-based
Mamespace
Transpoart .
! SEMvice
Semvice .
Provider Frovider
e.q. ONS

Windows Sockets 1.1 Compatibility Architecture

Important To obtain information about the underlying TCP/IP stack, Windows Sockets 1.1
applications currently use certain members of the W SAData structure (obtained through a call to
W SAStartup). These members include: iMaxSockets, iMaxUdpDg, and IpVendor Info.

While Windows Sockets 2 applications ignore these values (since they cannot uniformly apply to
all available protocol stacks), safe values are supplied to avoid breaking Windows Sockets 1.1
applications.

Making Transport Protocols Available To Windows Sockets

A transport protocol must be properly installed on the system and registered with Windows
Sockets to be accessible to an application. The WS2_32.DLL exports a set of functionsto
facilitate the registration process. Thisincludes creating a new registration and removing an
existing one.

When new registrations are created, the caller (that is, the stack vendor's installation script)
supplies one or more filled in WSAPROTOCOL _INFO structures containing a complete set of
information about the protocol. (See the Welcome To Windows Sockets 2 SPI for information on
how thisis accomplished.) Any transport stack that is installed this way will be referred to asa
Windows Sockets service provider.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 8 sur 307

The Windows Sockets 2 SDK includes a small Windows applet, SPORDER.EXE, that allows the
user to view and modify the order in which service providers are enumerated. By using this
SPORDER.EXE, a user can manually establish a particular TCP/IP protocol stack as the default
TCP/IP provider if more than one such stack is present.

The SPORDER.EXE applet exports functions from SPORDER.DLL to reorder the service
providers. As aresult, install ation applications can use the interface of SPORDER.DLL to
programmatically reorder service providers to suit their needs.

L ayered Protocols and Protocol Chains

Windows Sockets 2 incorporates the concept of alayered protocol. A layered protocol is one that
implements only higher level communications functions while relying on an underlying transport
stack for the actual exchange of data with aremote endpoint. An example of this type of layered
protocol is asecurity layer that adds a protocol to the socket connection processin order to
perform authentication and establish an encryption scheme. Such a security protocol generally
requires the services of an underlying, reliable transport protocol such as TCP or SPX.

The term base protocol refersto a protocol, such as TCP or SPX, that is fully capable of
performing data communications with a remote endpoint. A layered protocol is a protocol that
cannot stand alone, while a protocol chain is one or more layered protocols strung together and
anchored by a base protocol.

A protocol chain is created by having the layered protocols support the Windows Sockets 2 SPI at
both their upper and lower edges. A special WSAPROTOCOL _INFO structure is created that
refers to the protocol chain as awhole, and that describes the explicit order in which the layered
protocols are joined. Thisisillustrated in the figure Layered Protocol Architecture. Since only
base protocols and protocol chains are directly usable by applications, they are the only ones listed
when the installed protocols are enumerated with the W SAEnumPr otocols function.

API
WS2 32.DLL
SPI
¢ A
Layered Protocol
SPI
Layered Protocol

SP \
Base Protocol

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 9 sur 307

L ayered Protocol Architecture

Using Multiple Protocols

An application uses the W SAEnumPr otocols function to determine which transport protocols
and protocol chains are present, and to obtain information about each as contained in the
associated WSAPROTOCOL _INFO structure.

In most instances, thereis asingle WSAPROTOCOL _INFO structure for each protocol or
protocol chain. However, some protocols exhibit multiple behaviors. For example, the SPX
protocol is message oriented (that is, the sender's message boundaries are preserved by the
network), but the receiving socket can ignore these message boundaries and treat it as a byte
stream. Thus, two different WSAPROTOCOL _INFO structure entries could exist for SPX—one
for each behavior.

In Windows Sockets 2, several new address family, socket type, and protocol values appear.
Windows Sockets 1.1 supported a single address family (AF_INET) comprising a small number
of well-known socket types and protocol identifiers. The existing address family, socket type, and
protocol identifiers are retained for compatibility reasons, but new transport protocols with new
mediatypes are supported.

A Windows Sockets 2 clearinghouse has been established for protocol stack vendors to obtain
unique identifiers for new address families, socket types, and protocols. FTP and World Wide
Web servers are used to supply current identifier/value mappings, and email is used to request
allocation of new ones. Thisisthe World Wide Web URL for the Windows Sockets 2 Identifier
Clearinghouse:

http://ww. stardust. com wsresour ce/ wi nsock2/ ws2i dent . ht m

New, unique identifiers are not necessarily well known, but this should not pose a problem.
Applications that need to be protocol-independent are encouraged to select a protocol on the basis
of its suitability rather than the values assigned to their socket_type or protocol fields. Protocol
suitability isindicated by the communications attributes, such as message versus byte stream, and
reliable versus unreliable, that are contained in the protocol WSAPROTOCOL _INFO structure.
Selecting protocols on the basis of suitability as opposed to well-known protocol names and
socket types | ets protocol-independent applications take advantage of new transport protocols and
their associated mediatypes, as they become available.

The server half of aclient/server application benefits by establishing listening sockets on all
suitable transport protocols. Then, the client can establish its connection using any suitable
protocol. For example, thiswould let a client application be unmodified whether it was running
on adesktop system connected through LAN or on alaptop using a wireless network.

Multiple Provider Restrictionson select

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 10 sur 307

The select function is used to determine the status of one or more socketsin a set. For each
socket, the caller can request information on read, write, or error status. A set of socketsis
indicated by an FD_SET structure.

Windows Sockets 2 allows an application to use more than one service provider, but the select
function islimited to a set of sockets associated with a single service provider. This doesnot in
any way restrict an application from having multiple sockets open through multiple providers.

There are two ways to determine the status of set of sockets that span more than one service
provider: 1) using the WSAWaitFor M ultipleEvents or W SAEvent Select functions when
blocking semantics are employed, and 2) using the W SAAsyncSelect function when nonblocking
operations are employed.

When an application needs to use blocking semantics on a set of sockets that spans multiple
providers, WSAWaitFor M ultipleEvents is recommended. The application can aso use the

W SAEventSelect function, which alows the FD_XXX network events (see W SAEventSelect)
to associate with an event object and be handled from within the event object paradigm (described
in Overlapped 1/0 and Event Objects).

The WSAAsyncSelect function is recommended when nonblocking operations are preferred. This
function is not restricted to a single provider because it takes a socket descriptor as an input
parameter.

Function Extension M echanism

The Windows Sockets DLL, WS2_32.DLL, isno longer supplied by each individual stack vendor.
Asaresult, it isno longer possible for a stack vendor to offer extended functionality by just
adding entry points to the WS2_32.DLL. To overcome this limitation, Windows Sockets 2 takes
advantage of the new W SAI octl function to accommodate service providers who want to offer
provider-specific functionality extensions. This mechanism assumes, of course, that an application
isaware of a particular extension and understands both the semantics and syntax involved. Such
information would typically be supplied by the service provider vendor.

In order to invoke an extension function, the application must first ask for a pointer to the desired
function. Thisis done through the WSAI octl function using the
SIO_GET_EXTENSION_FUNCTION_POINTER command code. The input buffer to the

W SAIl octl function contains an identifier for the desired extension function while the output
buffer contains the function pointer itself. The application can then invoke the extension function
directly without passing through the WS2_32.DLL.

The identifiers assigned to extension functions are globally unique identifiers (GUIDs) that are
allocated by service provider vendors. Vendors who create extension functions are urged to
publish full details about the function including the syntax of the function prototype. This makes
it possible for common and popular extension functions to be offered by more than one service
provider vendor. An application can obtain the function pointer and use the function without
needing to know anything about the particular service provider that implements the function.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 11 sur 307

Debug and Trace Facilities

Windows Sockets 2 application devel opers need to isolate bugsin 1) the application, 2) the
WS2_32.DLL or one of the compatibility "shim" DLLSs, or 3) the service provider. Windows
Sockets 2 addresses this need through a specially devised version of the WS2_32.DLL and a
separate debug/trace DLL. This combination alows all procedure calls across the Windows
Sockets 2 API or SPI to be monitored and, to some extent, be controlled.

Devel opers can use this mechanism to trace procedure calls, procedure returns, parameter values,
and return values. Parameter values and return values can be altered on procedure call or
procedure return. If desired, a procedure call can be prevented or redirected. With accessto this
level of information and control, a developer can isolate any problem in the application,

WS2 32.DLL, or service provider.

The Windows Sockets 2 SDK includes the debug WS2_32.DLL, asample debug/trace DLL, and a
document containing a detailed description of the components. The sample debug/trace DLL is
provided in both source and object form. Developers are free to use the source to develop versions
of the debug/trace DLL that meet their specific needs.

Name Resolution

Windows Sockets 2 includes provisions for standardizing the way applications access and use the
various network name resol ution services. Windows Sockets 2 applications do not need to be
aware of the widely differing interfaces associated with name services such as DNS, NIS, X.500,
SAP, and others. An introduction to this topic and the details of the functions are currently located
in Protocol-1ndependent Name Resolution.

Overlapped 1/0O and Event Objects

Windows Sockets 2 introduces overlapped 1/0 and requires that all transport providers support
this capability. Overlapped 1/0 follows the model established in Win32 and can be performed
only on sockets created through the W SA Socket function with the WSA_FLAG_OVERLAPPED
flag set or sockets created through the socket function.

Note Creating a socket with the overlapped attribute has no impact on whether a socket is
currently in the blocking or nonblocking mode. Sockets created with the overlapped attribute can
be used to perform overlapped I/0O—doing so does not change the blocking mode of a socket.
Since overlapped 1/0 operations do not block, the blocking mode of a socket isirrelevant for these
operations.

For receiving, applications use the WSARecv or W SARecvFrom functions to supply buffersinto
which datais to be received. If one or more buffers are posted prior to the time when data has
been received by the network, that data could be placed in the user's buffersimmediately as it
arrives. Thus, it can avoid the copy operation that would otherwise occur at the time the recv or
recvirom function isinvoked. If datais already present when receive buffers are posted, it is
copied immediately into the user's buffers.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 12 sur 307

If data arrives when no receive buffers have been posted by the application, the network resorts to
the familiar synchronous style of operation. That is, the incoming datais buffered internally until
the application issues areceive call and thereby supplies a buffer into which the data can be
copied. An exception to thisis when the appliation uses setsockopt to set the size of the receive
buffer to zero. In thisinstance, reliable protocols would only allow data to be received when
application buffers had been posted and data on unreliable protocols would be lost.

On the sending side, applications use W SASend or WSASendT o to supply pointersto filled
buffers and then agree to not disturb the buffersin any way until the network has consumed the
buffer's contents.

Overlapped send and receive calls return immediately. A return value of zero indicates that the
I/O operation was completed immediately and that the corresponding compl etion indication
already occurred. That is, the associated event object has been signaled, or a completion routine
has been queued and will be executed when the calling thread gets into the alertable wait state.

A return value of SOCKET_ERROR coupled with an error code of WSA_10_PENDING
indicates that the overlapped operation has been successfully initiated and that a subsequent
indication will be provided when send buffers have been consumed or when areceive operation
has been completed. However, for sockets that are byte-stream style, the completion indication
occurs whenever the incoming data is exhausted, regardless of whether the buffersare full. Any
other error code indicates that the overlapped operation was not successfully initiated and that no
completion indication will be forthcoming.

Both send and receive operations can be overlapped. The receive functions can be invoked several
times to post receive buffersin preparation for incoming data, and the send functions can be
invoked several times to queue multiple buffers to send. While the application can rely upon a
series of overlapped send buffers being sent in the order supplied, the corresponding completion
indications might occur in adifferent order. Likewise, on the receiving side, buffers will be filled
in the order they are supplied, but the completion indications might occur in adifferent order.

Canceling individual overlapped operations pending on a given socket isimpossible. However,
the closesocket function can be called to close the socket and eventually discontinue all pending
operations.

The deferred completion feature of overlapped 1/0 is also available for WSAl octl, which isan
enhanced version of ioctlsocket.

Event Objects

Introducing overlapped 1/O requires a mechanism for applications to unambiguously associate
send and receive requests with their subsequent completion indications. In Windows Sockets 2,
thisis accomplished with event objects that are modeled after Win32 events. Windows Sockets
event objects are fairly simple constructs that can be created and closed, set and cleared, and
waited upon and polled. Their prime utility is the ability of an application to block and wait until
one or more event objects become set.

Applications use W SACr eateEvent to obtain an event object handle that can then be supplied as
arequired parameter to the overlapped versions of send and receive calls (W SA Send,

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 13 sur 307

WSASendTo, WSARecv, WSARecvFrom). The event object, which is cleared when first
created, is set by the transport providers when the associated overlapped I/O operation has
completed (either successfully or with errors). Each event object created by W SACr eateEvent
should have a matching W SA CloseEvent to destroy it.

Event objects are also used in WSAEventSelect to associate one or more FD_ XXX network
events with an event object. Thisis described in Asynchronous Notification Using Event Objects.

In 32-bit environments, event object — related functions, including W SACr eateEvent,

W SACloseEvent, WSA SetEvent, W SAResetEvent, and WSAWaitFor M ultipleEvents are
directly mapped to the corresponding native Win32 functions, using the same function name, but
without the W SA prefix.

Recelving Completion Indications

Several options are available for receiving completion indications, thus providing applications
with appropriate levels of flexibility. These include: waiting (or blocking) on event objects,
polling event objects, and socket 1/O completion routines.

Blocking and Waiting for Completion I ndication

Applications can block while waiting for one or more event objects to become set using the
WSAWaitFor M ultipleEvents function. In Win32 implementations, the process or thread will
truly block. Since Windows Sockets 2 event objects are implemented as Win32 events, the native
Win32 function, WaitFor M ultipleObjects can also be used for this purpose. Thisis especially
useful if the thread needs to wait on both socket and nonsocket events.

Poalling for Completion Indication

Applications that prefer not to block can use the WSAGetOver lappedResult function to poll for
the compl etion status associated with any particular event object. This function indicates whether
or not the overlapped operation has completed, and if completed, arranges for the

WSAGetL astError function to retrieve the error status of the overlapped operation.

Using socket 1/0 completion routines

The functions used to initiate overlapped 1/0 (W SASend, WSASendTo, WSARecv,

W SARecvFrom) all take [pCompl etionRoutine as an optional input parameter. Thisis a pointer
to an application-specific function that will be called after a successfully initiated overlapped I/O
operation was completed (successfully or otherwise). The completion routine follows the same
rules as stipulated for Win32 file 1/O completion routines. That is, the completion routine will not
be invoked until the thread isin an alertable wait state, such as when the function
WSAWaitFor MultipleEventsisinvoked with the fAlertable flag set. An application that uses
the compl etion routine option for a particular overlapped 1/O request may not use the "wait"
option of WSAGetOver lappedResult for that same overlapped I/0O request.

The transports alow an application to invoke send and receive operations from within the context
of the socket I/0O completion routine and guarantee that, for a given socket, 1/0 completion
routines will not be nested. This permits time-sensitive data transmissions to occur entirely within
a preemptive context.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 14 sur 307

Summary of overlapped completion indication mechanisms

The particular overlapped 1/O completion indication to be used for a given overlapped operation is
determined by whether the application supplies a pointer to a completion function, whether a
WSAOVERLAPPED structure is referenced, and by the value of the hEvent member within the
WSAQOVERLAPPED structure (if supplied). The following table summarizes the completion
semantics for an overlapped socket and shows the various combinations of |pOverlapped, hEvent,
and |pCompl etionRoutine:

|pOverlapped hEvent IpCompletionRoutine Completion Indication
NULL not ignored Operation compl etes
applicable synchronoudly. It behaves asif it
were a nonoverlapped socket.
INULL NULL NULL Operation completes overlapped,

but there is no Windows Sockets
2-supported completion
mechanism. The completion port
mechanism (if supported) can be
used in this case. Otherwise, there
will be no completion notification.

INULL INULL NULL Operation compl etes overlapped,
notification by signaling event
object.

INULL ignored INULL Operation compl etes overlapped,

notification by scheduling
completion routine.

Asynchronous Notification Using Event Objects

The WSAEventSelect and W SAEnumNetwor kEvents functions are provided to accommodate
applications such as daemons and services that have no user interface (and hence do not use
Windows handles). The W SAEventSelect function behaves exactly like the W SAAsyncSel ect
function. However, instead of causing a Windows message to be sent on the occurrence of an
FD_XXX network event (for example, FD_READ and FD_WRITE), an application-designated
event object is set.

Also, the fact that a particular FD_XXX network event has occurred is "remembered” by the
service provider. The application can call WSAEnumNetwor kEvents to have the current
contents of the network event memory copied to an application-supplied buffer and to have the
network event memory automatically cleared. If needed, the application can also designate a
particular event object that is cleared along with the network event memory.

Flow Specification Quality of Service

The basic Quality of Service (QOS) mechanism in Windows Sockets 2 descends from the flow

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 15 sur 307

specification as described in RFC 1363, dated September 1992. Following is abrief overview of
this concept:

Flow specifications describe a set of characteristics about a proposed, unidirectional flow through
the network. An application can associate apair of flow specifications with a socket (one for each
direction) at the time a connection request is made using W SAConnect, or at other times using
WSAI octl withthe SIO_SET_QOS/SIO_SET_GROUP_QOS command. Flow specifications
indicate parametrically what level of serviceis required and provide afeedback mechanism for
applications to use in adapting to network conditions.

Thisisthe usage model for QOS in Windows Sockets 2: An application can establish its QOS
requirements at any time with WSAI octl or coincident with the connect operation with

W SAConnect. For connection-oriented transports, it is often most convenient for an application
to use the WSAConnect function because any QOS values supplied at connect time supersede
those supplied earlier with the W SAI octl function. If the WSAConnect function completes
successfully, the application knows that its QOS request has been honored by the network. The
application is then free to use the socket for data exchange. If the connect operation fails because
of limited resources, an appropriate error indication is given. At this point, the application can
scale down its service request and try again, or it can give up.

Transport providers update the associated flowspec structures after every connection attempt
(successful or otherwise) in order to indicate, as well as possible, the existing network conditions.
(Updating with the Default VValues will indicate that information about the current network
conditions is not available.) This update from the service provider about current network
conditions is especially useful when the application's QOS request consists entirely of the default
(unspecified) values, which any service provider should be able to meet.

Applications expect to use this information about current network conditions to guide their use of
the network, including any subsequent QOS requests. However, the information provided by the
transport in the updated flowspec structureis only an indication. It might be little more than a
rough estimate that only appliesto the first hop and not to the compl ete, end-to-end connection.
The application must take appropriate precautions in interpreting this information.

Connectionless sockets can also use the W SA Connect function to establish a specified QOS level
to asingle designated peer. Otherwise, connectionless sockets use the W SAl octl function to
stipulate the initial QOS request, and any subsequent QOS renegotiations.

Even after aflow is established, conditions in the network can change or one of the
communicating parties might invoke a QOS renegotiation that results in areduction (or increase)
in the available service level. A notification mechanism is included that utilizes the usual
Windows Sockets notification techniques (FD_QOS and FD_GROUP_QOS events) to indicate to
the application that QOS levels have changed.

A service provider generates FD_QOS/FD_GROUP_QOS natifications when the current level of
service supported is significantly different (especially in the negative direction) from what was
last reported as a basic guideline. The application should use the W SAI octl function with
SIO_GET_QOS and/or SIO_GET_GROUP_QOS to retrieve the corresponding flowspec structure
and examine them in order to discover what aspect of the service level has changed. The QOS
structures will be updated where appropriate. regardiess of whether FD_QOS/FD_GROUP_QOS
isregistered and generated.

If the updated level of serviceis not acceptable, the application can adjust itself to accommodate
it, attempt to renegotiate QOS, or close the socket. If arenegotiation is attempted, a successful

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 16 sur 307

return from the W SAI octl function indicates that the revised QOS request was accepted.,
Otherwise, an appropriate error will be indicated.

The flow specifications proposed for Windows Sockets 2 divide QOS characteristics into the
following general areas:

Source Traffic Description
The manner in which the application's traffic will be injected into the network. This
includes specifications for the token rate, the token bucket size, and the peak bandwidth.
Though the bandwidth requirement is expressed in terms of atoken rate, a service provider
need not implement token buckets. Any traffic management scheme that yields equivalent
behavior is permitted.

Latency
Upper limits on the amount of delay and delay variation that are acceptable.

Level of service guarantee
Whether or not an absolute guarantee is required as opposed to best effort. Providers that
have no feasible way to provide the level of service requested are expected to fail the
connection attempt.

Provider-specific parameters
The flow specification itself can be extended in ways that are particular to specific
providers.

QOS Templates

It is possible for QOS templates to be established for well-known media flows such as H.323,
G.711, and others. The WSAGetQOSByName function can be used to obtain the appropriate
QOS structure for named media streams. It is up to each service provider to determine the
appropriate values for each element in the QOS structure, as well as any protocol or media-
dependent QOS extensions. The documentation for the WSA GetQOSByName function will be
periodically updated with alist of flow specifications and general descriptions as they become
well-known. The WSAGetQOS ByName function can also be used to enumerate the set of known
QOS template names.

Default Values

A default flowspec structure is associated with each eligible socket at the timeit is created. The
member values for the default flowspec structure, in all cases, indicate that no particular flow
characteristics are being requested from the network. Applications only need to modify values
important to that application, but must be aware that there is some coupling between fields such
as TokenRate and TokenBucketSize. These are the values for the default flow spec:

TokenRate = OXFFFFFF(not specifi ed)
TokenBucket Si ze = OXFFFFFF(not specifi ed)
PeakBandwi dt h = OXFFFFFF(not specifi ed)
Latency = OXFFFFFF(not specified)
Del ayVari ation = OXFFFFFF(not specifi ed)
Servi ceType = SERVI CETYPE

MaxSduSi ze =... OXFFFFFF

M ni munPol i cedSi ze = OXFFFFFF

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 17 sur 307

Socket Groups

Important Reserved for future use with socket groups:

Windows Sockets 2 introduces a number of function parameters, data types, structure members,
and manifest constant values that are reserved for future use in grouping sockets together. As of
the version 2.2.1 of the specification, the intended future use of these itemsis fully described,
however, none of the group-related parametersis interpreted in software releases corresponding to
the version 2.2.1 specification. Since a client always has the option to elect not to use socket
groups, there are always default values and behaviors defined for group-related definitions. It is
simple for an application not employing socket groups to use default values in such afashion that
the application will not be harmed if and when socket groups are "turned on" in the future.
Definitions related to socket groups are marked in version 2.2.1 specification with the phrase:
"Reserved for future use with socket groups” preceding the description of the intended future use.

Windows Sockets 2 introduces the concept of a socket group as a means for an application (or
cooperating set of applications) to indicate to an underlying service provider that a particular set
of sockets are related, and that the group thus formed has certain attributes. Group attributes
include relative priorities of the individual sockets within the group and a group's quality of
service specification.

Applications needing to exchange multimedia streams over the network benefit by establishing a
specific relationship among the set of sockets being utilized. This can include, as aminimum, an
indication to the service provider about the relative priorities of the media streams being carried.
For example, a conferencing application would likely give the socket used for carrying the audio
stream a higher priority than the socket used for the video stream. Furthermore, there are transport
providers (for example, digital telephony and ATM) that can utilize a group, quality-of-service
specification to determine the appropriate characteristics for the underlying call or circuit
connection. The sockets within a group are then multiplexed in the usual manner over this call. By
allowing the application to identify the sockets that make up a group and to specify the required
group attributes, service providers can operate with maximum effectiveness.

The WSASocket and W SAA ccept functions are two new functions used to specifically create
and join a socket group coincident with creating a new socket. Socket group identifiers can be
retrieved by using getsockopt with option SO_GROUP_ID. Relative priority can be accessed by
using get/setsock opt with option SO_GROUP_PRIORITY. .

Shared Sockets

The WSADuplicateSocket function is introduced to enable socket sharing across processes. A
source process calls W SADuplicateSocket to obtain a special WSAPROTOCOL _INFO structure
for atarget process ID. It uses some interprocess communications (IPC) mechanism to pass the
contents of this structure to atarget process. The target process then uses the
WSAPROTOCOL_INFO structure in acall to WSPSocket. The socket descriptor returned by this
function will be an additional socket descriptor to an underlying socket which thus becomes
shared. Sockets can be shared among threads in a given process without using the

W SADuplicateSocket function because a socket descriptor isvalid in al threads of a process.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 18 sur 307

The two (or more) descriptors that reference a shared socket can be used independently asfar as
I/0O is concerned. However, the Windows Sockets interface does not implement any type of access
control, so the processes must coordinate any operations on a shared socket. A typical example of
sharing socketsis to use one process for creating sockets and establishing connections. This
process then hands of f sockets to other processes that are responsible for information exchange.

The WSADuplicateSocket function creates socket descriptors and not the underlying socket. As
aresult, all the states associated with a socket are held in common across all the descriptors. For
example, a setsockopt operation performed using one descriptor is subsequently visible using a
getsockopt from any or all descriptors. A process can call closesocket on a duplicated socket and
the descriptor will become deallocated. The underlying socket, however, will remain open until
closesocket is called with the last remaining descriptor.

Notification on shared sockets is subject to the usual constraints of the W SAAsyncSelect and

W SAEventSelect functions. Issuing either of these calls using any of the shared descriptors
cancels any previous event registration for the socket, regardless of which descriptor was used to
make that registration. Thus, for example, it would not be possible to have process A receive
FD_READ events and process B receive FD_WRITE events. For situations when such tight
coordination isrequired, it is suggested that devel opers use threads instead of separate processes.

Enhanced Functionality During Connection Setup and
Teardown

The W SAAccept function lets an application obtain caller information such as caler ID and QOS
before deciding whether to accept an incoming connection request. Thisis done with a callback to
an application-supplied condition function.

User-to-user data specified by parameters in the W SA Connect function and the condition
function of WSAAccept can be transferred to the peer during connection establishment, provided
this feature is supported by the service provider.

It isalso possible (for protocols that support this) to exchange user data between the endpoints at
connection teardown time. The end that initiates the teardown can call the W SA SendDisconnect
function to indicate that no more data be sent and to initiate the connection teardown sequence.
For certain protocols, part of this teardown sequence is the delivery of disconnect data from the
teardown initiator. After receiving notice that the remote end has initiated the teardown sequence
(typically by the FD_CLOSE indication), the W SARecvDisconnect function can be called to
receive the disconnect data, if any.

To illustrate how disconnect data can be used, consider the following scenario. The client half of a
client/server application is responsible for terminating a socket connection. Coincident with the
termination, it provides (using disconnect data) the total number of transactions it processed with
the server. The server in turn responds with the cumulative total of transactions that it has
processed with al clients. The sequence of calls and indications might occur as follows:

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 19 sur 307

Client Side Server Side

(1) Invoke W SA SendDisconnect to conclude
session and supply transaction total

(2) Get FD_CLOSE, recv with areturn value of
zero, or WSAEDISCON error return from

W SARecv indicating graceful shutdownin
progress

(3) Invoke W SARecvDisconnect to get client's
transaction total

(4) Compute cumulative grand total of all
transactions

(5) Invoke W SA SendDisconnect to transmit
grand total

(6) Receive FD_CLOSE indication (5a) Invoke closesocket

(7) Invoke W SARecvDisconnect to receive
and store cumulative grand total of
transactions

(8) Invoke closesocket

Note that step (5a) must follow step (5), but has no timing relationship with step (6), (7), or (8).

Extended Byte Order Conversion Routines

Windows Sockets 2 does not assume that the network byte order for all protocolsis the same. A
set of conversion routinesis supplied for converting 16-bit and 32-bit quantities to and from
network byte order. These routines take as an input parameter parameter the socket handle that
has a WSAPROTOCOL _INFO structure associated with it. The NetworkByteOrder member of
the WSAPROTOCOL _INFO structure specifies the desired network byte order (currently either
"big-endian” or "little-endian™).

Support for Scatter/Gather 1/0

The WSASend, WSASendTo, WSARecv, and WSARecvFrom functions al take an array of
application buffers asinput parameters and can be used for scatter/gather (or vectored) 1/0. This
can be very useful in instances where portions of each message being transmitted consist of one or
more fixed-length "header" components in addition to message body. Such header components
need not be concatenated by the application into a single contiguous buffer prior to sending.
Likewise on receiving, the header components can be automatically split off into separate buffers,
leaving the message body "pure.”

When receiving into multiple buffers, completion occurs as data arrives from the network,
regardless of whether all the supplied buffers are utilized.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 20 sur 307

Protocol-1ndependent Multicast and Multipoint

Windows Sockets 2 provides a generic method for utilizing the multipoint and multicast
capabilities of transports. This generic method implements these features just asit allows the
basic data transport capabilities of numerous transport protocols to be accessed. The term
multipoint is used hereafter to refer to both multicast and multipoint communications.

Current multipoint implementations (for example, IP multicast, ST-I1, T.120, and ATM UNI) vary
widely. How nodes join a multipoint session, whether a particular node is designated as a central
or root node, and whether data is exchanged between all nodes or only between a root node and
the various leaf nodes differ among implementations. The WSAPROTOCOL _INFO structure for
Windows Sockets 2 is used to declare the various multipoint attributes of a protocol. By
examining these attributes, the programmer knows what conventions to follow with the applicable
Windows Sockets 2 functions to setup, utilize and teardown multipoint sessions.

Following is a summary of the features of Windows Sockets 2 that support multipoint:

Two attribute bitsin the WSAPROTOCOL _INFO structure.

Four flags defined for the dwFlags parameter of the W SA Socket function.

One function, WSAJoinL eaf, for adding leaf nodes into a multipoint session

Two WSAI octl command codes for controlling multipoint loopback and establishing the
scope for multicast transmissions. (The latter corresponds to the |P multicast time-to-live or
TTL parameter.)

Note The inclusion of these multipoint features in Windows Sockets 2 does not preclude an
application from using an existing protocol-dependent interface, such as the Deering socket
options for IP multicast.

See Multipoint and Multicast Semantics for detailed information on how the various multipoint
schemes are characterized and how the applicable features of Windows Sockets 2 are utilized.

Summary of New Socket Options

The new socket options for Windows Sockets 2 are summarized in the following table. See
getsockopt and setsockopt for detailed information on these options. The other new protocol-
specific socket options can be found in the Protocol-specific Annex (a separate document
included with the Platform SDK).

Value Type Meaning Default Note
SO_GROUP_ID GROUP Reserved for future NULL get only
use with socket
groups: The

identifier of the
group to which this
socket belongs.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information

SO_GROUP int
_PRIORITY

SO MAX_MSG int
_SIZE

SO_PROTOCOL struct
_INFO WSAPROTOCOL_INFO

PVD_CONFIG char FAR*

Page 21 sur 307

Reserved for future 0
use with socket
groups: Therelative
priority for sockets
that are part of a
socket group.

Maximum
outbound (send)
Size of amessage
for message-
oriented socket
types. Thereisno
provision for
finding out the
maximum inbound
message size. Has
no meaning for
stream-oriented
sockets.

Description of
protocol info for
protocol that is

Implementation get only
dependent

protocol
dependent

get only

bound to this

socket.

An opaque data Implementation
structure object dependent
containing

configuration
information of the
service provider.

Summary of New Socket 1octl Opcodes

The new socket ioctl opcodes for Windows Sockets 2 are summarized in the following table. See
WSAIl octl for detailed information on these opcodes. The W SAl octl function also supports all
the ioctl opcodes specified in ioctlsocket. Theother new protocol-specific ioctl opcodes can be
found in the Protocol -specific Annex (a separate document included with the Platform SDK).

Opcode Input Type Output Type Meaning

SIO_ASSOCIATE companion <not used> Associate the socket with the specified

_HANDLE AP handle of a companion interface.
dependent

SIO_ENABLE <notused> <notused> Circular queuing isenabled.

_CIRCULAR_QUEUEING

SIO_FIND_ROUTE struct <not used> Request the route to the specified
sockaddr address to be discovered.

SIO_FLUSH <not used> <notused> Discard current contents of the sending

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm

queue.

09/12/2003

Legal Information Page 22 sur 307

SIO_GET_BROADCAST <notused> struct Retrieve the protocol -specific broadcast

_ADDRESS sockaddr address to be used in
sendto/WSASendTo.

SIO_ GET_QOS <notused> QOS Retrieve current flow specification(s) for
the socket.

SIO_GET_GROUP_QOS <notused> QOS Reserved for future use with socket

groups: Retrieve current group flow
specification(s) for the group this socket

belongs to.
SIO_MULTIPOINT BOOL <not used> Control whether data sent in a multipoint
_LOOPBACK session will also be received by the same
socket on the local host.
SIO_MULTICAST int <not used> Specify the scope over which multicast
_SCOPE transmissions will occur.
SIO_SET_QOS QOS <not used> Establish new flow specification(s) for
the socket.
SIO_SET_GROUP_QOS QOS <not used> Reserved for future use with socket

groups: Establish new group flow
specification(s) for the group this socket

belongs to.
SIO_TRANSLATE int companion Obtain a corresponding handle for
_HANDLE AP socket sthat isvalid in the context of a
dependent ~ companion interface.
SIO_ROUTING SOCKADDR SOCKADDR Obtain the address of local interface
_INTERFACE_QUERY which should be used to send to the
specified address
SIO_ROUTING SOCKADDR <not used> Request notification of changesin
_INTERFACE_CHANGE information reported via

SIO_ROUTING_INTERFACE_QUERY
for the specified address

SIO_ADDRESS <not used> SOCKET Obtain the list of addresses to which
_LIST_QUERY _ADDRESS application can bind.

_LIST
SIO_ADDRESS <not used> <notused> Request notification of changesin
_LIST_CHANGE information reported via

SIO_ADDRESS LIST_QUERY

Summary of New Functions
The new API functions for Windows Sockets 2 are summarized in the following table.

Data Transport Functions

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information

Function
WSAA cceptl

WSACloseEvent
WSA Connect1

WSA CreateEvent
WSA DuplicateSocket

WSA EnumNetworkEvents
WSAEnumProtocols

WSAEventSelect
WSA GetOverlappedResult
WSA GetQOSByName

WSAHtonl

WSAHtons

WSAloctl1

WSAJoinLeafl

WSANtohl

WSANtohs

WSA ProviderConfigChange

WSARecv1

WSA RecvDisconnect

WSARecvFroml

WSAResetEvent
WSASend1

W SA SendDisconnect

WSASendTol

Page 23 sur 307

Description

An extended version of accept which allows for
conditional acceptance and socket grouping.

Destroys an event object.

An extended version of connect which allows for
exchange of connect data and QOS specification.

Creates an event object.

Creates a new socket descriptor for a shared
socket.

Discovers occurrences of network events.

Retrieves information about each available
protocol.

Associates network events with an event object.
Gets completion status of overlapped operation.

Supplies QOS parameters based on a well-known
service name.

Extended version of htonl.

Extended version of htons.
Overlapped-capable version of ioctlsocket.
Joins aleaf node into a multipoint session.
Extended version of ntohl.

Extended version of ntohs.

Receive notifications of service providers being
installed/removed.

An extended version of recv which accommodates
scatter/gather 1/0, overlapped sockets, and
provides the flags parameter as IN OUT.

Terminates reception on a socket and retrieves the
disconnect data, if the socket is connection-
oriented.

An extended version of recvfrom which
accommodates scatter/gather 1/O, overlapped
sockets, and provides the flags parameter as IN
OUT.

Resets an event object.

An extended version of send which
accommodates scatter/gather 1/0 and overlapped
sockets.

Initiates termination of a socket connection and
optionally sends disconnect data.

An extended version of sendto which
accommodates scatter/gather 1/0 and overlapped
sockets.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 24 sur 307

WSA SetEvent Sets an event object.

WSA Socket An extended version of socket which takes a
WSAPROTOCOL _INFO structure as input and
allows overlapped sockets to be created. Also
allows socket groups to be formed.

WSAWaitForMultipleEventsl Blocks on multiple event objects.
1 Theroutine can block if acting on a blocking socket.

Name Registration and Resolution Functions

Function Description

WSAAddressToString Convert an address structure into a
human-readable numeric string

W SAEnumNameSpaceProviders Retrieve the list of available Name
Registration and Resolution service
providers

W SAGet ServiceClassl nfo Retrieves all of the class-specific
information pertaining to a service class

W SAGet Ser viceClassNameByClassl d Returns the name of the service
associated with the given type

W SAInstall ServiceClass Create a new new service class type and
store its class-specific information

W SAL ookupServiceBegin Initiate a client query to retrieve name

information as constrained by a
WSAQUERY SET data structure

W SAL ookupServiceEnd Finish aclient query started by
W SAL ookupServiceBegin and free
resources associated with the query

W SAL ookupSer viceNext Retrieve the next unit of name
information from a client query initiated
by WSAL ookupServiceBegin

W SARemoveServiceClass Permanently removes a service class type

W SA SetService Register or deregister a service instance
within one or more name spaces

WSAStringT oAddress Convert a human-readable numeric string

to a socket address structure suitable for
passing to Windows Sockets routines.

Windows Sockets Programming
Considerations

This section provides programmers with important information on a number of topics. Itis
especially pertinent to those who are porting socket applications from UNIX-based environments
or who are upgrading their Windows Sockets 1.1 applications to Windows Sockets 2.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 25 sur 307

Deviation from Berkeley Sockets

There are afew limited instances where Windows Sockets has had to divert from strict adherence
to the Berkeley conventions, usually because of difficulties of implementation in a Windows
environment.

Socket Data Type

A new datatype, SOCKET, has been defined. Thisis needed because a Windows Sockets
application cannot assume that socket descriptors are equivalent to file descriptors asthey arein
UNIX. Furthermore, in UNIX, all handles, including socket handles, are small, non-negative
integers, and some applications make assumptions that this will be true. Windows Sockets
handles have no restrictions, other than that the value INVALID _SOCKET is not avalid socket.
Socket handles may take any valuein therange O to INVALID_SOCKET-1.

Because the SOCKET type is unsigned, compiling existing source code from, for example, a
UNIX environment may lead to compiler warnings about signed/unsigned data type mismatches.

This means, for example, that checking for errors when the socket and accept routines return
should not be done by comparing the return value with -1, or seeing if the value is negative (both
common, and legal, approaches in BSD). Instead, an application should use the manifest constant
INVALID_SOCKET as defined in WINSOCK2.H. For example:

TYPICAL BSD STYLE:

s = socket(...);
if (s == -1) /[* or s <0 */
{...}

PREFERRED STYLE:

s = socket(...);
if (s == I NVALI D_SOCKET)
{...}

select and FD _*

Because a SOCKET is no longer represented by the UNIX-style "small non-negative integer”, the
implementation of the select function was changed in Windows Sockets. Each set of socketsis
still represented by the fd_set type, but instead of being stored as a bitmask the set isimplemented
asan array of SOCKETSs. To avoid potential problems, applications must adhere to the use of the
FD_XXX macrosto set, initialize, clear, and check the fd_set structures.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 26 sur 307

Error codes- errno, h_errno & WSAGetLastError

Error codes set by Windows Sockets are NOT made available viathe errno variable. Additionaly,
for the getXbyY class of functions, error codes are NOT made available viathe h_errno variable.
Instead, error codes are accessed by using the WSAGetL astError function. Thisfunctionis
provided in Windows Sockets as a precursor (and eventually an alias) for the Win32 function
GetLastError. Thisisintended to provide areliable way for athread in a multi-threaded process
to obtain per-thread error information.

For compatibility with BSD, an application may choose to include aline of the form:

#defi ne errno WBAGet Last Err or

Thiswill allow networking code which was written to use the global errno to work correctly ina
single-threaded environment. There are, obviously, some drawbacks. If a source file includes code
which inspects errno for both socket and non-socket functions, this mechanism cannot be used.
Furthermore, it is not possible for an application to assign a new value to errno. (In Windows
Sockets the function WSASetL astError may be used for this purpose.)

TYPICAL BSD STYLE:

r =recv(...);

if (r == -1
&& errno == EWOULDBLOCK)
{...}

PREFERRED STYLE:

r =recv(...);

if (r == -1 /* (but see below) */
&& WSAGet Last Error == EWOULDBLOCK)
{...}

Although error constants consistent with 4.3 Berkeley Sockets are provided for compatibility
purposes, applications should, where possible, use the "WSA" error code definitions. Thisis
because error codes returned by certain WinSock routines fall into the standard range of error
codes as defined by Microsoft C. Thus, a better version of the above source code fragment is:

r =recv(...);

if (r == -1 /* (but see below) */
&& WBAGet Last Error == WSAEWOULDBLOCK)
{...}

This specification defines arecommended set of error codes, and lists the possible errors that can
be returned as a result of each function. It may be the case in some implementations that other
Windows Sockets error codes will be returned in addition to those listed, and applications should
be prepared to handle errors other than those enumerated under each function description.
However Windows Sockets will not return any value that is not enumerated in the table of 1egal
Windows Sockets errors given in the section Error Codes.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 27 sur 307

Pointers

All pointers used by applications with Windows Sockets should be FAR athough thisis only
relevant to 16-bit applications and meaningless in a 32-bit. To facilitate this, data type definitions
such as LPHOSTENT are provided.

Renamed functions

In two cases it was necessary to rename functions which are used in Berkeley Socketsin order to
avoid clashes with other Win32 API functions.

close & closesock et

Sockets are represented by standard file descriptors in Berkeley Sockets, so the close function can
be used to close sockets as well as regular files. While nothing in the Windows Sockets prevents
an implementation from using regular file handles to identify sockets, nothing requiresit either.
Sockets must be closed by using the closesocket routine. Using the close routine to close a socket
isincorrect and the effects of doing so are undefined by this specification.

ioctl & ioctlsocket/W SAl octl

Various C language run-time systems use the ioctl routine for purposes unrelated to Windows
Sockets. As a consequence, theioctlsocket function and the W SAl octl function were defined to
handle socket functions that were performed by ioctl and fcntl in the Berkeley Software
Distribution.

Maximum number of sockets supported

The maximum number of sockets supported by a particular Windows Sockets service provider is
implementation specific. An application should make no assumptions about the availability of a
certain number of sockets. For more information on this topic see W SAStartup.

The maximum number of sockets that an application can actually use is independent of the
number of sockets supported by a particular implementation. The maximum number of sockets
that a Windows Sockets application can use is determined at compile time by the manifest
constant FD_SETSIZE. Thisvalueis used in constructing the fd_set structures used in select. The
default value in WINSOCK2.H is 64. If an application is designed to be capable of working with
more than 64 sockets, the implementor should define the manifest FD_SETSIZE in every source
file before including WINSOCK2.H. One way of doing this may be to include the definition
within the compiler options in the makefile. For example, you could add "-DFD_SETSIZE=128"
as an option to the compiler command line for Microsoft C. It must be emphasized that defining
FD_SETSIZE as a particular value has no effect on the actual number of sockets provided by a
Windows Sockets service provider.

Includefiles

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 28 sur 307

A number of standard Berkeley include files are supported for ease of porting existing source code
based on Berkeley sockets. However, these Berkeley header files merely include the
WINSOCK2.H includefile, and it is therefore sufficient (and recommended) that Windows
Sockets application source files just include WINSOCK 2.H.

Return values on function failure

The manifest constant SOCKET_ERROR is provided for checking function failure. Although use
of this constant is not mandatory, it is recommended. The following example illustrates the use of
the SOCKET_ERROR constant:

TYPICAL BSD STYLE:

rr=recv(...);

if (r ==-1 [* or r <0 */
&& errno == EWOULDBLOCK)
{...}

PREFERRED STYLE:

rr=recv(...);

if (r == SOCKET_ERROR
&& WBAGet Last Error == WSAEWOUL DBLOCK)
{...}

Service Provided Raw Sockets

The Windows Sockets specification does not mandate that a Windows Sockets service provider
support raw sockets, that is, sockets of type SOCK_RAW. However, service providers are
encouraged to supply raw socket support. A Windows Sockets-compliant application that wishes
to use raw sockets should attempt to open the socket with the socket call, and if it fails either
attempt to use another socket type or indicate the failure to the user.

Byte Ordering

Care must always be taken to account for any differences between the byte ordering used by Intel
Architecture and the byte ordering used on the wire by individual transport protocols. Any
reference to an address or port number passed to or from a Windows Sockets routine must be in
the network order for the protocol being utilized. In the case of IP, thisincludes the IP address and
port fields of a sockaddr_in structure (but not the sin_family field).

Consider an application that normally contacts a server on the TCP port corresponding to the
"time" service, but provides a mechanism for the user to specify an aternative port. The port
number returned by getser vbyname is already in network order, which is the format required for
constructing an address so no trandation is required. However, if the user elects to use a different

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 29 sur 307

port, entered as an integer, the application must convert this from host to TCP/IP network order
(using the W SAHtons function) before using it to construct an address. Conversely, if the
application were to display the number of the port within an address (returned by getpeer name
for example), the port number must be converted from network to host order (using W SANtohs)
before it can be displayed.

Since the Intel and Internet byte orders are different, the conversions described above are
unavoidable. Application writers are cautioned that they should use the standard conversion
functions provided as part of Windows Sockets rather than writing their own conversion code
since future implementations of Windows Sockets are likely to run on systems for which the host
order isidentical to the network byte order. Only applications that use the standard conversion
functions are likely to be portable.

Windows Sockets Compatibility 1ssues

Windows Sockets 2 continues to support all of the Windows Sockets 1.1 semantics and function
calls except for those dealing with psuedo-blocking. Since Windows Sockets 2 runs only in 32-
bit, pre-emptively scheduled environments such as Windows NT and Windows 95, thereis no
need to implement the psuedo-blocking found in Windows Sockets 1.1. This means that the
WSAEINPROGRESS error code will never be indicated and that the following Windows Sockets
1.1 functions are not available to Windows Sockets 2 applications:

WSA Cancel BlockingCall
WSAIsBlocking

WSA SetBlockingHook
WSAUnhookBlockingHook

Windows Sockets 1.1 programs that are written to utilize psuedo-blocking will continue to
operate correctly since they link to either WINSOCK.DLL or WSOCK32.DLL. Both continue to
support the complete set of Windows Sockets 1.1 functions. In order for programs to become
Windows Sockets 2 applications, some amount of code modification must occur. In most cases,
you will substitute the judicious use of threads to accommodate processing that was being
accomplished with a blocking hook function.

Default state for a socket's overlapped attribute

The socket function created sockets with the overlapped attribute set by default in the first
WSOCK32.DLL, the 32-bit version of Windows Sockets 1.1. In order to insure backward
compatibility with currently deployed WSOCK32.DLL implementations, thiswill continue to be
the case for WinSock 2 aswell. That is, in WinSock 2, sockets created with the socket function
will have the overlapped attribute. However, in order to be more compatible with the rest of the
Win32 API, sockets created with W SASocket will, by default, NOT have the overlapped
attribute. This attribute will only be applied if the WSA_FLAG_OVERLAPPED bit is set.

Windows Sockets 1.1 Blocking routines & EINPROGRESS

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 30 sur 307

One magjor issue in porting applications from a Berkeley sockets environment to a Windows
environment involves "blocking”; that is, invoking afunction that does not return until the
associated operation is completed. A problem arises when the operation takes an arbitrarily long
time to complete: an exampleisarecv, which might block until data has been received from the
peer system. The default behavior within the Berkeley sockets model is for a socket to operatein a
blocking mode unless the programmer explicitly requests that operations be treated as
nonblocking. Windows Sockets 1.1 environments could not assume pre-emptive scheduling.
Therefore, it was strongly recommended that programmers use the nonblocking (asynchronous)
operationsif at all possible with Windows Sockets 1.1. Because this was not always possible, the
psuedo-blocking facilities described below were provided.

Note Windows Sockets 2 only runs on pre-emptive 32-bit operating systems where deadlocks are
not a problem. Programming practices for recommended for Windows Sockets 1.1 are not
necessary in Windows Sockets 2.

Even on a blocking socket, some functions — bind, getsockopt, and getpeer name for example
— complete immediately. There is no difference between a blocking and a nonblocking operation
for those functions. Other operations, such as recv, can complete immediately or could take an
arbitrary time to compl ete, depending on various transport conditions. When applied to a blocking
socket, these operations are referred to as blocking operations. All routines that can block are
listed with an asterisk in the tables above and below.

With 16-bit Windows Sockets 1.1, a blocking operation that cannot complete immediately is
handled by psuedo-blocking as follows. The service provider initiates the operation, then entersa
loop in which it dispatches any Windows messages (yielding the processor to another thread if
necessary), and then checks for the completion of the Windows Sockets function. If the function
has completed, or if W SACancelBlockingCall has been invoked, the blocking function
completes with an appropriate result.

A service provider must allow installation of a blocking hook function that does not process
messages in order to avoid the possibility of re-entrant messages while a blocking operation is
outstanding. The simplest such blocking hook function would return FALSE. If a Windows
Sockets DLL depends on messages for internal operation, it can execute PeekM essage
(hMyWnd...) before executing the application blocking hook so that it can get its messages
without affecting the rest of the system.

In a 16-bit Windows Sockets 1.1 environment, if a Windows message is received for a process for
which a blocking operation isin progress, thereis arisk that the application will attempt to issue
another Windows Sockets call. Because of the difficulty in managing this condition safely,
Windows Sockets 1.1 does not support such application behavior. An application it not permitted
to make more than one nested Windows Sockets function calls. Only one outstanding function
call will be allowed for a particular task. The only exceptions are two functions that are provided
to assist the programmer in this situation: W SAI sBlocking and W SACancel BlockingCall.

The WSAI sBlocking function can be called at any time to determine whether or not a blocking
Windows Sockets 1.1 call isin progress. Similarly, the W SACancelBlockingCall fucntion can be
called at any time to cancel an in-progress blocking call. Any other nesting of Windows Sockets
functions will fail with the error WSAEINPROGRESS.

It should be emphasized that this restriction applies to both blocking and non-blocking operations.
For Windows Sockets 2 applications that negotiate version 2.0 or higher at the time of calling
W SA Startup, no restriction on the nesting of operations exits. Operations can become nested

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 31 sur 307

under some rare circumstances such as during a W SAAccept conditional-acceptance callback, or
if aservice provider in turn invokes a Windows Sockets 2 function.

Although this mechanism is sufficient for ssmple applications, it cannot support the complex
message-dispatching requirements of more advanced applications (for example, those using the
MDI model). For such applications, the Windows Sockets API includes the function

W SA SetBlockingH ook, which allows the application to specify a special routine which will be
called instead of the default message dispatch routine described above.

The Windows Sockets provider cals the blocking hook only if all of the following are true: the
routine is one that is defined as being able to block, the specified socket is a blocking socket, and
the request cannot be completed immediately. (A socket is set to blocking by default, but the
IOCTL FIONBIO or the WSAAsyncSelect function set a socket to nonblocking mode.)

The blocking hook will never be called and the application does not need to be concerned with the
re-entrancy issues the blocking hook can introduce if an application follows these guideline:

o It uses only nonblocking sockets, and;
o It usesthe WSAAsyncSelect and/or the WSAAsyncGetXByY routines instead of select
and the getXbyY routines.

If aWindows Sockets 1.1 application invokes an asynchronous or nonblocking operation that
takes a pointer to a memory object (abuffer, or aglobal variable for example) as an argument, it is
the responsibility of the application to ensure that the object is available to Windows Sockets
throughout the operation. The application must not invoke any Windows function that might
affect the mapping or addressability of the memory involved.

Graceful shutdown, linger options and socket closure

The following material is provided as clarification for the subject of shutting down socket
connections closing the sockets. It isimportant to distinguish the difference between shutting
down a socket connection and closing a socket. Shutting down a socket connection involves an
exchange of protocol messages between the two endpoints, hereafter referred to as a shutdown
sequence. Two general classes of shutdown sequences are defined: graceful and abortive (also
called "hard"). In agraceful shutdown sequence, any data that has been queued but not yet
transmitted can be sent prior to the connection being closed. In an abortive shutdown, any unsent
dataislost. The occurrence of a shutdown sequence (graceful or abortive) can aso be used to
provide an FD_CLOSE indication to the associated applications signifying that a shutdown isin
progress.

Closing a socket, on the other hand, causes the socket handle to become deall ocated so that the
application can no longer reference or use the socket in any manner.

In Windows Sockets, both the shutdown function, and the W SA SendDisconnect function can be
used to initiate a shutdown sequence, while the closesocket function is used to deall ocate socket
handles and free up any associated resources. Some amount of confusion arises, however, from
the fact that the closesocket function will implicitly cause a shutdown sequence to occur if it has
not already happened. In fact, it has become arather common programming practice to rely on
this feature and use closesocket to both initiate the shutdown sequence and deallocate the socket
handle.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 32 sur 307

To facilitate this usage, the sockets interface provides for controls by way of the socket option
mechanism that allow the programmer to indicate whether the implicit shutdown sequence should
be graceful or abortive, and also whether the closesocket function should linger (that is not
complete immediately) to allow time for a graceful shutdown sequence to complete. These
important distinctions and the ramifications of using closesocket in this manner have not been
widely understood.

By establishing appropriate values for the socket options SO_LINGER and SO_DONTLINGER,
the following types of behavior can be obtained with the closesocket function:

o Abortive shutdown sequence, immediate return from closesocket.

o Graceful shutdown, delaying return until either shutdown sequence completes or a specified
time interval elapses. If the time interval expires before the graceful shutdown sequence
completes, an abortive shutdown sequence occurs, and closesocket returns.

o Graceful shutdown, immediate return — allowing the shutdown sequence to completein
the background. Although thisisthe default behavior, the application has no way of
knowing when (or whether) the graceful shutdown sequence actually completes.

One technique that can be used to minimize the chance of problems occurring during connection
teardown isto avoid relying on an implicit shutdown being initiated by closesocket. Instead, use
one of the two explicit shutdown functions, shutdown or WSA SendDisconnect. Thisin turn will
cause an FD_CLOSE indication to be received by the peer application indicating that all pending
data has been received. Toillustrate this, the following table shows the functions that would be
invoked by the client and server components of an application, where the client is responsible for
initiating a graceful shutdown.

Client Side Server Side

(1) Invoke shutdown(s, SD_SEND) to signal
end of session and that client has no more
datato send.

(2) Receive FD_CLOSE, indicating graceful
shutdown in progress and that all data has been
received.

(3) Send any remaining response data.

(5) Get FD_READ and invoke recv to get (4) Invoke shutdown(s, SD_SEND) to indicate
any response data sent by server server has no more data to send.

(5) Receive FD_CLOSE indication (4") Invoke closesocket
(6) Invoke closesocket

Note The timing sequence is maintained from step (1) to step (6) between the client and the
server, except for step (4) and (5') which only has local timing significance in the sense that step
(5) follows step (5') on the client side while step (4') follows step (4) on the server side, with no
timing relationship with the remote party.

Protocol-independent Out-Of-Band data

The stream socket abstraction includes the notion of "out of band" (OOB) data. Many protocols

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 33 sur 307

allow portions of incoming data to be marked as specia in some way, and these special data
blocks can be delivered to the user out of the normal sequence. Examples include "expedited
data’ in X.25 and other OS| protocols, and "urgent data" in BSD Unix's use of TCP. The next
section describes OOB data handling in a protocol-independent manner. A discussion of OOB
data implemented using TCP "urgent data’ followsit. In the each discussion, the use of recv also
implies recvirom, WSARecv, and W SARecvFrom, and references to W SAAsyncSelect also
apply to W SAEvent Select.

Protocol Independent OOB data

OOB datais alogically independent transmission channel associated with each pair of connected
stream sockets. OOB data may be delivered to the user independently of normal data. The
abstraction defines that the OOB data facilities must support the reliable delivery of at least one
OOB data block at atime. This data block can contain at |east one byte of data, and at least one
OOB data block can be pending delivery to the user at any one time. For communications
protocols that support in-band signaling (such as TCP, where the "urgent data" is delivered in
sequence with the normal data), the system normally extracts the OOB data from the normal data
stream and stores it separately (leaving agap in the "normal” data stream). This allows usersto
choose between receiving the OOB data in order and receiving it out of sequence without having
to buffer al theintervening data. It is possible to "peek” at out-of-band data.

A user can determineif thereis any OOB data waiting to be read using the ioctlsock et
(SIOCATMARK) function (g.v.). For protocols where the concept of the "position” of the OOB
data block within the normal data stream is meaningful such as TCP, a Windows Sockets service
provider will maintain a conceptual "marker" indicating the position of the last byte of OOB data
within the normal data stream. Thisis not necessary for the implementation of the ioctlsock et
(SIOCATMARK) functionality - the presence or absence of OOB datais all that is required.

For protocols where the concept of the "position™ of the OOB data block within the normal data
stream is meaningful, an application might process out-of-band data "in-line", as part of the
normal data stream. Thisis achieved by setting the socket option SO_OOBINLINE with
setsockopt. For other protocols where the OOB data blocks are truly independent of the normal
data stream, attempting to set SO_OOBINLINE will result in an error. An application can use the
SIOCATMARK ioctlsocket command to determine whether there is any unread OOB data
preceding the mark. For example, it can use this to resynchronize with its peer by ensuring that all
data up to the mark in the data stream is discarded when appropriate.

With SO_OOBINLINE disabled (the default setting):

o Windows Sockets notifies an application of an FD_OOB event, if the application registered
for notification with WSAAsyncSelect, in exactly the same way FD_READ is used to
notify of the presence of normal data. That is, FD_OOB is posted when OOB data arrives
with no OOB data previously queued. The FD_OOB is aso posted when datais read using
the MSG_OOB flag while some OOB data remains queued after the read operation has
returned. FD_READ messages are not posted for OOB data.

o Windows Sockets returns from select with the appropriate exceptfds socket set if OOB data
is queued on the socket.

e Theapplication can call recv with MSG_OOB to read the urgent data block at any time.
The block of OOB data"jumps the queue”.

e Theapplication can call recv without MSG_OOB to read the normal data stream. The OOB
data block will not appear in the data stream with "normal data." If OOB data remains after
any call to recv, Windows Sockets notifies the application with FD_OOB or with exceptfds
when using select.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 34 sur 307

o For protocols where the OOB data has a position within the normal data stream, asingle
recv operation will not span that position. One recv will return the normal data before the
"mark", and a second recv is required to begin reading data after the "mark”.

With SO_OOBINLINE enabled:

e FD_OOB messages are NOT posted for OOB data. OOB datais treated as normal for the
purpose of the select and W SAAsyncSelect functions, and indicated by setting the socket
in readfds or by sending an FD_READ message respectively.

e The application can not call recv with the MSG_OOB flag set to read the OOB data block.
The error code WSAEINVAL will be returned.

e The application can call recv without the MSG_OOB flag set. Any OOB datawill be
delivered in its correct order within the "normal” data stream. OOB data will never be
mixed with normal data. There must be three read requests to get past the OOB data. The
first returns the normal data prior to the OOB data block, the second returns the OOB data,
the third returns the normal data following the OOB data. In other words, the OOB data
block boundaries are preserved.

The WSAAsyncSelect routineis particularly well suited to handling notification of the presence
of out-of-band-data when SO_OOBINLINE is off.

OOB datain TCP

I mportant The following discussion of out-of-band (OOB) data, implemented using TCP Urgent
data, follows the model used in the Berkeley software distribution. Users and implementors
should be aware that there are, at present, two conflicting interpretations of RFC 793 (where the
concept isintroduced), and that the implementation of out-of-band data in the Berkeley Software
Distribution (BSD) does not conform to the Host Requirements laid down in RFC 1122.

Specifically, the TCP urgent pointer in BSD points to the byte after the urgent data byte, and an
RFC-compliant TCP urgent pointer points to the urgent data byte. As aresult, if an application
sends urgent data from a BSD-compatible implementation to an RFC-1122 compatible
implementation, the receiver will read the wrong urgent data byte (it will read the byte located
after the correct byte in the data stream as the urgent data byte).

To minimize interoperability problems, applications writers are advised not to use out-of-band
data unlessthisis required to interoperate with an existing service. Windows Sockets suppliers
are urged to document the out-of-band semantics (BSD or RFC 1122) that their product
implements.

Arrival of a TCP segment with the "URG" (for urgent) flag set indicates the existence of asingle
byte of "OOB" data within the TCP data stream. The "OOB data block™" isone bytein size. The
urgent pointer is a positive offset from the current sequence number in the TCP header that
indicates the location of the "OOB data block™ (ambiguously, as noted above). It might, therefore,
point to data that has not yet been received.

If SO_OOBINLINE is disabled (the default) when the TCP segment containing the byte pointed
to by the urgent pointer arrives, the OOB data block (one byte) is removed from the data stream
and buffered. If a subsequent TCP segment arrives with the urgent flag set (and a new urgent
pointer), the OOB byte currently queued can be lost asit is replaced by the new OOB data block
(asoccursin Berkeley Software Distribution). It is never replaced in the data stream, however.

With SO_OOBINLINE enabled, the urgent data remains in the data stream. As aresult, the OOB

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 35 sur 307

data block is never lost when a new TCP segment arrives containing urgent data. The existing
OOB data "mark" is updated to the new position.

Summary of Windows Sockets 2 Functions

The following tables summarize the functions included in Windows Sockets 2, separated into two
groups:. Berkeley-style functions, and Microsoft Windows-specific Extension functions that have
been ratified as part of the Windows Sockets 2 specification. These tables do not include the
Windows Sockets functions known that are used with Registration and Name Resolution.

Socket Functions

The Windows Sockets specification includes all the following Berkeley-style socket routines that
were part of the Windows Sockets 1.1 API:

acceptl An incoming connection is acknowledged and associated
with an immediately created socket. The original socket is
returned to the listening state.

bind Assign alocal name to an unnamed socket.

closesocket1 Remove a socket from the per-process object reference
table. Only blocks if SO_LINGER is set with a non-zero
timeout on a blocking socket.

connectl Initiate a connection on the specified socket.

getpeer name Retrieve the name of the peer connected to the specified
socket.

getsockname Retrieve the local address to which the specified socket is
bound.

getsock opt Retrieve options associated with the specified socket.

htonl2 Convert a 32-bit quantity from host byte order to network
byte order.

htons2 Convert a 16-bit quantity from host byte order to network
byte order.

inet_addr?2 Converts a character string representing a number in the
Internet standard "." notation to an Internet address value.

inet_ntoa2 Converts an Internet address value to an ASCII string in "."
notationi.e. "ab.c.d".

loctlsocket Provide control for sockets.

listen Listen for incoming connections on a specified socket.

ntohl2 Convert a 32-bit quantity from network byte order to host
byte order.

ntohs2 Convert a 16-bit quantity from network byte order to host
byte order.

recvl Receive data from a connected or unconnected socket.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 36 sur 307

recviroml Receive data from either a connected or unconnected
socket.

selectl Perform synchronous 1/0 multiplexing.

sendl Send data to a connected socket.

sendtol Send data to either a connected or unconnected socket.

setsock opt Store options associated with the specified socket.

shutdown Shut down part of afull-duplex connection.

socket Create an endpoint for communication and return a socket
descriptor.

1 Theroutine can block if acting on a blocking socket.

2 Theroutineisretained for backward compatibility with Windows Sockets 1.1, and should
only be used for sockets created with AF_INET address family.

Microsoft Windows-specific Extension Functions

The Windows Sockets specification provides a number of extensions to the standard set of
Berkeley Sockets routines. Principally, these extended functions allow message or function-based,
asynchronous access to network events, as well as enable overlapped I/0. While use of this
extended API set is not mandatory for socket-based programming (with the exception of
WSAStartup and WSACleanup), it is recommended for conformance with the Microsoft
Windows programming paradigm. For features introduced in Windows Sockets 2, please see New
Concepts, Additions and Changes for Windows Sockets 2.

WSAAccceptl An extended version of accept which allows for
conditional acceptance and socket grouping.

WSAAsyncGetHostByAddr2 3 A set of functions which provide asynchronous
versions of the standard Berkeley getXbyY

WSAAsyncGetHostByName2 3 functions. For example, the
W SAAsyncGetHostByName function provides

W SAAsyncGetProtoByName2 3 an asynchronous, message-based
implementation of the standard Berkeley

W SAAsyncGetProtoByNumber2 3 gethostbyname function.

WSAAsyncGetServByName? 3

WSAAsyncGetServByPort2 3

WSAAsyncSelect 3 Perform asynchronous version of select

WSACancelAsyncRequest2 3 Cancel an outstanding instance of a
WSAAsyncGetXByY function.

WSACleanup Sign off from the underlying Windows Sockets
DLL.

W SACloseEvent Destroys an event object.

WSAConnectl An extended version of connect which allows
for exchange of connect data and QOS
specification.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information

WSACreateEvent
W SADuplicateSocket

W SAEnumNetwor KEvents
W SAEnumProtocols

W SAEventSelect
WSAGetL astError 3
WSAGetOverlappedResult

WSAGetQOSByName

WSAHTtonl
WSAHtons
WSAloctll
WSAJoinL eafl
WSANtohl
WSANtohs

W SAProvider ConfigChange

WSARecv1

WSARecvFroml

W SAResetEvent
WSASendl1

WSASendTol

W SASetEvent
WSASetL astError 3

W SA Sock et

WSAStartup 3

WSAWaitFor MultipleEventsl

Page 37 sur 307

Creates an event object.

Allow an underlying socket to be shared by
creating avirtual socket.

Discover occurrences of network events.

Retrieve information about each available
protocol.

Associate network events with an event object.
Obtain details of last Windows Sockets error
Get completion status of overlapped operation.

Supply QOS parameters based on a well-known
service name.

Extended version of htonl

Extended version of htons
Overlapped-capable version of ioctl

Add amultipoint leaf to a multipoint session
Extended version of ntohl

Extended version of ntohs

Receive notifications of service providers being
installed/removed.

An extended version of recv which
accommodates scatter/gather 1/0, overlapped
sockets and provides the flags parameter as IN
ouT

An extended version of recvfrom which
accommodates scatter/gather 1/0, overlapped
sockets and provides the flags parameter as IN
ouT

Resets an event object.

An extended version of send which
accommodates scatter/gather 1/0 and overlapped
sockets

An extended version of sendto which
accommodates scatter/gather 1/0 and overlapped
sockets

Sets an event object.

Set the error to be returned by a subsequent
WSAGetL astError

An extended version of socket which takes a

WSAPROTOCOL_INFO struct as input and

allows overlapped sockets to be created. Also
allows socket groups to be formed.

Initialize the underlying Windows Sockets DLL.

Blocks on multiple
event objects.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 38 sur 307

1 Theroutine can block if acting on a blocking socket.

2 Theroutine is always realized by the name resolution provider associated with the default
TCP/IP service provider, if any.

3 Theroutine was originally a Windows Sockets 1.1 function

Registration and Name Resolution

Windows Sockets 2 includes a new set of API functions that standardize the way applications
access and use the various network naming services. When using these new functions, Windows
Sockets 2 applications need not be cognizant of the widely differing protocol s associated with
name services such as DNS, NIS, X.500, SAP, etc. To maintain full backward compatibility with
Windows Sockets 1.1, all of the existing getXbyY and asynchronous W SAAsyncGetXbyY
database lookup functions continue to be supported, but are implemented in the Windows Sockets
service provider interface in terms of the new name resolution capabilities. For more information,
see the getser vbyname and getser vbyport functions. Also, see Windows Sockets 1.1
Compatibile Name Resolution for TCP/IP.

Protocol-1ndependent Name Resolution

In devel oping a protocol-independent client/server application, there are two basic requirements
that exist with respect to name resolution and registration:

o Theability of the server half of the application (hereafter referred to as a service) to register
its existence within (or become accessible to) one or more name spaces

o Theability of the client application to find the service within a name space and obtain the
required transport protocol and addressing information

For those accustomed to developing TCP/IP based applications, this may seem to involve little
more than looking up a host address and then using an agreed upon port number. Other
networking schemes, however, alow the location of the service, the protocol used for the service,
and other attributes to be discovered at run-time. To accommodate the broad diversity of
capabilities found in existing name services, the Windows Sockets 2 interface adopts the model
described below.

Name Resolution M odel

A name space refers to some capability to associate (as a minimum) the protocol and addressing
attributes of a network service with one or more human-friendly names. Many name spaces are
currently in wide use including the Internet's Domain Name System(DNS), the bindery and
Netware Directory Services (NDS) from Novell, X.500, etc. These name spaces vary widely in
how they are organized and implemented. Some of their properties are particularly important to
understand from the perspective of Windows Sockets name resol ution.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 39 sur 307

Types of Name Spaces
There are three different types of name spaces in which a service could be registered:

e dynamic
o Static
e persistent

Dynamic name spaces allow services to register with the name space on the fly, and for clientsto
discover the available services at run-time. Dynamic name spaces frequently rely on broadcasts to
indicate the continued availability of a network service. Examples of dynamic name spaces
include the SAP name space used within a Netware environment and the NBP name space used
by Appletalk.

Static name spaces require all of the services to be registered ahead of time, i.e. when the name
gpaceis created. The DNSis an example of a static name space. Although there is a programmatic
way to resolve names, there is no programmatic way to register names.

Persistent name spaces allow servicesto register with the name space on the fly. Unlike dynamic
name spaces however, persistent name spaces retain the registration information in non-volatile
storage where it remains until such time as the service requests that it be removed. Persistent
name spaces are typified by directory services such as X.500 and the NDS (Netware Directory
Service). These environments allow the adding, deleting, and modification of service properties.
In addition, the service object representing the service within the directory service could have a
variety of attributes associated with the service. The most important attribute for client
applications is the service's addressing information.

Name Space Or ganization

Many name spaces are arranged hierarchically. Some, such as X.500 and NDS, allow unlimited
nesting. Others allow services to be combined into asingle level of hierarchy or "group.” Thisis
typically referred to as aworkgroup. When constructing a query, it is often necessary to establish a
context point within a name space hierarchy from which the search will begin.

Name Space Provider Architecture

Naturally, the programmatic interfaces used to query the various types of name spaces and to
register information within a name space (if supported) differ widely. A name space provider isa
locally-resident piece of software that knows how to map between Windows Sockets's name space
SPI and some existing name space (which could be implemented locally or be accessed viathe
network). Thisisillustrated as follows:

WS2_32.DLL
Transport
5Pl
MName Space MName Space
Fravider Fravider

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 40 sur 307

Transpoart Transport Locall
Service Sevice I |'3"33 E.; ;

Provider Provider mplemente
Mame Space

Name Space Provider Architecture

Notethat it is possible for a given name space, say DNS, to have more than one name space
provider installed on a given machine.

As mentioned above, the generic term service refers to the server-half of aclient/server
application. In Windows Sockets, a serviceis associated with a service class, and each instance of
a particular service has a service name which must be unique within the service class. Examples
of service classesinclude FTP Server, SQL Server, XY Z Corp. Employee Info Server, etc. Asthe
example attempts to illustrate, some service classes are "well known" while others are very unique
and specific to a particular vertical application. In either case, every service classis represented by
both a class name and a class ID. The class name does not necessarily need to be unique, but the
class ID must be. Globally Unique Identifiers (GUIDs) are used to represent service class IDs. For
well-known services, class hames and class ID's (GUIDSs) have been pre-allocated, and macros are
available to convert between, for example, TCP port numbers (inhost-byte order) and the
corresponding class ID GUIDs. For other services, the devel oper chooses the class name and uses
the UUIDGEN.EXE utility to generate a GUID for the class ID.

The notion of aservice class existsto allow a set of attributes to be established that are held in
common by all instances of a particular service. This set of attributesis provided at the time the
service classis defined to Windows Sockets, and is referred to as the service class schema
information. When a service isinstalled and made available on a host machine, that serviceis
considered instantiated, and its service name is used to distinguish a particular instance of the
service from other instances which may be known to the name space.

Note that the installation of a service class only needs to occur on machines where the service
executes, not on all of the clients which may utilize the service. Where possible, the

WS2 32.DLL will provide service class schema information to a name space provider at the time
an instantiation of aserviceisto beregistered or a service query isinitiated. The WS2_32.DLL
does not, of course, store thisinformation itself, but attempts to retrieve it from a name space
provider that has indicated its ability to supply this data. Since there is no guarantee that the
WS2_32.DLL will be able to supply the service class schema, name space providers that need this
information must have a fallback mechanism to obtain it through name space-specific means.

As noted above, the Internet has adopted what can be termed a host-centric service model.
Applications needing to locate the transport address of a service generally must first resolve the
address of a specific host known to host the service. To this address they add in the well-known
port number and thus create a complete transport address. To facilitate the resolution of host
names, a special service classidentifier has been pre-allocated (SVCID_HOSTNAME). A query
that specifies SVCID_HOSTNAME as the service class and uses the host name the service
instance name will, if the query is successful, return host address information.

In Windows Sockets 2, applications that are protocol-independent wish to avoid the need to
comprehend the internal details of atransport address. Thus the need to first get a host address
and then add in the port is problematic. To avoid this, queries may also include the well-known
name of a particular service and the protocol over which the service operates, such as "ftp/tcp”. In

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 41 sur 307

this case, a successful query will return a complete transport address for the specified service on
the indicated host, and the application will not be required to "crack open" a sockaddr structure.
Thisis described in more detail below.

The Internet's Domain Name System does not have a well-defined means to store service class
schemainformation. As aresult, DNS name space providers will only be able to accommodate
well-known TCP/IP services for which a service class GUID has been preallocated. In practice
thisis not a serious limitation since service class GUIDs have been preallocated for the entire set
of TCP and UDP ports, and macros are available to retrieve the GUID associated with any TCP or
UDP port with the port expressed in host-byte order. Thus all of the familiar services such as ftp,
telnet, whois, etc. are well supported.

Continuing with our service class example, instance names of the ftp service may be
"ader.intel.com” or "rhino.microsoft.com" while an instance of the XY Z Corp. Employee Info
Server might be named "XY Z Corp. Employee Info Server Version 3.5". In the first two cases, the
combination of the service class GUID for ftp and the machine name (supplied as the service
instance name) uniquely identify the desired service. In the third case, the host name where the
service resides can be discovered at service query time, so the service instance name does not

need to include a host name.

Summary of Name Resolution Functions

The name resol ution functions can be grouped into three categories: Service installation, client
gueries, and helper functions (and macros). The sections that follow identify the functionsin each
category and briefly describe their intended use. Key data structures are also described.

Service Installation
¢ WSAInstallServiceClass

¢ WSARemoveServiceClass
¢ WSASetService

When the required service class does not already exist, an application uses
WSAIlnstallServiceClassto install a new service class by supplying a service class name, a
GUID for the service class ID, and a series of WSANSCLASSINFO structures. These structures
are each specific to a particular name space, and supply common values such as recommended
TCP port numbers or Netware SAP Identifiers. A service class can be removed by calling

W SARemoveSer viceClass and supplying the GUID corresponding to the class ID.

Once a service class exists, specific instances of a service can be installed or removed via

W SA SetService. Thisfunction takesa WSAQUERY SET structure as an input parameter along
with an operation code and operation flags. The operation code indicates whether the serviceis
being installed or removed. The WSAQUERY SET structure provides al of the relevant
information about the service including service class ID, service name (for thisinstance),
applicable name space identifier and protocol information, and a set of transport addresses at
which the service listens. Services should invoke WSA SetService when they initialize in order to
advertise their presence in dynamic name spaces.

Client Query

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 42 sur 307

W SAEnumNameSpaceProviders
WSAL ookupServiceBegin

W SAL ookupServiceNext

WSAL ookupServiceEnd

The WSAEnumNameSpacePr ovider s function allows an application to discover which name
spaces are accessible via Windows Sockets's name resolution facilities. It also allows an
application to determine whether a given name space is supported by more than one name space
provider, and to discover the provider ID for any particular name space provider. Using a provider
ID, the application can restrict a query operation to a specified name space provider.

Windows Sockets name space query operations involves a series of calls:

W SAL ookupServiceBegin, followed by one or more callsto W SAL ookupServiceNext and
ending with acall to WSAL ookupServiceEnd. WSAL ookupServiceBegin takes a
WSAQUERY SET structure as input in order to define the query parameters along with a set of
flags to provide additional control over the search operation. It returns a query handle which is
used in the subsequent calls to W SAL ookupServiceNext and W SAL ookupServiceEnd.

The application invokes W SAL ookupSer viceNext to obtain query results, with results supplied
in an application-supplied WSAQUERY SET buffer. The application continues to call

W SAL ookupServiceNext until the error code WSA_E _NO_MORE isreturned indicating that all
results have been retrieved. The search is then terminated by a call to WSAL ookupServiceEnd.
The WSAL ookupServiceEnd function can also be used to cancel a currently pending

W SAL ookupServiceNext when called from another thread.

In Windows Socket 2, conflicting error codes are defined for WSAENOMORE (10102) and
WSA _E NO_MORE (10110). The error code WSAENOMORE will be removed in a future
version and only WSA_E NO_MORE will remain. For Windows Socket 2, however, applications
should check for both WSAENOMORE and WSA_E NO_MORE for the widest possible
compatibility with Name Space Providers that use either one.

Helper Functions

o WSAGetServiceClassNameByClassld
o WSAAddressToString

o WSAStringToAddress

o WSAGetServiceClasslnfo

The name resolution helper functions include a function to retrieve a service class name given a
serviceclass ID, apair of functions used to translate a transport address between a sockaddr
struct and an ASCI|I string representation, afunction to retrieve the service class schema
information for a given service class, and a set of macros for mapping well known services to pre-
allocated GUIDs.

The following macros from winsock2.h aid in mapping between well known service classes and
these name spaces.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 43 sur 307

SVCID_TCP(Port) Given aport for TCP/IP or UDF/IP or
the object type in the case of Netware,

SVCID_UDP(Port) return the GUID (port number in host
order)

SVCID_NETWARE(Object Type)

IS SVCID_TCP(GUID) Returns TRUE if the GUID iswithin

IS SVCID_UDP(GUID) the allowable range

IS SVCID_NETWARE(GUID)

SET_TCP_SVCID(GUID, port) Initializes a GUID structure with the

SET_UDP_SVCID(GUID, port) GUID equivalent for aTCP or UDP
port number (port number must bein
host order)

PORT_FROM_SVCID_TCP(GUID) Returns the port or object type
associated with the GUID (port

PORT_FROM_SVCID_UDP(GUID) number in host order)

SAPID_FROM_SVCID_NETWARE(GUID)

Name Resolution Data Structures

There are several important data structures that are used extensively throughout the name
resolution functions. These are described below.

Query-Related Data Structures

The WSAQUERY SET structure is used to form queries for W SAL ookupServiceBegin, and used
to deliver query results for WSAL ookupServiceNext. It isacomplex structure since it contains
pointers to several other structures, some of which reference still other structures. The relationship
between WSAQUERY SET and the structuresiit referencesisillustrated as follows:

[Service Instance Mame j
WSAQUERYSET

o' Siize

dwilitpedt Rags

lnsz Service nstamze M8
0 Service Cassid

o ldermion

\nsz Gt
dwilBnes fpace

o s Provicerld
lnszContesd

o'w e ¥ Prodocols
inaifp Protocols
InszQueny Sting
dwidbideCF s dars
—] iposa Bener

inSad

[Service Class (D (GUIOY j

WSAECOMPARATOR
o'Wl rEiT
ecHow fequals, or not less than)

[Commert 5tring

[N% Prowider |0 (GUIDY

Query String

I

] AFPROTOCOLS[]
idddre 55 Ay

iPmidocal

)
)
" meom]
[)

/N

I
[—_—
| CSADDR. IHFO || =7 SOCKET ADDRESS |

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 44 sur 307

Lozaldallr n Socbaddr
FemoteAddr e i Soctaddrlengdh
i Soctet Type e
iPmdocol
SOCKADDR
Fa_fanily
5a_data

WSAQUERYSET and Friends

Within the WSAQUERY SET structure, most of the fields are self explanatory, but some deserve
additional explanation. The dwSze field must always be filled in with sizeof(WSAQUERY SET),
asthisis used by name space providers to detect and adapt to different versions of the
WSAQUERY SET structure that may appear over time.

The dwOutputFlags field is used by a name space provider to provide additional information
about query results. For details, see W SAL ookupSer viceNext.

The WSAECOMPARATOR structure referenced by Ipversion is used for both query constraint
and results. For queries, the dwVersion field indicates the desired version of the service. The
ecHow field is an enumerated type which specifies how the comparison will be made. The choices
are COMP_EQUALS which requires that an exact match in version occurs, or COMP_NOTLESS
which specifies that the service's version number be no less than the value of dwVersion.

The interpretation of dwNameSpace and |pNSProviderld depends upon how the structure is being
used and is described further in the individual function descriptions that utilize this structure.

The IpszContext field appliesto hierarchical name spaces, and specifies the starting point of a
guery or the location within the hierarchy where the service resides. The general rules are:

e A valueof NULL, blank ("") will start the search at the default context.
o A valueof "\" starts the search at the top of the name space.
o Any other value starts the search at the designated point.

Providers that do not support containment may return an error if anything other than ™" or "\" is
specified. Providers that support limited containment, such as groups, should accept ", \", or a
designated point. Contexts are name space specific. If dwNameSpaceisNS_ALL, then only "" or
"\" should be passed as the context since these are recognized by al name spaces.

The IpszQueryString field is used to supply additional, name space-specific query information
such as a string describing a well-known service and transport protocol name, asin "ftp/tcp".

The AFPROTOCOLS structure referenced by |pafpProtocolsis used for query purposes only, and
supplies alist of protocols to constrain the query. These protocols are represented as (address
family, protocol) pairs, since protocol values only have meaning within the context of an address
family.

The array of CSADDR_INFO structure referenced by |pcsaBuffer contain all of the information
needed to for either a service to use in establishing alisten, or aclient to use in establishing a
connection to the service. The Local Addr and RemoteAddr fields both directly contain a
SOCKET_ADDRESS structure. A service would create a socket using the tuple

(Local Addr.IpSockaddr->sa_family, iSocketType, iProtocol). It would bind the socket to alocal
address using Local Addr.IpSockaddr, and Local Addr.IpSockaddrLength. The client createsits
socket with the tuple (RemoteAddr.IpSockaddr->sa_family, iSocketType, iProtocol), and uses the
combination of RemoteAddr.IpSockaddr, and RemoteAddr.|pSockaddr Length when making a

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 45 sur 307

remote connection.
Service Class Data Structures
When anew service classisinstalled, a WSASERVICECLASSINFO structure must be prepared

and supplied. This structure also consists of substructures which contain a series of parameters
that apply to specific name spaces.

WEAEERWICECLASSINED _l_’[Service Class 10 (GUID)]
n Service Cassid

sz Senvice Class il
o' —I—PL Service Class Name J

nasslnfos

I
I
L WEANSCLASSINFO I_...[fterm Mame]

Inszbme

dwibse Space
dwlialue Type
dwlialue Size
Iplfale —h[tem “/alue]

Class I nfo Data Structures

For each service class, thereis asingle WSASERVICECLASSINFO structure. Within the
WSASERVICECLASSINFO structure, the service class unique identifier is contained in
IpServiceClassld, and an associated display string is referenced by IpServiceClassName. Thisis
the string that will be returned by W SAGet Ser viceClassNameByClass| d.

The IpClassinfos field in the WSASERVICECLASSINFO structure references an array of
WSANSCLASSINFO structures, each of which supplies a named and typed parameter that
applies to a specified name space. Examples of values for the [pszName field include: "Sapld",
"TcpPort", "UdpPort", etc. These strings are generally specific to the name space identified in
dwNameSpace. Typical values for dwValueType might be REG_DWORD, REG_SZ, etc. The
dwValueSze field indicates the length of the data item pointed to by IpValue.

The entire collection of data represented in aWSASERVICECLASSINFO structure is provided to
each name space provider when W SAI nstallServiceClassisinvoked. Each individual name
gpace provider then sifts through the list of WSANSCLASSINFO structures and retain the
information applicableto it.

Windows Sockets 1.1 Compatibile Name Resolution for
TCP/IP

Windows Sockets 1.1 defined a number of routines that were used for name resolution with
TCP/IP (1P version 4) networks. These are customarily called the getXbyY functions and include
the following:

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 46 sur 307

gethostname
gethostbyaddr

gethostbyname
getprotobyname
getprotobynumber
getser vbyname

getservbyport

Asynchronous versions of these functions were also defined:

WSAAsyncGetHostByAddr
WSAAsyncGetHostByName
WSAAsyncGetProtoByName
W SAAsyncGetProtoByNumber
WSAAsyncGetServByName
WSAAsyncGetServByPort

There are aso two functions (now implemented in the WinSock 2 DLL) used to convert dotted
Ipv4 internet address notation to and from string and binary representations, respectively:

inet addr
inet_ntoa

All of these functions are specific to Ipv4 TCP/IP networks and devel opers of protocol-
independent applications are discouraged from continuing to utilize these transport-specific
functions. However, in order to retain strict backwards compatibility with Windows Sockets 1.1,
all of the above functions continue to be supported aslong as at |east one name space provider is
present that supports the AF_INET address family (these functions are not relevant to IP version
6, denoted by AF_INET®).

The WS2_32.DLL implements these compatibility functions in terms of the new, protocol-
independent name resol ution facilities using an appropriate sequence of

WSA LookupServiceBegin/Next/End function calls. The details of how the getXbyY functions are
mapped to name resolution functions are provided below. The WS2_32.DLL handles the
differences between the asynchronous and synchronous versions of the getXbyY functions, so
only the implementation of the synchronous getXbyY functions are discussed.

Basic Approach for getxbyy

Most getXbyY functions are trandlated by the WS2_32.DLL to a

WSA Servicel.ookupBegin/Next/End sequence that uses one of a set of specia GUIDs asthe
service class. These GUIDs identify the type of getXbyY operation that is being emulated. The
guery is constrained to those NSPs that support AF_INET. Whenever agetXbyY function returns
a hostent or servent structure, the WS2_32.DLL will specify the LUP_RETURN_BLOB flag in

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 47 sur 307

W SAL ookupServiceBegin so that the desired information will be returned by the NSP. These
structures must be modified slightly in that the pointers contained within must be replaced with
offsetsthat arerelative to the start of the blob's data. All values referenced by these pointer fields
must, of course, be completely contained within the blob, and all strings are ASCI|.

The getprotobyname and getprotobynumber functions

These functions are implemented within the WS2_32.DLL by consulting alocal protocols
database. They do not result in any name resolution query.

The getservbyname and getservbyport functions

The WSAL ookupServiceBegin query uses SVCID_INET_SERVICEBYNAME asthe service
class GUID. The |pszServicel nstanceName field references a string which indicates the service
name or service port, and (optionally) the service protocol. The formatting of the string is
illustrated as "ftp/tcp™ or "21/tcp” or just "ftp". The string is not case sensitive. The slash mark, if
present, separates the protocol identifier from the preceding part of the string. The WS2_32.DLL
will specify LUP_RETURN_BLOB and the NSP will place a servent struct in the blob (using
offsetsinstead of pointers as described above). NSPs should honor these other LUP_RETURN_*
flags as well:

LUP_ RETURN_NAME return the s name field from servent struct in
| pszServicel nstanceName.
LUP_RETURN_TYPE return canonical GUID in IpServiceClassld It is

understood that a service identified either as "ftp"
or "21" may in fact be on some other port
according to locally established conventions. The
s port field of the servent structure should
indicate where the service can be contacted in the
local environment. The canonical GUID returned
when LUP_RETURN_TYPE is set should be one
of the predefined GUIDs from svcs.h that
corresponds to the port number indicated in the
servent structure.

The gethostbyname function

The WSAL ookupServiceBegin query uses SVCID_INET_HOSTADDRBY NAME as the service
class GUID. The host name is supplied in IpszServicel nstanceName. The WS2_32.DLL specifies
LUP_RETURN_BLOB and the NSP places a hostent struct in the blob (using offsets instead of
pointers as described above). NSPs should honor these other LUP_RETURN_* flags as well:

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 48 sur 307

LUP_ RETURN_NAME return the h_name field from hostent struct in
| pszServicel nstanceName.
LUP_RETURN_ADDR return addressing info from hostent in

CSADDR_INFO dtructs, port information is
defaulted to zero. Note that this routine does not
resolve host names that consist of a dotted
internet address.

The gethostbyaddr function

The WSAL ookupServiceBegin query uses SVCID_INET_HOSTNAMEBY ADDR as the service
class GUID. The host address is supplied in |pszServicel nstanceName as a dotted internet string
(e.g."192.9.200.120"). The WS2_32.DLL specifies LUP_RETURN_BLOB and the NSP places a
hostent struct in the blob (using offsets instead of pointers as described above). NSPs should
honor these other LUP_RETURN_* flags as well:

LUP_ RETURN_NAME return the h_name field from hostent struct in
| pszServicel nstanceName.

LUP_RETURN_ADDR return addressing info from hostent in
CSADDR_INFO structs, port information is
defaulted to zero.

The gethostname function

The W SAL ookupServiceBegin query uses SVCID_HOSTNAME as the service class GUID. If
IpszServicelnstanceName is NULL or referencesa NULL string (that is. "), the local host isto be
resolved. Otherwise, alookup on a specified host name shall occur. For the purposes of emulating
gethostname the WS2_32.DLL will specify anull pointer for |pszServicel nstanceName, and
specify LUP_RETURN_NAME so that the host name is returned in the |pszServicel nstanceName
field. If an application uses this query and specifies LUP_RETURN_ADDR then the host address
will be provided in a CSADDR_INFO struct. The LUP_RETURN_BLOB action is undefined for
this query. Port information will be defaulted to zero unless the |pszQuerySiring references a
service such as "ftp", in which case the complete transport address of the indicated service will be
supplied.

Multipoint and Multicast Semantics

In considering how to support multipoint and multicast in Windows Sockets 2 a number of
existing and proposed multipoint/multicast schemes (including IP-multicast, ATM point-to-
multipoint connection, ST-I1, T.120, H.320 (MCU), etc.) were examined. While common in some
aspects, each iswidely different in others. To enable a coherent discussion of the various schemes,
itisvaluableto first create ataxonomy that characterizes the essential attributes of each. For
simplicity, the term "multipoint” will hereafter be used to represent both multipoint and multicast.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 49 sur 307

Multipoint Taxonomy

The taxonomy described in this section first distinguishes the control plane that concerns itself
with the way a multipoint session is established, from the data plane that deals with the transfer of
data amongst session participants.

In the control plane there are two distinct types of session establishment: rooted and non-rooted.
In the case of rooted control, there exists a special participant, called c_root, that is different from
the rest of the members of this multipoint session, each of whichiscalled ac_leaf. The c_root
must remain present for the whole duration of the multipoint session, as the session will be broken
up in the absence of the c_root. The c_root usually initiates the multipoint session by setting up
the connection to ac_leaf, or anumber of c_leafs. The ¢c_root may add more c_leafs, or (in some
cases) ac_leaf can join the c_root at alater time. Examples of the rooted control plane can be
found in ATM and ST-II.

For anon-rooted control plane, all the members belonging to a multipoint session are leaves, i.e.,
no special participant acting asac_root exists. Each ¢_|leaf needs to add itself to a pre-existing
multipoint session that either is always available (asin the case of an IP multicast address), or has
been set up through some out-of-band mechanism which is outside the scope of the Windows
Sockets specification. Another way to look at thisisthat ac_root still exists, but can be
considered to be in the network cloud as opposed to one of the participants. Because a control root
still exists, anon-rooted control plane could also be considered to be implicitly rooted. Examples
for this kind of implicitly rooted multipoint schemes are: a teleconferencing bridge, the IP
multicast system, a Multipoint Control Unit (MCU) in aH.320 video conference, etc.

In the data plane, there are two types of datatransfer styles: rooted and non-rooted. In arooted
data plane, a specia participant called d_root exists. Data transfer only occurs between the d_root
and the rest of the members of this multipoint session, each of which isreferred to asad_|eaf.
The traffic could be undsi-directional, or bi-directional. The data sent out from the d_root will be
duplicated (if required) and delivered to every d_leaf, while the datafrom d_leafs will only go to
the d_root. In the case of arooted data plane, there is no traffic allowed among d_leafs. An
example of aprotocol that isrooted in the data plane is ST-II.

In a non-rooted data plane, all the participants are equal in the sense that any data they send will
be delivered to al the other participants in the same multipoint session. Likewise each d_|eaf
node will be able to receive datafrom all other d_leafs, and in some cases, from other nodes
which are not participating in the multipoint session as well. No special d_root node exists. |P-
multicast is non-rooted in the data plane.

Note that the question of where data unit duplication occurs, or whether a shared single tree or
multiple shortest-path trees are used for multipoint distribution are protocol issues, and are
irrelevant to the interface the application would use to perform multipoint communications.
Therefore these issues are not addressed either in this appendix or by the Windows Sockets
interface.

The following table depicts the taxonomy described above and indicates how existing schemes fit

into each of the categories. Note that there does not appear to be any existing schemes that employ
anon-rooted control plane along with arooted data plane.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 50 sur 307

rooted control plane non-rooted (implicit rooted)
control plane
rooted data plane ATM, ST-II No known examples.
non-rooted data plane T.120 IP-multicast, H.320 (MCU)

Windows Sockets 2 | nterface Elements for Multipoint and
Multicast

The mechanisms that have been incorporated into Windows Sockets 2 for utilizing multipoint
capabilities can be summarized as follows:

Three attribute bits in the WSAPROTOCOL |INFO struct

1. Four flags defined for the dwFlags parameter of W SA Sock et

2. Onefunction, WSAJoinL eaf, for adding leaf nodes into a multipoint session

3. Two WSAI octl command codes for controlling multipoint loopback and the scope of
multicast transmissions.

The paragraphs which follow describe these interface elements in more detail.

Attributesin WSAPROTOCOL _INFO struct

In support of the taxonomy described above, three attribute fields in the WSAPROTOCOL _INFO
structure are use to distinguish the different schemes used in the control and data planes
respectively:

1. XP1 _SUPPORT_MULTIPOINT with avalue of 1 indicates this protocol entry supports
multipoint communications, and that the following two fields are meaningful.

2. XP1_MULTIPOINT_CONTROL_PLANE indicates whether the control planeis rooted
(value = 1) or non-rooted (value = 0).

3. XP1_MULTIPOINT_DATA_PLANE indicates whether the data plane is rooted (value = 1)
or non-rooted (value = 0).

Note that two WSAPROTOCOL_INFO entries would be present if a multipoint protocol
supported both rooted and non-rooted data planes, one entry for each.

The application can use W SAEnumPr otocols to discover whether multipoint communicationsis
supported for a given protocol and, if so, how it is supported with respect to the control and data
planes, respectively.

Flag bits for WSA Socket
In some instances sockets joined to a multipoint session may have some behavioral differences

from point-to-point sockets. For example, ad_leaf socket in arooted data plane scheme can only
send information to the d_root participant. This creates a need for the application to be able to

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 51 sur 307

indicated the intended use of a socket coincident with its creation. Thisis done through four flag
bits that can be set in the dwFlags parameter to W SASocket:

e WSA FLAG MULTIPOINT_C_ ROOQOT, for the creation of a socket acting asac_root, and
only allowed if arooted control plane isindicated in the corresponding
WSAPROTOCOL_INFO entry.

e WSA FLAG MULTIPOINT_C_LEAF, for the creation of a socket acting asac |eaf, and
only allowed if XP1_SUPPORT_MULTIPOINT isindicated in the corresponding
WSAPROTOCOL_INFO entry.

e WSA FLAG MULTIPOINT_D_ROQT, for the creation of a socket actingasad_root, and
only allowed if arooted data plane isindicated in the corresponding
WSAPROTOCOL_INFO entry.

e WSA FLAG MULTIPOINT_D_LEAF, for the creation of a socket actingasad leaf, and
only allowed if XP1_SUPPORT_MULTIPOINT isindicated in the corresponding
WSAPROTOCOL_INFO entry.

Note that when creating a multipoint socket, exactly one of the two control plane flags, and one of
the two data plane flags must be set in WSA Socket's dwFlags parameter. Thus, the four
possibilities for creating multipoint sockets are: "c_root/d_root", "c_root/d leaf", "c_leaf/d _root",
or "c_leaf /d_leaf".

SIO_MULTIPOINT_LOOPBACK command code for WSAloctl

When d_leaf sockets are used in a non-rooted data plane, it is generally desirable to be able to
control whether traffic sent out is aso received back on the same socket. The
SIO_MULTIPOINT_LOOPBACK command code for WSAI octl is used to enable or disable
loopback of multipoint traffic.

SIO_MULTICAST_SCOPE command code for WSAloctl

When multicasting is employed, it is usually necessary to specify the scope over which the
multicast should occur. Scope is defined as the number of routed network segments to be covered.
A scope of zero would indicate that the multicast transmission would not be placed "on the wire"
but could be disseminated across sockets within the local host. A scope value of one (the default)
indicates that the transmission will be placed on the wire, but will not cross any routers. Higher
scope values determine the number of routers that may be crossed. Note that this corresponds to
the time-to-live (TTL) parameter in IP multicasting.

The function WSAJoinL eaf isused to join aleaf node into the multipoint session. See below for
adiscussion on how this function is utilized.

Semanticsfor joining multipoint leaves

In the following, a multipoint socket is frequently described by defining its role in one of the two
planes (control or data). It should be understood that this same socket has arole in the other plane,
but this is not mentioned in order to keep the references short. For example when areferenceis
made to a"c_root socket", this could be either ac_root/d_root or ac_root/d_leaf socket.

In rooted control plane schemes, new |leaf hodes are added to a multipoint session in one or both
of two different ways. In the first method, the root uses W SA JoinL eaf to initiate a connection

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 52 sur 307

with aleaf node and invite it to become a participant. On the leaf node, the peer application must
have created ac_leaf socket and used listen to set it into listen mode. The leaf node will receive
an FD_ACCEPT indication when invited to join the session, and signals its willingness to join by
caling WSAAccept. The root application will receive an FD_CONNECT indication when the
join operation has been completed.

In the second method, the roles are essentially reversed. The root application creates ac_root
socket and sets it into listen mode. A leaf node wishing to join the session creates ac_leaf socket
and uses WSAJoinL eaf to initiate the connection and request admittance. The root application
receives FD_ACCEPT when an incoming admittance request arrives, and admits the leaf node by
calling WSAAccept. The leaf node receives FD_CONNECT when it has been admitted.

In anon-rooted control plane, where all nodes are c_leaf's, the WSAJoinLeaf is used to initiate the
inclusion of a node into an existing multipoint session. An FD_CONNECT indication is provided
when the join has been completed and the returned socket descriptor is useable in the multipoint
session. In the case of 1P multicast, this would correspond to the IP_ ADD_MEMBERSHIP socket
option.

(Readers familiar with P multicast's use of the connectionless UDP protocol may be concerned
by the connection-oriented semantics presented here. In particular the notion of using

WSA JoinLeaf on a UDP socket and waiting for an FD_CONNECT indication may be troubling.
There is, however, ample precedent for applying connection-oriented semantics to connectionless
protocols. It is allowed and sometime useful, for example, to invoke the standard connect
function on a UDP socket. The general result of applying connection-oriented semantics to
connectionless sockets is arestriction in how such sockets may be used, and such is the case here
aswell. A UDP socket used in WSAJoinLeaf will have certain restrictions, and waiting for an
FD_CONNECT indication (which in this case ssimply indicates that the corresponding IGMP
message has been sent) is one such limitation.)

There are, therefore, three instances where an application would use W SAJoinL eaf:

1. Acting asamultipoint root and inviting a new leaf to join the session
2. Acting as aleaf making an admittance request to a rooted multipoint session
3. Acting as aleaf seeking admittance to a non-rooted multipoint session (e.g. IP multicast)

Using WSA JoinL eaf

As mentioned previously, the function WSAJoinL eaf is used to join aleaf node into a multipoint
session. WSAJoinL eaf has the same parameters and semantics as W SAConnect except that it
returns a socket descriptor (asin WSAAccept), and it has an additional dwFlags parameter. The
dwFlags parameter is used to indicate whether the socket will be acting only as a sender, only asa
receiver, or both. Only multipoint sockets may be used for input parameter sin this function. If
the multipoint socket isin the non-blocking mode, the returned socket descriptor will not be
useable until after a corresponding FD_CONNECT indication has been received. A root
application in amultipoint session may call WSAJoinLeaf one or more timesin order to add a
number of leaf nodes, however at most one multipoint connection request may be outstanding at a
time.

The socket descriptor returned by WSAJoinL eaf is different depending on whether the input
socket descriptor, s, isac_root or ac_leaf. When used with ac_root socket, the name parameter
designates a particular leaf node to be added and the returned socket descriptor isac_leaf socket
corresponding to the newly added leaf node. It is not intended to be used for exchange of
multipoint data, but rather is used to receive FD_XXX indications (e.g. FD_CLOSE) for the

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 53 sur 307

connection that exists to the particular c_leaf. Some multipoint implementations may also alow
this socket to be used for "side chats" between the root and an individual leaf node. An
FD_CLOSE indication will be received for this socket if the corresponding leaf node calls
closesocket to drop out of the multipoint session. Symmetrically, invoking closesocket on the
c_leaf socket returned from WSAJoinLeaf will cause the socket in the corresponding leaf node to
get FD_CLOSE noatification.

When WSAJoinL eaf isinvoked with ac_|eaf socket, the name parameter contains the address of
the root application (for arooted control scheme) or an existing multipoint session (non-rooted
control scheme), and the returned socket descriptor is the same as the input socket descriptor. Ina
rooted control scheme, the root application would put its ¢_root socket in the listening mode by
calling listen. The standard FD_ACCEPT notification will be delivered when the leaf node
requests to join itself to the multipoint session. The root application uses the usual

accept/W SAAccept functions to admit the new leaf node. The value returned from either accept
or WSAAccept isalso ac_leaf socket descriptor just like those returned from WSAJoinL eaf. To
accommodate multipoint schemes that allow both root-initiated and leaf-initiated joins, it is
acceptable for ac_root socket that is aready in listening mode to be used asin input to
WSAJoinL eaf.

A multipoint root application is generally responsible for the orderly dismantling of a multipoint
session. Such an application may use shutdown or closesocket on ac_root socket to cause all of
the associated c_leaf sockets, including those returned from WSA JoinLeaf and their
corresponding c_leaf socketsin the remote leaf nodes, to get FD_CLOSE notification.

Semantic differ ences between multipoint sockets and regular
sockets

In the control plane, there are some significant semantic differences between ac_root socket and a
regular point-to-point socket:

1. thec_root socket can be used in WSAJoinL eaf to join anew alesf;

2. placing ac_root socket into the listening mode (by callings listen) does not preclude the
c_root socket from being used in acall to WSAJoinL eaf to add anew leaf, or for sending
and receiving multipoint data;

3. theclosing of ac_root socket will cause al the associated c_|eaf socketsto get FD_CLOSE
notification.

There is no semantic differences between ac_leaf socket and aregular socket in the control plane,
except that the c_leaf socket can be used in WSAJoinL eaf, and the use of c_leaf socket in listen
indicates that only multipoint connection requests should be accepted.

In the data plane, the semantic differences between the d_root socket and a regular point-to-point
socket are

1. thedatasent onthed root socket will be delivered to al the leaves in the same multipoint
session;
2. thedatareceived onthed root socket may be from any of the leaves.

The d_leaf socket in the rooted data plane has no semantic difference from the regular socket,
however, in the non-rooted data plane, the data sent on the d_leaf socket will go to al the other

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 54 sur 307

leaf nodes, and the data received could be from any other leaf nodes. As mentioned earlier, the
information about whether the d_leaf socket isin arooted or non-rooted data plane is contained in
the corresponding WSAPROTOCOL _INFO structure for the socket.

How existing multipoint protocols support these extensions

In this section we indicate how IP multicast and ATM point-to-multipoint capabilities would be
accessed via the Windows Sockets 2 multipoint functions. We chose these two as examples
because they are very popular and well understood.

| P multicast

IP multicast falls into the category of non-rooted data plane and non-rooted control plane. All
applications play aleaf role. Currently most IP multicast implementations use a set of socket
options proposed by Steve Deering to the IETF. Five operations are made thus available:

IP_MULTICAST_TTL - set timeto live, controls scope of multicast session
IP_MULTICAST _IF - determine interface to be used for multicasting
IP_ADD_MEMBERSHIP - join a specified multicast session
IP_DROP_MEMBERSHIP - drop out of amulticast session
IP_MULTICAST_LOORP - control loopback of multicast traffic

Setting the time-to-live for an IP multicast socket maps directly to using the
SIO_MULTICAST_SCOPE command code for WSAl octl. The method for determining the IP
interface to be used for multicasting is via a TCP/IP-specific socket option as described in the
Windows Sockets 2 Protocol Specific Annex.

The remaining three operations are covered well with the Windows Sockets 2 semantics described
here. The application would open sockets with c_leaf/d_|eaf flagsin W SA Socket. It would use
WSAJoinL eaf to add itself to a multicast group on the default interface designated for multicast
operations. If the flag in WSAJoinL eaf indicates that this socket is only a sender, then thejoin
operation is essentially a no-op and no IGM P messages need to be sent. Otherwise, an IGMP
packet is sent out to the router to indicate interests in receiving packets sent to the specified
multicast address. Since the application created specia c¢_leaf/d_leaf sockets used only for
performing multicast, the standard closesocket function would be used to drop out of the
multicast session. The SIO_MULTIPOINT_LOOPBACK command code for WSAl octl provides
ageneric control mechanism for determining whether data sent on ad_leaf socket in a non-rooted
multipoint scheme will be also received on the same socket.

ATM Point to Multipoint

ATM fallsinto the category of rooted data and rooted control planes. An application acting as the
root would create c_root sockets and counterparts running on leaf nodes would utilize c_|eaf
sockets. The root application will use WSAJoinL eaf to add new leaf nodes. The corresponding
applications on the leaf nodes will have set their c_leaf sockets into listen mode. WSAJoinL eaf
with ac_root socket specified will be mapped to the Q.2931 ADDPARTY message. The |eaf-

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 55 sur 307

initiated join is not supported in ATM UNI 3.1, but will be supported in ATM UNI 4.0. Thus
WSAJoinL eaf with ac_leaf socket specified will be mapped to the appropriate ATM UNI 4.0

message.

Additional Windows Socket I nformation

This section contains information on the Windows Sockets 2 header file, additional Windows
Sockets reference material, and the error codes encountered in programming for Windows
Sockets 2.

Windows Sockets 2 Header File- WINSOCK 2.H

New versions of WINSOCK2.H will appear periodically as new identifiers are alocated by the
Windows Sockets Identifier Clearinghouse. The clearinghouse can be reached via the world wide
web at

http://ww. stardust. com wsresource/ wi nsock2/ws2i dent. ht m

Socket Options Specific to Microsoft's Service Providers

Microsoft's service providers support addtional socket options not included in the Windows
Sockets 2 API.

Socket Option for NT 4.0 Only

The following socket options are Microsoft-specific extensions for connect and disconnect data
and options and are used only by non-TCPF/IP transports such as DECNet, OSI TP4, etc. These are
only used in Microsoft's implementation of Windows Sockets on NT 4.0.

SO_CONNDATA

SO_CONNOPT

SO_DISCDATA

SO _DISCOPT

SO_CONNDATALEN

SO_CONNOPTLEN

SO_DISCDATALEN

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 56 sur 307

SO_DISCOPTLEN

The following socket options are Microsoft-specific extensions for controlling the size of
datagrams:

SO_MAXDG

SO_MAXPATHDG

Socket Option for NT 4.0 and Win95

SO_SNDTIMEO

SO_RCVTIMEO

Detailson SO_SNDTIMEO and SO RCVTIMEO

These two options set up timeouts for the send, sendto, recv, and recvfrom functions. Y ou can
obtain the same functionality by calling select with atimeout just before the 1/0 call, but these
options offer a significant improvement in performance by avoiding akernel transition and the

other overhead of the select call. For any code whose performance is very critical, applications
should use these timeout options rather than select.

Y ou can set these options on any type of socket in any state. The default value for these optionsis
zero, which refers to an infinite timeout. Any other setting is the timeout, in milliseconds. It is
valid to set the timeout to any value, but values less than 500 milliseconds (half a second) are
interpreted to be 500 milliseconds.

To set asend timeout, use

int timeout = TI MEQUT VALUE
int err;
SOCKET s;

s = socket(...);
err = setsockopt (
S,
SCOL_SCCKET,
SO_SNDTI MEQ
(char *)&tineout,
si zeof (ti meout));
if (err '= NO ERROR) {
[* failed for sone reason... */
}

The TIMEOUT_VALUE isthe needed timeout in milliseconds. To set areceive timeout,
substitute SO RCVTIMEO for SO_SNDTIMEO in the preceding example.

After setting one of these options to a nonzero value, I/O through the Windows Sockets calls fails
with the error WSAETIMEDOUT if the request cannot be satisfied within the specified timeout.
If arequest times out, an application has no guarantees as to how much data was actually sent or
received in the I/O call.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 57 sur 307

The following socket option is used in conjunction with the MS Extension function AcceptEx.

SO_UPDATE_ACCEPT_CONTEXT

Additional Documentation

This specification is intended to cover the Windows Sockets interface in detail. Many details of
specific protocols and Windows, however, are intentionally omitted in the interest of brevity, and
this specification often assumes background knowledge of these topics. For more information, the
following references may be helpful:

Networking Books

Braden, R.[1989], RFC 1122, Requirements for Internet Hosts--Communication Layers, Internet
Engineering Task Force.

Comer, D. [1991], Internetworking with TCP/IP Volume I: Principles, Protocols, and
Architecture, Prentice Hall, Englewood Cliffs, New Jersey.

Comer, D. and Stevens, D. [1991], Internetworking with TCP/IP Volume I1: Design,
Implementation, and Internals, Prentice Hall, Englewood Cliffs, New Jersey.

Comer, D. and Stevens, D. [1991], Internetworking with TCP/IP Volume I11: Client-Server
Programming and Applications, Prentice Hall, Englewood Cliffs, New Jersey.

Leffler, S. et al., An Advanced 4.3BSD Interprocess Communication Tutorial.
Stevens, W.R. [1990], Unix Network Programming, Prentice Hall, Englewood Cliffs, New Jersey.

Stevens, W.R. [1994]. TCP/IP lllustrated, Volume 1: The Protocols, Addison-Wesley,
M assachusetts

Wright, G.R. and Stevens, W.R. [1995], TCP/IP Illustrated Volume 2: The Implementation,
Addison-Wesley., Massachusetts

Windows Sockets Books

Bonner, P. [1995], Network Programming with Windows Sockets, ISBN: 0-13-230152-0, Prentice
Hall, Englewood Cliffs, New Jersey.

Dumas, A. [1995], Programming Windows Sockets, ISBN: 0-672-30594-1, Sams Publishing,
Indianapolis, Indiana

Quinn, B. and Shute, D. [1995], Windows Sockets Network Programming, ISBN: 0-201-63372-8,
Addison-Wesley Publishing Company, Reading, Massachusetts

Roberts, D. [1995], Developing for the Internet with Winsock, ISBN 1-883577-42-X, Coriolis
Group Books.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 58 sur 307

Error Codes

Thefollowing isalist of possible error codes returned by the WSAGetL astError call, along with
their extended explanations. Errors are listed in aphabetical order by error macro. Some error
codes defined in WINSOCK 2.H are not returned from any function - these have not been listed
here.

WSAEACCES
(10013)
Permission denied.
An attempt was made to access a socket in away forbidden by its access permissions.
An example is using a broadcast address for sendto without broadcast permission
being set using setsockopt(SO_BROADCAST).
WSAEADDRINUSE
(10048)
Address already in use.
Only one usage of each socket address (protocol/IP address/port) is normally
permitted. This error occurs if an application attempts to bind a socket to an IP
address/port that has already been used for an existing socket, or a socket that wasn't
closed properly, or onethat is still in the process of closing. For server applications
that need to bind multiple sockets to the same port number, consider using
setsockopt(SO_REUSEADDR). Client applications usually need not call bind at all
- connect will choose an unused port automatically. When bind is called with awild-
card address (involving ADDR_ANY)), aWSAEADDRINUSE error could be
delayed until the specific address is"committed."” This could happen with acall to
other function later, including connect, listen, WSAConnect or WSAJoinL eaf.
WSAEADDRNOTAVAIL
(10049)
Cannot assign requested address.
The requested addressis not valid in its context. Normally results from an attempt to
bind to an address that is not valid for the local machine. This can also result from
connect, sendto, WSAConnect, WSAJoinL eaf, or WSASendT o when the remote
address or port is not valid for aremote machine (e.g. address or port 0).
WSAEAFNOSUPPORT
(10047)
Address family not supported by protocol family.
An address incompatible with the requested protocol was used. All sockets are
created with an associated "address family” (i.e. AF_INET for Internet Protocols) and
ageneric protocol type (i.e. SOCK_STREAM). This error will be returned if an
incorrect protocol is explicitly requested in the socket call, or if an address of the
wrong family is used for a socket, e.g. in sendto.
WSAEALREADY
(10037)
Operation already in progress.
An operation was attempted on a non-blocking socket that already had an operation
in progress - i.e. caling connect a second time on a non-blocking socket that is
already connecting, or canceling an asynchronous request (WSAAsyncGetXbyY) that
has already been canceled or compl eted.
WSAECONNABORTED

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 59 sur 307

(10053)
Software caused connection abort.
An established connection was aborted by the software in your host machine,
possibly due to a data transmission timeout or protocol error.
WSAECONNREFUSED
(10061)
Connection refused.
No connection could be made because the target machine actively refused it. This
usually results from trying to connect to a service that is inactive on the foreign host -
i.e. one with no server application running.
WSAECONNRESET
(10054)
Connection reset by peer.
A existing connection was forcibly closed by the remote host. This normally resultsif
the peer application on the remote host is suddenly stopped, the host is rebooted, or
the remote host used a"hard close" (see setsockopt for more information on the
SO_LINGER option on the remote socket.) This error may also result if a
connection was broken due to "keep-alive" activity detecting afailure while one or
more operations are in progress. Operations that were in progress fail with
WSAENETRESET. Subsequent operations fail with WSAECONNRESET.
WSAEDESTADDRREQ
(10039)
Destination address required.
A required address was omitted from an operation on a socket. For example, this
error will be returned if sendto is called with the remote address of ADDR_ANY.
WSAEFAULT
(10014)
Bad address.
The system detected an invalid pointer address in attempting to use a pointer
argument of acall. This error occurs if an application passes an invalid pointer value,
or if the length of the buffer istoo small. For instance, if the length of an argument
which isastruct sockaddr is smaller than sizeof(struct sockaddr).
WSAEHOSTDOWN
(10064)
Host is down.
A socket operation failed because the destination host was down. A socket operation
encountered a dead host. Networking activity on the local host has not been initiated.
These conditions are more likely to be indicated by the error WSAETIMEDOUT.
WSAEHOSTUNREACH
(10065)
No route to host.
A socket operation was attempted to an unreachable host. See
WSAENETUNREACH
WSAEINPROGRESS
(10036)
Operation now in progress.
A blocking operation is currently executing. Windows Sockets only allows asingle
blocking operation to be outstanding per task (or thread), and if any other function
call is made (whether or not it references that or any other socket) the function fails
with the WSAEINPROGRESS error.
WSAEINTR
(10004)
Interrupted function call.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 60 sur 307

A blocking operation was interrupted by a call to W SA CancelBlockingCall.
WSAEINVAL
(10022)
Invalid argument.
Some invalid argument was supplied (for example, specifying aninvalid level to the
setsockopt function). In some instances, it also refersto the current state of the
socket - for instance, calling accept on a socket that is not listening.
WSAEISCONN
(10056)
Socket is already connected.
A connect request was made on an aready connected socket. Some implementations
also return this error if sendto is called on a connected SOCK_DGRAM socket (For
SOCK_STREAM sockets, the to parameter in sendto is ignored), although other
implementations treat this as alegal occurrence.
WSAEMFILE
(10024)
Too many open files.
Too many open sockets. Each implementation may have a maximum number of
socket handles available, either globally, per process or per thread.
WSAEMSGSIZE
(10040)
Message too long.
A message sent on a datagram socket was larger than the internal message buffer or
some other network limit, or the buffer used to receive a datagram into was smaller
than the datagram itself.
WSAENETDOWN
(10050)
Network is down.
A socket operation encountered a dead network. This could indicate a serious failure
of the network system (i.e. the protocol stack that the WinSock DLL runs over), the
network interface, or the local network itself.
WSAENETRESET
(10052)
Network dropped connection on reset.
The connection has been broken due to "keep-alive" activity detecting afailure while
the operation was in progress. It can also be returned by setsockopt if an attempt is
made to set SO_KEEPALIVE on aconnection that has already failed.
WSAENETUNREACH
(10051)
Network is unreachable.
A socket operation was attempted to an unreachable network. This usually means the
local software knows no route to reach the remote host.
WSAENOBUFS
(10055)
No buffer space available.
An operation on a socket could not be performed because the system lacked sufficient
buffer space or because a queue was full.
WSAENOPROTOOPT
(10042)
Bad protocol option.
An unknown, invalid or unsupported option or level was specified in a getsockopt or

setsockopt call.
WSAENOTCONN

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 61 sur 307

(10057)
Socket is not connected.
A request to send or receive data was disallowed because the socket is not connected
and (when sending on a datagram socket using sendto) no address was supplied. Any
other type of operation might also return this error - for example, setsockopt setting
SO_KEEPALIVE if the connection has been reset.
WSAENOTSOCK
(10038)
Socket operation on non-socket.
An operation was attempted on something that is not a socket. Either the socket
handle parameter did not reference avalid socket, or for select, a member of an
fd_set was not valid.
WSAEOPNOT SUPP
(10045)
Operation not supported.
The attempted operation is not supported for the type of object referenced. Usually
this occurs when a socket descriptor to a socket that cannot support this operation, for
example, trying to accept a connection on a datagram socket.
WSAEPFNOSUPPORT
(10046)
Protocol family not supported.
The protocol family has not been configured into the system or no implementation for
it exists. Has adlightly different meaning to WSAEAFNOSUPPORT, but is
interchangeable in most cases, and all Windows Sockets functions that return one of
these specify WSAEAFNOSUPPORT.
WSAEPROCLIM
(10067)
Too many processes.
A Windows Sockets implementation may have alimit on the number of applications
that may use it simultaneously. W SAStar tup may fail with this error if the limit has
been reached.
WSAEPROTONOSUPPORT
(10043)
Protocol not supported.
The requested protocol has not been configured into the system, or no
implementation for it exists. For example, a socket call requests a SOCK_DGRAM
socket, but specifies a stream protocol.
WSAEPROTOTYPE
(10041)
Protocol wrong type for socket.
A protocol was specified in the socket function call that does not support the
semantics of the socket type requested. For example, the ARPA Internet UDP
protocol cannot be specified with a socket type of SOCK_STREAM.
WSAESHUTDOWN
(10058)
Cannot send after socket shutdown.
A request to send or receive data was disallowed because the socket had already been
shut down in that direction with a previous shutdown call. By calling shutdown a
partial close of a socket is requested, which isasignal that sending or receiving or
both has been discontinued.
WSAESOCKTNOSUPPORT
(10044)
Socket type not supported.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 62 sur 307

The support for the specified socket type does not exist in this address family. For
example, the optional type SOCK_RAW might be selected in a socket call, and the
implementation does not support SOCK_RAW sockets at all.
WSAETIMEDOUT
(10060)
Connection timed out.
A connection attempt failed because the connected party did not properly respond
after aperiod of time, or established connection failed because connected host has
failed to respond.
WSATYPE_NOT_FOUND
(10109)
Class type not found.
The specified class was not found.
WSAEWOULDBLOCK
(10035)
Resour ce temporarily unavailable.
This error is returned from operations on non-blocking sockets that cannot be
completed immediately, for example recv when no datais queued to be read from the
socket. It isanon-fatal error, and the operation should be retried later. It is normal for
WSAEWOULDBLOCK to be reported as the result from calling connect on a non-
blocking SOCK_STREAM socket, since some time must elapse for the connection to
be established.
WSAHOST _NOT_FOUND
(112001)
Host not found.
No such host is known. The nameis not an official hostname or alias, or it cannot be
found in the database(s) being queried. This error may also be returned for protocol
and service queries, and means the specified name could not be found in the relevant
database.
WSA _INVALID HANDLE
(OS dependent)
Soecified event object handle isinvalid.
An application attempts to use an event object, but the specified handle is not valid.
WSA_INVALID PARAMETER
(OS dependent)
One or more parameters are invalid.
An application used a Windows Sockets function which directly maps to a Win32
function. The Win32 function is indicating a problem with one or more parameters.
WSAINVALIDPROCTABLE
(OS dependent)
Invalid procedure table from service provider.
A service provider returned a bogus proc table to WS2_32.DLL. (Usually caused by
one or more of the function pointers being NULL.)
WSAINVALIDPROVIDER
(OS dependent)
Invalid service provider version number.
A service provider returned a version number other than 2.0.
WSA |0 _INCOMPLETE
(OS dependent)
Overlapped 1/0 event object not in signaled state.
The application has tried to determine the status of an overlapped operation which is
not yet completed. Applications that use WSAGetOver lappedResult (with the fWait
flag set to false) in a polling mode to determine when an overlapped operation has

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 63 sur 307

completed will get this error code until the operation is complete.
WSA |0 _PENDING
(OS dependent)
Overlapped operations will complete later.
The application hasinitiated an overlapped operation which cannot be completed
immediately. A completion indication will be given at alater time when the operation
has been compl eted.
WSA NOT_ENOUGH_MEMORY
(OS dependent)
Insufficient memory available.
An application used a Windows Sockets function which directly maps to a Win32
function. The Win32 function isindicating alack of required memory resources.
WSANOTINITIALISED
(10093)
Successful WSASartup not yet performed.
Either the application hasn't called WSAStartup or WSAStartup failed. The
application may be accessing a socket which the current active task does not own (i.e.
trying to share a socket between tasks), or W SACleanup has been called too many
times.
WSANO_DATA
(11004)
Valid name, no data record of requested type.
The requested name is valid and was found in the database, but it does not have the
correct associated data being resolved for. The usual example for thisis a hostname -
> address translation attempt (using gethostbyname or
WSAAsyncGetHostByName) which uses the DNS (Domain Name Server), and an
MX record is returned but no A record - indicating the host itself exists, but is not
directly reachable.
WSANO_RECOVERY
(112003)
Thisisa non-recoverable error.
This indicates some sort of non-recoverable error occurred during a database lookup.
This may be because the database files (e.g. BSD-compatible HOSTS, SERVICES or
PROTOCOLSfiles) could not be found, or a DNS request was returned by the server
with a severe error.
WSAPROVIDERFAILEDINIT
(OS dependent)
Unableto initialize a service provider.
Either aservice provider's DLL could not be loaded (L oadL ibrary failed) or the
provider's WSPStar tup/NSPStar tup function failed.
WSASY SCALLFAILURE
(OS dependent)
System call failure.
Returned when a system call that should never fail does. For example, if acall to
WaitFor MultipleObjects fails or one of the registry functions fails trying to
mani pul ate theprotocol/namespace catal ogs.
WSASYSNOTREADY
(10091)
Network subsystem is unavailable.
Thiserror is returned by WSAStar tup if the Windows Sockets implementation
cannot function at this time because the underlying system it uses to provide network
servicesis currently unavailable. Users should check:
o that the appropriate Windows Sockets DLL fileisin the current path,

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 64 sur 307

o that they are not trying to use more than one Windows Sockets implementation
simultaneousdly. If there is more than one WINSOCK DLL on your system, be sure
the first one in the path is appropriate for the network subsystem currently |oaded.

o the Windows Sockets implementation documentation to be sure all necessary
components are currently installed and configured correctly.

WSATRY_AGAIN
(11002)
Non-authoritative host not found.
Thisisusualy atemporary error during hostname resol ution and means that the local
server did not receive aresponse from an authoritative server. A retry at some time
later may be successful.
WSAVERNOTSUPPORTED
(10092)
WINSOCK.DLL version out of range.
The current Windows Sockets implementation does not support the Windows
Sockets specification version requested by the application. Check that no old
Windows Sockets DLL files are being accessed.
WSAEDI SCON
(10094)
Graceful shutdown in progress.
Returned by WSARecv and W SARecvFrom to indicate the remote party has
initiated a graceful shutdown sequence.
WSA_OPERATION_ABORTED
(OS dependent)
Overlapped operation aborted.
An overlapped operation was canceled due to the closure of the socket, or the
execution of the SIO_FLUSH command in WSAI octl.

accept

The Windows Sockets accept function accepts an incoming connection attempt on a socket.

SOCKET accept (

SOCKET s,

struct sockaddr FAR* addr,
int FAR* addrl en

);

Parameters

S
[in] A descriptor identifying a socket that has been placed in alistening state with the listen
function. The connection will actually be made with the socket that is returned by accept.
addr
[out] An optional pointer to a buffer that receives the address of the connecting entity, as
known to the communications layer. The exact format of the addr parameter is determined
by the address family established when the socket was created.
addrlen
[out] An optiona pointer to an integer that contains the length of the address addr.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 65 sur 307

Remarks

The accept function extracts the first connection on the queue of pending connections on socket s.
It then creates a new socket and returns a handle to the new socket. The newly created socket is
the socket that will handle the actual the connection and has the same properties as socket s,
including the asynchronous events registered with the W SAAsyncSelect or W SAEvent Select
functions. The socket s does not have the listening socket's group 1D, if any was applied.

The accept function can block the caller until a connection is present if no pending connections
are present on the queue, and the socket is marked as blocking. If the socket is marked
nonblocking and no pending connections are present on the queue, accept returns an error as
described below. After the successful completion of accept returns a new socket handle, the
accepted socket cannot be used to accept more connections. The original socket remains open and
listens for new connection requests.

The parameter addr is aresult parameter that isfilled in with the address of the connecting entity,
as known to the communications layer. The exact format of the addr parameter is determined by
the address family in which the communication is occurring. The addrlen is a value-result
parameter; it should initially contain the amount of space pointed to by addr; on return it will
contain the actual length (in bytes) of the address returned.

The accept function is used with connection-oriented socket types such as SOCK_STREAM.

If addr and/or addrlen are equal to NULL, then no information about the remote address of the
accepted socket is returned.

Windows CE: Windows CE does not support the WSAEINTR error value.
For IrSocket implementation, the addr and addrlen parameters should always be NULL.
Return Values

If no error occurs, accept returns avalue of type SOCKET that is a descriptor for the new socket.
Thisreturned value is a handle for the socket on which the actual connection will be made.

Otherwise, avalue of INVALID_SOCKET is returned, and a specific error code can be retrieved
by calling WSAGetL astError.

The integer referred to by addrlen initially contains the amount of space pointed to by addr. On
return it will contain the actual length in bytes of the address returned.

Error Codes

WSANOTINITIALISED A successful WSA Startup must occur before using this
FUNCTION.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The addrlen parameter istoo small or addr isnot avalid
part of the user address space.

WSAEINTR A blocking Windows Sockets 1.1 call was canceled

through W SA Cancel BlockingCall.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 66 sur 307

WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.

WSAEINVAL The listen function was not invoked prior to accept.

WSAEMFILE The queue is nonempty upon entry to accept and there
are no descriptors available.

WSAENOBUFS No buffer spaceis available.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP The referenced socket is not atype that supports
connection-oriented service.

WSAEWOULDBLOCK The socket is marked as honblocking and no

connections are present to be accepted.

Quicklnfo

WindowsNT: Yes

Windows:. Yes

Windows CE: Useversion 1.0 and later.
Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

bind, connect, listen, select, socket, WSAAsyncSe ect, W SAA ccept

AcceptEx

Notice This function is a Microsoft-specific extension to the Windows Sockets specification. For
more information, see Microsoft Extensions and Windows Sockets 2.

The Windows Sockets AcceptEx function accepts a new connection, returns the local and remote
address, and receives the first block of data sent by the client application.

BOCOL Accept Ex (
SOCKET sLi st enSocket
SOCKET sAccept Socket ,
PVO D | pQut put Buf f er,
DWORD dwRecei veDat aLengt h,
DWORD dwiocal Addr essLengt h,
DWORD dwRenot eAddr essLengt h,
LPDWORD | pdwByt esRecei ved,
LPOVERLAPPED | pOver | apped

Parameters

sListenSocket
[in] A descriptor identifying a socket that has already been called with the listen function. A

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 67 sur 307

server application waits for attempts to connect on this socket.

sAcceptSocket
[in] A descriptor identifying a socket on which to accept an incoming connection. This
socket must not be bound or connected.

[pOutputBuffer
[in] A pointer to a buffer that receivesthe first block of data sent on a new connection, the
local address of the server, and the remote address of the client. The receive datais written
to the first part of the buffer starting at offset zero, while the addresses are written to the
latter part of the buffer. This parameter must be specified.

dwReceiveDatal ength
[in] The number of bytesin the buffer that will be used for receiving data. If this parameter
is specified as zero, then no receive operation is performed in conjunction with accepting
the connection. Instead, the AcceptEx function completes as soon as a connection arrives
without waiting for any data.

dwLocal AddressLength
[in] The number of bytes reserved for the local address information. This must be at least 16
bytes more than the maximum address length for the transport protocol in use.

dwRemoteAddressLength
[in] The number of bytes reserved for the remote address information. This must be at least
16 bytes more than the maximum address length for the transport protocol in use.

| pawBYytesReceived
[out] A pointer to a DWORD that receives the count of bytes received. Thisis set only if
the operation completes synchronoudly. If it returns ERROR_IO_PENDING and is
completed later, then this DWORD is never set and you must obtain the number of bytes
read from the completion notification mechanism.

|pOverlapped
[in] An OVERLAPPED structure that is used to process the request. This parameter must
be specified; it cannot be NULL.

Return Values

If no error occurs, the AcceptEx function completed successfully and avalue of TRUE is
returned.

If the function fails, AcceptEx returns FALSE. The WSAGetL astError function can then be
called to return extended error information. If WSAGetL astError returns
ERROR O _PENDING, then the operation was successfully initiated and is still in progress.

Remarks

The AcceptEx function combines several socket functionsinto asingle API/kernel transition. The
AcceptEx function, when successful, performs three tasks: a new connection is accepted, both the
local and remote addresses for the connection are returned, and the first block of data sent by the
remoteisreceived. A program will make a connection to a socket more quickly using
AcceptExinstead of the accept function.

A single output buffer receives the data, the local socket address (the server), and the remote
socket address (the client). Using a single buffer improves performance, but the
GetAcceptExSockaddr s function must be called to parse the buffer into its three distinct parts.

The buffer size for the local and remote address must be 16 bytes more than the size of the
SOCKADDR structure for the transport protocol in use because the addresses are written in an
internal format. For example, the size of a SOCKADDR_IN (the address structure for TCP/IP) is

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 68 sur 307

16 bytes. Therefore, abuffer size of at least 32 bytes must be specified for the local and remote
addresses.

The AcceptEx function uses overlapped 1/0, unlike the Windows Sockets 1.1 accept function. If
your application uses AcceptEX, it can service alarge number of clients with arelatively small
number of threads. Aswith all overlapped Win32 functions, either Win32 events or completion
ports can be used as a compl etion notification mechanism.

Another key difference between the AcceptEx function and the Windows Sockets 1.1 accept
function is that the AcceptEx function requires the caller to already have two sockets: one that
specifies the socket on which to listen and one that specifies the socket on which to accept the
connection. The sAcceptSocket parameter must be an open socket that is neither bound nor
connected.

The IpNumber OfBytesTransferred parameter of the GetQueuedCompletionStatus function or
the GetOver lappedResult function indicates the number of bytes received in the request.

When this operation is successfully completed, sAcceptHandle can be passed only to the
following functions:

ReadFile
WriteFile
send
recv
TransmitFile
closesock et

Note If you have called the TransmitFile function with both the TF_DISCONNECT and
TF_REUSE_SOCKET flags, the specified socket has been returned to astatein which it is
neither bound nor connected. Y ou can then pass the handle of the socket to the AcceptEx
function in the sAcceptSocket parameter.

When the AcceptEx function returns, the socket sAcceptSocket isin the default state for a
connected socket. The socket sAcceptSocket does not inherit the properties of the socket
associated with sListenSocket parameter until SO_UPDATE_ACCEPT_CONTEXT is set on the
socket. Use the setsockopt function to set the SO UPDATE_ACCEPT_CONTEXT option,
specifying sAcceptSocket as the socket handle and sListenSocket as the option value.

For example:

err = setsockopt (sAccept Socket,
SOL_ SOCKET,
SO _UPDATE_ACCEPT_CONTEXT,
(char *)&sLi stenSocket,
si zeof (sLi st enSocket));

Use the getsockopt function with the SO_CONNECT _TIME option to check whether a
connection has been accepted. If it has been accepted, you can determine how long the connection
has been established. The return value is the number of seconds that the socket has been
connected. If the socket is not connected, the getsockopt returns OXFFFFFFFF. Checking a
connection like thisis necessary in order to check for connections that have been established for a
while, but no data has been received. It is recommended that you terminate those connections.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 69 sur 307

For example:

I NT seconds;
I NT bytes = sizeof (seconds);
err = getsockopt(sAccept Socket, SOL_SOCKET, SO _CONNECT_TI ME,
(char *)&seconds, (PINT)&bytes);
if (err = NOERROR) {
printf("getsockopt (SO CONNECT _TIME) failed: %d\n", WSAGetLastError());
exit(1l);

Quicklnfo

WindowsNT: Yes

Windows CE: Unsupported.

Header: Declared in mswsock.h.

Import Library: Link with mswsock.lib.

bind
The Windows Sockets bind function associates alocal address with a socket.

int bind (

SOCKET s,

const struct sockaddr FAR* nane,
i nt nanel en

);

Parameters

S
[in] A descriptor identifying an unbound socket.
name
[in] The addressto assign to the socket from the SOCK ADDR structure.
namelen
[in] The length of the name.

Remarks

The bind function is used on an unconnected socket before subsequent calls to the connect or
listen functions. It is used to bind to either connection-oriented (stream) or connectionless
(datagram) sockets. When a socket is created with acall to the socket function, it existsin a name
space (address family), but it has no name assigned to it. Use bind to establish the local
association of the socket by assigning alocal name to an unnamed socket.

A name consists of three parts when using the Internet address family: the address family, a host
address, and a port number that identifies the application. In Windows Sockets 2, the name
parameter is not strictly interpreted as a pointer to a SOCK ADDR structure. It is cast thisway for
Windows Sockets 1.1 compatibility. Service Providers are free to regard it as a pointer to a block
of memory of size namelen. The first two bytesin this block (corresponding to the sa family

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 70 sur 307

member of the SOCK ADDR structure) must contain the address family that was used to create
the socket. Otherwise, an error WSAEFAULT will occur.

If an application does not care what local address is assigned, specify the manifest constant value

ADDR_ANY for the sa_data member of the name parameter. This allows the underlying service

provider to use any appropriate network address, potentially simplifying application programming
in the presence of multihomed hosts (that is, hosts that have more than one network interface and

address).

For TCP/IP, if the port is specified as zero, the service provider will assign a unique port to the
application with a value between 1024 and 5000. The application can use getsockname after bind
to learn the address and the port that has been assigned to it. If the Internet addressis equal to
INADDR_ANY, getsockname will not necessarily be able to supply the address until the socket
is connected, since several addresses can be valid if the host is multihomed. Binding to a specific
port number other than port O is discouraged for client applications, since there is a danger of
conflicting with another socket already using that port number.

Windows CE: For IrSocket implementation of this function:

o The Af_irda.h must be explicitly included.

e The SOCKADDR_IRDA_wcesdk_SOCKADDR_IRDA structure is used in the addr
parameter.

e The WSAENETDOWN error valueis not supported.

e Thereisno wildcard address equivalent to INADDR_ANY..

I'r Sockets clients must call bind before using a connect function. If the service name is of
the form "LSAP-SELxxx" where xxx is a decimal integer in the range 0-255, the address
indicates a specific LSAP-SEL xxx rather than a service name. LSAP-SELxxx service
names will cause no IAS calls. The socket will be bound directly to the LSAP-SEL
specified bypassing IAS.

Return Values

If no error occurs, bind returns zero. Otherwise, it returns SOCKET_ERROR, and a specific error
code can be retrieved by calling WSAGetL astError.

Error Codes

WSANOTINITIALISED A successful WSA Startup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEADDRINUSE A process on the machineis already bound to the same
fully-qualified address and the socket has not been
marked to allow address re-use with
SO_REUSEADDR. For example, IP address and port
are bound in the af _inet case) . (Seethe
SO_REUSEADDR socket option under setsockopt.)

WSAEADDRNOTAVAIL The specified address is not avalid address for this

machine

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 71 sur 307

WSAEFAULT The name or the namelen parameter isnot avalid part of
the user address space, the namelen parameter istoo
small, the name parameter contains incorrect address
format for the associated address family, or the first two
bytes of the memory block specified by name does not
match the address family associated with the socket

descriptor s.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.

WSAEINVAL The socket is already bound to an address.

WSAENOBUFS Not enough buffers available, too many connections.

WSAENOTSOCK The descriptor is not a socket.

Quicklnfo

WindowsNT: Yes

Windows: Yes

Windows CE: Useversion 1.0 and later.
Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

connect, getsockname, listen, setsockopt, socket, WSACancelBlockingCall

closesock et

The Windows Sockets closesocket function closes an existing socket.

i nt cl osesocket (
SCCKET s

);

Parameters

S
[in] A descriptor identifying a socket to close.

Remarks

The closesocket function closes a socket. Use it to release the socket descriptor s so further
references to swill fail with the error WSAENOTSOCK. If thisis the last reference to an
underlying socket, the associated naming information and queued data are discarded. Any pending
blocking, asynchronous calls issued by any thread in this process are canceled without posting any
notification messages.

Any pending overlapped send and receive operations

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 72 sur 307

(W SA Send/W SA SendT o/ W SARecv/W SARecvFrom with an overlapped socket) issued by any
thread in this process are also canceled. Any event, completion routine, or completion port action
specified for these overlapped operationsis performed. The pending overlapped operations fail
with the error status WSA _OPERATION_ABORTED.

An application should always have a matching call to closesocket for each successful call to
socket to return any socket resources to the system.

The semantics of closesocket are affected by the socket options SO_LINGER and
SO_DONTLINGER asfollows (SO_DONTLINGER is enabled by default; SO_LINGER is
disabled):

Option Interval Type of close Wait for close?
SO DONTLINGER Do not care Graceful No

SO LINGER Zero Hard No

SO _LINGER Nonzero Graceful Yes

If SO_LINGER is set with a zero time-out interval (that is, the LINGER structure members
|_onoff isnot zero and |_linger is zero), closesocket is not blocked even if queued data has not
yet been sent or acknowledged. Thisis called a"hard" or "abortive" close, because the socket's
virtual circuit is reset immediately, and any unsent datais lost. Any recv call on the remote side of
the circuit will fail with WSAECONNRESET.

If SO_LINGER is set with anonzero time-out interval on a blocking socket, the closesocket call
blocks on a blocking socket until the remaining data has been sent or until the time-out expires.
Thisis called a graceful disconnect. If the time-out expires before al data has been sent, the
Windows Sockets implementation terminates the connection before closesocket returns.

Enabling SO_LINGER with anonzero time-out interval on a nonblocking socket is not
recommended. In this case, the call to closesocket will fail with an error of
WSAEWOULDBLOCK if the close operation cannot be completed immediately. If closesocket
failswith WSAEWOULDBLOCK the socket handleis still valid, and a disconnect is not
initiated. The application must call closesocket again to close the socket.If SO DONTLINGER is
set on a stream socket by setting the | _onoff member of the LINGER structure to zero, the
closesocket call will return immediately and does not receive WSAWOULDBLOCK whether the
socket is blocking or nonblocking. However, any data queued for transmission will be sent, if
possible, before the underlying socket is closed. Thisis also called a graceful disconnect. In this
case, the Windows Sockets provider cannot release the socket and other resources for an arbitrary
period, thus affecting applications that expect to use all available sockets. Thisis the default
behavior (SO_DONTLINGER is set by default).

Note To assure that all datais sent and received on a connection, an application should call
shutdown before calling closesocket (see Graceful shutdown, linger options and socket closure
for more information). Also note, an FD_CLOSE network event will not be posted after
closesocket is called.

Hereis asummary of closesocket behavior:
e if SO DONTLINGER enabled (the default setting) it always returns immediately —

connection is gracefully closed "in the background"
o if SO_LINGER enabled with azero time-out: it always returnsimmediately - connection is

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 73 sur 307
reset/terminated
o if SO_LINGER enabled with nonzero time-out:
—with blocking socket it blocks until all data sent or time-out expires
—with nonblocking socket it returns immediately indicating failure

For additional information please see Graceful shutdown, linger options and socket closure for
more information.

Windows CE: Windows CE does not support the WSAEINTR error value.
For IrSocket implementation:

e The Af_irdah file must be explicitly included.
e The WSAENETDOWN error valueis not supported.
e The standard linger options are supported.

Although IrDA does not provide a graceful close, IrSockets will defer closing until receive
gueues are purged. Thus, an application can send data and immediately call the socket
function confident that the receiver will copy the data before receiving an FD_CLOSE

message.

Return Values

If no error occurs, closesocket returns zero. Otherwise, avaue of SOCKET _ERROR isreturned,
and a specific error code can be retrieved by calling WSAGetL astError.

Error Codes

WSANOTINITIALISED A successful WSA Startup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAENOTSOCK The descriptor is not a socket.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.

WSAEINTR The (blocking) Windows Socket 1.1 call was canceled
through W SA Cancel BlockingCall.

WSAEWOULDBLOCK The socket is marked as nonblocking and SO_LINGER
is set to a nonzero time-out value.

Quicklnfo

WindowsNT: Yes

Windows:. Yes

Windows CE: Useversion 1.0 and later.
Header: Declared in winsock2.h.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 74 sur 307

Import Library: Link withws2_32.lib.
See Also

accept, ioctlsocket, setsockopt, socket, WSAAsyncSelect, WSADuplicateSock et

connect

The Windows Sockets connect function establishes a connection to a specifed socket.

i nt connect (
SOCKET s,
const struct sockaddr FAR* nane,
i nt nanel en

);

Parameters

S
[in] A descriptor identifying an unconnected socket.
name
[in] The name of the socket to connect to.
namelen
[in] The length of the name parameter.

Remarks

The connect function is used to create a connection to the specified destination. If the socket, s, is
unbound, unique values are assigned to the local association by the system, and the socket is
marked as bound.

For connection-oriented sockets (for example, type SOCK_STREAM), an active connection is
initiated to the foreign host using name (an address in the name space of the socket; for a detailed
description, please see bind and SOCK ADDR). When the socket call completes successfully, the
socket is ready to send/receive data. If the address member of the structure specified by the name
parameter is all zeroes, connect will return the error WSAEADDRNOTAVAIL. Any attempt to
re-connect an active connection will fail with the error code WSAEISCONN.

For connection-oriented, nonblocking sockets, it is often not possible to complete the connection
immediately. In such acase, this function returns the error WSAEWOULDBLOCK. However, the
operation proceeds. When the success or failure outcome becomes known, it may be reported in
one of several ways depending on how the client registers for notification. If the client uses the
select function, success is reported in the writefds set and failure is reported in the exceptfds set.

If the client uses the functions W SAAsyncSelect or WSAEventSelect, the notification is
announced with FD_CONNECT and the error code associated with the FD_CONNECT indicates
either success or a specific reason for failure

For a connectionless socket (for example, type SOCK_DGRAM), the operation performed by
connect is merely to establish a default destination address that will be used on subsequent
send/W SA Send and recv/W SARecv calls. Any datagrams received from an address other than

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 75 sur 307

the destination address specified will be discarded. If the address member of the structure specifed
by nameis all zeroes, the socket will be "dis-connected." Then, the default remote address will be
indeterminate, so send/W SASend and recv/W SARecv calls will return the error code
WSAENOTCONN. However, sendto/W SASendT o and r ecvfrom/W SARecvFrom can still be
used. The default destination can be changed by simply calling connect again, even if the socket
is aready connected. Any datagrams queued for receipt are discarded if name is different from the
previous connect.

For connectionless sockets, name can indicate any valid address, including a broadcast address.
However, to connect to a broadcast address, a socket must use setsockopt to enable the
SO _BROADCAST option. Otherwise, connect will fail with the error code WSAEACCES.

When a connection between sockets is broken, the sockets should be discarded and recreated.
When a problem devel ops on a connected socket, the application must discard and recreate the
needed sockets in order to return to a stable point.

Windows CE: Windows CE does not support the WSAEINTR error value.
For IrSocket implementation:

e The Af_irda.h file must be explicitly included.

o If WSAENETDOWN isreturned, an existing IrDA connection was detected at the media
access level.

o If WSAEADDRINUSE isreturned, active connections to a device with a different address
exist.

o If WSAEINPROGRESS isreturned, IAS name resolution failed because another IAS query
isin progress. Retry the operation at one second intervals.

o If WSAEISCONN isreturned, the socket is already connected or an exclusive/multiplexed
mode change failed.

IrSockets implements the connect function with addresses of the form sockaddr _irda. Typically,
aclient application will create a socket with the socket function, scan the immediate vicinity for
IrDA devices with the IRLMP_ENUMDEVICES socket option, choose a device from the
returned list, form an address, and call connect. Thereis no difference in blocking and non-
blocking semantics.

Return Values

If no error occurs, connect returns zero. Otherwise, it returns SOCKET _ERROR, and a specific
error code can be retrieved by calling WSAGetL astError.

On a blocking socket, the return value indicates success or failure of the connection attempt.

With a nonblocking socket, the connection attempt cannot be completed immediately. In this case,
connect will return SOCKET_ERROR, and WSAGetL astError will return
WSAEWOULDBLOCK. In this case, there are three different steps you can take:

1. Usethe select function to determine the completion of the connection request by checking
to seeif the socket is writeable.

2. If the application is using WSAAsyncSelect to indicate interest in connection events, then
the application will receive an FD_CONNECT notification indicating that the connect
operation is complete (successfully or not).

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 76 sur 307

3. If the application is using W SAEventSelect to indicate interest in connection events, then
the associated event object will be signaled indicating that the connect operation is
complete (successfully or not).

Until the connection attempt completes on a nonblocking socket, all subsequent calls to connect
on the same socket will fail with the error code WSAEALREADY , and WSAEISCONN when the
connection completes successfully. Due to ambiguitiesin version 1.1 of the Windows Sockets
specification, error codes returned from connect while a connection is aready pending may vary
among implementations. As aresult, it is not recommended that applications use multiple callsto
connect to detect connection completion. If they do, they must be prepared to handle
WSAEINVAL and WSAEWOULDBLOCK error values the same way that they handle
WSAEALREADY, to assure robust execution.

If the error code returned indicates the connection attempt failed (that is,
WSAECONNREFUSED, WSAENETUNREACH, WSAETIMEDOUT) the application can call
connect again for the same socket.

Error Codes

WSANOTINITIALISED A successful WSA Startup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEADDRINUSE The socket's local addressis aready in use and the
socket was not marked to allow address reuse with
SO_REUSEADDR. Thiserror usually occurs when
executing bind, but could be delayed until this function
if the bind wasto a partially wild-card address
(involving ADDR_ANY) and if a specific address needs
to be committed at the time of this function.

WSAEINTR The (blocking) Windows Socket 1.1 call was canceled
through W SA Cancel BlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is till processing a callback
function.

WSAEALREADY A nonblocking connect call isin progress on the
specified socket.

Note In order to preserve backward compatibility, this
error isreported as WSAEINVAL to Windows Sockets
1.1 applications that link to either WINSOCK.DLL or
WSOCK32.DLL.

WSAEADDRNOTAVAIL The remote address is not a valid address (such as
ADDR_ANY).

WSAEAFNOSUPPORT Addresses in the specified family cannot be used with
this socket.

WSAECONNREFUSED The attempt to connect was forcefully rejected.

WSAEFAULT The name or the namelen parameter isnot avalid part of
the user address space, the namelen parameter istoo
small, or the name parameter contains incorrect address
format for the associated address family.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 77 sur 307

WSAEINVAL The parameter sis alistening socket, or the destination
address specified is not consistent with that of the
constrained group the socket belongs to.

WSAEISCONN The socket is already connected (connection-oriented
sockets only).

WSAENETUNREACH The network cannot be reached from this host at this
time.

WSAENOBUFS No buffer space is available. The socket cannot be
connected.

WSAENOTSOCK The descriptor is not a socket.

WSAETIMEDOUT Attempt to connect timed out without establishing a
connection.

WSAEWOULDBLOCK The socket is marked as nonblocking and the connection
cannot be completed immediately.

WSAEACCES Attempt to connect datagram socket to broadcast

address failed because setsock opt option
SO _BROADCAST isnot enabled.

Quicklnfo

WindowsNT: Yes

Windows:. Yes

Windows CE: Useversion 1.0 and later.
Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

accept, bind, getsockname, select, socket, WSAAsyncSelect, W SAConnect

EnumProtocols

Important The EnumProtocols function is a Microsoft-specific extension to the Windows
Sockets 1.1 specification. Thisfunction is obsolete. For the convenience of Windows Sockets 1.1
developers, the reference material is below.

The WSAEnumProtocols function provides equivalent functionality in Windows Sockets 2.

The EnumPr otocols function obtains information about a specified set of network protocols that
are activeon alocal host.

I NT EnunPr ot ocol s(
LPI NT | pi Protocol s, /1l pointer to array of protocol
/] identifiers
LPVO D | pProtocol Buffer, // pointer to buffer to receive protocol
/1 information
LPDWORD | pdwBuf ferLength // pointer to variable that specifies
/1l the size of the receiving buffer

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 78 sur 307

Parameters

IpiProtocols
Pointer to a null-terminated array of protocol identifiers. The EnumProtocols function
obtains information about the protocols specified by this array.

If IpiProtocolsis NULL, the function obtains information about all available protocols.

The following protocol identifier values are defined:

Value Protocol

IPPROTO_TCP TCP/IP, a connection/stream oriented protocol

IPPROTO_UDP User Datagram Protocol (UDP/IP), a connectionless
datagram protocol

ISOPROTO_TP4 ISO connection-oriented transport protocol

NSPROTO_IPX IPX

NSPROTO_SPX SPX

NSPROTO_SPXI| SPX 11

|pProtocol Buffer
Pointer to a buffer that the function fills with an array of PROTOCOL _INFO data
structures.

[pawBufferLength
Pointer to avariable that, on input, specifies the size, in bytes, of the buffer pointed to by
|pProtocol Buffer.

On output, the function sets this variable to the minimum buffer size needed to retrieve all
of the requested information. For the function to succeed, the buffer must be at least this
size.

Return Values

If the function succeeds, the return value is the number of PROTOCOL _INFO data structures
written to the buffer pointed to by |pProtocol Buffer.

If the function fails, the return valueis SOCKET_ERROR (—1). To get extended error
information, call GetL astError. GetLastError can return the following extended error code:

Value M eaning

ERROR_INSUFFICIENT_BUFFER The buffer pointed to by |pProtocol Buffer was
too small to receive al of the relevant
PROTOCOL _INFO structures. Call the
function with abuffer at least aslarge as the
value returned in * |pdwBuffer Length.

Remarks

In the following sample code, the EnumPr otocol s function obtains information about all

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 79 sur 307

protocols that are available on a system. The code then examines each of the protocolsin greater
detail.

SOCKET

OpenConnecti on (
PTSTR Servi ceNane,
PGUI D Servi ceType
BOOL Rel i abl e,
BOOL MessageOriented,
BOOL Streanriented,
BOOL Connecti onl ess,
PI NT Protocol Used

)

/1 local variables

I NT protocol s[| MAX_ PROTOCOLS+1];
BYTE buf f er[2048];

DWORD byt esRequi r ed;

I NT err;

PPROTOCOL_I NFO pr ot ocol I nf o;
PCSADDR | NFO csaddr | nf o;

I NT protocol Count;

I NT addressCount;

I NT i;

DWORD pr ot ocol | ndex;

SOCKET s;

/1 First |1ook up the protocols installed on this machine.
/1
byt esRequi red = sizeof (buffer);
err = EnunProtocol s(NULL, buffer, &bytesRequired);
if (err <=0)
return | NVALI D_SOCKET;

/1 Wal k through the avail able protocols and pick out the ones which
/1 support the desired characteristics.
/1
prot ocol Count = err
protocol I nfo = (PPROTOCOL_I NFO) buf f er
for (i =0, protocollndex = O;
i < protocol Count && protocol | ndex < MAX_PROTOCCLS;
i ++, protocol I nfo++) {
/1 1f connection-oriented support is requested, then check if
/1 supported by this protocol. W assune here that connection-
/1 oriented support inplies fully reliable service.
11
if (Reliable) {

/1 Check to see if the protocol is reliable. It rnust

/1 guarantee both delivery of all data and the order in
/1 which the data arrives.
/1
i f

((protocol | nfo->dwServi ceFl ags &
XP_GUARANTEED DELI VERY) ==
|
(protocol I nfo->dwSer vi ceFl ags &
XP_GUARANTEED ORDER) == 0) {

conti nue;

}

/1 Check to see that the protocol matches the streanf nessage
/1 characteristics requested.
/1
if (StreanOriented &&
(protocol I nfo->dwSer vi ceFl ags & XP_MESSAGE_CRI ENTED)

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information

= 0 &&

(protocol I nf o->dwSer vi ceFl ags & XP_PSEUDO STREAM
== 0) {

conti nue;

}
if (MessageOriented &&

Page 80 sur 307

(protocol I nf o->dwSer vi ceFl ags & XP_MESSAGE_ ORI ENTED)

. == 0) {
contl nue;

}

else if (Connectionless) {
/1 Make sure that this is a connectionl ess protocol.
/1
if ((protocollnfo->dwServi ceFl ags & XP_CONNECTI ONLESS)
I=0)
conti nue;

}

/1 This protocol fits all the criteria. Add it to the |ist
/1 protocols in which we're interested.

/1

pr ot ocol s[prot ocol | ndex++] = protocol | nfo->i Protocol;

Quicklnfo

WindowsNT: Yes

Windows CE: Unsupported.

Header: Declared in nspapi.h.

Import Library: Link with wsock32.lib.
See Also

GetAddressByName, PROTOCOL INFO

GetAcceptExSockaddrs

of

Notice This function is a Microsoft-specific extension to the Windows Sockets specification. For

more information, see Microsoft Extensions and Windows Sockets 2.

The Windows Sockets GetAcceptExSockaddr s function parses the data obtained from acall to
the AcceptEx function and passes the local and remote addresses to a SOCK ADDR structure.

VO D Get Accept ExSockaddrs (
PVA D | pQut put Buf f er,
DWORD dwRecei veDat aLengt h,
DWORD dwiocal Addr essLengt h,
DWORD dwRenot eAddr essLengt h,
LPSOCKADDR * Local Sockaddr,
LPI NT Local Sockaddr Lengt h,
LPSOCKADDR * Renpt eSockaddr,
LPI NT Renot eSockaddr Lengt h

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm

09/12/2003

Legal Information Page 81 sur 307

Parameters

[pOutputBuffer
[in] A pointer to a buffer that receives the first block of data sent on a connection resulting
from an AcceptEx call. It must be the same |pOutputBuffer parameter that was passed to
the AcceptEx function.

dwReceiveDatal ength
[in] The number of bytesin the buffer that will be used for receiving the first data. This
must be equal to the dwReceiveDatal ength parameter that was passed to the AcceptEx
function.

dwLocal AddressLength
[in] The number of bytes reserved for the local address information. This must be equal to
the dwLocal AddressLength parameter that was passed to the AcceptEx function.

dwRemoteAddressLength
[in] The number of bytes reserved for the remote address information. This must be equal to
the dwRemoteAddressLength parameter that was passed to the AcceptEx function.

Local Sockaddr
[out] A pointer to the SOCKADDR structure that receives the local address of the
connection (the same information that would be returned by the Windows Sockets
getsockname function). This parameter must be specified.

Local SockaddrLength
[out] The size of the local address. This parameter must be specified.

RemoteSockaddr
[out] A pointer to the SOCKADDR structure that receives the remote address of the
connection (the same information that would be returned by the Windows Sockets
getpeer name function). This parameter must be specified.

RemoteSockaddr Length
[out] The size of the local address. This parameter must be specified.

Remarks
The GetAcceptExSockaddr s function is used exclusively with the AcceptEx function to parse
the first data that the socket receivesinto local and remote addresses. Y ou are required to use this
function because the AcceptEx function writes address information in an internal (TDI) format.
The GetAcceptExSockaddrsroutineis required to locate the SOCK ADDR structuresin the
buffer.
Return Values
This function does not return avalue.
Quicklnfo

WindowsNT: Yes

Windows CE: Unsupported.

Header: Declared in mswsock.h.
Import Library: Link with mswsock.lib.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 82 sur 307

GetAddressByName

Important The GetAddressByName function is a Microsoft-specific extension to the Windows
Sockets 1.1 specification. This function is obsolete. For the convenience of Windows Sockets 1.1
developers, the reference material is below.

The functions detailed in Protocol-Independent Name Resolution provide equivalent functionality
in Windows Sockets 2.

The GetAddressByName function queries a name space, or a set of default name spaces, in order
to obtain network address information for a specified network service. This process is known as
service name resolution. A network service can also use the function to obtain local address
information that it can use with the bind function.

I NT Get Addr essByNane(
DWORD dwiNaneSpace, /1 nanme space to query for service address
/1 information
LPGUI D | pServi ceType, [/ the type of the service
LPTSTR | pServi ceNanme, // the name of the service
LPI NT | pi Protocol s, /1 points to array of protocol identifiers
DWORD dwResol uti on, /1 set of bit flags that specify aspects of
/1 nanme resol ution
LPSERVI CE_ASYNC | NFO | pServi ceAsyncl nf o,
/1 reserved for future use, nust be NULL
LPVA D | pCsaddrBuffer, // points to buffer to receive address
/1 information
LPDWORD | pdwBuf f erLength, // points to variable wi th address
/1 buffer size information
LPTSTR | pAli asBuffer, // points to buffer to receive alias
/1 information
LPDWORD | pdwAl i asBuf f er Lengt h
/1 points to variable with alias buffer
/1 size information

)

Parameters

dwNameSpace
Specifies the name space, or a set of default name spaces, that the operating system will
query for network address information.

Use one of the following constants to specify a name space:
Value Name Space

NS DEFAULT A set of default name spaces. The function queries each
name space within this set. The set of default name
spaces typically includes al the name spaces installed on
the system. System administrators, however, can exclude
particular name spaces from the set. Thisisthe value that
most applications should use for dwNameSpace.

NS DNS The Domain Name System used in the Internet for host
name resol ution.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 83 sur 307

NS NETBT The NetBIOS over TCP/IP layer. All Windows NT
systems register their computer names with NetBIOS.
This name space is used to convert a computer name to
an IP address that uses this registration. Note that
NS NETBT can access a WINS server to perform the
resolution.

NS SAP The Netware Service Advertising Protocol. This can
access the Netware bindery if appropriate. NS_SAPisa
dynamic name space that allows registration of services.

NS TCPIP_HOSTS Lookup value in the <systemroot>\system32
\drivers\etc\hosts file.
NS TCPIP_LOCAL Local TCP/IP name resolution mechanisms, including

comparisons against the local host name and looks up
host names and |P addresses in cache of host to IP
address mappings.

Most calsto GetAddressByName should use the special value NS DEFAULT. Thisletsa
client get by with no knowledge of which name spaces are available on an internetwork.
The system administrator determines name space access. Name spaces can come and go
without the client having to be aware of the changes.

IpServiceType
Points to a globally unique identifier (GUI D) that specifies the type of the network service.
The header file SVCGUID.H includes definitions of several GUID service types, and
macros for working with them.

[pServiceName
Points to a zero-terminated string that uniquely represents the service name. For example,
"MY SNA SERVER".

Setting IpServiceName to NULL is the equivalent of setting dwResolution to
RES_SERVICE. The function operates in its second mode, obtaining the local address to
which a service of the specified type should bind. The function stores the local address
within the L ocalAddr member of the CSADDR_INFO structures stored into
*|pCsaddrBuffer.

If dwResolution is set to RES_SERVICE, the function ignores the |pServiceName
parameter.

If dwNameSpaceis set to NS DNS, *IpServiceName is the name of the host.
IpiProtocols

Points to a zero-terminated array of protocol identifiers. The function restricts a name

resolution attempt to name space providers that offer these protocols. Thisletsthe caller

limit the scope of the search.

If IpiProtocolsis NULL, the function obtains information on all available protocols.
dwResolution

A set of bit flags that specify aspects of the service name resolution process. The following

bit flags are defined:

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 84 sur 307

Value Meaning

RES_SERVICE If thisflag is set, the function obtains the address to
which aservice of the specified type should bind. This
isthe equivalent of setting IpServiceName to NULL.

If thisflag is clear, normal name resolution occurs.

RES FIND _MULTIPLE If thisflag is set, the operating system performs an
extensive search of all name spaces for the service. It
will ask every appropriate name space to resolve the
service name. If thisflag is clear, the operating system
stops looking for service addresses as soon asone is
found.

RES SOFT_SEARCH Thisflag isvalid if the name space supports multiple
levels of searching.

If thisflag isvalid and set, the operating system
performs a simple and quick search of the name space.
Thisisuseful if an application only needs to obtain
easy-to-find addresses for the service.

If thisflag isvalid and clear, the operating system
performs a more extensive search of the name space.

[plpServiceAsynclnfo
Reserved for future use; must be set to NULL.

|pCsaddrBuffer
Points to a buffer to receive one or more CSADDR_INFO data structures. The number of
structures written to the buffer depends on the amount of information found in the
resolution attempt. Y ou should assume that multiple structures will be written, although in
many cases there will only be one.

[pawBufferLength
Points to avariable that, upon input, specifies the size, in bytes, of the buffer pointed to by
IpCsaddrBuffer.

Upon output, this variable contains the total number of bytes required to store the array of
CSADDR_INFO structures. If this value isless than or equal to the input value of
* | pdwBuUffer Length, and the function is successful, this is the number of bytes actually
stored in the buffer. If thisvalue is greater than the input value of *IpdwBuffer Length, the
buffer was too small, and the output value of *IpdwBuffer Length is the minimal required
buffer size.

|pAliasBuffer
Points to a buffer to receive alias information for the network service.

If a name space supports aliases, the function stores an array of zero-terminated name
strings into the buffer pointed to by IpAliasBuffer. There is a double zero-terminator at the
end of thelist. Thefirst namein the array is the service's primary name. Names that follow
are diases. An example of a name space that supports aliasesis DNS.

If a name space does not support aliases, it stores a double zero-terminator into the buffer.

This parameter is optional, and can be set to NULL.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 85 sur 307

[pdwAliasBuffer Length
Points to avariable that, upon input, specifies the size, in bytes, of the buffer pointed to by
IpAliasBuffer.

Upon output, this variable contains the total number of bytes required to store the array of
name strings. If thisvalue is less than or equal to the input value of

*|pdwAliasBuffer Length, and the function is successful, thisisthe number of bytes actually
stored in the buffer. If thisvalue is greater than the input value of *IpdwAliasBufferLength,
the buffer was too small, and the output value of *|pdwAliasBuffer Length is the minimal
required buffer size.

If IpAliasBuffer is NULL, IpdwAliasBuffer Length is meaningless and can also be NULL.

Return Values

If the function succeeds, the return value is the number of CSADDR_INFO data structures
written to the buffer pointed to by |pCsaddrBuffer.

If the function fails, the return value is SOCKET _ERROR(—1). To get extended error
information, call GetL astError. GetLastError can return the following extended error value:

Value Meaning

ERROR_INSUFFICIENT_BUFFER The buffer pointed to by |pCsaddrBuffer was too
small to receive all of the relevant
CSADDR_INFO structures. Call the function
with abuffer at least as large as the value
returned in * |pdwBuffer Length.

Remarks

This function is amore powerful version of the Windows Sockets function gethostbyname The
GetAddressByName function works with multiple name services.

The GetAddressByName function lets a client obtain a Windows Sockets address for a network
service. The client specifies the service of interest by its service type and service name.

Many name services support a default prefix or suffix that the name service provider considers
when resolving service names. For example, in the DNS name space, if adomain is named
"nt.microsoft.com", and "ftp millikan" is provided as input, the DNS software fails to resolve
"millikan", but successfully resolves "millikan.nt.microsoft.com".

Note that the GetAddr essByName function can search for a service address in two ways: within a
particular name space, or within a set of default name spaces. Using a default name space, an
administrator can specify that certain name spaces will be searched for service addresses only if
specified by name. An administrator or name space setup program can aso control the ordering of
name space searches.

Quicklnfo
WindowsNT: Yes

Windows CE: Unsupported.
Header: Declared in nspapi.h.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 86 sur 307

Import Library: Link with wsock32.lib.
See Also

gethostbyname, CSADDR INFO

gethostbyaddr

The Windows Sockets gethostbyaddr function retrieves the host information corresponding to a
network address.

struct HOSTENT FAR * get host byaddr (
const char FAR * addr,

int |en,

int type

)

Parameters

addr

[in] A pointer to an address in network byte order.
len

[in] The length of the address.

type
[in] The type of the address.
Remarks

The gethostbyaddr function returns a pointer to the HOSTENT structure that contains the name
and address corresponding to the given network address. All strings are null-terminated.

Return Values

If no error occurs, gethostbyaddr returns a pointer to the HOSTENT structure. Otherwise, it
returns a NULL pointer, and a specific error code can be retrieved by calling WSAGetL astError.

Error Codes

WSANOTINITIALISED A successful WSA Startup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or server failed.

WSANO_RECOVERY Nonrecoverable error occurred.

WSANO_DATA Valid name, no data record of requested type.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information

WSAEINPROGRESS

WSAEAFNOSUPPORT
WSAEFAULT

WSAEINTR

Quicklnfo

Windows NT: Yes
Windows; Yes

Page 87 sur 307

A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.

The type specified is not supported by the Windows
Sockets implementation.

The addr parameter is not avalid part of the user
address space, or the len parameter istoo small.

A blocking Windows Socket 1.1 call was canceled
through W SA Cancel BlockingCall.

Windows CE: Useversion 1.0 and later.

Header: Declared in winsock2.h.

Import Library: Link withws2_32.lib.

See Also

gethostbyname, HOSTENT, WSAAsyncGetHostByAddr

gethostbyname

The Windows Sockets gethostbyname function retrieves host information corresponding to a
host name from a host database.

struct hostent FAR * get host bynane (
const char FAR * nane

);

Parameters

name
[out] A pointer to the null-terminated name of the host to resolve.

Remarks

The gethostbyname function returns a pointer toaHOSTENT structure — a structure allocated
by Windows Sockets. The HOSTENT structure contains the results of a successful search for the

host specified in the name parameter.

The application must never attempt to modify this structure or to free any of its components.

Furthermore, only one copy of this structure is allocated per thread, so the application should copy

any information it needs before issuing any other Windows Sockets function calls.

The gethostbyname function cannot resolve I P address strings passed to it. Such arequest is

treated exactly asif an unknown host name were passed. Use inet_addr to convert an IP address

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 88 sur 307

string the string to an actual |P address, then use another function, gethostbyaddr, to obtain the
contents of the HOSTENT structure.

The gethostbyname function resolves the string returned by a successful call to gethostname.
Return Values
If no error occurs, gethostbyname returns a pointer to the HOSTENT structure described above.

Otherwise, it returnsa NULL pointer and a specific error number can be retrieved by calling
WSAGetL astError.

Error Codes
WSANOTINITIALISED A successful WSA Startup must occur before using this
function.
WSAENETDOWN The network subsystem has failed.
WSAHOST _NOT_FOUND Authoritative Answer Host not found.
WSATRY_AGAIN Non-Authoritative Host not found, or server failure.
WSANO_RECOVERY Nonrecoverable error occurred.
WSANO _DATA Vaid name, no data record of requested type.
WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.
WSAEFAULT The name parameter is not avalid part of the user
address space.
WSAEINTR A blocking Windows Socket 1.1 call was canceled
through W SA Cancel BlockingCall.
Quicklnfo

WindowsNT: Yes

Windows: Yes

Windows CE: Use version 1.0 and later.
Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

gethostbyaddr, WSAAsyncGetHostByName

gethostname

The Windows Sockets gethostname function returns the standard host name for the local
machine.

i nt get host name (
char FAR * nane,

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 89 sur 307

i nt nanel en

);

Parameters

name

[out] A pointer to abuffer that receives the local host name.
namelen

[in] The length of the buffer.

Remarks

The gethostname function returns the name of the local host into the buffer specified by the name
parameter. The host name s returned as a null-terminated string. The form of the host nameis
dependent on the Windows Sockets provider — it can be a simple host name, or it can be afully
qualified domain name. However, it is guaranteed that the name returned will be successfully
parsed by gethostbyname and W SAAsyncGetHostByName.

Note If no local host name has been configured, gethosthame must succeed and return a token
host name that gethostbyname or W SAAsyncGetHostByName can resolve.

Return Values

If no error occurs, gethostname returns zero. Otherwise, it returns SOCKET _ERROR and a
specific error code can be retrieved by calling WSAGetL astError.

Error Codes
WSAEFAULT The name parameter is not avalid part of the user
address space, or the buffer size specified by namelen
parameter istoo small to hold the complete host name.
WSANOTINITIALISED A successful WSA Startup must occur before using this
function.
WSAENETDOWN The network subsystem has failed.
WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.
Quicklnfo

WindowsNT: Yes

Windows:. Yes

Windows CE: Useversion 1.0 and later.
Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

gethostbyname, W SAAsyncGetHostByName

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 90 sur 307

GetNameByType

Important The GetNameByType function is a Microsoft-specific extension to the Windows
Sockets 1.1 specification. Thisfunction is obsolete. For the convenience of Windows Sockets 1.1
developers, the reference material is below.

The functions detailed in Protocol-Independent Name Resol ution provide equivalent functionality
in Windows Sockets 2.

The GetNameByType function obtains the name of a network service. The network serviceis
specified by its service type.

I NT Get NanmeByType(
LPGUI D | pServiceType, [/ points to network service type GJ D
LPTSTR | pServi ceNane, [// points to buffer to receive name of
/1l network service

DWORD dwNamelLengt h /1l points to variable that specifies buffer
/'l size
)
Parameters
IpServiceType

Points to a globally unique identifier (GUI D) that specifies the type of the network service.
The header file SVCGUID.H includes definitions of several GUID service types, and
macros for working with them.

[pServiceName
Points to a buffer to receive a zero-terminated string that uniquely represents the name of
the network service.

dwNameLength
Points to a variable that, on input, specifies the size of the buffer pointed to by
IpServiceName. On output, the variable contains the actual size of the service name string.

Return Values
If the function succeeds, the return value isnot SOCKET_ERROR (—1).

If the function fails, the return value is SOCKET_ERROR (—1). To get extended error
information, call GetL astError.

Quicklnfo
WindowsNT: Yes
Windows CE: Unsupported.
Header: Declared in nspapi.h.
Import Library: Link with wsock32.lib.

See Also

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 91 sur 307

GetTypeByName

getpeername

The Windows Sockets getpeer name function retrieves the name of the peer to which a socket is
connected.

i nt getpeernane (

SOCKET s,

struct sockaddr FAR* nane,
int FAR* nanel en

);

Parameters

S

[in] A descriptor identifying a connected socket.
name

[out] The structure that receives the name of the peer.
namelen

[in/out] A pointer to the size of the name structure.

Remarks

The getpeer name function retrieves the name of the peer connected to the socket s and storesit in
the aSOCK ADDR structure identified by name. The getpeer name function can be used only on a
connected socket. For datagram sockets, only the name of a peer specified in a previous connect
call will be returned—any name specified by a previous sendto call will not be returned by
getpeer name.

On call, the namelen argument contains the size of the name buffer, in bytes. On return, the
namelen parameter contains the actual size in bytes of the name returned.

Return Values

If no error occurs, getpeer name returns zero. Otherwise, avalue of SOCKET_ERROR is
returned, and a specific error code can be retrieved by calling WSAGetL astError.

Error Codes

WSANOTINITIALISED A successful WSA Startup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The name or the namelen parameter isnot avalid part of
the user address space, or the namelen parameter istoo
small.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 92 sur 307

WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.

WSAENOTCONN The socket is not connected.

WSAENOTSOCK The descriptor is not a socket.

Quicklnfo

WindowsNT: Yes

Windows CE: Useversion 1.0 and later.
Header: Declared in winsock2.h.
Import Library: Link with wsock32.lib.

See Also

bind, getsockname, sock et

getprotobyname

The Windows Sockets getprotobyname function retrieves the protocol information
corresponding to a protocol name.

struct PROTCENT FAR * get protobynane (
const char FAR * name

);

Parameters

name
[in] A pointer to a null-terminated protocol name.

Remarks

The getpr otobyname function returns a pointer to the PROTOENT structure containing the
name(s) and protocol number that correspond to the protocol specified in the name parameter. All
strings are null-terminated. The PROTOENT structure is allocated by the Windows Sockets
library. An application must never attempt to modify this structure or to free any of its
components. Furthermore, like HOSTENT, only one copy of this structure is allocated per thread,
so the application should copy any information that it needs before issuing any other Windows
Sockets function calls.

Return Values

If no error occurs, getprotobyname returns a pointer to the PROTOENT . Otherwise, it returnsa
NULL pointer and a specific error number can be retrieved by calling WSAGetL astError.

Error Codes

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information

WSANOTINITIALISED

WSAENETDOWN
WSAHOST _NOT_FOUND
WSATRY_AGAIN
WSANO_RECOVERY

WSANO_DATA
WSAEINPROGRESS
WSAEFAULT

WSAEINTR

Quicklnfo

Windows NT: Yes
Windows. Yes
Windows CE: Unsupported.

Header: Declared in winsock2.h.

Page 93 sur 307

A successful WSA Startup must occur before using this
function.

The network subsystem has failed.
Authoritative Answer Protocol not found.
Non-Authoritative Protocol not found, or server failure.

Nonrecoverable errors, the protocols database is not
accessible.

Vaid name, no data record of requested type.

A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.

The name parameter is not avalid part of the user
address space.

A blocking Windows Socket 1.1 call was canceled
through W SA Cancel BlockingCall.

Import Library: Link withws2_32.lib.

See Also

getprotobynumber, WSAAsyncGetProtoByName

getprotobynumber

The Windows Sockets getprotobynumber function retrieves protocol information corresponding
to a protocol number.

struct PROTOENT FAR * get prot obynunber (

);

i nt nunber

Parameters

number
[in] A protocol number, in host byte order.

Remarks

This getprotobynumber function returns a pointer to the PROTOENT structure as previously

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm

09/12/2003

Legal Information Page 94 sur 307

described in getpr otobyname. The contents of the structure correspond to the given protocol
number.

The pointer that is returned points to the structure allocated by Windows Sockets. The application
must never attempt to modify this structure or to free any of its components. Furthermore, only
one copy of this structure is allocated per thread, so the application should copy any information
that it needs before issuing any other Windows Sockets function calls.

Return Values
If no error occurs, getprotobynumber returns a pointer to the PROTOENT structure. Otherwise,

it returnsaNULL pointer and a specific error number can be retrieved by calling
WSAGetL astError.

Error Codes
WSANOTINITIALISED A successful WSA Startup must occur before using this
function.
WSAENETDOWN The network subsystem has failed.
WSAHOST_NOT_FOUND Authoritative Answer Protocol not found.
WSATRY_AGAIN Non-Authoritative Protocol not found, or server failure.
WSANO_RECOVERY Nonrecoverable errors, the protocols database is not
accessible.
WSANO _DATA Vaid name, no data record of requested type.
WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.
WSAEINTR A blocking Windows Socket 1.1 call was canceled
through W SA Cancel BlockingCall.
Quicklnfo

WindowsNT: Yes

Windows:. Yes

Windows CE: Unsupported.

Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

getprotobyname, WSAAsyncGetProtoByNumber

getser vbyname

The Windows Sockets getser vbyname function retrieves service information corresponding to a
service name and protocol.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 95 sur 307

struct servent FAR * getservbynane (
const char FAR * nane,
const char FAR * proto

);

Parameters

name
[in] A pointer to a null-terminated service name.

proto
[in] An optional pointer to a null-terminated protocol name. If this pointer isNULL,
getser vbyname returns the first service entry where name matches the s_name member of
the SERVENT structure or the s_aliases member of the SERVENT structure. Otherwise,
getser vbyname matches both the name and the proto.

Remarks

The getser vbyname function returns a pointer to the SERVENT structure containing the name(s)
and service number that match the string in the name parameter. All strings are null-terminated.

The pointer that is returned points to the SERVENT structure allocated by the Windows Sockets
library. The application must never attempt to modify this structure or to free any of its
components. Furthermore only one copy of this structure is allocated per thread, so the application
should copy any information it needs before issuing any other Windows Sockets function calls.

Return Values
If no error occurs, getser vbyname returns a pointer to the SERVENT structure. Otherwise, it

returns a NULL pointer and a specific error number can be retrieved by calling
WSAGetL astError.

Error Codes
WSANOTINITIALISED A successful WSA Startup must occur before using this
function.
WSAENETDOWN The network subsystem has failed.
WSAHOST_NOT_FOUND Authoritative Answer Service not found.
WSATRY_AGAIN Non-Authoritative Service not found, or server failure.
WSANO_RECOVERY Nonrecoverable errors, the services database is not
accessible.
WSANO_DATA Valid name, no data record of requested type.
WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.
WSAEINTR A blocking Windows Socket 1.1 call was canceled
through W SACancel BlockingCall.
Quicklnfo

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 96 sur 307

WindowsNT: Yes

Windows: Yes

Windows CE: Unsupported.

Header: Declared in winsock?2.h.
Import Library: Link withws2_32.lib.

See Also

getser vbyport, WSAAsyncGetSer vByName

getservbyport

The Windows Sockets getser vbyport function retrieves service information corresponding to a
port and protocol.

struct servent FAR * getservbyport (
int port,

const char FAR* proto

);

Parameters

port
[in] The port for a service, in network byte order.

proto
[in] An optional pointer to a protocol name. If thisis NULL, getservbyport returns the first
service entry for which the port matchesthe s _port of the SERVENT structure. Otherwise,
getser vbyport matches both the port and the proto parameters.

Remarks

The getservbyport function returns a pointer to aSERVENT structure as it doesin the
getser vbyname function.

The SERVENT structureis allocated by Windows Sockets. The application must never attempt
to modify this structure or to free any of its components. Furthermore, only one copy of this
structure is allocated per thread, so the application should copy any information it needs before
issuing any other Windows Sockets function calls.

Return Values
If no error occurs, getser vbyport returns a pointer to the SERVENT structure. Otherwise, it

returns a NULL pointer and a specific error number can be retrieved by calling
WSAGetL astError.

Error Codes

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information

WSANOTINITIALISED

WSAENETDOWN
WSAHOST _NOT_FOUND
WSATRY_AGAIN
WSANO_RECOVERY

WSANO_DATA
WSAEINPROGRESS
WSAEFAULT

WSAEINTR

Quicklnfo

Windows NT: Yes
Windows. Yes

Windows CE: Unsupported.
Header: Declared in winsock2.h.

Page 97 sur 307

A successful WSA Startup must occur before using this
function.

The network subsystem has failed.
Authoritative Answer Service not found.
Non-Authoritative Service not found, or server failure.

Nonrecoverable errors, the services database is not
accessible.

Vaid name, no data record of requested type.

A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.

The proto parameter is not avalid part of the user
address space.

A blocking Windows Socket 1.1 call was canceled
through W SA Cancel BlockingCall.

Import Library: Link withws2_32.lib.

See Also

getser vbyname, W SAAsyncGetSer vByPort

GetService

Important The GetService function is a Microsoft-specific extension to the Windows Sockets
1.1 specification. This function is obsolete. For the convenience of Windows Sockets 1.1
developers, the reference material isbelow..

The functions detailed in Protocol-Independent Name Resolution provide equivalent functionality

in Windows Sockets 2.

The Get Ser vice function obtains information about a network service in the context of a set of
default name spaces or a specified name space. The network service is specified by its type and
name. The information about the serviceis obtained as a set of NS_ SERVICE_INFO data

structures.

I NT Get Servi ce(

DWORD dwiNaneSpace, /1 specifies name space or spaces to search

PGUI D | pGui d,
LPTSTR | pSer vi ceNarne,

/1 points to a GUID service type

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 98 sur 307

/1l points to a service nane

DWORD dwProperties, [/ specifies service information to be
/1 obtained

LPVO D | pBuffer, /1l points to buffer to receive service
/1 information

LPDWORD | pdwBuf fer Si ze, [/ points to size of buffer, size of

/1 service information

LPSERVI CE_ASYNC | NFO | pServi ceAsyncl nfo

/1 reserved for future use, must be NULL

Parameters

dwNameSpace
Specifies the name space, or a set of default name spaces, that the operating system will
query for information about the specified network service.

Use one of the following constants to specify a name space:
Value Name Space

NS DEFAULT A set of default name spaces. The operating system will
query each name space within this set. The set of default
name spaces typically includes all the name spaces
installed on the system. System administrators,
however, can exclude particular name spaces from the
set. NS DEFAULT isthe value that most applications
should use for dwNameSpace.

NS DNS The Domain Name System used in the Internet for host
name resolution.
NS NETBT The NetBIOS over TCP/IP layer. All Windows NT

systems register their computer names with NetBIOS.
This name space is used to resolve a computer name
into an IP address using this registration. Note that
NS NETBT can access a WINS server to perform the
resolution.

NS SAP The Netware Service Advertising Protocol. This can
access the Netware bindery if appropriate. NS_SAPisa
dynamic name space that allows registration of services.

NS TCPIP_HOSTS Looks up host names and IP addresses in the
<systemroot>\system32\drivers\etc\hosts file.
NS TCPIP_LOCAL Local TCP/IP name resolution mechanisms, including

comparisons against the local host name and looks up
host names and |P addresses in cache of host to IP
address mappings.

Most callsto GetService should use the special value NS DEFAULT. Thisletsaclient get
by with no knowledge of which name spaces are available on an internetwork. The system
administrator determines name space access. Name spaces can come and go without the
client having to be aware of the changes.

[pGuid
Points to a globally unique identifier (GUI D) that specifies the type of the network service.
The header file SVCGUID.H includes GUID service types from many well-known services
within the DNS and SAP name spaces.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 99 sur 307

[pServiceName
Points to a zero-terminated string that uniquely represents the service name. For example,
"MY SNA SERVER".

dwProperties
A set of bit flags that specify the service information that the function obtains. Each of these
bit flag constants, other than PROP_ALL, corresponds to a particular member of the
SERVICE_INFO data structure. If the flag is set, the function puts information into the
corresponding member of the data structures stored in *IpBuffer. The following bit flags are

defined:

Value Name Space

PROP_COMMENT If thisflag is set, the function stores datain the
IpComment member of the data structures stored in
*|pBuffer.

PROP_LOCALE If thisflag is set, the function stores datain the IpL ocale
member of the data structures stored in *|pBuffer.

PROP_DISPLAY_HINT If thisflag is set, the function stores datain the
dwDisplayHint member of the data structures stored in
*|pBuffer.

PROP_VERSION If thisflag is set, the function stores datain the
dwVersion member of the data structures stored in
*|pBuffer.

PROP_START_TIME If thisflag is set, the function stores datain the dwTime
member of the data structures stored in *|pBuffer.

PROP_MACHINE If thisflag is set, the function stores datain the
IpM achineName member of the data structures stored
in *|pBuffer.

PROP_ADDRESSES If thisflag is set, the function stores datain the
|pServiceAddress member of the data structures stored
in *|pBuffer.

PROP_SD If thisflag is set, the function stores datain the

Ser viceSpecificl nfo member of the data structures
stored in *IpBuffer.

PROP_ALL If thisflag is set, the function stores datain al of the
members of the data structures stored in *[pBuffer.

|pBuffer
Points to a buffer to receive an array of NS_SERVICE_INFO structures and associated
serviceinformation. Each NS _SERVICE_INFO structure contains service information in
the context of a particular name space. Note that if dwNameSpaceisNS DEFAULT, the
function stores more than one structure into the buffer; otherwise, just one structureis
stored.

Each NS_SERVICE_INFO structure containsa SERVICE_INFO structure. The
members of these SERVICE_INFO structures will contain valid data based on the bit flags
that are set in the dwProperties parameter. If a member's corresponding bit flag is not set in
dwProperties, the member's value is undefined.

The function storesthe NS_SERVICE_INFO structuresin a consecutive array, starting at
the beginning of the buffer. The pointersin the contained SERVICE_INFO structures

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 100 sur 307

point to information that is stored in the buffer between the end of the
NS_SERVICE_INFO structures and the end of the buffer.

[pdwBuffer Sze
Points to avariable that, on input, contains the size, in bytes, of the buffer pointed to by
[pBuffer. On output, this variable contains the number of bytes required to store the
requested information. If this output value is greater than the input value, the function has
failed due to insufficient buffer size.

[pServiceAsynclnfo
This parameter is reserved for future use. It must be set to NULL.

Return Values

If the function succeeds, the return value is the number of NS SERVICE_INFO structures stored
in *|pBuffer. Zero indicates that no structures were stored.

If the function fails, the return value is SOCKET_ERROR (—1). To get extended error
information, call GetL astError. GetLastError can return one of the following extended error
values:

Value Meaning

ERROR_INSUFFICIENT_BUFFER The buffer pointed to by IpBuffer istoo small
to receive al of the requested information.
Call the function with a buffer at least aslarge
asthe value returned in *[pdwBuffer S ze.

ERROR_SERVICE NOT_FOUND The specified service was not found, or the
specified name spaceis not in use. The
function return valueis zero in this case.

Quicklnfo

WindowsNT: Yes

Windows CE: Unsupported.

Header: Declared in nspapi.h.

Import Library: Link with wsock32.lib.
See Also

SetService, NS_SERVICE_INFO, SERVICE_INFO

getsockname

The Windows Sockets getsockname function retrieves the local name for a socket.

i nt getsocknane (

SOCKET s,

struct sockaddr FAR* name,
int FAR* nanel en

);

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 101 sur 307

Parameters

S

[in] A descriptor identifying a bound socket.
name

[out] Receives the address (name) of the socket.
namelen

[in/out] The size of the name buffer.

Remarks

The getsockname function retrieves the current name for the specified socket descriptor in name.
It is used on the bound or connected socket specified by the s parameter. The local association is
returned. This call is especially useful when a connect call has been made without doing abind
first; the getsockname function provides the only way to determine the local association that has
been set by the system.

On call, the namelen argument contains the size of the name buffer, in bytes. On return, the
namelen parameter contains the actual size in bytes of the name parameter.

The getsockname function does not aways return information about the host address when the
socket has been bound to an unspecified address, unless the socket has been connected with
connect or accept (for example, using ADDR_ANY). A Windows Sockets application must not
assume that the address will be specified unless the socket is connected. The address that will be
used for the socket is unknown unless the socket is connected when used in a multihomed host. If
the socket is using a connectionless protocol, the address may not be available until 1/0 occurs on
the socket.

Return Values

If no error occurs, getsockname returns zero. Otherwise, avaue of SOCKET_ERROR is
returned, and a specific error code can be retrieved by calling WSAGetL astError.

Error Codes

WSANOTINITIALISED A successful WSA Startup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The name or the namelen parameter isnot avalid part of
the user address space, or the namelen parameter istoo
small.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.

WSAENOTSOCK The descriptor is not a socket.

WSAEINVAL The socket has not been bound to an address with bind,
or ADDR_ANY is specified in bind but connection has
not yet occurs.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 102 sur 307

Quicklnfo
Windows NT: Yes
Windows CE: Useversion 1.0 and later.
Header: Declared in winsock?2.h.
Import Library: Link with wsock32.lib.
See Also

bind, getpeer name, sock et

getsock opt

The Windows Sockets getsockopt function retrieves a socket option.

i nt getsockopt (
SOCKET s,

int level,

i nt optnane,

char FAR* optval,
int FAR* optlen

);

Parameters

S
[in] A descriptor identifying a socket.
level
[in] The level a which the option is defined; the supported levelsinclude SOL_SOCKET
and IPPROTO_TCP. See the Windows Sockets 2 Protocol-Specific Annex (a separate
document included with the Platform SDK) for more information on protocol-specific
levels.
optname
[in] The socket option for which the value isto be retrieved.
optval
[out] A pointer to the buffer in which the value for the requested option is to be returned.
optlen
[in/out] A pointer to the size of the optval buffer.

Remarks

The getsockopt function retrieves the current value for a socket option associated with a socket of
any type, in any state, and stores the result in optval. Options can exist at multiple protocol levels,
but they are aways present at the uppermost "socket" level. Options affect socket operations, such
as the packet routing and out-of-band data transfer.

The value associated with the selected option is returned in the buffer optval. The integer pointed
to by optlen should originally contain the size of this buffer; on return, it will be set to the size of
the value returned. For SO_LINGER, thiswill be the size of aLINGER structure. For most other
options, it will be the size of an integer.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 103 sur 307

The application is responsible for allocating any memory space pointed to directly or indirectly by
any of the parameters it specified.

If the option was never set with setsockopt, then getsockopt returns the default value for the
option.

The following options are supported for getsockopt. The Type column identifies the type of data
addressed by optval.

level = SOL_SOCKET

Value Type Meaning

SO_ACCEPTCONN BOOL Socket is listening.

SO_BROADCAST BOOL Socket is configured for the
transmission of broadcast
messages.

SO DEBUG BOOL Debugging is enabled.

SO DONTLINGER BOOL If true, the SO_LINGER optionis
disabled.

SO_DONTROUTE BOOL Routing is disabled.

SO_ERROR int Retrieve error status and clear.

SO _GROUP_ID GROUP The identifier of the group to
which this socket belongs.

SO_GROUP_PRIORITY int The relative priority for sockets
that are part of a socket group.

SO _KEEPALIVE BOOL Keepalives are being sent.

SO_LINGER struct LINGER Returns the current linger options.

SO MAX_MSG_SIZE unsigned int Maximum size of a message for

message-oriented socket types (for
example, SOCK_DGRAM). Has
no meaning for stream oriented
sockets.

SO_OOBINLINE BOOL Out-of-band data is being received
in the normal data stream. (See
section Windows Sockets 1.1
Blocking Routines &
EINPROGRESS for a discussion
of thistopic.)

SO_PROTOCOL_INFO WSAPROTOCOL INFO Description of protocol info for
protocol that is bound to this

socket.
SO_RCVBUF int Buffer size for receives
SO REUSEADDR BOOL The socket can be bound to an
addresswhich is aready in use.
SO _SNDBUF int Buffer size for sends

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 104 sur 307

SO TYPE int The type of the socket (for
example, SOCK_STREAM).
PVD_CONFIG Service Provider Dependent An "opaque” data structure object

from the service provider
associated with socket s. This
object stores the current
configuration information of the
service provider. The exact format
of this data structure is service
provider specific.

level = IPPROTO_TCP

TCP_NODELAY BOOL Disables the Nagle algorithm for
send coal escing.

BSD options not supported for getsockopt are:

Value Type Meaning

SO RCVLOWAT int Receive low water mark
SO_RCVTIMEO int Receive time-out

SO _SNDLOWAT int Send low water mark

SO SNDTIMEO int Send time-out

TCP_MAXSEG int Get TCP maximum segment size

Calling getsockopt with an unsupported option will result in an error code of
WSAENOPROTOOPT being returned from WSAGetL astError.

SO_DEBUG
Windows Sockets service providers are encouraged (but not required) to supply output
debug information if the SO_DEBUG option is set by an application. The mechanism for
generating the debug information and the form it takes are beyond the scope of this
document.

SO_ERROR
The SO_ERROR option returns and resets the per-socket based error code, whichis
different from the per-thread based error code that is handled using the WSAGetL astError
and WSASetL astError function calls. A successful call using the socket does not reset the
socket based error code returned by the SO_ERROR option.

SO GROUP_ID
This option isreserved for future use with socket groups. Thisoption is also exclusive to
getsockopt. It indicates the identifier of the group to which this socket belongs. Socket
group IDs are unique across all processes for a given service provider. If this socket is not a
group socket, the valueis NULL.

SO_GROUP_PRIORITY
This option is reserved for future use with socket groups. Group priority indicates the
priority of the specified socket relative to other sockets within the socket group. Values are
non-negative integers, with zero corresponding to the highest priority. Priority values
represent a hint to the underlying service provider about how potentially scarce resources
should be allocated. For example, whenever two or more sockets are both ready to transmit

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 105 sur 307

data, the highest priority socket (lowest value for SO_ GROUP_PRIORITY) should be
serviced first, with the remainder serviced in turn according to their relative priorities.

The WSAENOPROTOOPT error code is indicated for non group sockets or for service
providers that do not support group sockets.

SO_KEEPALIVE
An application can request that a TCP/IP service provider enable the use of "keep-alive'
packets on TCP connections by turning on the SO_KEEPALIVE socket option. A Windows
Sockets provider need not support the use of keep-aive: if it does, the precise semantics are
implementation-specific but should conform to section 4.2.3.6 of RFC 1122: Requirements
for Internet Hosts — Communication Layers. If a connection is dropped as the result of
"keep-alives' the error code WSAENETRESET is returned to any calls in progress on the
socket, and any subsequent calls will fail with WSAENOTCONN.

SO_LINGER
SO_LINGER controls the action taken when unsent data is queued on a socket and a
closesocket is performed. See closesocket for a description of the way in which the
SO_LINGER settings affect the semantics of closesocket. The application gets the current
behavior by retrieving aLINGER structure (pointed to by the optval parameter).

SO_MAX_MSG_SIZE
Thisis aget-only socket option that indicates the maximum outbound (send) size of a
message for message-oriented socket types (for example, SOCK_DGRAM) as implemented
by a particular service provider. It has no meaning for byte stream oriented sockets. Thereis
no provision to find out the maximum inbound message size

SO_PROTOCOL_INFO
Thisis aget-only option that suppliesthe WSAPROTOCOL _INFO structure associated
with this socket. See W SAEnumPr otocols for more information about this structure.

SO_SNDBUF
When a Windows Sockets implementation supports the SO RCVBUF and SO_SNDBUF
options, an application can request different buffer sizes (larger or smaller). The call to
setsockopt can succeed even if the implementation did not provide the whole amount
requested. An application must call this function with the same option to check the buffer
size actually provided.

SO_REUSEADDR
By default, a socket cannot be bound (see bind) to alocal address that is already in use. On
occasion, however, it can be necessary to "re-use" an address in this way. Because every
connection is uniquely identified by the combination of local and remote addresses, thereis
no problem with having two sockets bound to the same local address as long as the remote
addresses are different. To inform the Windows Sockets provider that a bind on a socket
should not be disallowed because the desired address is already in use by another socket,
the application should set the SO REUSEADDR socket option for the socket before
issuing the bind. Note that the option is interpreted only at the time of the bind: it is
therefore unnecessary (but harmless) to set the option on a socket that is not to be bound to
an existing address, and setting or resetting the option after the bind has no effect on this or
any other socket.

PVD_CONFIG
This option retrieves an "opague” data structure object from the service provider associated
with socket s. This object stores the current configuration information of the service
provider. The exact format of this data structure is service provider specific.

TCP_NODELAY
The TCP_NODELAY option is specific to TCP/IP service providers. The Nagle agorithm
isdisabled if the TCP_NODELAY option is enabled (and vice versa). The Nagle algorithm
(described in RFC 896) is very effective in reducing the number of small packets sent by a
host. The process involves buffering send data when there is unacknowledged data already

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 106 sur 307

"in flight" or buffering send data until afull-size packet can be sent. It is highly
recommended that Windows Sockets implementations enable the Nagle Algorithm by
default because,for the vast majority of application protocols, the Nagle Algorithm can
deliver significant performance enhancements. However, for some applications this
algorithm can impede performance, and setsockopt with the same option can be used to
turn it off. These are applications where many small messages are sent, and the time delays
between the messages are maintained.

Windows CE: For IrSockets implementation:

e The Af_irdah file must be explicitly included.
e The WSAENETDOWN return value is not supported.

IrSockets supports several specia socket options:

Value Type Meaning

IRLMP_ENUMDEVICES * DEVICELIST Describes devicesin range.
IRLMP_IAS QUERY * |AS_QUERY Retrieve |AS attributes.

IRLMP_SEND _PDU_LEN * int Retrieves max number of bytes that can

be sent in any one send() call whilein
IRLMP_IRLPT_MODE (printing). This
value should be retrieved after the
connect() completes but before any data
IS sent.

The DEVICELIST structureis an extendible array of device descriptions. IrSocketsfillsin as
many device descriptions as can fit in the supplied buffer and returnsin the optlen result
parameter the required sizeif the buffer is of insufficient size. The device description consists of a
deviceidentifier necessary to form a sockaddr_irda structure and a displayable string describing
the device.

ThelAS QUERY structureis used to retrieve a single attribute of a single class. The application
specifies the device and class to query and the attribute and attribute type. It is expected that the
application allocates a buffer of the necessary size for the returned parameters.

Many SO level socket options are not meaningful to IrSockets. Only SO_LINGER and
SO_DONTLINGER are specifically supported.

Return Values

If no error occurs, getsockopt returns zero. Otherwise, avalue of SOCKET _ERROR isreturned,
and a specific error code can be retrieved by calling WSAGetL astError.

Error Codes

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 107 sur 307

WSANOTINITIALISED A successful WSA Startup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT One of the optval or the optlen parametersisnot avalid
part of the user address space, or the optlen parameter is
too small.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is till processing a callback
function.

WSAEINVAL The level parameter is unknown or invalid.
WSAENOPROTOOPT The option is unknown or unsupported by the indicated
protocol family.

WSAENOTSOCK The descriptor is not a socket.

Quicklnfo

WindowsNT: Yes

Windows: Yes

Windows CE: Useversion 1.0 and later.
Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

setsockopt, socket, WSAAsyncSelect, WSAConnect, WSAGetL astError, WSASetL astError

GetTypeByName

Important The GetTypeByName function is a Microsoft-specific extension to the Windows
Sockets 1.1 specification. This function is obsolete. For the convenience of Windows Sockets 1.1
developers, the reference material is below.

The functions detailed in Protocol-Independent Name Resolution provide equivalent functionality
in Windows Sockets 2.

The GetTypeByName function obtains a service type GUID for a network service specified by
name.

I NT Get TypeByName(
LPTSTR | pServi ceNane, // points to the name of the network service
PGUI D | pServi ceType /1 points to a variable to receive network
/'l service type

Parameters

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 108 sur 307

|pServiceName
Points to a zero-terminated string that uniquely represents the name of the service. For
example, "MY SNA SERVER".

IpServiceType
Pointsto avariable to receive aglobally unique identifier (GUID) that specifies the type of
the network service. The header file SYCGUID.H includes definitions of several GUID
service types and macros for working with them.

Return Values
If the function succeeds, the return valueis zero.

If the function fails, the return value is SOCKET_ERROR(— 1). To get extended error
information, call GetL astError. GetLastError can return the following extended error value:

Value Meaning
ERROR_SERVICE DOES NOT_EXIST The specified service type is unknown.
Quicklnfo

WindowsNT: Yes

Windows CE: Unsupported.

Header: Declared in nspapi.h.

Import Library: Link with wsock32.lib.

See Also

GetNameByType

htonl

The Windows Sockets htonl function convertsau_long from host to TCP/IP network byte order
(whichis big-endian).

u_long htonl (
u_l ong hostl ong

);

Parameters

hostlong
[in] A 32-bit number in host byte order.

Remarks

The htonl function takes a 32-bit number in host byte order and returns a 32-bit number in the
network byte order used in TCP/IP networks.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 109 sur 307

Return Values
The htonl function returns the value in TCP/IP's network byte order.
Quicklnfo
Windows NT: Yes
Windows. Yes
Windows CE: Useversion 1.0 and later.
Header: Declared in winsock?2.h.
Import Library: Link withws2_32.lib.
See Also

htons, ntohl, ntohs, WSAHtonl, WSAHtons, WSANtohl, WSANtohs

htons

The Windows Sockets htons function convertsau_short from host to TCP/IP network byte order
(whichis big-endian).

u_short htons (
u_short hostshort

);

Parameters

hostshort
[in] A 16-bit number in host byte order.

Remarks

The htons function takes a 16-bit number in host byte order and returns a 16-bit number in
network byte order used in TCP/IP networks.

Return Values
The htons function returns the value in TCP/IP network byte order.
Quicklnfo

Windows NT: Yes

Windows:. Yes

Windows CE: Useversion 1.0 and later.

Header: Declared in winsock?2.h.

Import Library: Link withws2_32.lib.

See Also

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 110 sur 307

htonl, ntohl, ntohs, WSAHtonl, WSAHtons, WSANtohl, WSANtohs

Inet_addr

The Windows Sockets inet_addr function converts a string containing an (Ipv4) Internet Protocol
dotted address into a proper address for the IN_ADDR structure.

unsi gned | ong inet_addr (
const char FAR * cp

);

Parameters

cp
[in] A null-terminated character string representing a number expressed in the Internet
standard "." (dotted) notation.

Remarks

Theinet_addr function interprets the character string specified by the cp parameter. This string
represents a numeric Internet address expressed in the Internet standard "." notation. The value
returned is a number suitable for use as an Internet address. All Internet addresses are returned in
IP's network order (bytes ordered from left to right).

Internet Addresses

Values specified using the "." notation take one of the following forms:
ab.cdab.caba

When four parts are specified, each isinterpreted as a byte of data and assigned, from l€ft to right,
to the four bytes of an Internet address. When an Internet address is viewed as a 32-bit integer
guantity on the Intel architecture, the bytes referred to above appear as "d.c.b.a". That is, the bytes
on an Intel processor are ordered from right to left.

The parts that make up an addressin "." notation can be decimal, octal or hexidecimal as specified
in the C language. Numbers that start with "0x" or "0X" imply hexidecimal. Numbers that start
with "0" imply octal. All other numbers are interpreted at decimal.

"4.3.2.16" decimal
"(004.003.002.020" octal
"0x4.0x3.0x2.0x10" hexidecimal
"4.003.002.0x 10" mix

Note The following notations are only used by Berkeley, and nowhere else on the Internet. In the
interests of compatibility with their software, they are supported as specified.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 111 sur 307

When athree part address is specified, the last part isinterpreted as a 16-bit quantity and placed in
the right most two bytes of the network address. This makes the three part address format
convenient for specifying Class B network addresses as "128.net.host".

When atwo part addressis specified, the last part is interpreted as a 24-bit quantity and placed in
the right most three bytes of the network address. This makes the two part address format
convenient for specifying Class A network addresses as "net.host".

When only one part is given, the value is stored directly in the network address without any byte
rearrangement.

Return Values
If no error occurs, inet_addr returns an unsigned long value containing a suitable binary
representation of the Internet address given. If the string in the cp parameter does not contain a
legitimate Internet address, for exampleif a portion of an "a.b.c.d" address exceeds 255,
inet_addr returnsthe value INADDR_NONE.
Quicklnfo

WindowsNT: Yes

Windows: Yes

Windows CE: Useversion 1.0 and later.

Header: Declared in winsock2.h.

Import Library: Link withws2_32.lib.
See Also

inet ntoa

Inet_ntoa

The Windows Sockets inet_ntoa function converts an (Ipv4) Internet network addressinto a
string in Internet standard dotted format.

char FAR * inet_ntoa (
struct in_addr in

);

Parameters

in
[in] A structure that represents an Internet host address.

Remarks

Theinet_ntoa function takes an Internet address structure specified by the in parameter and
returns an ASCII string representing the addressin "." (dot) notation asin "a.b.c.d". The string

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 112 sur 307

returned by inet_ntoa resides in memory that is allocated by Windows Sockets. The application
should not make any assumptions about the way in which the memory is alocated. The datais
guaranteed to be valid until the next Windows Sockets function call within the same thread, but
no longer. Therefore, the data should be copied before another Windows Sockets call is made.

Return Values

If no error occurs, inet_ntoa returns a char pointer to a static buffer containing the text addressin
standard "." notation. Otherwise, it returns NULL.

Quicklnfo

WindowsNT: Yes

Windows:. Yes

Windows CE: Useversion 1.0 and later.
Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

inet_addr

loctlsock et

The Windows Sockets ioctlsocket function controls the I/0O mode of a socket.

int ioctlsocket (
SOCKET s,

| ong cnd,

u_long FAR* argp
)

Parameters

S
[in] A descriptor identifying a socket.

cmd
[in] The command to perform on the socket s.

argp
[in/out] A pointer to a parameter for cmd.

Remarks

Theioctlsocket function can be used on any socket in any state. It is used to set or retrieve
operating parameters associated with the socket, independent of the protocol and communications
subsystem. Here are the supported commands to use in the cmd parameter and their semantics:
FIONBIO

Use with anonzero argp parameter to enable the nonblocking mode of socket s. The argp
parameter is zero if nonblocking isto be disabled. The argp parameter pointsto an

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 113 sur 307

unsigned long value. When a socket is created, it operates in blocking mode by default
(nonblocking mode is disabled). Thisis consistent with BSD sockets.

The WSAAsyncSelect and W SAEventSelect functions automatically set a socket to
nonblocking mode. If WSAAsyncSelect or WSAEventSelect has been issued on a socket,
then any attempt to use ioctlsocket to set the socket back to blocking mode will fail with
WSAEINVAL. To set the socket back to blocking mode, an application must first disable
WSAAsyncSelect by calling WSAAsyncSelect with the |[Event parameter equal to zero, or
disable WSAEventSelect by calling W SAEvent Select with the INetwor kEvents parameter
equal to zero.

FIONREAD
Use to determine the amount of data pending in the network's input buffer that can be read
from socket s. The argp parameter points to an unsigned long value in which ioctlsock et
stores the result. If sis stream oriented (for example, type SOCK_STREAM), FIONREAD
returns the amount of data that can be read in asingle call to the recv function; this might
not be the same as the total amount of data queued on the socket. If sis message oriented
(for example, type SOCK_DGRAM), FIONREAD returns the size of the first datagram
(message) queued on the socket.

SIOCATMARK
Use to determine whether or not all out-of-band data has been read. (See section Windows
Sockets 1.1 Blocking Routines & EINPROGRESS for a discussion on Out of Band (OOB)
data.) This appliesonly to a stream oriented socket (for example, type SOCK_STREAM)
that has been configured for in-line reception of any out-of-band data (SO_OOBINLINE). If
no out-of-band data is waiting to be read, the operation returns TRUE. Otherwise, it returns
FALSE, and the next recv or recvfrom performed on the socket will retrieve some or al of
the data preceding the "mark." The application should use the SSOCATMARK operation to
determine whether any dataremains. If there is any normal data preceding the "urgent” (out
of band) data, it will be received in order. (A recv or recvfrom will never mix out-of-band
and normal datain the same call.) The argp parameter points to an unsigned long value in
which ioctlsocket stores the boolean result.

Compatibility

Thisioctlsocket function performs only a subset of functions on a socket when compared to the
ioctl function found in Berkeley sockets. Theioctlsocket function has no command parameter
equivalent to the FIOASYNC of ioctl, and SSIOCATMARK isthe only socket-level command that
is supported by ioctlsocket.

Return Values
Upon successful completion, the ioctlsocket returns zero. Otherwise, a value of

SOCKET_ERROR isreturned, and a specific error code can be retrieved by calling
WSAGetL astError.

Error Codes

WSANOTINITIALISED A successful WSA Startup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 114 sur 307

WSAENOTSOCK The descriptor sis not a socket.
WSAEFAULT The argp parameter is not avalid part of the user
address space.
Quicklnfo

WindowsNT: Yes

Windows:. Yes

Windows CE: Useversion 1.0 and later.
Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

getsockopt, setsockopt, socket, W SAAsyncSel ect, WSAEventSelect, W SAI octl

listen

The Windows Sockets listen function places a socket a state where it is listening for an incoming
connection.

int listen (
SOCKET s,
i nt backl og

);

Parameters

S
[in] A descriptor identifying a bound, unconnected socket.

backlog
[in] The maximum length of the queue of pending connections. If thisvalueis
SOMAXCONN, then the underlying service provider responsible for socket swill set the
backlog to a maximum "reasonable” value. There is no standard provision to find out the
actual backlog value.

Remarks

To accept connections, a socket isfirst created with the socket function and bound to alocal
address with the bind function, a backlog for incoming connections is specified with listen, and
then the connections are accepted with the accept function. Sockets that are connection oriented,
those of type SOCK_STREAM for example, are used with listen. The socket sis put into
"passive" mode where incoming connection requests are acknowledged and queued pending
acceptance by the process.

Thelisten function is typically used by servers that can have more than one connection request at
atime. If aconnection request arrives and the queueis full, the client will receive an error with an
indication of WSAECONNREFUSED.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 115 sur 307

If there are no available socket descriptors, listen attempts to continue to function. If descriptors
become available, alater call to listen or accept will refill the queue to the current or most recent
"backlog", if possible, and resume listening for incoming connections.

An application can call listen more than once on the same socket. This has the effect of updating
the current backlog for the listening socket. Should there be more pending connections than the
new backlog value, the excess pending connections will be reset and dropped.

Windows CE: Asin 4.3BSD, illegal values (less than 1 or greater than 5) are replaced by the
nearest valid value.

For IrSockets implementation:

e The Af_irda.h file must be explicitly included.

e The WSAENETDOWN return value is not supported.

o The backlog parameter is currently limited (silently) to 2.
Compatibility
The backlog parameter is limited (silently) to a reasonable value as determined by the underlying
service provider. Illegal values are replaced by the nearest legal value. There is no standard
provision to find out the actual backlog value.

Return Values

If no error occurs, listen returns zero. Otherwise, avalue of SOCKET _ERROR isreturned, and a
specific error code can be retrieved by calling WSAGetL astError.

Error Codes

WSANOTINITIALISED A successful WSA Startup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEADDRINUSE The socket's local addressis aready in use and the
socket was not marked to allow address reuse with
SO_REUSEADDR. This error usually occurs during
execution of the bind function, but could be delayed
until this function if the bind wasto a partially wild-
card address (involving ADDR_ANY) and if a specific
address needs to be "committed" at the time of this
function.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.

WSAEINVAL The socket has not been bound with bind.

WSAEISCONN The socket is already connected.

WSAEMFILE No more socket descriptors are available.

WSAENOBUFS No buffer spaceis available.

WSAENOTSOCK The descriptor is not a socket.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 116 sur 307

WSAEOPNOTSUPP The referenced socket is not of atype that supports the
listen operation.

Quicklnfo

WindowsNT: Yes

Windows:. Yes

Windows CE: Useversion 1.0 and later.
Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

accept, connect, socket

ntohl

The Windows Sockets ntohl function convertsau_long from TCP/IP network order to host byte
order (which is big-endian).

u_long ntohl (
u_l ong netlong

);

Parameters

netlong
[in] A 32-bit number in TCP/IP network byte order.

Remarks

The ntohl function takes a 32-bit number in TCP/IP network byte order and returns a 32-bit
number in host byte order.

Return Values

The ntohl function always returns avalue in host byte order. If the netlong parameter was already
in host byte order, then no operation is performed.

Quicklnfo
WindowsNT: Yes
Windows:. Yes
Windows CE: Useversion 1.0 and later.
Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 117 sur 307

htonl, htons, ntohs, WSAHtonl, WSAHtons, W SANtohl, WSANtohs

ntohs

The Windows Sockets ntohs function convertsau_short from TCP/IP network byte order to host
byte order (which is big-endian).

u_short ntohs (
u_short netshort

);

Parameters

netshort
[in] A 16-bit number in TCP/IP network byte order.

Remarks

The ntohs function takes a 16-bit number in TCP/IP network byte order and returns a 16-bit
number in host byte order.

Return Values

The ntohs function returns the value in host byte order. If the netshort parameter was already in
host byte order, then no operation is performed.

Quicklnfo
Windows NT: Yes
Windows; Yes
Windows CE: Useversion 1.0 and later.
Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.
See Also

htonl, htons, ntohl, WSAHtonl, WSAHtons, WSANtohl, WSANtohs

Irecv

The Windows Sockets r ecv function receives data from a connected socket.

int recv (
SOCKET s,
char FAR* buf,
int |en,

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 118 sur 307

int flags

);

Parameters

S
[in] A descriptor identifying a connected socket.
buf
[out] A buffer for the incoming data.
len
[in] The length of buf.
flags
[in] A flag specifying the way in which the call is made.

Remarks

Therecv function is used to read incoming data on connection-oriented sockets, or connectionless
sockets. When using a connection-oriented protocol, the sockets must be connected before calling
recv. When using a connectionless protocol, the sockets must be bound before calling recv.

The local address of the socket must be known. For server applications, use an explicit bind
function or an implicit accept or WSAAccept function. Explicit binding is discouraged for client
applications. For client applications the socket can become bound implicitly to alocal address
using connect, WSAConnect, sendto, WSASendTo, or WSAJoinL eaf.

For connected or connectionless sockets, this function restricts the addresses from which received
messages are accepted. The function only returns messages from the remote address specified in
the connection. Messages from other addresses are (silently) discarded

For connection-oriented sockets (type SOCK_STREAM for example), calling recv will return as
much information as is currently available—up to the size of the buffer supplied. If the socket has
been configured for in-line reception of out-of-band data (socket option SO_OOBINLINE) and
out-of-band data is yet unread, only out-of-band data will be returned. The application can use the
ioctlsocket or WSAl octl SSOCATMARK command to determine whether any more out-of-band
data remains to be read.

For connectionless sockets (type SOCK_DGRAM or other message-oriented sockets), datais
extracted from the first enqueued datagram (message) from the destination address specified by
the connect function.

If the datagram or message is larger than the buffer supplied, the buffer isfilled with the first part
of the datagram, and recv generates the error WSAEM SGSIZE. For unreliable protocols (for
example, UDP) the excess dataiis lost; for reliable protocols, the datais retained by the service
provider until it is successfully read by calling recv with alarge enough buffer. For TCP/IP, an
application cannot receive from any multicast address until after becoming a group member.

If no incoming datais available at the socket, the recv call blocks and waits for data to arrive
according to the blocking rules defined for W SARecv with the MSG_PARTIAL flag not set
unless the socket is nonblocking. In this case, avaue of SOCKET_ERROR is returned with the
error code set to WSAEWOULDBLOCK. The select, WSAAsyncSelect, or W SAEventSelect
functions can be used to determine when more data arrives.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 119 sur 307

If the socket is connection oriented and the remote side has shut down the connection gracefully,
and all data has been received, arecv will complete immediately with zero bytes received. If the
connection has been reset, arecv will fail with the error WSAECONNRESET.

The flags parameter can be used to influence the behavior of the function invocation beyond the
options specified for the associated socket. The semantics of this function are determined by the
socket options and the flags parameter. The latter is constructed by or'ing the following values:

Value Meaning

MSG_PEEK Peek at the incoming data. The datais copied into the buffer but is not
removed from the input queue. The function then returns the number
of bytes currently pending to receive.

MSG_OOB Process out-of-band data. (See section DECnet Out-Of-band data for
adiscussion of thistopic.)

Return Values

If no error occurs, recv returns the number of bytes received. If the connection has been gracefully
closed, the return value is zero. Otherwise, avalue of SOCKET_ERROR isreturned, and a
specific error code can be retrieved by calling WSAGetL astError.

Error Codes

WSANOTINITIALISED A successful WSA Startup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The buf parameter is not completely contained in avalid part
of the user address space.

WSAENOTCONN The socket is not connected.

WSAEINTR The (blocking) call was canceled through
W SACancelBlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or the
service provider is still processing a callback function.

WSAENETRESET The connection has been broken due to the keep-alive activity
detecting a failure while the operation was in progress.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not stream-style
such as type SOCK_STREAM, out-of-band data is not
supported in the communication domain associated with this
socket, or the socket is unidirectional and supports only send
operations.

WSAESHUTDOWN The socket has been shut down; it is not possibleto recv on a

socket after shutdown has been invoked with how set to
SD_RECEIVE or SD_BOTH.

WSAEWOULDBLOCK The socket is marked as nonblocking and the receive
operation would block.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 120 sur 307

WSAEMSGSIZE The message was too large to fit into the specified buffer and
was truncated.
WSAEINVAL The socket has not been bound with bind, or an unknown flag

was specified, or MSG_OOB was specified for a socket with
SO_OOBINLINE enabled or (for byte stream sockets only)
len was zero or negétive.

WSAECONNABORTED The virtua circuit was terminated due to atime-out or other
failure. The application should close the socket asit isno
longer usable.

WSAETIMEDOUT The connection has been dropped because of a network failure
or because the peer system failed to respond.

WSAECONNRESET The virtua circuit was reset by the remote side executing a

"hard" or "abortive" close. The application should close the
socket asit is no longer usable. On a UDP datagram socket
this error would indicate that a previous send operation
resulted in an ICMP "Port Unreachable" message.

Quicklnfo

WindowsNT: Yes

Windows:. Yes

Windows CE: Useversion 1.0 and later.
Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

recvfrom, select, send, socket, WSAAsyncSelect, WSARecvEX

recvfrom

The Windows Sockets recvfrom function receives a datagram and stores the source address.

int recvfrom (

SOCKET s,

char FAR* buf,

int |en,

int flags,

struct sockaddr FAR* from
int FAR* fronl en

);

Parameters
S
[in] A descriptor identifying a bound socket.
buf
[out] A buffer for the incoming data.
len

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 121 sur 307

[in] The length of buf.
flags

[in] Anindicator specifying the way in which the call is made.
from

[out] An optional pointer to a buffer that will hold the source address upon return.
fromlen

[in/out] An optional pointer to the size of the from buffer.

Remarks

The recvfrom function reads incoming data on both connected and unconnected sockets and
captures the address from which the data was sent. The socket must not be connected. The local
address of the socket must be known. For server applications, thisis usually done explicitly
through bind. Explicit binding is discouraged for client applications. For client applications using
this function, the socket can become bound implicitly to alocal address through sendto,
WSASendTo, or WSAJoinL eaf.

For stream oriented sockets such as those of type SOCK_STREAM, acall to recvfrom returns as
much information as is currently available—up to the size of the buffer supplied. If the socket has
been configured for in-line reception of out-of-band data (socket option SO_OOBINLINE) and
out-of-band data is yet unread, only out-of-band data will be returned. The application can use the
ioctlsocket or WSAl octl SSOCATMARK command to determine whether any more out-of-band
dataremains to be read. The from and fromlen parameters are ignored for connection-oriented
sockets.

For message-oriented sockets, datais extracted from the first enqueued message, up to the size of
the buffer supplied. If the datagram or message is larger than the buffer supplied, the buffer is
filled with the first part of the datagram, and r ecvfrom generates the error WSAEM SGSIZE. For
unreliable protocols (for example, UDP) the excess datais|ost.

If the from paramter is nonzero and the socket is not connection oriented, (type SOCK_DGRAM
for example), the network address of the peer that sent the data is copied to the corresponding
SOCKADDR structure. The value pointed to by fromlen isinitialized to the size of this structure
and is modified, on return, to indicate the actual size of the address stored in the SOCK ADDR
structure.

If no incoming datais available at the socket, the recvfrom function blocks and waits for data to
arrive according to the blocking rules defined for WSARecv with the MSG_PARTIAL flag not
set unless the socket is nonblocking. In this case, avaue of SOCKET_ERROR is returned with
the error code set to WSAEWOULDBLOCK. The select, WSAAsyncSelect, or
WSAEventSelect can be used to determine when more data arrives.

If the socket is connection oriented and the remote side has shut down the connection gracefully,
the call to recvfrom will complete immediately with zero bytes received. If the connection has
been reset recvfrom will fail with the error WSAECONNRESET.

The flags parameter can be used to influence the behavior of the function invocation beyond the
options specified for the associated socket. The semantics of this function are determined by the
socket options and the flags parameter. The latter is constructed by or-ing the following values:

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information

Value
MSG_PEEK

MSG_OOB

Return Values

Page 122 sur 307

M eaning

Peek at the incoming data. The datais copied into the buffer but is
not removed from the input queue, and the function returns the
number of bytes currently pending to receive.

Process out-of-band data. (See section DECnet Out-Of-band data for
adiscussion of thistopic.)

If no error occurs, recvfrom returns the number of bytes received. If the connection has been
gracefully closed, the return value is zero. Otherwise, avalue of SOCKET _ERROR isreturned,
and a specific error code can be retrieved by calling WSAGetL astError.

Error Codes

WSANOTINITIALISED

WSAENETDOWN
WSAEFAULT

WSAEINTR

WSAEINPROGRESS

WSAEINVAL

WSAEISCONN

WSAENETRESET

WSAENOTSOCK

WSAEOPNOTSUPP

WSAESHUTDOWN

WSAEWOULDBLOCK

A successful WSAStartup must occur before using this
function.

The network subsystem has failed.

The buf or from parameters are not part of the user address
space, or the fromlen parameter is too small to accommodate
the peer address.

The (blocking) call was canceled through
W SACancelBlockingCall.

A blocking Windows Sockets 1.1 call isin progress, or the
service provider is still processing a callback function.

The socket has not been bound with bind, or an unknown flag
was specified, or MSG_OOB was specified for a socket with
SO_OOBINLINE enabled, or (for byte stream-style sockets
only) len was zero or negative.

The socket is connected. This function is not permitted with a
connected socket, whether the socket is connection-oriented
or connectionless.

The connection has been broken due to the "keep-alive"
activity detecting a failure while the operation wasin
progress.

The descriptor is not a socket.

MSG_OOB was specified, but the socket is not stream-style
such as type SOCK_STREAM, out-of-band datais not
supported in the communication domain associated with this
socket, or the socket is unidirectional and supports only send
operations.

The socket has been shut down; it is not possible to recvfrom
on a socket after shutdown has been invoked with how set to
SD _RECEIVE or SD_BOTH.

The socket is marked as nonblocking and the recvfrom
operation would block.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 123 sur 307

WSAEMSGSIZE The message was too large to fit into the specified buffer and
was truncated.
WSAETIMEDOUT The connection has been dropped, because of a network

failure or because the system on the other end went down
without notice.

WSAECONNRESET The virtua circuit was reset by the remote side executing a
"hard" or "abortive" close. The application should close the
socket asit is no longer usable. On a UDP datagram socket
this error would indicate that a previous send operation
resulted in an ICMP "Port Unreachable" message.

Quicklnfo

WindowsNT: Yes

Windows:. Yes

Windows CE: Useversion 1.0 and later.
Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

recv, send, socket, WSAAsyncSelect, WSAEventSelect

sel ect

The Windows Sockets select function determines the status of one or more sockets, waiting if
necessary, to perform synchronous I/0.

int select (
i nt nfds,
fd_set FAR * readfds,
fd_set FAR * witefds,
fd_set FAR * exceptfds,
const struct tinmeval FAR * timeout

Parameters

nfds
[in] This parameter isignored; it isincluded only for compatibility with Berkeley sockets.
readfds
[in/out] An optional pointer to a set of sockets to be checked for readability.
writefds
[in/out] An optional pointer to a set of sockets to be checked for writability
exceptfds
[in/out] An optional pointer to a set of sockets to be checked for errors.
timeout
[in] The maximum time for select to wait, or NULL for blocking operation.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 124 sur 307

Remarks

The select function is used to determine the status of one or more sockets. For each socket, the
caller can regquest information on read, write or error status. The set of sockets for which agiven
statusis requested isindicated by an FD_SET structure. The sockets contained within the
FD_SET structures must be associated with a single service provider. For the purpose of this
restriction, sockets are considered to be from the same service provider if the
WSAPROTOCOL _INFO structures describing their protocols have the same providerid vaue.
Upon return, the structures are updated to reflect the subset of these sockets that meet the
specified condition. The select function returns the number of sockets meeting the conditions. A
set of macrosis provided for manipulating an FD_SET structure. These macros are compatible
with those used in the Berkeley software, but the underlying representation is completely
different.

The parameter readfds identifies the sockets that are to be checked for readability. If the socket is
currently in the listen state, it will be marked as readable if an incoming connection request has
been received such that an accept is guaranteed to compl ete without blocking. For other sockets,
readability means that queued datais available for reading such that acall to recv, WSARecv,

W SARecvFrom, or recvfrom is guaranteed not to block.

For connection-oriented sockets, readability can also indicate that a request to close the socket has
been received from the peer. If the virtual circuit was closed gracefully, and al datawas received,
then arecv will return immediately with zero bytes read. If the virtual circuit was reset, then a
recv will complete immediately with an error code such as WSAECONNRESET. The presence of
out-of-band data will be checked if the socket option SO_OOBINLINE has been enabled (see

setsockopt).

The parameter writefds identifies the sockets that are to be checked for writability. If asocket is
processing a connect call (nonblocking), a socket iswritable if the connection establishment
successfully completes. If the socket is not processing a connect call, writability means a send,
sendto, or W SA Sendto are guaranteed to succeed. However, they can block on a blocking socket
if the len parameter exceeds the amount of outgoing system buffer space available. It is not
specified how long these guarantees can be assumed to be valid, particularly in a multithreaded
environment.

The parameter exceptfds identifies the sockets that are to be checked for the presence of out-of-
band data (see section DECnet Out-Of-band data for a discussion of this topic) or any exceptional
error conditions.

I mportant Out-of-band data will only be reported in thisway if the option SO_OOBINLINE is
FALSE. If asocket is processing a connect call (nonblocking), failure of the connect attempt is
indicated in exceptfds (application must then call getsockopt SO_ERROR to determine the error
value to describe why the failure occurred). This document does not define which other errors will
be included.

Any two of the parameters, readfds, writefds, or exceptfds, can be given asNULL. At |east one
must be non-NULL, and any non-NULL descriptor set must contain at least one handle to a
socket.

Summary: A socket will beidentified in a particular set when select returnsif:

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 125 sur 307

readfds:

o If listen has been called and a connection is pending, accept will succeed
o Dataisavailablefor reading (includes OOB dataif SO_OOBINLINE is enabled)
¢ Connection has been closed/reset/terminated

writefds:

o If processing a connect call (nonblocking), connection has succeeded
o Data can be sent

exceptfds:

o If processing a connect call (nonblocking), connection attempt failed
e OOB datais available for reading (only if SO_OOBINLINE is disabled)

Four macros are defined in the header file WINSOCK 2.H for manipulating and checking the
descriptor sets. The variable FD_SETSIZE determines the maximum number of descriptorsin a
set. (The default value of FD_SETSIZE is 64, which can be modified by defining FD_SETSIZE
to another value before including WINSOCK2.H.) Internally, socket handlesinan FD_SET
structure are not represented as bit flags asin Berkeley Unix. Their data representation is opagque.
Use of these macros will maintain software portability between different socket environments.
The macros to manipulate and check FD_SET contents are:

FD_CLR(s, *set)
Removes the descriptor s from set.
FD_ISSET(s, *set)
Nonzero if sisamember of the set. Otherwise, zero.
FD_SET(S, *set)
Adds descriptor sto set.
FD_ZERO(*set)
Initializes the set to the NULL set.

The parameter timeout controls how long the select can take to complete. If timeout is anull
pointer, select will block indefinitely until at least one descriptor meets the specified criteria
Otherwise, timeout pointsto a TIMEVAL structure that specifies the maximum time that select
should wait before returning. When select returns, the contents of the TIMEV AL structure are
not altered. If TIMEVAL isinitialized to {0, 0}, select will return immediately; thisis used to
"poll" the state of the selected sockets. If select returnsimmediately, then the select call is
considered nonblocking and the standard assumptions for nonblocking calls apply. For example,
the blocking hook will not be called, and Windows Sockets will not yield.

Note The select function has no effect on the persistence of socket events registered with
WSAAsyncSelect or WSAEventSelect.

Return Values

The select function returns the total number of socket handles that are ready and contained in the
FD_SET structures, zero if the time limit expired, or SOCKET_ERROR if an error occurred. If
thereturn value is SOCKET_ERROR, WSAGetL astError can be used to retrieve a specific error
code.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 126 sur 307

Error Codes

WSANOTINITIALISED A successful WSA Startup must occur before using this
function.

WSAEFAULT The Windows Sockets implementation was unable to
allocate needed resources for itsinternal operations, or
the readfds, writefds, exceptfds, or timeval parameters
are not part of the user address space.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL The timeout value is not valid, or al three descriptor
parameters were NULL.

WSAEINTR A blocking Windows Socket 1.1 call was canceled
through W SA Cancel BlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.

WSAENOTSOCK One of the descriptor sets contains an entry that isnot a
socket.

Quicklnfo

WindowsNT: Yes

Windows:. Yes

Windows CE: Useversion 1.0 and later.
Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

accept, connect, recv, recvfrom, send, WSAAsyncSelect, W SAEventSelect

send

The Windows Sockets send function sends data on a connected socket.

int send (

SOCKET s,

const char FAR * buf,
int |en,

int flags

);

Parameters

S
[in] A descriptor identifying a connected socket.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 127 sur 307

buf
[in] A buffer containing the data to be transmitted.
len
[in] The length of the data in buf.
flags
[in] Anindicator specifying the way in which the call is made.

Remarks

The send function is used to write outgoing data on a connected socket. For message-oriented
sockets, care must be taken not to exceed the maximum packet size of the underlying provider,
which can be obtained by using getsockopt to retrieve the value of socket option
SO_MAX_MSG_SIZE. If the datais too long to pass atomically through the underlying protocol,
the error WSAEM SGSIZE is returned, and no data is transmitted.

The successful completion of a send does not indicate that the data was successfully delivered.

If no buffer space is available within the transport system to hold the data to be transmitted, send
will block unless the socket has been placed in a nonblocking mode. On nonblocking stream
oriented sockets, the number of bytes written can be between 1 and the requested length,
depending on buffer availability on both client and server machines. The select,
WSAAsyncSelect or WSAEventSelect functions can be used to determine when it is possible to
send more data.

Calling send with a zero len parameter is permissible and will be treated by implementations as
successful. In such cases, send will return zero as avalid value. For message-oriented sockets, a
zero-length transport datagram is sent.

The flags parameter can be used to influence the behavior of the function beyond the options
specified for the associated socket. The semantics of this function are determined by the socket
options and the flags parameter. The latter is constructed by or-ing the following values:

Value Meaning

MSG _DONTROUTE Specifies that the data should not be subject to routing. A
Windows Sockets service provider can choose to ignore
thisflag.

MSG_OOB Send out-of-band data (stream-style socket such as

SOCK_STREAM only. Also see DECnet Out-Of-band
datafor adiscussion of thistopic).

Windows CE: For IrSockets implementation, the Af_irda.h file must be explicitly included.
Return Values
If no error occurs, send returns the total number of bytes sent, which can be less than the number

indicated by len for nonblocking sockets. Otherwise, avaue of SOCKET_ERROR isreturned,
and a specific error code can be retrieved by calling WSAGetL astError.

Error Codes

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information

WSANOTINITIALISED

WSAENETDOWN
WSAEACCES

WSAEINTR

WSAEINPROGRESS

WSAEFAULT

WSAENETRESET

WSAENOBUFS

WSAENOTCONN

WSAENOTSOCK
WSAEOPNOTSUPP

WSAESHUTDOWN

WSAEWOULDBLOCK

WSAEMSGSIZE

WSAEHOSTUNREACH

WSAEINVAL

WSAECONNABORTED

WSAECONNRESET

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm

Page 128 sur 307

A successful WSA Startup must occur before using this
function.

The network subsystem has failed.

The requested address is a broadcast address, but the

appropriate flag was not set. Call setsockopt with the
SO_BROADCAST parameter to allow the use of the
broadcast address.

A blocking Windows Sockets 1.1 call was canceled
through W SA Cancel BlockingCall.

A blocking Windows Sockets 1.1 call isin progress, or the
service provider is till processing a callback function.

The buf parameter is not completely contained in avalid
part of the user address space.

The connection has been broken due to the "keep-alive'
activity detecting afailure while the operation wasin
progress.

No buffer spaceis available.
The socket is not connected.
The descriptor is not a socket.

MSG_OOB was specified, but the socket is not stream-
style such as type SOCK_STREAM, out-of-band datais
not supported in the communication domain associated
with this socket, or the socket is unidirectional and
supports only receive operations.

The socket has been shut down; it is not possible to send
on a socket after shutdown has been invoked with how set
to SD_SEND or SD_BOTH.

The socket is marked as nonblocking and the requested
operation would block.

The socket is message oriented, and the message islarger
than the maximum supported by the underlying transport.

The remote host cannot be reached from this host at this
time.

The socket has not been bound with bind, or an unknown
flag was specified, or MSG_OOB was specified for a
socket with SO_OOBINLINE enabled.

The virtua circuit was terminated due to a time-out or
other failure. The application should close the socket asit
isno longer usable.

The virtual circuit was reset by the remote side executing a
"hard" or "abortive" close. For UPD sockets, the remote
host was unable to deliver a previously sent UDP datagram
and responded with a"Port Unreachable" ICMP packet.
The application should close the socket asit is no longer
usable.

09/12/2003

Legal Information Page 129 sur 307

WSAETIMEDOUT The connection has been dropped, because of a network
failure or because the system on the other end went down
without notice.

Quicklnfo

WindowsNT: Yes

Windows:. Yes

Windows CE: Useversion 1.0 and later.
Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

recv, recvfrom, select, sendto, socket, WSAAsyncSelect, W SAEventSelect

sendto

The Windows Sockets sendto function sends data to a specific destination.

int sendto (

SOCKET s,
const char FAR * buf,
int |en,
int flags,
const struct sockaddr FAR * to,
int tolen
)
Parameters
S
[in] A descriptor identifying a (possibly connected) socket.
buf
[in] A buffer containing the data to be transmitted.
len

[in] The length of the data in buf.
flags

[in] Anindicator specifying the way in which the call is made.
to

[in] An optional pointer to the address of the target socket.
tolen

[in] The size of the addressin to.

Remarks

The sendto function is used to write outgoing data on a socket. For message-oriented sockets,
care must be taken not to exceed the maximum packet size of the underlying subnets, which can
be obtained by using getsockopt to retrieve the value of socket option SO_MAX_MSG_SIZE. If
the datais too long to pass atomically through the underlying protocol, the error WSAEM SGSIZE

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 130 sur 307

isreturned and no datais transmitted.

The to parameter can be any valid address in the socket's address family, including a broadcast or
any multicast address. To send to a broadcast address, an application must have used setsock opt
with SO BROADCAST enabled. Otherwise, sendto will fail with the error code WSAEACCES.
For TCP/IP, an application can send to any multicast address (without becoming a group
member).

If the socket is unbound, unique values are assigned to the local association by the system, and the
socket is then marked as bound. An application can use getsockname to determine the local
socket name in this case.

The successful completion of a sendto does not indicate that the data was successfully delivered.

The sendto function is normally used on a connectionless socket to send a datagram to a specific
peer socket identified by the to parameter. Even if the connectionless socket has been previously
connected to a specific address, the to parameter overrides the destination address for that
particular datagram only. On a connection-oriented socket, the to and tolen parameters are
ignored, making sendto equivalent to send.

For sockets using IP (version 4):

To send abroadcast (on a SOCK_DGRAM only), the address in the to parameter should be
constructed using the special 1P addressINADDR_BROADCAST (defined in WINSOCK 2.H),
together with the intended port number. It is generally inadvisable for a broadcast datagram to
exceed the size at which fragmentation can occur, which implies that the data portion of the
datagram (excluding headers) should not exceed 512 bytes.

If no buffer space is available within the transport system to hold the data to be transmitted,
sendto will block unless the socket has been placed in a nonblocking mode. On nonblocking,
stream oriented sockets, the number of bytes written can be between 1 and the requested length,
depending on buffer availability on both the client and server systems. The select,
WSAAsyncSelect or WSAEventSelect function can be used to determine when it is possible to
send more data.

Calling sendto with alen of zero is permissible and will return zero asavalid value. For
message-oriented sockets, a zero-length transport datagram is sent.

The flags parameter can be used to influence the behavior of the function invocation beyond the
options specified for the associated socket. The semantics of this function are determined by the
socket options and the flags parameter. The latter is constructed by or-ing the following values:

Value Meaning

MSG_DONTROUTE Specifies that the data should not be subject to routing.
A Windows Sockets service provider can choose to
ignore thisflag.

MSG_OOB Send out-of-band data (stream-style socket such as
SOCK_STREAM only. Also see DECnet Out-Of-band
data for a discussion of thistopic.)

Return Values

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information

Page 131 sur 307

If no error occurs, sendto returns the total number of bytes sent, which can be less than the
number indicated by len. Otherwise, avalue of SOCKET_ERROR is returned, and a specific error
code can be retrieved by calling WSAGetL astError.

Error Codes

WSANOTINITIALISED

WSAENETDOWN
WSAEACCES

WSAEINVAL

WSAEINTR

WSAEINPROGRESS

WSAEFAULT

WSAENETRESET

WSAENOBUFS
WSAENOTCONN

WSAENOTSOCK

WSAEOPNOTSUPP

WSAESHUTDOWN

WSAEWOULDBLOCK

WSAEMSGSIZE

WSAEHOSTUNREACH

A successful WSAStartup must occur before using this
function.

The network subsystem has failed.

The requested address is a broadcast address, but the

appropriate flag was not set. Call setsockopt with the
SO_BROADCAST parameter to allow the use of the
broadcast address.

An unknown flag was specified, or MSG_OOB was
specified for a socket with SO_OOBINLINE enabled.

A blocking Windows Sockets 1.1 call was canceled
through W SA Cancel BlockingCall.

A blocking Windows Sockets 1.1 call isin progress, or
the service provider is till processing a callback
function.

The buf or to parameters are not part of the user address
space, or the tolen parameter istoo small.

The connection has been broken due to "keep-alive"
activity detecting afailure while the operation wasin
progress.

No buffer spaceis available.

The socket is not connected (connection-oriented
sockets only)

The descriptor is not a socket.

MSG_OOB was specified, but the socket is not stream-
style such as type SOCK_STREAM, out-of-band datais
not supported in the communication domain associated
with this socket, or the socket is unidirectional and
supports only receive operations.

The socket has been shut down; it is not possible to
sendto on a socket after shutdown has been invoked
with how set to SD_SEND or SD_BOTH.

The socket is marked as nonblocking and the requested
operation would block.

The socket is message oriented, and the message is
larger than the maximum supported by the underlying
transport.

The remote host cannot be reached from this host at this
time.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 132 sur 307

WSAECONNABORTED The virtual circuit was terminated due to atime-out or
other failure. The application should close the socket as
it isno longer usable.

WSAECONNRESET The virtual circuit was reset by the remote side
executing a"hard" or "abortive" close. For UPD
sockets, the remote host was unable to deliver a
previously sent UDP datagram and responded with a
"Port Unreachable" ICMP packet. The application
should close the socket as it is no longer usable.

WSAEADDRNOTAVAIL The remote address is not avalid address, for example,
ADDR_ANY.

WSAEAFNOSUPPORT Addresses in the specified family cannot be used with
this socket.

WSAEDESTADDRREQ A destination addressis required.

WSAENETUNREACH The network cannot be reached from this host at this
time.

WSAETIMEDOUT The connection has been dropped, because of a network

failure or because the system on the other end went
down without notice.

Quicklnfo

WindowsNT: Yes

Windows:. Yes

Windows CE: Useversion 1.0 and later.
Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

recv, recvirom, select, send, socket, WSAAsyncSelect, W SAEventSelect

SetService

Important The SetService function is obsolete. For the convenience of Windows Sockets 1.1
developers, the reference material is below.

The functions detailed in Protocol-Independent Name Resol ution provide equivalent functionality
in Windows Sockets 2.

The Set Service function registers or deregisters a network service within one or more name
gpaces. The function can also add or remove a network service type within one or more name
spaces.

I NT Set Servi ce(
DWORD dwNameSpace, // specifies name space(s) to operate within
DWORD dwQOperation, // specifies operation to perform
DWORD dwrl ags, /1l set of bit flags that nodify function

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 133 sur 307

/1 operation
LPSERVI CE_|I NFO | pServi cel nf o,
/1l points to structure containing service
/1 information
LPSERVI CE_ASYNC | NFO | pSer vi ceAsyncl nf o,
/1 reserved for future use, nmust be NULL
LPDWORD | pdwsSt at usFl ags
/1l points to set of status bit flags

Parameters

dwNameSpace
The name space, or a set of default name spaces, within which the function will operate.

Use one of the following constants to specify a name space:
Value Name Space

NS DEFAULT A set of default name spaces. The function queries
each name space within this set. The set of default
name spaces typically includes all the name spaces
installed on the system. System administrators,
however, can exclude particular name spaces from the
set. NS DEFAULT isthe value that most applications

should use for dwNameSpace.

NS DNS The Domain Name System used in the Internet to
resolve the name of the host.

NS NDS The NetWare 4 provider.

NS NETBT The NetBIOS over TCP/IP layer. All Windows NT

and Windows 95 systems register their computer
names with NetBIOS. This name space is used to
convert a computer name to an |P address that uses
thisregistration.

NS SAP The NetWare Service Advertising Protocol. This can
access the Netware bindery, if appropriate. NS_SAPis
a dynamic name space that enabl es the registration of

Sservices.

NS TCPIP_HOSTS Lookup value in the <systemroot>\system32
\drivers\etc\postsfile.

NS TCPIP_LOCAL Local TCP/IP name resolution mechanisms, including

comparisons against the local host name and lookup
value in the cache of host to IP address mappings.

dwOperation
Specifies the operation that the function will perform. Use one of the following values to
specify an operation:

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information

Value
SERVICE_REGISTER

SERVICE_DEREGISTER

SERVICE_FLUSH

SERVICE_ADD_TYPE

SERVICE_DELETE_TYPE

dwFlags

Page 134 sur 307

Meaning

Register the network service with the name space.
This operation can be used with the
SERVICE_FLAG_DEFER and
SERVICE_FLAG_HARD bit flags.

Deregister the network service from the name space.
This operation can be used with the
SERVICE_FLAG_DEFER and
SERVICE_FLAG_HARD hit flags.

Perform any operation that was called with the
SERVICE_FLAG_DEFER bit flag set to one.

Add a service type to the name space.

For this operation, use the ServiceSpecificl nfo
member of the SERVICE_INFO structure pointed to
by IpServicelnfo to pass a
SERVICE_TYPE_INFO_ABS structure. Y ou must
also set the ServiceT ype member of the
SERVICE_INFO structure. Other SERVICE_INFO
members are ignored.

Remove a service type, added by a previous call
specifying the SERVICE_ADD_TY PE operation,
from the name space.

A set of bit flags that modify the function's operation. Y ou can set one or more of the

following bit flags:
Value
SERVICE_FLAG_DEFER

SERVICE_FLAG_HARD

IpService Info

Name Space

Thisbit flag isvalid only if the operation is
SERVICE_REGISTER or SERVICE_DEREGISTER.

If this bit flag is one, and it is valid, the name-space
provider should defer the registration or deregistration
operation until aSERVICE_FLUSH operation is
requested.

Thisbit flag isvalid only if the operation is
SERVICE_REGISTER or SERVICE_DEREGISTER.

If this bit flag is one, and it is valid, the name-space
provider updates any relevant persistent store
information when the operation is performed.

For example: If the operation involves deregistration
in a name space that uses a persistent store, the name-
space provider would remove the relevant persistent
store information.

Pointsto aSERVICE INFO structure that contains information about the network service

or service type.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 135 sur 307

[pServiceAsynclinfo
This parameter is reserved for future use. It must be set to NULL.
|pdwStatusFlags
A set of bit flags that receive function status information. The following bit flag is defined:

Value Meaning

SET_SERVICE_PARTIAL_SUCCESS One or more name-space providers were
unable to successfully perform the
requested operation.

Return Values
If the function succeeds, the return value is not SOCKET _ERROR.

If the function fails, the return value is SOCKET_ERROR. To get extended error information, call
GetL astError. GetLastError can return the following extended error value:

Value M eaning
ERROR_ALREADY_ REGISTERED The function tried to register a service that
was already registered.
Quicklnfo

WindowsNT: Yes

Windows CE: Unsupported.

Header: Declared in nspapi.h.

Import Library: Link with wsock32.lib.

See Also

GetService, SERVICE_INFO, SERVICE_TYPE_INFO_ABS

setsockopt

The Windows Sockets setsock opt function sets a socket option.

i nt setsockopt (

SOCKET s,

int level,

i nt optnane,

const char FAR * optval,
int optlen

);

Parameters
S

[in] A descriptor identifying a socket.
level

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information

Page 136 sur 307

[in] The level at which the option is defined; the supported levelsinclude SOL_SOCKET
and IPPROTO_TCP. See the Windows Sockets 2 Protocol-Specific Annex (a separate
document included with the Platform SDK) for more information on protocol-specific

levels.
optname

[in] The socket option for which the value isto be set.

optval

[in] A pointer to the buffer in which the value for the requested option is supplied.

optlen

[in] The size of the optval buffer.

Remarks

The setsockopt function sets the current value for a socket option associated with a socket of any
type, in any state. Although options can exist at multiple protocol levels, they are always present
at the uppermost "socket" level. Options affect socket operations, such as whether expedited data
(OOB datafor example) isreceived in the normal data stream, and whether broadcast messages

can be sent on the socket.

There are two types of socket options: Boolean options that enable or disable a feature or
behavior, and options that require an integer value or structure. To enable a Boolean option,
optval pointsto a nonzero integer. To disable the option optval points to an integer equal to zero.
The optlen parameter should be equal to sizeof(int) for Boolean options. For other options, optval
points to the an integer or structure that contains the desired value for the option, and optlen isthe

length of the integer or structure.

The following options are supported for setsockopt. For default values of these options, see the
description. The Type identifies the type of data addressed by optval.

level = SOL_SOCKET

Value
SO_BROADCAST

SO _DEBUG
SO _DONTLINGER

SO_DONTROUTE
SO_GROUP_PRIORITY

SO _KEEPALIVE
SO _LINGER
SO_OOBINLINE

Type
BOOL

BOOL
BOOL

BOOL
int

BOOL
struct LINGER
BOOL

Meaning

Allow transmission of broadcast
messages on the socket.

Record debugging information.
Do not block close waiting for unsent
data to be sent. Setting thisoption is

equivaent to setting SO_LINGER with
|_onoff set to zero.

Do not route: send directly to interface.
Reserved for future use with socket
groups. Specify the relative priority to be
established for sockets that are part of a
socket group.

Send keepalives

Linger on closeif unsent datais present.
Receive out-of-band data in the normal
data stream. (See section DECnet Out-

Of-band data for a discussion of this
topic.)

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 137 sur 307

SO _RCVBUF int Specify the total per-socket buffer space
reserved for receives. Thisisunrelated to
SO MAX_MSG_SIZE or thesizeof a

TCP window.

Allow the socket to be bound to an
addressthat is already in use. (See bind.)

Specify the total per-socket buffer space
reserved for sends. Thisis unrelated to
SO MAX_MSG_SIZE or thesizeof a
TCP window.

Service Provider This object stores the configuration

Dependent information for the service provider
associated with socket s. The exact
format of this data structureis service
provider specific.

SO_REUSEADDR BOOL

SO_SNDBUF int

PVD_CONFIG

level = IPPROTO_TCP1

TCP_NODELAY BOOL Disables the Nagle algorithm for send

coalescing.
1 included for backward compatibility with Windows Sockets 1.1

BSD options not supported for setsockopt are:

Value Type Meaning
SO_ACCEPTCONN BOOL Socket is listening
SO RCVLOWAT int Receive low water mark
SO_RCVTIMEO int Receive time-out (available in
Microsoft implementation of
Windows Sockets 2)
SO _SNDLOWAT int Send low water mark
SO_SNDTIMEO int Send time-out (availablein
Microsoft implementation of
Windows Sockets 2)
SO TYPE int Type of the socket
SO_DEBUG

Windows Sockets service providers are encouraged (but not required) to supply output
debug information if the SO_DEBUG option is set by an application. The mechanism for
generating the debug information and the form it takes are beyond the scope of this
document.

SO_GROUP_PRIORITY
Reserved for future use with socket groups. Group priority indicates the relative priority of
the specified socket relative to other sockets within the socket group. Vaues are non-
negative integers, with zero corresponding to the highest priority. Priority values represent a
hint to the underlying service provider about how potentially scarce resources should be
allocated. For example, whenever two or more sockets are both ready to transmit data, the
highest priority socket (lowest value for SO_GROUP_PRIORITY') should be serviced first

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 138 sur 307

with the remainder serviced in turn according to their relative priorities.

The WSAENOPROTOOFPT error isindicated for nongroup sockets or for service providers
that do not support group sockets.

SO_KEEPALIVE
An application can request that a TCP/IP provider enable the use of "keep-alive" packets on
TCP connections by turning on the SO_KEEPALIVE socket option. A Windows Sockets
provider need not support the use of keep-alives. If it does, the precise semantics are
implementation-specific but should conform to section 4.2.3.6 of RFC 1122: Requirements
for Internet Hosts — Communication Layers. If a connection is dropped as the result of
"keep-alives' the error code WSAENETRESET is returned to any calls in progress on the
socket, and any subsequent calls will fail with WSAENOTCONN.

SO_LINGER
The SO_LINGER option controls the action taken when unsent data is queued on a socket
and a closesocket is performed. See closesocket for a description of the way in which the
SO_LINGER settings affect the semantics of closesocket. The application sets the desired
behavior by creating aLINGER structure (pointed to by the optval parameter) with these
members|_onoff and |_linger set appropriately.

SO_REUSEADDR
By default, a socket cannot be bound (see bind) to alocal addressthat is already in use. On
occasion, however, it can be necessary to "re-use" an address in thisway. Since every
connection is uniquely identified by the combination of local and remote addresses, thereis
no problem with having two sockets bound to the same local address as long as the remote
addresses are different. To inform the Windows Sockets provider that a bind on a socket
should not be disallowed because the desired address is already in use by another socket,
the application should set the SO REUSEADDR socket option for the socket before
issuing the bind. The option isinterpreted only at the time of the bind. It istherefore
unnecessary and harmless to set the option on a socket that is not to be bound to an existing
address. Setting or resetting the option after the bind has no effect on this or any other
socket.

SO_RCVBUF and SO_SNDBUF
When a Windows Sockets implementation supports the SO RCVBUF and SO_SNDBUF
options, an application can request different buffer sizes (larger or smaller). The call to
setsockopt can succeed even when the implementation did not provide the whole amount
requested. An application must call getsockopt with the same option to check the buffer
size actually provided.

PVD_CONFIG
This object stores the configuration information for the service provider associated with the
socket specified in the s parameter. The exact format of this data structure is specific to
each service provider.

TCP_NODELAY
The TCP_NODELAY option is specific to TCP/IP service providers. The Nagle agorithm
isdisabled if the TCP_NODELAY option is enabled (and vice versa). The process involves
buffering send data when there is unacknowledged data already "in flight" or buffering send
data until afull-size packet can be sent. It is highly recommended that TCP/IP service
providers enable the Nagle Algorithm by default, and for the vast majority of application
protocols the Nagle Algorithm can deliver significant performance enhancements.
However, for some applications this algorithm can impede performance, and
TCP_NODELAY can be used to turn it off. These are applications where many small
messages are sent, and the time delays between the messages are maintained. Application
writers should not set TCP_NODELAY unless the impact of doing so is well-understood
and desired because setting TCP_NODELAY can have a significant negative impact on
network and application performance.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 139 sur 307

Windows CE: The SO_RCVBUF option is not supported. If you attempt to use this option
setsockopt returns WSAEOPNOTSUPP.

To set the socket to secure mode, the option level parameter, level, must set to SO_SOCKET, the
option name, optname to SO_SECURE, and the option value, optval, must be a pointer to a
DWORD containing SO_SEC_SSL.. These settings ensure that the Unified Secure Sockets Layer
(SSL) package be used. For example,

DWORD optval = SO SEC SSL;
err = setsockopt (

Socket ,

SOL_ SOCKET,

SO_SECURE,

&opt val ,

si zeof (optval)

In addition to the normal error values, the setsockopt function can return an additional error code,
namely, WSAEISCONN, to signify that the socket can not switch to secure mode once it has been
connected.

When used in the context of SSL, the WSAENOPROTOORP error code acquires additional
meaning, to indicate that the option level does not equal to SO_SOCKET.

For IrSocket implementation, Af_irda.h must be explicitly included.
The WSAENETDOWN return value is not supported for IrSockets.

IrSockets provides two settable socket options:

Value Type Meaning
IRLMP_IAS SET *|AS_SET Sets |AS attributes.
IRLMP_IRLPT_MODE * int In non-zero, enables IrLPT mode for printing

to IrDA printers.

The IRLMP_IAS_SET socket option allows the application to set a single attribute of asingle
classin thelocal 1AS. The application specifies the class to set and the attribute and attribute type.
It is expected that the application allocate a buffer of the necessary size for the passed parameters.

The IRLMP_RAW_MODE socket option allows the application to switch between TinyTP mode
and unreliable IrLMP mode. If it isnot set, IrSockets are assumed to use TinyTP. Thisoption is
only available after issuing the socket function and before issuing any other Windows Sockets
function.

Many SO _ level socket options are not meaningful to IrSockets. Only SO _LINGER is specifically
supported.

Return Values

If no error occurs, setsockopt returns zero. Otherwise, avalue of SOCKET_ERROR isreturned,
and a specific error code can be retrieved by calling WSAGetL astError.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information

Error Codes
WSANOTINITIALISED

WSAENETDOWN
WSAEFAULT

WSAEINPROGRESS

WSAEINVAL
WSAENETRESET

WSAENOPROTOOPT

WSAENOTCONN
WSAENOTSOCK

Quicklnfo

Windows NT: Yes
Windows: Yes

Page 140 sur 307

A successful WSA Startup must occur before using this
function.

The network subsystem has failed.

optval isnot in avalid part of the process address space
or optlen parameter istoo small.

A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.

level isnot valid, or the information in optval is not
valid.

Connection has timed out when SO_KEEPALIVE is
Set.

The option is unknown or unsupported for the specified
provider or socket (see SO_GROUP_PRIORITY
[imitations).

Connection has been reset when SO_KEEPALIVE is
Set.

The descriptor is not a socket.

Windows CE: Useversion 1.0 and later.

Header: Declared in winsock?2.h.

Import Library: Link withws2_32.lib.

See Also

bind, getsockopt, ioctlsocket, socket, WSAAsyncSelect, W SAEventSelect

shutdown

The Windows Sockets shutdown function disables sends or receives on a socket.

i nt shutdown (
SOCKET s,
i nt how

);

Parameters

S

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 141 sur 307

[in] A descriptor identifying a socket.
how
[in] A flag that describes what types of operation will no longer be allowed.

Remarks
The shutdown function is used on all types of sockets to disable reception, transmission, or both.

If the how parameter is SD_RECEIVE, subsequent calls to the recv function on the socket will be
disallowed. This has no effect on the lower protocol layers. For TCP sockets, if thereis still data
gueued on the socket waiting to be received, or data arrives subsequently, the connection is reset,
since the data cannot be delivered to the user. For UDP sockets, incoming datagrams are accepted
and queued. In no case will an ICMP error packet be generated.

If the how parameter is SD_SEND, subsequent calls to the send function are disallowed. For TCP
sockets, a FIN will be sent after al datais sent and acknowledged by the receiver.

Setting how to SD_BOTH disables both sends and receives as described above.

The shutdown function does not close the socket. Any resources attached to the socket will not
be freed until closesocket isinvoked.

To assure that all datais sent and received on a connected socket before it is closed, an application
should use shutdown to close connection before calling closesocket. For example, to initiate a
graceful disconnect:

Call WSAAsyncSelect to register for FD_CLOSE notification.

Call shutdown with how=SD_SEND.

When FD_CLOSE received, call recv until zero returned, or SOCKET_ERROR.
Call closesocket.

pODNPRE

Note The shutdown function does not block regardless of the SO_LINGER setting on the socket.

An application should not rely on being able to re-use a socket after it has been shut down. In
particular, a Windows Sockets provider is not required to support the use of connect on a socket
that has been shutdown.

Return Values

If no error occurs, shutdown returns zero. Otherwise, avalue of SOCKET ERROR isreturned,
and a specific error code can be retrieved by calling WSAGetL astError.

Error Codes

WSANOTINITIALISED A successful WSA Startup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL The how parameter is not valid, or is not consistent with

the socket type. For example, SD_SEND is used with a
UNI_RECV socket type.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 142 sur 307

WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.

WSAENOTCONN The socket is not connected (connection-oriented
sockets only).

WSAENOTSOCK The descriptor is not a socket.

Quicklnfo

WindowsNT: Yes

Windows:. Yes

Windows CE: Useversion 1.0 and later.
Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

connect, socket

sock et

The Windows Sockets socket function creates a socket that is bound to a specific service
provider.

SOCKET socket (
int af,

int type,

i nt protocol

);

Parameters

af
[in] An address family specification.

type
[in] A type specification for the new socket.

The following are the only two type specifications supported for Windows Sockets 1.1:
Type Explanation

SOCK_STREAM Provides sequenced, reliable, two-way, connection-based byte
streams with an out-of-band data transmission mechanism.
Uses TCP for the Internet address family.

SOCK_DGRAM Supports datagrams, which are connectionless, unreliable
buffers of afixed (typically small) maximum length. Uses
UDP for the Internet address family.

In Windows Sockets 2, many new socket types will be introduced and don' need to be

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 143 sur 307

specified now because an application can dynamically discover the attributes of each
available transport protocol through the W SAEnumPr otocols function. Socket type
definitions will appear in WINSOCK 2.H, which will be periodically updated as new socket
types, address families and protocols are defined.

protocol
[in] A particular protocol to be used with the socket that is specific to the indicated address
family.

Remarks

The socket function causes a socket descriptor and any related resources to be allocated and
bound to a specific transport service provider. Windows Sockets will utilize the first available
service provider that supports the requested combination of address family, socket type and
protocol parameters. The socket that is created will have the overlapped attribute as a default. For
Microsoft operating systems, the Microsoft-specific socket option, SO_OPENTY PE, defined in
MSWSOCK _.H can affect this default. See Microsoft-specific documentation for a detailed
description of SO_OPENTY PE. Sockets without the overlapped attribute can be created by using
W SA Socket. All functions that alow overlapped operation (W SA Send,
WSARecv,WSASendTo, WSARecvFrom, and WSAI octl) also support non-overlapped usage
on an overlapped socket if the values for parameters related to overlapped operation are NULL.

When selecting a protocol and its supporting service provider this procedure will only choose a
base protocol or a protocol chain, not a protocol layer by itself. Unchained protocol layers are not
considered to have partial matches on type or af either. That is, they do not lead to an error code of
WSAEAFNOSUPPORT or WSAEPROTONOSUPPORT if no suitable protocol is found.

I mportant The manifest constant AF_UNSPEC continues to be defined in the header file but its
useis strongly discour aged, as this can cause ambiguity in interpreting the value of the protocol
parameter.

Connection-oriented sockets such as SOCK_STREAM provide full-duplex connections, and must
be in a connected state before any data can be sent or received on it. A connection to another
socket is created with a connect call. Once connected, data can be transferred using send and recv
calls. When a session has been completed, a closesocket must be performed.

The communications protocols used to implement areliable, connection-oriented socket ensure
that datais not lost or duplicated. If data for which the peer protocol has buffer space cannot be
successfully transmitted within a reasonable length of time, the connection is considered broken
and subsequent calls will fail with the error code set to WSAETIMEDOUT.

Connectionless, message-oriented sockets allow sending and receiving of datagrams to and from
arbitrary peers using sendto and recvfrom. If such a socket is connected to a specific peer,
datagrams can be sent to that peer using send and can be received only from this peer using recv.

Support for sockets with type RAW is not required, but service providers are encourage to support
raw sockets whenever it makes sense to do so.

Windows CE: Windows CE supportsthe PF_INET and AF_IRDA ARPA Internet address
formats.

To use IrSock, set the af parameter to AF_IRDA and set the protocol parameter to NULL.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information

Page 144 sur 307

Windows CE supports SOCK_STREAM and SOCK_DCRAM socket types.

Return Values

If no error occurs, socket returns a descriptor referencing the new socket. Otherwise, a value of
INVALID_SOCKET isreturned, and a specific error code can be retrieved by calling

WSAGetL astError.

Error Codes
WSANOTINITIALISED
WSAENETDOWN
WSAEAFNOSUPPORT
WSAEINPROGRESS
WSAEMFILE

WSAENOBUFS

WSAEPROTONOSUPPORT
WSAEPROTOTY PE

WSAESOCKTNOSUPPORT

Quicklnfo

Windows NT: Yes
Windows; Yes

A successful WSA Startup must occur before
using this function.

The network subsystem or the associated service
provider has failed.

The specified address family is not supported.

A blocking Windows Sockets 1.1 call isin
progress, or the service provider is still processing
acallback function.

No more socket descriptors are available.

No buffer space is available. The socket cannot be
created.

The specified protocol is not supported.

The specified protocol isthe wrong type for this
socket.

The specified socket type is not supported in this
address family.

Windows CE: Useversion 1.0 and later.
Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

accept, bind, connect, getsockname, getsockopt, ioctlsocket, listen, recv, recvfrom, select,
send, sendto, setsockopt, shutdown, W SA Sock et

TransmitFile

Notice This function is a Microsoft-specific extension to the Windows Sockets specification. For
more information, see Microsoft Extensions and Windows Sockets 2.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 145 sur 307

The Windows Sockets TransmitFile function transmits file data over a connected socket handle.
This function uses the operating system's cache manager to retrieve the file data, and provides
high-performance file data transfer over sockets.

BOOL TransmitFil e(
SOCKET hSocket ,
HANDLE hFil e,
DWORD nNunmber O Byt esToWit e,
DWORD nNunmber O Byt esPer Send,
LPOVERLAPPED | pOver | apped,
LPTRANSM T_FI LE_BUFFERS | pTransmi t Buf f er s,
DWORD dwrl ags

);

Parameters

hSocket
A handle to a connected socket. The function will transmit the file data over this socket.

The socket specified by hSocket must be a connection-oriented socket.

Sockets of type SOCK_STREAM, SOCK_SEQPACKET, or SOCK_RDM are connection-
oriented sockets. The TransmitFile function does not support datagram sockets.

hFile
A handleto an open file. The function transmits this file's data. The operating system reads
the file data sequentialy. Y ou can improve caching performance by opening the handle
withthe FILE_FLAG_SEQUENTIAL_SCAN.

nNumber OfBytesToWrite
The number of bytes to transmit. The function completes when it has sent this many bytes,
or if an error occurs.

Set this parameter to zero to transmit the entirefile.

nNumber OfBytesPer Send
The size of each block of data sent per send operation. This specification isfor use by the
sockets layer of the operating system.

Set this parameter to zero to have the sockets layer select a default send size.

This parameter is useful for message protocols that have limitations on the size of
individual send requests.

|pOverlapped
Pointer to an OVERL APPED structure. If the socket handle has been opened as
overlapped, specify this parameter in order to achieve an overlapped (aysnchronous) 1/0
operation. By default, socket handles are opened as overlapped.

Y ou can use |pOverlapped to specify an offset within the file at which to start the file data
transfer by setting the Offset and OffsetHigh member of the OVERL APPED structure. If
IpOverlapped is NULL, the transmission of data always starts at the current byte offset in
thefile.

When IpOverlapped is not NULL, the overlapped 1/0 might not finish before TransmitFile
returns. In that case, the TransmitFile function returns FALSE, and GetL astError returns

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 146 sur 307

ERROR _|IO_PENDING. Thislets the caller continue processing while the file transmission

operation completes. The operating system will set the event specified by the hEvent

member of the OVERL APPED structure, or the socket specified by hSocket, to the

signaled state upon compl etion of the data transmission request.

[pTransmitBuffers

Pointer toaTRANSMIT_FILE_BUFFERS data structure that contains pointers to data to

send before and after the file datais sent. Set this parameter to NULL if you only want to

transmit the file data

dwFlags

An attribute that has three settings:

TF_DISCONNECT
Start atransport-level disconnect after all the file data has been queued for
transmission.

TF_REUSE_SOCKET
Prepare the socket handle to be reused. When the TransmitFile request completes, the
socket handle can be passed to the AcceptEx function. It isonly valid if
TF_DISCONNECT is also specified.

TF WRITE_BEHIND
Complete the TransmitFile request immediately, without pending. If thisflagis
specified and TransmitFile succeeds, then the data has been accepted by the system
but not necessarily acknowledged by the remote end. If TransmitFile returns TRUE,
there will be no completion port indication for the 1/0. Do not use this setting with
the other two settings.

Return Values

If the TransmitFile function succeeds, the return value is TRUE. Otherwise, the return valueis
FALSE. To get extended error information, call GetL astError. The function returns FALSE if an
overlapped 1/0O operation is not complete before TransmitFile returns. In that case,
GetLastError returns ERROR_IO_PENDING.

Remarks
The Windows NT Server optimizes the TransmitFile function for high performance. The

Windows NT Workstation optimizes the function for minimum memory and resource utilization.
Expect better performance results when using TransmitFile on Windows NT Server.

Quicklnfo
WindowsNT: Yes
Windows CE: Unsupported.

Header: Declared in mswsock.h.
Import Library: Link with mswsock.lib.

W SA A ccept

The Windows Sockets W SAAccept function conditionally accepts a connection based on the
return value of a condition function, optionally creates or joins a socket group, provides QOS
flowspecs, and alows transfer of connection data.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 147 sur 307

SOCKET WBAAccept (
SOCKET s,
struct sockaddr FAR * addr,
LPI NT addrl en,
LPCONDI TI ONPRCC | pf nCondi ti on,
DWORD dwcCal | backDat a

);

Parameters

S
[in] A descriptor identifying a socket that is listening for connections after acall to the
listen function.

addr
[out] An optional pointer to a buffer that receives the address of the connecting entity, as
known to the communications layer. The exact format of the addr parameter is determined
by the address family established when the socket was created.

addrlen
[in/out] An optional pointer to an integer that contains the length of the address addr.

IpfnCondition
[in] The procedure instance address of the optional, application-supplied condition function
that will make an accept/reject decision based on the caller information passed in as
parameters, and optionally create or join a socket group by assigning an appropriate value to
the result parameter g of this function.

dwCallbackData
[in] The callback data passed back to the application as the value of the dwCallbackData
parameter of the condition function. This parameter is not interpreted by Windows Sockets.

Remarks

The WSAA ccept function extracts the first connection on the queue of pending connections on
socket s, and checks it against the condition function, provided the condition function is specified
(that is, not NULL). If the condition function returns CF_ACCEPT, W SAAccept creates a new
socket and performs any socket grouping as indicated by the result parameter g in the condition
function. The newly created socket has the same properties as socket s including asynchronous
events registered with WSAAsyncSelect or with WSAEventSelect, but not including the
listening socket's group ID, if any. If the condition function returns CF_REJECT, W SAAccept
rejects the connection request. The condition function runsin the same thread as this function
does, and should return as soon as possible. If the decision cannot be made immediately, the
condition function should return CF_DEFER to indicate that no decision has been made, and no
action about this connection request should be taken by the service provider. When the application
is ready to take action on the connection request, it will invoke W SAAccept again and return
either CF_ACCEPT or CF_REJECT as areturn value from the condition function.

A socket in the default mode (blocking) will block until aconnection is present when an
application calls WSAA ccept and no connections are pendng on the queue.

A socket in the nonblocking mode (blocking) fails with the error WSAEWOULDBLOCK when
an application calls WSAA ccept and no connections are pendng on the queue. After W SAA ccept
succeeds and returns a new socket handle, the accepted socket cannot be used to accept any more
connections. The original socket remains open and listens for new connection requests.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 148 sur 307

The addr parameter is aresult parameter that isfilled in with the address of the connecting entity,
as known to the communications layer. The exact format of the addr parameter is determined by
the address family in which the communication is occurring. The addrlen is a value-result
parameter; it should initially contain the amount of space pointed to by addr. On return, it will
contain the actual length (in bytes) of the address returned. This call is used with connection-
oriented socket types such as SOCK_STREAM. If addr and/or addrlen are equal to NULL, then
no information about the remote address of the accepted socket is returned. Otherwise, these two
parameters will be filled in regardless of whether the condition function is specified or what it
returns.

A prototype of the condition function is as follows:

i nt CALLBACK Conditi onFunc(
I N LPWSABUF | pCal |l erl d,
I N LPWSABUF | pCal | er Dat a,
IN OQUT LPQOCS | pSQCs,
IN OQUT LPQCS | pGQOs,
I N LPWSABUF | pCal | eel d,
QUT LPWSABUF | pCal | eeDat a,
QUT GROUP FAR * g,
I N DWORD dwcCal | backDat a

);

The ConditionFunc is a placeholder for the application-supplied callback function. The actual
condition function must reside in aDLL or application module. It is exported in the module
definition file. Use M akePr ocl nstance to get a procedure-instance address for the callback
function.

The IpCallerld parameter is a value parameter that contains the address of the connecting entity.
The IpCallerData is a value parameter that contains any user data. The information in these
parameters is sent along with the connection request. If no caller identification or caller datais
available, the corresponding parameters will be NULL. Many network protocols do not support
connect-time caller data. Most conventional network protocols can be expected to support caller
ID information at connection-request time. The buf portion of the WSABUF pointed to by
IpCallerld pointsto a SOCKADDR. The SOCKADDR isinterpreted according to its address
family (typically by casting the SOCKADDR to some type specific to the address family).

The IpSQOS parameter references the FL OW SPEC structures for socket s specified by the caller,
one for each direction, followed by any additional provider-specific parameters. The sending or
receiving flow specification values will be ignored as appropriate for any unidirectional sockets.
A NULL valuefor indicates that there is no caller supplied QOS and that no negotiation is
possible. A non-NULL IpSQOS pointer indicates that a QOS negotiation is to occur or that the
provider is prepared to accept the QOS request without negotiation.

The IpGQOS parameter (reserved for future use with socket groups) references the FL OWSPEC
structures for the socket group the caller isto create, one for each direction, followed by any
additional provider-specific parameters. A NULL value for IpGQOS indicates no caller-supplied
group quality of service. quality of service information can be returned if negotiation isto occur.

The IpCalleeld is avaue parameter that contains the local address of the connected entity. The
buf portion of the WSABUF pointed to by |pCalleeld pointsto a SOCKADDR. The SOCKADDR
isinterpreted according to its address family (typically by casting the SOCK ADDR to some type
specific to the address family).

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 149 sur 307

The IpCalleeData is aresult parameter used by the condition function to supply user data back to
the connecting entity. The IpCalleeData->1en initially contains the length of the buffer alocated
by the service provider and pointed to by |pCalleeData->buf. A value of zero means passing user
data back to the caller is not supported. The condition function should copy up to IpCalleeData-
>|en bytes of datainto IpCalleeData->buf, and then update IpCalleeData->len to indicate the
actual number of bytes transferred. If no user datais to be passed back to the caller, the condition
function should set IpCalleeData->len to zero. The format of all address and user datais specific
to the address family to which the socket belongs.

Reserved for future use with socket groups: The result parameter g is assigned within the
condition function to indicate the following actions:

1. if &gisan existing socket group 1D, add sto this group, provided all the requirements set
by this group are met; or

2. if &g=SG_UNCONSTRAINED_ GROUP, create an unconstrained socket group and have
sasthe first member; or

3. if &g=SG_CONSTRAINED_GROUP, create a constrained socket group and have s as the
first member; or

4. if &g = zero, no group operation is performed.

For unconstrained groups, any set of sockets can be grouped together as long as they are supported
by asingle service provider. A constrained socket group can consist only of connection-oriented
sockets, and requires that connections on all grouped sockets be to the same address on the same
host. For newly created socket groups, the new group 1D can be retrieved by using getsock opt
with option SO_GROUP_ID, if this operation completes successfully. A socket group and its
associated ID remain valid until the last socket belonging to this socket group is closed. Socket
group IDs are unique across all processes for a given service provider.

The dwCallbackData parameter value passed to the condition function is the value passed as the
dwCallbackData parameter in the original W SAAccept call. Thisvalueisinterpreted only by the
Windows Socket version 2 client. This allows a client to pass some context information from the
W SAAccept call site through to the condition function. This also provides the condition function
with any additional information required to determine whether to accept the connection or not. A
typical usage isto pass a (suitably cast) pointer to a data structure containing references to
application-defined objects with which this socket is associated.

Return Values

If no error occurs, WSAAccept returns avalue of type SOCKET that is a descriptor for the
accepted socket. Otherwise, avalue of INVALID_SOCKET isreturned, and a specific error code
can beretrieved by calling WSAGetL astError.

The integer referred to by addrlen initially contains the amount of space pointed to by addr. On
return it will contain the actual length in bytes of the address returned.

Error Codes

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information

WSANOTINITIALISED
WSAECONNREFUSED
WSAENETDOWN
WSAEFAULT
WSAEINTR

WSAEINPROGRESS
WSAEINVAL

WSAEMFILE

WSAENOBUFS
WSAENOTSOCK
WSAEOPNOTSUPP

WSATRY_AGAIN

WSAEWOULDBLOCK

WSAEACCES

Quicklnfo

Windows NT: Yes
Windows: Yes

Windows CE: Unsupported.
Header: Declared in winsock?2.h.

Page 150 sur 307

A successful WSAStartup must occur before using this
function.

The connection request was forcefully rejected as
indicated in the return value of the condition function
(CF_REJECT).

The network subsystem has failed.

The addrlen parameter istoo small or the addr or
IpfnCondition are not part of the user address space.

A blocking Windows Sockets 1.1 call was canceled
through W SA Cancel BlockingCall.

A blocking Windows Sockets 1.1 call isin progress.

listen was not invoked prior to WSAAccept, parameter
g specified in the condition function is not avalid value,
the source address of the incoming connection request is
not consistent with that of the constrained group the
parameter g is referring to, the return value of the
condition function is not avalid one, or any case where
the specified socket isin an invalid state.

The queue is nonempty upon entry to W SAAccept and
there are no socket descriptors available.

No buffer spaceis available.
The descriptor is not a socket.

The referenced socket is not atype that supports
connection-oriented service.

The acceptance of the connection request was deferred
as indicated in the return value of the condition function
(CF_DEFER).

The socket is marked as nonblocking and no
connections are present to be accepted.

The connection request that was offered has timed out
or been withdrawn.

Import Library: Link withws2_32.lib.

See Also

accept, bind, connect, getsockopt, listen, select, socket, W SAAsyncSel ect, W SA Connect

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 151 sur 307

WSAAddressToString

The Windows Sockets W SAAddressT oString function converts all components of a
SOCKADDR structure into a human-readabl e string representation of the address.

Thisisintended to be used mainly for display purposes. If the caller wants the trandlation to be
done by a particular provider, it should supply the corresponding WSAPROTOCOL _INFO
structure in the IpProtocol Info parameter.

I NT WEAAddr essToSt ri ng(
LPSOCKADDR | psaAddr ess,
DWORD dwAddr essLengt h,
LPWSAPROTOCOL_| NFO | pPr ot ocol I nf o,
QUT LPTSTR | pszAddressString,
IN OUT LPDWORD | pdwAddr essStri nglLength

);

Parameters

IpsaAddress
[in] A pointer to the SOCKADDR structure to translate into a string.

dwAddressLength
[in] The length of the addressin SOCK ADDR,which may vary in size with different
protocols.

IpProtocolInfo
[in] (Optional) The WSAPROTOCOL _INFO structure for a particular provider. If thisis
NULL, the call isrouted to the provider of the first protocol supporting the address family
indicated in IpsaAddress.

|pszAddressSiring
[in] A buffer that receives the human-readable address string.

|pdwAddressStringLength
[in/out] On input, the length of the AddressString buffer. On output, returns the length of
the string actually copied into the buffer. If the supplied buffer is not large enough, the
function fails with a specific error of WSAEFAULT and this parameter is updated with the
required sizein bytes.

Return Values

If no error occurs, WSAAddressT oString returns a value of zero. Otherwise, the value
SOCKET_ERROR isreturned, and a specific error number can be retrieved by calling
WSAGetL astError.

Error Codes

WSAEFAULT The specified IpcsAddress, |pProtocol I nfo,
IpszAddressString are not all in the address space
of the process, or the |pszAddressString buffer is
too small. Passin alarger buffer.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 152 sur 307

WSAEINVAL The specified address is not a valid socket address,
or there was no transport provider supporting its
indicated address family.

WSANOTINITIALIZED The Winsock 2 DLL has not been initialized. The
application must first call WSAStartup before
calling any Windows Sockets functions.

WSA NOT ENOUGH MEMORY There was insufficient memory to perform the
operation.

Quicklnfo

WindowsNT: Yes

Windows:. Yes

Windows CE: Unsupported.

Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

WSAAsyncGetHostByAddr

The Windows Sockets WSAAsyncGetHostByAddr function asynchronously retrieves host
information that corresponds to an address.

HANDLE WBAAsyncGet Host ByAddr (
HAWD hWhad,

unsi gned int wwsg,

const char FAR * addr,

int |en,

int type,

char FAR * buf,

int buflen

);

Parameters

hwhd
[in] The handle of the window that will receive a message when the asynchronous request
completes.

wMsg
[in] The message to be received when the asynchronous request compl etes.

addr
[in] A pointer to the network address for the host. Host addresses are stored in network byte
order.

len
[in] The length of the address.

type
[in] The type of the address.

buf
[out] A pointer to the data areato receivethe HOSTENT data. The data area must be larger
than the size of aHOSTENT structure because the supplied data areais used by Windows

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 153 sur 307

Socketsto contain aHOSTENT structure and all of the data referenced by members of the

HOSTENT structure. A buffer of MAXGETHOSTSTRUCT bytes is recommended.
buflen

[in] The size of data area for the buf parameter.

Remarks

The WSAAsyncGetHostByAddr function is an asynchronous version of gethostbyaddr. Itis
used to retrieve the host name and address information that corresponds to a network address.
Windows Sockets initiates the operation and returns to the caller immediately, passing back an
opaque, asynchronous task handle that the application can use to identify the operation. When the
operation is completed, the results (if any) are copied into the buffer provided by the caller and a
message is sent to the application’'s window.

When the asynchronous operation has completed, the application window indcated by the hWind
parameter receives message in the wMsg parameter. The wParam parameter contains the
asynchronous task handle as returned by the original function call. The high 16 bits of IParam
contain any error code. The error code can be any error as defined in WINSOCK2.H. An error
code of zero indicates successful completion of the asynchronous operation.

On successful completion, the buffer supplied to the original function call containsaHOSTENT
structure. To access the members of this structure, the original buffer addressis cast to a
HOSTENT structure pointer and accessed as appropriate.

If the error code is WSAENOBUFS, the size of the buffer specified by buflen in the original call
was too small to contain all the resulting information. In this case, the low 16 bits of IParam
contain the size of buffer required to supply all the requisite information. If the application
decides that the partial datais inadequate, it can reissue the WSAAsyncGetHostByAddr function
call with abuffer large enough to receive al the desired information (that is, no smaller than the
low 16 bits of IParam).

The buffer supplied to this function is used by Windows Sockets to construct a structure together
with the contents of data areas referenced by members of the sasme HOSTENT structure. To
avoid the WSAENOBUFS error, the application should provide a buffer of at least
MAXGETHOSTSTRUCT bytes (as defined in WINSOCK 2.H).

The error code and buffer length should be extracted from the |Param using the macros
WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in WINSOCK2.H as:

#def i ne WBAGETASYNCERROR(| Par am HI VWORD(| Par am
#defi ne WSAGETASYNCBUFLEN(| Par am LONORD(| Par am

The use of these macros will maximize the portability of the source code for the application.
Return Values

The return value specifies whether or not the asynchronous operation was successfully initiated. It
does not imply success or failure of the operation itself.

If no error occurs, WSAAsyncGetHostByAddr returns a nonzero value of type HANDLE that is

the asynchronous task handle (not to be confused with a Windows HTASK) for the request. This
value can be used in two ways. It can be used to cancel the operation using

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 154 sur 307

W SA CancelAsyncRequest, or it can be used to match up asynchronous operations and
compl etion messages by examining the wParam message parameter.

If the asynchronous operation could not be initiated, W SAAsyncGetHostByAddr returns a zero
value, and a specific error number can be retrieved by calling WSAGetL astError.

Error Codes

The following error codes can be set when an application window receives amessage. As
described above, they can be extracted from the IParam in the reply message using the
WSAGETASY NCERROR macro.

WSAENETDOWN The network subsystem has failed.

WSAENOBUFS Insufficient buffer spaceis available.

WSAEFAULT addr or buf isnot in avalid part of the process address
space.

WSAHOST _NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or SERVERFAIL.

WSANO_RECOVERY Nonrecoverable errors, FORMERR, REFUSED,
NOTIMP.

WSANO _DATA Valid name, no data record of requested type.

The following errors can occur at the time of the function call, and indicate that the asynchronous
operation could not beinitiated.

WSANOTINITIALISED A successful WSA Startup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.

WSAEWOULDBLOCK The asynchronous operation cannot be scheduled at this

time due to resource or other constraints within the
Windows Sockets implementation.

Quicklnfo

WindowsNT: Yes

Windows: Yes

Windows CE: Unsupported.

Header: Declared in winsock?2.h.
Import Library: Link withws2_32.lib.

See Also

gethostbyaddr, HOSTENT, W SA Cancel AsyncRequest

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 155 sur 307

WSAAsyncGetHostByName

The Windows Sockets W SAAsyncGetH ostByName function asynchronously retrieves host
information corresponding to a host name.

HANDLE WSAAsyncGet Host ByNane (
HWND hwhad,

unsi gned i nt wWwsg,

const char FAR * nane,

char FAR * buf,

int buflen

);

Parameters

hwnd
[in] The handle of the window that will receive a message when the asynchronous request
completes.
wMsg
[in] The message to be received when the asynchronous request compl etes.
name
[in] A pointer to the null-terminated name of the host.
buf
[out] A pointer to the data areato receivethe HOSTENT data. The data area must be larger
than the size of aHOSTENT structure because the supplied data area is used by Windows
Socketsto contain aHOSTENT structure and all of the data referenced by members of the
HOSTENT structure. A buffer of MAXGETHOSTSTRUCT bytes is recommended.
buflen
[in] The size of dataareafor the buf parameter.

Remarks

The WSAAsyncGetHostByName function is an asynchronous version of gethostbyname, and is
used to retrieve host name and address information corresponding to a host name. Windows
Sockets initiates the operation and returns to the caller immediately, passing back an opague
"asynchronous task handle" that whichthe application can use to identify the operation. When the
operation is completed, the results (if any) are copied into the buffer provided by the caller and a
message is sent to the application's window.

When the asynchronous operation has completed, the application window indcated by the hWnd
parameter receives message in the wMsg parameter. The wParam parameter contains the
asynchronous task handle as returned by the original function call. The high 16 bits of IParam
contain any error code. The error code can be any error as defined in WINSOCK2.H. An error
code of zero indicates successful completion of the asynchronous operation.

On successful completion, the buffer supplied to the original function call containsa HOSTENT
structure. To access the elements of this structure, the original buffer address should be cast to a
HOSTENT structure pointer and accessed as appropriate.

If the error code is WSAENOBUFS, the size of the buffer specified by buflen in the original call
was too small to contain al the resulting information. In this case, the low 16 bits of IParam

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 156 sur 307

contain the size of buffer required to supply all the requisite information. If the application
decides that the partial dataisinadequate, it can reissue the W SAAsyncGetHostByAddr function
call with abuffer large enough to receive all the desired information (that is, no smaller than the
low 16 bits of |Param).

The buffer supplied to this function is used by Windows Sockets to construct aHOSTENT
structure together with the contents of data areas referenced by members of the same HOSTENT
structure. To avoid the WSAENOBUFS error, the application should provide a buffer of at |east
MAXGETHOSTSTRUCT bytes (as defined in WINSOCK 2.H).

The error code and buffer length should be extracted from the |Param using the macros
WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in WINSOCK2.H as:

#def i ne WBAGETASYNCERROR(| Par am HI WORD(| Par am
#def i ne WBAGETASYNCBUFLEN(| Par am LONORD(| Par am

The use of these macros will maximize the portability of the source code for the application.

WSAAsyncGetHostByName is guaranteed to resolve the string returned by a successful call to
gethostname.

Return Values

The return value specifies whether or not the asynchronous operation was successfully initiated. It
does not imply success or failure of the operation itself.

If no error occurs, WSAAsyncGetHostByName returns a nonzero value of type HANDLE that is
the asynchronous task handle (not to be confused with a Windows HTASK) for the request. This
value can be used in two ways. It can be used to cancel the operation using

W SA Cancel AsyncRequest, or it can be used to match up asynchronous operations and
completion messages by examining the wParam message parameter.

If the asynchronous operation could not be initiated, W SAAsyncGetHostByName returns a zero
value, and a specific error number can be retrieved by calling WSAGetL astError.

Error Codes

The following error codes can be set when an application window receives amessage. As
described above, they can be extracted from the IParam in the reply message using the
WSAGETASY NCERROR macro.

WSAENETDOWN The network subsystem has failed.

WSAENOBUFS Insufficient buffer spaceis available.

WSAEFAULT The name or buf parameter isnot in avalid part of the
process address space.

WSAHOST _NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or SERVERFAIL.

WSANO_RECOVERY Nonrecoverable errors, FORMERR, REFUSED,
NOTIMP.

WSANO _DATA Valid name, no data record of requested type.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 157 sur 307

The following errors can occur at the time of the function call, and indicate that the asynchronous
operation could not beinitiated.

WSANOTINITIALISED A successful WSA Startup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.

WSAEWOULDBLOCK The asynchronous operation cannot be scheduled at this

time due to resource or other constraints within the
Windows Sockets implementation.

Quicklnfo

WindowsNT: Yes

Windows: Yes

Windows CE: Unsupported.

Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

gethostbyname, HOSTENT, WSACancelAsyncRequest

W SAAsyncGetProtoByName

The Windows Sockets W SAAsyncGetProtoByName function gets protocol information
corresponding to a protocol name asynchronously.

HANDLE WSAAsyncCet Pr ot oByNanme (
HWND hwhad,

unsi gned i nt wwsg,

const char FAR * nane,

char FAR * buf,

int buflen

);

Parameters

hwnd
[in] The handle of the window that will receive a message when the asynchronous request
completes.
wMsg
[in] The message to be received when the asynchronous request compl etes.
name
[in] A pointer to the null-terminated protocol name to be resolved.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 158 sur 307

buf
[out] A pointer to the data areato receive the PROTOENT data. The data area must be
larger than the size of aPROTOENT structure because the data area is used by Windows
Socketsto contain aPROTOENT structure and all of the data that is referenced by
members of the PROTOENT structure. A buffer of MAXGETHOSTSTRUCT bytesis
recommended.

buflen
[out] The size of data area for the buf parameter.

Remarks

The WSAAsyncGetProtoByName function is an asynchronous version of getprotobyname. It is
used to retrieve the protocol name and number from the Windows Sockets database corresponding
to given protocol name. Windows Sockets initiates the operation and returns to the caller
immediately, passing back an opague, asynchronous task handle that the application can use to
identify the operation. When the operation is completed, the results (if any) are copied into the
buffer provided by the caller and a message is sent to the application's window.

When the asynchronous operation has completed, the application window indcated by the hWind
parameter receives message in the wMsg parameter. The wParam parameter contains the
asynchronous task handle as returned by the original function call. The high 16 bits of IParam
contain any error code. The error code can be any error as defined in WINSOCK2.H. An error
code of zero indicates successful completion of the asynchronous operation.

On successful completion, the buffer supplied to the original function call contains a
PROTOENT structure. To access the members of this structure, the original buffer address
should be cast to aPROTOENT structure pointer and accessed as appropriate.

If the error code is WSAENOBUFS, the size of the buffer specified by buflen in the original call
was too small to contain all the resulting information. In this case, the low 16 bits of IParam
contain the size of buffer required to supply all the requisite information. If the application
decides that the partial datais inadequate, it can reissue the WSAAsyncGetHostByAddr function
call with abuffer large enough to receive al the desired information (that is, no smaller than the
low 16 bits of IParam).

The buffer supplied to this function is used by Windows Sockets to construct a PROTOENT
structure together with the contents of data areas referenced by members of the same
PROTOENT structure. To avoid the WSAENOBUFS error noted above, the application should
provide a buffer of at least MAXGETHOSTSTRUCT bytes (as defined in WINSOCK2.H).

The error code and buffer length should be extracted from the |Param using the macros
WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in WINSOCK2.H as:

#def i ne WBAGETASYNCERROR(| Par am HI VWORD(| Par am
#defi ne WBAGETASYNCBUFLEN(| Par am LONORD(| Par am

The use of these macros will maximize the portability of the source code for the application.
Return Values

The return value specifies whether or not the asynchronous operation was successfully initiated. It
does not imply success or failure of the operation itself.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 159 sur 307

If no error occurs, WSAAsyncGetProtoByName returns a nonzero value of type HANDLE that
is the asynchronous task handle for the request (not to be confused with a Windows HTASK).
This value can be used in two ways. It can be used to cancel the operation using

W SACancelAsyncRequest, or it can be used to match up asynchronous operations and
completion messages, by examining the wParam message parameter.

If the asynchronous operation could not be initiated, W SAAsyncGetProtoByName returns a zero
value, and a specific error number can be retrieved by calling WSAGetL astError.

Error Codes

The following error codes can be set when an application window receives a message. As
described above, they can be extracted from the |Param in the reply message using the
WSAGETASY NCERROR macro.

WSAENETDOWN The network subsystem has failed.

WSAENOBUFS Insufficient buffer space is available.

WSAEFAULT The name or buf parameter isnot in avalid part of the
process address space.

WSAHOST _NOT_FOUND Authoritative Answer Protocol not found.

WSATRY_AGAIN Non-Authoritative Protocol not found, or server failure.

WSANO_RECOVERY Nonrecoverable errors, the protocols database is not
accessible.

WSANO_DATA Valid name, no data record of requested type.

The following errors can occur at the time of the function call, and indicate that the asynchronous
operation could not be initiated.

WSANOTINITIALISED A successful WSA Startup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.

WSAEWOULDBLOCK The asynchronous operation cannot be scheduled at this

time due to resource or other constraints within the
Windows Sockets implementation.

Quicklnfo

WindowsNT: Yes

Windows:. Yes

Windows CE: Unsupported.

Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 160 sur 307

getprotobyname, W SACancel AsyncRequest

W SAAsyncGetProtoByNumber

The Windows Sockets W SAAsyncGetProtoByNumber function asynchronously retrieves
protocol information corresponding to a protocol number.

HANDLE WSAAsyncGet Pr ot oByNumber (
HAWD hwhd,

unsi gned i nt wwsg,

i nt nunber,

char FAR * buf,

i nt buflen

);

Parameters

hwnd
[in] The handle of the window that will receive a message when the asynchronous request
completes.

wMsg
[in] The message to be received when the asynchronous request compl etes.

number
[in] The protocol number to be resolved, in host byte order.

buf
[out] A pointer to the data areato receive the PROTOENT data. The data area must be
larger than the size of aPROTOENT structure because the data areais used by Windows
Socketsto contain aPROTOENT structure and all of the data that is referenced by
members of the PROTOENT structure. A buffer of MAXGETHOSTSTRUCT bytesis
recommended.

buflen
[in] The size of dataareafor the buf parameter.

Remarks

The WSAAsyncGetProtoByNumber function is an asynchronous version of
getprotobynumber, and is used to retrieve the protocol name and number corresponding to a
protocol number. Windows Sockets initiates the operation and returns to the caller immediately,
passing back an opague, asynchronous task handle that the application can use to identify the
operation. When the operation is completed, the results (if any) are copied into the buffer
provided by the caller and a message is sent to the application's window.

When the asynchronous operation has completed, the application window indcated by the hWind
parameter receives message in the wMsg parameter. The wParam parameter contains the
asynchronous task handle as returned by the original function call. The high 16 bits of IParam
contain any error code. The error code can be any error as defined in WINSOCK2.H. An error
code of zero indicates successful completion of the asynchronous operation.

On successful completion, the buffer supplied to the original function call contains a

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 161 sur 307

PROTOENT structure. To access the members of this structure, the original buffer addressis
cast to aPROTOENT structure pointer and accessed as appropriate.

If the error code is WSAENOBUFS, the size of the buffer specified by buflen in the original call
was too small to contain all the resulting information. In this case, the low 16 bits of IParam
contain the size of buffer required to supply all the requisite information. If the application
decides that the partial dataisinadequate, it can reissue the WSAAsyncGetHostByAddr function
call with abuffer large enough to receive al the desired information (that is, no smaller than the
low 16 bits of IParam).

The buffer supplied to this function is used by Windows Sockets to construct a PROTOENT
structure together with the contents of data areas referenced by members of the same
PROTOENT structure. To avoid the WSAENOBUFS error noted above, the application should
provide a buffer of at least MAXGETHOSTSTRUCT bytes (as defined in WINSOCK2.H).

The error code and buffer length should be extracted from the |Param using the macros
WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in WINSOCK2.H as:

#def i ne WBAGETASYNCERROR(| Par am HI VWORD(| Par am
#defi ne WSAGETASYNCBUFLEN(| Par am LONORD(| Par am

The use of these macros will maximize the portability of the source code for the application.
Return Values

The return value specifies whether or not the asynchronous operation was successfully initiated. It
does not imply success or failure of the operation itself.

If no error occurs, WSAAsyncGetProtoByNumber returns a nonzero value of type HANDLE
that is the asynchronous task handle for the request (not to be confused with a Windows HTASK).
This value can be used in two ways. It can be used to cancel the operation using

W SA CancelAsyncRequest, or it can be used to match up asynchronous operations and
completion messages, by examining the wParam message parameter.

If the asynchronous operation could not be initiated, W SAAsyncGetProtoByNumber returns a
zero value, and a specific error number can beretrieved by calling WSAGetL astError.

Error Codes

The following error codes can be set when an application window receives a message. As
described above, they can be extracted from the IParam in the reply message using the
WSAGETASY NCERROR macro.

WSAENETDOWN The network subsystem has failed.

WSAENOBUFS Insufficient buffer spaceis available.

WSAEFAULT The buf paramater isnot in avalid part of the process
address space.

WSAHOST_NOT_FOUND Authoritative Answer Protocol not found.

WSATRY_AGAIN Non-Authoritative Protocol not found, or server failure.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 162 sur 307

WSANO_RECOVERY Nonrecoverable errors, the protocols database is not
accessible.
WSANO_DATA Valid name, no data record of requested type.

The following errors can occur at the time of the function call, and indicate that the asynchronous
operation could not be initiated.

WSANOTINITIALISED A successful WSA Startup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.

WSAEWOULDBLOCK The asynchronous operation cannot be scheduled at this

time due to resource or other constraints within the
Windows Sockets implementation.

Quicklnfo

WindowsNT: Yes

Windows:. Yes

Windows CE: Unsupported.

Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

getprotobynumber, WSACancelAsyncRequest

WSAAsyncGetServByName

The Windows Sockets W SAAsyncGet Ser vByName function asynchronously retrieves service
information corresponding to a service name and port.

HANDLE WBAAsyncGet Ser vByNane (
HWAD hwhd,

unsi gned int wwsg,

const char FAR * nane,

const char FAR * proto,

char FAR * buf,

int buflen

);

Parameters
hwhd

[in] The handle of the window that should receive a message when the asynchronous
request completes.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 163 sur 307

wMsg
[in] The message to be received when the asynchronous request compl etes.
name
[in] A pointer to a null-terminated service name.
proto
[in] A pointer to a protocol name. This can be NULL, in which case
WSAAsyncGetSer vByName will search for the first service entry for which s_name or
one of the s_aliases matches the given name. Otherwise, W SAAsyncGetSer vByName
matches both name and proto.
buf
[out] A pointer to the data areato receivethe SERVENT data. The data area must be larger
than the size of aSERVENT structure because the data area supplied is used by Windows
Socketsto contain aSERVENT structure and all of the data that is referenced by members
of the SERVENT structure. A buffer of MAXGETHOSTSTRUCT bytes is recommended.
buflen
[in] The size of data area for the buf parameter.

Remarks

The WSAAsyncGetSer vByName function is an asynchronous version of getservbyname and is
used to retrieve service information corresponding to a service name. Windows Sockets initiates
the operation and returns to the caller immediately, passing back an opaque, asynchronous task
handle that the application can use to identify the operation. When the operation is completed, the
results (if any) are copied into the buffer provided by the caller and a message is sent to the
application's window.

When the asynchronous operation has completed, the application window indcated by the hWnd
parameter receives message in the wMsg parameter. The wParam parameter contains the
asynchronous task handle as returned by the original function call. The high 16 bits of IParam
contain any error code. The error code can be any error as defined in WINSOCK2.H. An error
code of zero indicates successful completion of the asynchronous operation.

On successful completion, the buffer supplied to the original function call containsa SERVENT
structure. To access the members of this structure, the original buffer address should be cast to a
SERVENT structure pointer and accessed as appropriate.

If the error code is WSAENOBUFS, the size of the buffer specified by buflen in the original call
was too small to contain all the resulting information. In this case, the low 16 bits of IParam
contain the size of buffer required to supply all the requisite information. If the application
decides that the partial datais inadequate, it can reissue the WSAAsyncGetHostByAddr function
call with abuffer large enough to receive al the desired information (that is, no smaller than the
low 16 bits of IParam).

The buffer supplied to this function is used by Windows Sockets to construct a SERVENT
structure together with the contents of data areas referenced by members of the same SERVENT
structure. To avoid the WSAENOBUFS error, the application should provide a buffer of at |east
MAXGETHOSTSTRUCT bytes (as defined in WINSOCK 2.H).

The error code and buffer length should be extracted from the |Param using the macros
WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in WINSOCK2.H as:

#def i ne WBAGETASYNCERROR(| Par am HI VWORD(| Par am
#defi ne WSAGETASYNCBUFLEN(| Par am LONORD(| Par am

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 164 sur 307

The use of these macros will maximize the portability of the source code for the application.
Return Values

The return value specifies whether or not the asynchronous operation was successfully initiated. It
does not imply success or failure of the operation itself.

If no error occurs, W SAAsyncGetSer vByName returns a nonzero value of type HANDLE that is
the asynchronous task handle for the request (not to be confused with a Windows HTASK). This
value can be used in two ways. It can be used to cancel the operation using

W SA CancelAsyncRequest, or it can be used to match up asynchronous operations and
completion messages, by examining the wParam message parameter.

If the asynchronous operation could not be initiated, W SAAsyncSer vByName returns a zero
value, and a specific error number can be retrieved by calling WSAGetL astError.

Error Codes

The following error codes can be set when an application window receives amessage. As
described above, they can be extracted from the IParam in the reply message using the
WSAGETASY NCERROR macro.

WSAENETDOWN The network subsystem has failed.

WSAENOBUFS Insufficient buffer spaceis available.

WSAEFAULT buf is not in avalid part of the process address space.

WSAHOST NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Service not found, or server failure.

WSANO_RECOVERY Nonrecoverable errors, the services database is not
accessible.

WSANO _DATA Valid name, no data record of requested type.

The following errors can occur at the time of the function call, and indicate that the asynchronous
operation could not beinitiated.

WSANOTINITIALISED A successful WSA Startup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.

WSAEWOULDBLOCK The asynchronous operation cannot be scheduled at this

time due to resource or other constraints within the
Windows Sockets implementation.

Quicklnfo

Windows NT: Yes

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 165 sur 307

Windows: Yes

Windows CE: Unsupported.

Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

getser vbyname, W SA Cancel AsyncRequest

WSAAsyncGetServByPort

The Windows Sockets W SAAsyncGet ServByPort function gets service information
corresponding to a port and protocol asynchronously.

HANDLE WBAAsyncGet ServByPort (
HWAD hwhd,

unsi gned int wwsg,

int port,

const char FAR * proto,

char FAR * buf,

int buflen

);

Parameters

hwhd
[in] The handle of the window that should receive a message when the asynchronous
request completes.

wMsg
[in] The message to be received when the asynchronous request compl etes.

port
[in] The port for the service, in network byte order.

proto
[in] A pointer to a protocol name. This can be NULL, in which case
WSAAsyncGetServByPort will search for the first service entry for which s_port match
the given port. Otherwise, WSAAsyncGetSer vByPort matches both port and proto.

buf
[out] pointer to the data areato receive the SERVENT data. The data area must be larger
than the size of aSERVENT structure because the data area supplied is used by Windows
Socketsto contain aSERVENT structure and all of the data that is referenced by members
of the SERVENT structure. A buffer of MAXGETHOSTSTRUCT bytes is recommended.

buflen
[in] The size of data area for the buf parameter.

Remarks
The WSAAsyncGetServByPort function is an asynchronous version of getservbyport, and is
used to retrieve service information corresponding to a port number. Windows Sockets initiates

the operation and returns to the caller immediately, passing back an opaque, asynchronous task
handle that the application can use to identify the operation. When the operation is completed, the

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 166 sur 307

results (if any) are copied into the buffer provided by the caller and a message is sent to the
application's window.

When the asynchronous operation has completed, the application window indcated by the hWwind
parameter receives message in the wMsg parameter. The wParam parameter contains the
asynchronous task handle as returned by the original function call. The high 16 bits of IParam
contain any error code. The error code can be any error as defined in WINSOCK2.H. An error
code of zero indicates successful completion of the asynchronous operation.

On successful completion, the buffer supplied to the original function call containsa SERVENT
structure. To access the members of this structure, the original buffer address should be cast to a
SERVENT structure pointer and accessed as appropriate.

If the error code is WSAENOBUFS, the size of the buffer specified by buflen in the original call
was too small to contain all the resulting information. In this case, the low 16 bits of IParam
contain the size of buffer required to supply all the requisite information. If the application
decides that the partial dataisinadequate, it can reissue the WSAAsyncGetHostByAddr function
call with abuffer large enough to receive al the desired information (that is, no smaller than the
low 16 bits of IParam).

The buffer supplied to this function is used by Windows Sockets to construct a SERVENT
structure together with the contents of data areas referenced by members of the same SERVENT
structure. To avoid the WSAENOBUFS error, the application should provide a buffer of at |east
MAXGETHOSTSTRUCT bytes (as defined in WINSOCK 2.H).

The error code and buffer length should be extracted from the |Param using the macros
WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in WINSOCK2.H as:

#def i ne WBAGETASYNCERROR(| Par am HI VWORD(| Par am
#defi ne WSAGETASYNCBUFLEN(| Par am LONORD(| Par am

The use of these macros will maximize the portability of the source code for the application.
Return Values

The return value specifies whether or not the asynchronous operation was successfully initiated. It
does not imply success or failure of the operation itself.

If no error occurs, WSAAsyncGetServByPort returns a nonzero value of type HANDLE that is
the asynchronous task handle for the request (not to be confused with a Windows HTASK). This
value can be used in two ways. It can be used to cancel the operation using

W SA Cancel AsyncRequest, or it can be used to match up asynchronous operations and
completion messages, by examining the wParam message parameter.

If the asynchronous operation could not be initiated, W SAAsyncGet ServByPort returns a zero
value, and a specific error number can be retrieved by calling WSAGetL astError.

Error Codes
The following error codes can be set when an application window receives amessage. As

described above, they can be extracted from the IParam in the reply message using the
WSAGETASY NCERROR macro.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 167 sur 307

WSAENETDOWN The network subsystem has failed.

WSAENOBUFS Insufficient buffer space is available.

WSAEFAULT proto or buf isnot in avalid part of the process address
space.

WSAHOST _NOT_FOUND Authoritative Answer Port not found.

WSATRY_AGAIN Non-Authoritative Port not found, or server failure.

WSANO_RECOVERY Nonrecoverable errors, the services database is not
accessible.

WSANO_DATA Valid name, no data record of requested type.

The following errors can occur at the time of the function call, and indicate that the asynchronous
operation could not be initiated.

WSANOTINITIALISED A successful WSA Startup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.

WSAEWOULDBLOCK The asynchronous operation cannot be scheduled at this

time due to resource or other constraints within the
Windows Sockets implementation.

Quicklnfo

WindowsNT: Yes

Windows:. Yes

Windows CE: Unsupported.

Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

getservbyport, WSACancel AsyncRequest

W SAAsyncSel ect

The Windows Sockets W SAAsyncSelect function requests Windows message-based notification
of network events for a socket.

i nt WSAAsyncSel ect (
SOCKET s,
HWAD hwWhd,
unsi gned int wwsg,
| ong | Event

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 168 sur 307

Parameters

S
[in] A descriptor identifying the socket for which event notification is required.

hwnd
[in] A handleidentifying the window that will receive a message when a network event
occurs.

wMsg
[in] The message to be received when a network event occurs.

|Event
[in] A bitmask that specifies a combination of network eventsin which the application is
interested.

Remarks

The WSAAsyncSelect function is used to request that WS2_32.DLL should send a message to
the window hWhd whenever it detects any of the network events specified by the |Event
parameter. The message that should be sent is specified by the wMsg parameter. The socket for
which notification is required isidentified by the s parameter.

The WSAAsyncSelect function automatically sets socket sto nonblocking mode, regardless of
the value of |IEvent. See the ioctlsocket functions for information on how to set the nonblocking
socket back to blocking mode.

The |Event parameter is constructed by using the bitwise OR operator with any of the values
specified in the following list.

Value M eaning

FD_READ Want to receive notification of readiness for reading

FD_WRITE Want to receive notification of readiness for writing

FD_OOB Want to receive notification of the arrival of out-of-band data

FD_ACCEPT Want to receive notification of incoming connections

FD_CONNECT Want to receive notification of completed connection or
multi-point join operation

FD_CLOSE Want to receive notification of socket closure

FD_QOS Want to receive notification of socket Quality of Service
(QOS) changes

FD_GROUP_QOS Want to receive notification of socket group Quality of
Service (QOS) changes (reserved for future use with socket
groups)

FD_ROUTING Want to receive notification of routing interface changes for

_INTERFACE_CHANGE the specified destination(s)

FD_ADDRESS LIST Want to receive notification of local addresslist changes for

_CHANGE the socket's protocol family

Issuing a W SAAsyncSelect for a socket cancels any previous W SAAsyncSelect or
WSAEventSelect for the same socket. For example, to receive notification for both reading and

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 169 sur 307

writing, the application must call WSAAsyncSelect with both FD_READ and FD_WRITE, as
follows:

rc = WBAAsyncSel ect (s, hwd, wwvsg, FD READ| FD WRI TE);

It is not possible to specify different messages for different events. The following code will not
work; the second call will cancel the effects of the first, and only FD_WRITE events will be
reported with message wM sg2:

rc
rc

WBAAsyncSel ect (s, hwhd, wwvsgl, FD READ);
WEAAsyncSel ect (s, hwhd, wwvsg2, FD WRI TE);

To cancel al notification indicating that Windows Sockets should send no further messages
related to network events on the socket, |Event is set to zero.

rc = WBAAsyncSel ect (s, hwhd, 0, 0);

Although WSAAsyncSelect immediately disables event message posting for the socket in this
instance, it is possible that messages could be waiting in the application's message queue.
Therefore, the application must be prepared to receive network event messages even after
cancellation. Closing a socket with closesocket also cancels W SAAsyncSelect message sending,
but the same caveat about messages in the queue still applies.

The socket created by the accept function has the same properties as the listening socket used to
accept it. Consequently, WSAAsyncSelect events set for the listening socket also apply to the
accepted socket. For example, if alistening socket has W SAAsyncSelect events FD_ACCEPT,
FD_READ, and FD_WRITE, then any socket accepted on that listening socket will also have
FD_ACCEPT, FD_READ, and FD_WRITE events with the same wMsg value used for messages.
If adifferent wMsg or events are desired, the application should call WSAAsyncSelect, passing
the accepted socket and the desired new information.

When one of the nominated network events occurs on the specified socket s, the application's
window hWhd receives message wMsg. The wParam parameter identifies the socket on which a
network event has occurred. The low word of |Param specifies the network event that has
occurred. The high word of |Param contains any error code. The error code be any error as
defined in WINSOCK 2.H.

Note Upon receipt of an event notification message, the WSAGetL astError function cannot be
used to check the error value because the error value returned can differ from the value in the high
word of |Param.

The error and event codes can be extracted from the |Param using the macros
WSAGETSELECTERROR and WSAGETSELECTEVENT, defined in WINSOCK2.H as:

#def i ne WBAGETSELECTERROR(| Par am HI WORD(| Par am
#def i ne WBAGETSELECTEVENT(| Par am LONORD(| Par am

The use of these macros will maximize the portability of the source code for the application.

The possible network event codes that can be returned are as follows:

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 170 sur 307

Value M eaning

FD_READ Socket s ready for reading

FD_WRITE Socket s ready for writing

FD_OOB Out-of-band data ready for reading on socket s

FD_ACCEPT Socket s ready for accepting a new incoming connection

FD_CONNECT Connection or multi-point join operation initiated on socket s
completed

FD_CLOSE Connection identified by socket s has been closed

FD_QOS Quality of Service associated with socket s has changed

FD_GROUP_QOS Quality of Service associated with the socket group to which s
belongs has changed (reserved for future use with socket
groups)

FD_ROUTING Local interface that should be used to send to the specified

_INTERFACE_CHANGE destination has changed

FD_ADDRESS LIST The list of addresses of the socket's protocol family to which

_CHANGE the application client can bind has changed

Although WSAAsyncSelect can be called with interest in multiple events, the application
window will receive a single message for each network event.

Asin the case of the select function, WSAAsyncSelect will frequently be used to determine when
adatatransfer operation (send or recv) can be issued with the expectation of immediate success.
Nevertheless, arobust application must be prepared for the possibility that it can receive a
message and issue a Windows Sockets 2 call that returns WSAEWOULDBLOCK immediately.
For example, the following sequence of eventsis possible:

1. dataarrives on socket s; Windows Sockets 2 posts W SAAsyncSelect message

2. application processes some other message

3. while processing, application issues an ioctlsocket(s, FIONREAD...) and notices that there
is data ready to be read

4. applicationissuesarecv(s,...) to read the data

5. application loops to process next message, eventually reaching the W SAAsyncSelect
message indicating that datais ready to read

6. application issuesrecv(s,...), which fails with the error WSAEWOULDBLOCK.

Other sequences are possible.

The WS2_32.DLL will not continually flood an application with messages for a particul ar
network event. Having successfully posted notification of a particular event to an application
window, no further message(s) for that network event will be posted to the application window
until the application makes the function call that implicitly re-enables notification of that network
event.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 171 sur 307

Event Re-enabling function

FD_READ recv, recvfrom, WSARecv, or WSARecvFrom
FD WRITE send, sendto, WSASend, or WSASendTo
FD_0OOB recv, recvfrom, WSARecv, or WSARecvFrom
FD_ACCEPT accept or WSAAccept unless the error code is

WSATRY_AGAIN indicating that the condition function
returned CF_DEFER

FD_CONNECT NONE

FD_ CLOSE NONE

FD_QOS W SAI octl with command SIO_GET_QOS

FD_GROUP_QOS W SAI octl with command SIO_GET_GROUP_QOS
(reserved for future use with socket groups)

FD_ROUTING W SAI octl with command

_INTERFACE_CHANGE SIO_ROUTING_INTERFACE_CHANGE

FD _ADDRESS LIST WSAI octl with command SIO_ ADDRESS LIST CHANGE

_CHANGE

Any call to the re-enabling routine, even one that fails, resultsin re-enabling of message posting
for the relevant event.

For FD_READ, FD_OOB, and FD_ACCEPT events, message posting is "level-triggered.” This
means that if the re-enabling routineis called and the relevant condition is still met after the call, a
W SAAsyncSelect message is posted to the application. This alows an application to be event-
driven and not be concerned with the amount of data that arrives at any one time. Consider the
following sequence:

1. Network transport stack receives 100 bytes of data on socket s and causes Windows
Sockets 2 to post an FD_READ message.

2. The application issuesrecv(s, buffptr, 50, 0) to read 50 bytes.

3. Another FD_READ message is posted since there is still datato be read.

With these semantics, an application need not read all available datain responseto an FD_READ
message—a single recv in response to each FD_READ message is appropriate. If an application
issues multiplerecv callsin response to asingle FD_READ, it can receive multiple FD_READ
messages. Such an application can need to disable FD_READ messages before starting the recv
calls by calling WSAAsyncSelect with the FD_READ event not set.

The FD_QOS and FD_GROUP_QOS events are considered "edge triggered.” A message will be
posted exactly once when a quality of service change occurs. Further messages will not be
forthcoming until either the provider detects a further change in quality of service or the
application renegotiates the quality of service for the socket.

The FD_ROUTING_INTERFACE_CHANGE message is posted when the local interface that
should be used to reach the destination specified in W SAI octl with
SIO_ROUTING_INTERFACE_CHANGE changes after such IOCTL has been issued.

The FD_ADDRESS LIST_CHANGE message is posted when the list of addresses to which the
application can bind changes after W SAl octl with SIO_ADDRESS LIST_CHANGE has been

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 172 sur 307

issued.

If any event has already happened when the application calls WSAAsyncSelect or when the re-
enabling function is called, then a message is posted as appropriate. For example, consider the
following sequence:

1. anapplication callslisten,

2. aconnect request is received but not yet accepted,

3. theapplication calls WSAAsyncSelect specifying that it wants to receive FD_ACCEPT
messages for the socket. Due to the persistence of events, Windows Sockets 2 posts an
FD_ACCEPT message immediately.

The FD_WRITE event is handled dlightly differently. An FD_WRITE message is posted when a
socket is first connected with connect/W SAConnect (after FD_CONNECT, if also registered) or
accepted with accept/W SAAccept, and then after a send operation fails with
WSAEWOULDBLOCK and buffer space becomes available. Therefore, an application can
assume that sends are possible starting from the first FD_WRITE message and lasting until a send
returns WSAEWOULDBLOCK. After such afailure the application will be notified that sends are
again possible with an FD_WRITE message.

The FD_OOB event is used only when a socket is configured to receive out-of-band data
separately. (See section DECnet Out-Of-band data for a discussion of thistopic.) If the socket is
configured to receive out-of-band data in-line, the out-of-band (expedited) datais treated as
normal data and the application should register an interest in, and will receive, FD_READ events,
not FD_OOB events. An application can set or inspect the way in which out-of-band dataisto be
handled by using setsockopt or getsockopt for the SO_OOBINLINE option.

The error code in an FD_CLOSE message indicates whether the socket close was graceful or
abortive. If the error code is zero, then the close was graceful; if the error code is
WSAECONNRESET, then the socket's virtual circuit was reset. This only applies to connection-
oriented sockets such as SOCK_STREAM.

The FD_CLOSE message is posted when a close indication is received for the virtual circuit
corresponding to the socket. In TCP terms, this means that the FD_CLOSE is posted when the
connection goes into the TIME WAIT or CLOSE WAIT states. This results from the remote end
performing a shutdown on the send side or a closesocket. FD_CLOSE should only be posted
after all dataisread from a socket, but an application should check for remaining data upon
receipt of FD_CLOSE to avoid any possibility of losing data.

Please note your application will receive ONLY an FD_CLOSE message to indicate closure of a
virtual circuit, and only when al the received data has been read if thisis a graceful close. It will
not receive an FD_READ message to indicate this condition.

The FD_QOS or FD_GROUP_QOS message is posted when any field in the flow specification
associated with socket s or the socket group that s belongs to has changed, respectively.
Applications should use W SAl octl with command SIO_GET_QOS or SIO_GET_GROUP_QOS
to get the current QOS for socket s or for the socket group s belongs to, respectively.

The FD_ROUTING_INTERFACE_CHANGE and FD_ADDRESS LIST_CHANGE events are
considered "edge triggered” aswell. A message will be posted exactly once when a change occurs
after the application has request the notification by issuing W SAl octl with
SIO_ROUTING_INTERFACE_CHANGE or SIO_ADDRESS LIST_CHANGE
correspondingly. Further messages will not be forthcoming until the application reissues the

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 173 sur 307

IOCTL AND another change is detected since the IOCTL has been issued.

Hereis asummary of events and conditions for each asynchronous notification message:

¢ FD_READ:

Wy

when WSAAsyncSelect caled, if there is data currently available to receive,

when data arrives, if FD_READ not aready posted,

after recv or recvfrom called (with or without MSG_PEEK)), if datais still available
to receive.

Note when setsockopt SO _OOBINLINE is enabled, "data" includes both normal data
and out-of-band (OOB) data in the instances noted above.

e FD_WRITE:
1. when WSAAsyncSelect called, if asend or sendto is possible
2. dfter connect or accept called, when connection established
3. after send or sendto fail with WSAEWOULDBLOCK, when send or sendto are

4.

1.

likely to succeed,

after bind on a connectionless socket. FD_WRITE may or may not occur at thistime
(implementation-dependent). In any case, a connectionless socket is always writeable
immediately after abind operation.

FD_OOB: Only vaid when setsockopt SO_OOBINLINE is disabled (default).

when WSAAsyncSelect called, if there is OOB data currently available to receive
with the MSG_OOB flag,

2. when OOB data arrives, if FD_OOB not aready posted,
3. dfter recv or recvfrom called with or without MSG_OOB flag, if OOB datais still
available to receive.
e FD_ACCEPT:
1. when WSAAsyncSelect called, if thereis currently a connection request available to
accept,
2. when aconnection request arrives, if FD_ACCEPT not already posted,
3. dfter accept called, if thereis another connection request available to accept.
e FD_CONNECT:
1. when WSAAsyncSelect called, if thereis currently a connection established,
2. dfter connect called, when connection is established (even when connect succeeds
immediately, asistypical with adatagram socket),
3. dfter calling WSAJoinL eaf, when join operation completes,
4. after connect, WSAConnect, or WSAJoinL eaf was called with a nonblocking,

connection-oriented socket. Theinitial operation returned with a specific error of
WSAEWOULDBLOCK, but the network operation went ahead. Whether the
operation eventually succeeds or not, when the outcome has been determined,
FD_CONNECT happens. The client should check the error code to determine
whether the outcome was successful or failed.

e FD_CLOSE: Only valid on connection-oriented sockets (for example, SOCK_STREAM)

1
2.

4.

when WSAAsyncSelect called, if socket connection has been closed,

after remote system initiated graceful close, when no data currently available to
receive (note: if data has been received and is waiting to be read when the remote
system initiates a graceful close, the FD_CLOSE is not delivered until al pending
data has been read),

after local system initiates graceful close with shutdown and remote system has
responded with "End of Data" notification (for example, TCP FIN), when no data
currently available to receive,

when remote system terminates connection (for example, sent TCP RST), and
[Paramwill contain WSAECONNRESET error value.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 174 sur 307

Note FD_CLOSE is not posted after closesocket is called.
e FD_QOS:
1. when WSAAsyncSelect called, if the quality of service associated with the socket
has been changed,
2. dfter WSAIloctl with SIO_GET_QOS called, when the quality of serviceis changed.
e FD_GROUP_QOS (Reserved for future use with socket groups):

1. when WSAAsyncSelect called, if the group quality of service associated with the
socket has been changed,

2. dfter WSAIloctl with SIO_GET_GROUP_QOS called, when the group quality of
serviceis changed.

FD_ROUTING_INTERFACE_CHANGE:

1. after WSAloctl with SIO_ROUTING_INTERFACE_CHANGE called, when the
local interface that should be used to reach the destination specified in the IOCTL
changes.

e FD_ADDRESS LIST_CHANGE
1. after WSAloctl with SIO_ ADDRESS LIST_CHANGE called, when thelist of local
addresses to which the application can bind changes.

Return Values

If the WSAAsyncSelect function succeeds, the return value is zero provided the application's
declaration of interest in the network event set was successful. Otherwise, the value
SOCKET_ERROR isreturned, and a specific error number can be retrieved by calling
WSAGetL astError.

Error Codes

WSANOTINITIALISED A successful WSA Startup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL Indicates that one of the specified parameters was
invalid such as the window handle not referring to an
existing window, or the specified socket isin an invalid
state.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.

WSAENOTSOCK The descriptor is not a socket.

Additional error codes can be set when an application window receives a message. This error code
is extracted from the [Paramin the reply message using the WSAGETSELECTERROR macro.
Possible error codes for each network event are:

Event: FD_CONNECT

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 175 sur 307

Error Code M eaning

WSAEAFNOSUPPORT Addresses in the specified family cannot be used with
this socket.

WSAECONNREFUSED The attempt to connect was forcefully rejected.

WSAENETUNREACH The network cannot be reached from this host at this
time.

WSAEFAULT The namelen parameter isincorrect.

WSAEINVAL The socket is already bound to an address.

WSAEISCONN The socket is already connected.

WSAEMFILE No more file descriptors are available.

WSAENOBUFS No buffer space is available. The socket cannot be
connected.

WSAENOTCONN The socket is not connected.

WSAETIMEDOUT Attempt to connect timed out without establishing a
connection.

Event: FD_CLOSE

Error Code M eaning

WSAENETDOWN The network subsystem has failed.

WSAECONNRESET The connection was reset by the remote side.

WSAECONNABORTED The connection was terminated due to a time-out or
other failure.

Event: FD_READ

Event: FD_WRITE
Event: FD_OOB

Event: FD_ACCEPT
Event: FD_QOS

Event:. FD_GROUP_QOS

Event: FD_ADDRESS LIST_CHANGE

Error Code Meaning
WSAENETDOWN The network subsystem has failed.

Event: FD_ROUTING_INTERFACE_CHANGE

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 176 sur 307

Error Code M eaning

WSAENETUNREACH The specified destination is no longer reachable
WSAENETDOWN The network subsystem has failed.
Quicklnfo

WindowsNT: Yes

Windows: Yes

Windows CE: Unsupported.

Header: Declared in winsock?2.h.
Import Library: Link withws2_32.lib.

See Also

select, WSAEventSelect

W SACancelAsyncRequest

The Windows Sockets W SACancel AsyncRequest function cancels an incompl ete asynchronous
operation.

i nt WSACancel AsyncRequest (
HANDLE hAsyncTaskHandl e

);

Parameters

hAsyncTaskHandle
[in] The handle that specifies the asynchronous operation to be canceled.

Remarks

The WSACancelAsyncRequest function is used to cancel an asynchronous operation that was
initiated by one of the WSAAsyncGetXByY functions such as W SAAsyncGetHostByName. The
operation to be canceled is identified by the hAsyncTaskHandle parameter, which should be set to
the asynchronous task handle as returned by the initiating WSAAsyncGetXByY function.

An attempt to cancel an existing asynchronous WSAAsyncGetXByY operation can fail with an
error code of WSAEALREADY for two reasons. First, the original operation has already
completed and the application has dealt with the resultant message. Second, the original operation
has aready completed but the resultant message is still waiting in the application window queue.

Return Values
The value returned by W SA Cancel AsyncRequest is zero if the operation was successfully

canceled. Otherwise, the value SOCKET_ERROR is returned, and a specific error number can be
retrieved by calling WSAGetL astError.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 177 sur 307

Error Codes

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL Indicates that the specified asynchronous task handle
wasinvalid

WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.

WSAEALREADY The asynchronous routine being canceled has already
compl eted.

Note It is unclear whether the application can usefully distinguish between WSAEINVAL and
WSAEALREADY, since in both cases the error indicates that there is no asynchronous operation
in progress with the indicated handle. [Trivial exception: zero is always an invalid asynchronous
task handle.] The Windows Sockets specification does not prescribe how a conformant Windows
Sockets provider should distinguish between the two cases. For maximum portability, a Windows
Sockets application should treat the two errors as equivalent.

Quicklnfo

WindowsNT: Yes

Windows: Yes

Windows CE: Unsupported.

Header: Declared in winsock?2.h.
Import Library: Link withws2_32.lib.

See Also

WSAAsyncGetHostByAddr, WSAAsyncGetHostByName, W SAAsyncGetProtoByName,
W SAAsyncGetProtoByNumber, WSAAsyncGetSer vByName, W SAAsyncGetServByPort

W SACancelBlockingCall

This function has been removed in compliance with the Windows Sockets 2 specification,
revision 2.2.0.

The function is not exported directly by the WS2_32.DLL, and Windows Sockets 2 applications
should not use this function. Windows Sockets 1.1 applications that call this function are till
supported through the WINSOCK.DLL and WSOCK32.DLL.

Blocking hooks are generally used to keep a single-threaded GUI application responsive during
callsto blocking functions. Instead of using blocking hooks, an applications should use a separate
thread (separate from the main GUI thread) for network activity.

Quicklnfo

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 178 sur 307

WindowsNT: Yes

Windows: Yes

Windows CE: Unsupported.

Header: Declared in winsock?2.h.
Import Library: Link withws2_32.lib.

W SACleanup

The Windows Sockets W SA Cleanup function terminates use of the WS2_32.DLL.

int WBAC eanup (void);
Remarks

An application or DLL isrequired to perform a successful WSAStartup call before it can use
Windows Sockets services. When it has completed the use of Windows Sockets, the application
or DLL must call WSACleanup to deregister itself from a Windows Sockets implementation and
allow the implementation to free any resources allocated on behalf of the application or DLL. Any
pending blocking or asynchronous calls issued by any thread in this process are canceled without
posting any notification messages or without signaling any event objects. Any pending overlapped
send and receive operations (W SA Send/W SA Send T o/W SARecv/W SARecvFrom with an
overlapped socket) issued by any thread in this process are also canceled without setting the event
object or invoking the completion routine, if specified. In this case, the pending overlapped
operations fail with the error status WSA_OPERATION_ABORTED.

Sockets that were open when W SACleanup was called are reset and automatically deallocated as
if closesocket were called; sockets that have been closed with closesocket but that still have
pending data to be sent can be affected—the pending data can be lost if the WS2_32.DLL is
unloaded from memory as the application exits. To insure that all pending datais sent, an
application should use shutdown to close the connection, then wait until the close completes
before calling closesocket and W SACleanup. All resources and internal state, such as queued un-
posted messages, must be deallocated so asto be available to the next user.

There must be acall to WSACleanup for every successful call to WSAStartup made by atask.
Only the final WSACleanup for that task does the actual cleanup; the preceding calls simply
decrement an internal reference count inthe WS2_32.DLL.

Return Values

Thereturn valueis zero if the operation was successful. Otherwise, the value SOCKET _ERROR
isreturned, and a specific error number can be retrieved by calling WSAGetL astError.

Attempting to call WSACleanup from within a blocking hook and then failing to check the return
code isacommon programming error in Windows Socket 1.1 applications. If an application needs
to quit while a blocking call is outstanding, the application must first cancel the blocking call with
W SA CancelBlockingCall then issue the WSACleanup call once control has been returned to the
application.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 179 sur 307

In a multithreaded environment, W SA Cleanup terminates Windows Sockets operations for all
threads.

Error Codes
WSANOTINITIALISED A successful WSA Startup must occur before using this
function.
WSAENETDOWN The network subsystem has failed.
WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.
Quicklnfo

WindowsNT: Yes

Windows: Yes

Windows CE: Useversion 1.0 and later.
Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

closesocket, shutdown, WSAStartup

W SACloseEvent

The Windows Sockets W SA CloseEvent function closes an open event object handle.

BOOL WBAC oseEvent (
WSAEVENT hEvent

);

Parameters

hEvent
[in] An object handle identifying the open event.

Remarks

The handle to the event object is closed so that further references to this handle will fail with the
error WSA_INVALID_HANDLE.

Return Values
If the function succeeds, the return valueis TRUE.

If the function fails, the return value is FALSE. To get extended error information, call

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 180 sur 307

WSAGetL astError.
Error Codes
WSANOTINITIALISED A successful WSA Startup must occur before using this
function.
WSAENETDOWN The network subsystem has failed.
WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is till processing a callback
function.
WSA _INVALID_HANDLE The hEvent is not avalid event object handle.
Quicklnfo

WindowsNT: Yes

Windows: Yes

Windows CE: Unsupported.

Header: Declared in winsock?2.h.
Import Library: Link withws2_32.lib.

See Also
W SACreateEvent, WSAEnumNetwor kEvents, W SAEventSelect,

W SAGetOverlappedResult, WSARecv, WSARecvFrom, WSAResetEvent, WSASend,
W SASendTo, WSASetEvent, WSAWaitFor M ultipleEvents

W SAConnect

The Windows Sockets W SAConnect function establishes a connection to another socket
application, exchanges connect data, and specifies needed quality of service based on the supplied
FL OWSPEC structure.

int WBAConnect (
SOCKET s,
const struct sockaddr FAR * name,
i nt nanel en,
LPWSABUF | pCal | er Dat a,
LPWSABUF | pCal | eeDat a,

LPQOS | pSQOS,
LPQCS | pGQOS

Parameters

S

[in] A descriptor identifying an unconnected socket.
name

[in] The name of the socket in the other application to which to connect.
namelen

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 181 sur 307

[in] The length of the name.
IpCallerData
[in] A pointer to the user data that is to be transferred to the other socket during connection
establishment.
IpCalleeData
[out] A pointer to the user data that isto be transferred back from the other socket during
connection establishment.
[pSQOS
[in] A pointer to the FLOW SPEC structures for socket s, one for each direction.
IpGQOS
[in] Reserved for future use with socket groups. A pointer to the FL OW SPEC structures
for the socket group (if applicable).

Remarks

The WSAConnect function is used to create a connection to the specified destination, and to
perform anumber of other ancillary operations that occur at connect time. If the socket, s, is
unbound, unique values are assigned to the local association by the system, and the socket is
marked as bound.

For connection-oriented sockets (for example, type SOCK_STREAM), an active connection is
initiated to the foreign host using name (an address in the name space of the socket; for a detailed
description, please see bind). When this call completes successfully, the socket is ready to
send/receive data. If the address field of the name structureis all zeroes, W SAConnect will return
the error WSAEADDRNOTAVALIL. Any attempt to reconnect an active connection will fail with
the error code WSAEISCONN.

For connection-oriented, nonblocking sockets, it is often not possible to complete the connection
immediately. In such cases, this function returns the error WSAEWOULDBLOCK. However, the
operation proceeds. When the success or failure outcome becomes known, it may be reported in
one of several ways depending on how the client registers for notification. If the client uses select,
success is reported in the writefds set and failure is reported in the exceptfds set. If the client uses
WSAAsyncSelect or WSAEventSelect, the notification is announced with FD_CONNECT and
the error code associated with the FD_CONNECT indicates either success or a specific reason for
failure.

For a connectionless socket (for example, type SOCK_DGRAM), the operation erformed by
WSAConnect is merely to establish a default destination address so that the socket can be used
on subsequent connection-oriented send and receive operations (send, W SA Send, recv, and
WSARecv). Any datagrams received from an address other than the destination address specified
will be discarded. If the address field of the name structureis al zeroes, the socket will be
disconnected. Then, the default remote address will be indeterminate, so send/W SASend and
recv/W SARecv calswill return the error code WSAENOTCONN. However,
sendto/W SA SendT o and recvfrom/W SARecvFrom can still be used. The default destination
can be changed by simply calling WSAConnect again, even if the socket is already "connected”.
Any datagrams queued for receipt are discarded if name is different from the previous
WSAConnect.

For connectionless sockets, name can indicate any valid address, including a broadcast address.
However, to connect to a broadcast address, a socket must have setsockopt SO BROADCAST
enabled. Otherwise, WSAConnect will fail with the error code WSAEACCES.

On connectionless sockets, exchange of user-to-user datais not possible and the corresponding

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 182 sur 307

parameters will be silently ignored.

The application is responsible for allocating any memory space pointed to directly or indirectly by
any of the parameters it specifies.

The IpCallerData is a value parameter that contains any user data that isto be sent along with the
connection request. If IpCallerData is NULL, no user datawill be passed to the peer. The
IpCalleeData is aresult parameter that will contain any user data passed back from the other
socket as part of the connection establishment in a W SABUF structure. The member
IpCalleeData->len initially contains the length of the buffer allocated by the application and
pointed to by IpCalleeData->buf. |pCalleeData->len will be set to zero if no user data has been
passed back. The IpCalleeData information will be valid when the connection operation is
complete. For blocking sockets, the connection operation completes when the W SAConnect
function returns. For nonblocking sockets, completion will be after the FD_CONNECT
notification has occurred. If IpCalleeData is NULL, no user datawill be passed back. The exact
format of the user datais specific to the address family to which the socket belongs.

At connect time, an application can use the [pSQOS and IpGQOS parameters to override any
previous quality of service specification made for the socket through W SAl octl with either the
SIO_SET_QOS or SIO_SET_GROUP_QOS opcodes.

[pSQOS specifies the FL OWSPEC structures for socket s, one for each direction, followed by
any additional provider-specific parameters. If either the associated transport provider in genera
or the specific type of socket in particular cannot honor the quality of service request, an error will
be returned as indicated below. The sending or receiving flow specification values will be
ignored, respectively, for any unidirectional sockets. If no provider-specific parameters are
supplied, the buf and len fields of pSQOS-> Provider Specific should be set to NULL and zero,
respectively. A NULL value for IpSQOS indicates no application supplied quaility of service.

Reserved for future use with socket groups, |pGQOS specifies the FL OW SPEC structures for the
socket group (if applicable), one for each direction, followed by any additional provider-specific
parameters. If no provider-specific parameters are supplied, the buf and len fields of IpGQOS
>Provider Specific should be set to NULL and zero, respectively. A NULL value for I[pGQOS
indicates no application-supplied group quality of service. This parameter will beignored if sis
not the creator of the socket group.

When connected sockets become closed for whatever reason, they should be discarded and
recreated. It is safest to assume that when things go awry for any reason on a connected socket,
the application must discard and recreate the needed sockets in order to return to a stable point.

Return Values
If no error occurs, WSAConnect returns zero. Otherwise, it returns SOCKET _ERROR, and a

specific error code can be retrieved by calling WSAGetL astError. On a blocking socket, the
return value indicates success or failure of the connection attempt.

With a nonblocking socket, the connection attempt can not be completed immediately. In this
case, WSAConnect will return SOCKET_ERROR, and WSAGetL astError will return
WSAEWOULDBLOCK. In this case, the application can:

1. Use select to determine the completion of the connection request by checking if the socket
iswriteable.
2. If your application isusing W SAAsyncSelect to indicate interest in connection events, then

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information

Page 183 sur 307

your application will receive an FD_CONNECT notification when the connect operation is

complete(successful or not).

3. If your application isusing W SAEventSelect to indicate interest in connection events, then
the associated event object will be signaled when the connect operation is complete

(successful or not).

For a nonblocking socket, until the connection attempt completes all subsequent callsto
W SAConnect on the same socket will fail with the error code WSAEALREADY .

If the return error code indicates the connection attempt failed (that is, WSAECONNREFUSED,
WSAENETUNREACH, WSAETIMEDOUT) the application can call WSAConnect again for the

same socket.

Error Codes

WSANOTINITIALISED

WSAENETDOWN
WSAEADDRINUSE

WSAEINTR

WSAEINPROGRESS

WSAEALREADY

WSAEADDRNOTAVAIL

WSAEAFNOSUPPORT

WSAECONNREFUSED
WSAEFAULT

WSAEINVAL

WSAEISCONN

A successful WSA Startup must occur before
using this function.

The network subsystem has failed.

The local address of the socket is already in use and
the socket was not marked to allow address reuse
with SO REUSEADDR. Thiserror usually occurs
during the execution of bind, but could be delayed
until this function if the bind function operates on
apartially wild-card address (involving
ADDR_ANY) and if a specific address needs to be
"committed" at the time of this function.

The (blocking) Windows Socket 1.1 call was
canceled through W SACancelBlockingCall.

A blocking Windows Sockets 1.1 call isin
progress, or the service provider is still processing
acallback function.

A nonblocking connect/WSAConnect cal isin
progress on the specified socket.

The remote address is not avalid address (such as
ADDR_ANY).

Addresses in the specified family cannot be used
with this socket.

The attempt to connect was rejected.

The name or the namelen parameter isnot avalid
part of the user address space, the namelen
parameter istoo small, the buffer length for
IpCalleeData, IpSQOS, and IpGQOS are too small,
or the buffer length for IpCallerData is too large.

The parameter sisalistening socket, or the
destination address specified is not consistent with
that of the constrained group the socket belongs to.

The socket is already connected (connection-
oriented sockets only).

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 184 sur 307

WSAENETUNREACH The network cannot be reached from this host at
thistime.

WSAENOBUFS No buffer space is available. The socket cannot be
connected.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP The FL OW SPEC structures specified in [pSQOS
and IpGQOS cannot be satisfied.

WSAEPROTONOSUPPORT The IpCallerData argument is not supported by the
service provider.

WSAETIMEDOUT Attempt to connect timed out without establishing
aconnection.

WSAEWOULDBLOCK The socket is marked as nonblocking and the
connection cannot be completed immediately.

WSAEACCES Attempt to connect datagram socket to broadcast

address failed because setsock opt
SO BROADCAST isnot enabled.

Quicklnfo

WindowsNT: Yes

Windows: Yes

Windows CE: Unsupported.

Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

accept, bind, connect, getsockname, getsockopt, select, socket, W SAAsyncSelect,
W SAEventSelect

W SACreateEvent

The Windows Sockets connect function creates a new event object.

WSAEVENT WSACr eat eEvent (voi d) ;
Remarks

The WSACreateEvent function is used to create an event object created that is manual reset with
an initial state of nonsignaled. Windows Sockets 2 event objects are system objectsin Win32
environments. Therefore, if a Win32 application desires auto reset events, it can call the native

W SACreateEvent Win32 function directly. The scope of an event object is limited to the process
inwhichit is created.

Return Values

If no error occurs, WSACreateEvent returns the handle of the event object. Otherwise, the return

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 185 sur 307

valueisWSA_INVALID_EVENT. To get extended error information, call WSAGetL astError.

Error Codes
WSANOTINITIALISED A successful WSA Star tup must occur before
using this function.
WSAENETDOWN The network subsystem has failed.
WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin
progress, or the service provider is still
processing a callback function.
WSA_NOT_ENOUGH_MEMORY Not enough free memory available to create the
event object.
Quicklnfo

WindowsNT: Yes

Windows: Yes

Windows CE: Unsupported.

Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also
W SA CloseEvent, WSAEnumNetwor kEvents, W SAEventSelect, WSAGetOverlappedResult,

WSARecv, WSARecvFrom, WSAResetEvent, WSASend, WSASendTo, WSASetEvent,
W SAWaitFor MultipleEvents

W SADuplicateSocket

The Windows Sockets W SADuplicateSocket function returnsa WSAPROTOCOL _INFO
structure that can be used to create a new socket descriptor for a shared socket.

i nt WSADupl i cat eSocket (
SCOCKET s,
DWORD dwPr ocessl d,
LPWSAPROTOCOL _| NFO | pPr ot ocol I nfo

);

Parameters

S
[in] A descriptor identifying the local socket.
dwProcessld
[in] The process ID of the target process in which the duplicated socket will be used.
|pProtocol Info
[out] A pointer to a buffer allocated by the client that is large enough to contain a
WSAPROTOCOL _INFO structure. The service provider copies the protocol info
structure contents to this buffer.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 186 sur 307

Remarks

The WSADuplicateSocket function is used to enable socket sharing between processes. A source
process calls WSADuplicateSocket to obtain a special WSAPROTOCOL _INFO structure. It
uses some interprocess communications (IPC) mechanism to pass the contents of this structure to
atarget process, which inturn usesit in acall to W SASocket to obtain a descriptor for the
duplicated socket. The special WSAPROTOCOL _INFO structure can only be used once by the
target process.

Sockets can be shared among threads in a given process without using the W SADuplicateSock et
function because a socket descriptor isvalid in al threads of a process

One possible scenario for establishing and handing off a shared socket isillustrated below:

Sour ce Process IPC Destination Process

1) WSA Socket, WSA Connect

2) Request target process ID =
3) Receive process ID request
and respond

4) Receive process ID O

5) Call WSADuplicateSocket to get a specia

WSAPROTOCOL _INFO structure

6) Send WSAPROTOCOL _INFO structure

to target

= 7) Receive

WSAPROTOCOL _INFO
structure
8) Call WSA Socket to create
shared socket descriptor.

10) closesocket 9)Use shared socket for data

exchange

The descriptors that reference a shared socket can be used independently for I/0. However, the
Windows Sockets interface does not implement any type of access control so it isup to the
processes involved to coordinate their operations on a shared socket. Shared sockets are typically
used to have one process that is responsible for creating sockets and establishing connections, and
other processes that are responsible for information exchange.

All of the state information associated with a socket is held in common across al the descriptors
because the socket descriptors are duplicated and not the actual socket. For example, a setsock opt
operation performed using one descriptor is subsequently visible using a getsock opt from any or
all descriptors. A process can call closesocket on a duplicated socket and the descriptor will
become deall ocated. The underlying socket, however, will remain open until closesocket is called
by the last remaining descriptor.

Notification on shared sockets is subject to the usual constraints of W SAAsyncSelect and
W SAEventSelect. Issuing either of these calls using any of the shared descriptors cancels any
previous event registration for the socket, regardless of which descriptor was used to make that

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 187 sur 307

registration. Thus, for example, a shared socket cannot deliver FD_READ events to process A and
FD_WRITE eventsto process B. For situations when such tight coordination is required,
developers would be advised to use threads instead of separate processes.

Return Values

If no error occurs, WSADuplicateSocket returns zero. Otherwise, avalue of SOCKET_ERROR
isreturned, and a specific error code can be retrieved by calling WSAGetL astError.

Error Codes

WSANOTINITIALISED A successful WSA Startup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL Indicates that one of the specified parameters was
invalid.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.

WSAEMFILE No more socket descriptors are available.

WSAENOBUFS No buffer space is available. The socket cannot be
created.

WSAENOTSOCK The descriptor is not a socket.

WSAEFAULT The IpProtocol Info argument is not avalid part of the
user address space.

Quicklnfo

WindowsNT: Yes

Windows: Yes

Windows CE: Unsupported.

Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

W SA Socket

W SAEnumNameSpaceProviders

The Windows Sockets W SAEnumNameSpacePr ovider s function retrieves information about
available name spaces.

I NT WSAAPI WSAEnumNameSpacePr ovi ders (
I N QUT LPDWORD | pdwBuf f er Lengt h,
QUT LPWSANAMESPACE | NFO | pnspBuf f er
)

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 188 sur 307

Parameters

[pawBufferLength
[in/out] On input, the number of bytes contained in the buffer pointed to by IpnspBuffer. On
output (if the function fails, and the error isWSAEFAULT), the minimum number of bytes
to pass for the IpnspBuffer to retrieve all the requested information. The passed-in buffer
must be sufficient to hold all of the name space information.

|pnspBuffer
[out] A buffer that isfilled with WSANAMESPACE_INFO structures. The returned
structures are located consecutively at the head of the buffer. Variable sized information
referenced by pointersin the structures point to locations within the buffer located between
the end of the fixed sized structures and the end of the buffer. The number of structures
filled in isthe return value of W SAEnumNameSpaceProviders.

Return Values

The WSAEnumNameSpacePr ovider s function returns the number of
WSANAMESPACE_INFO structures copied into |pnspBuffer. Otherwise, the value
SOCKET_ERROR isreturned, and a specific error number can be retrieved by calling
WSAGetL astError.

Error Codes

WSAEFAULT the buffer length was too small to receive al the
relevant WSANAM ESPACE_INFO structures and
associated information. Passin a buffer at least as
large as the value returned in |pdwBuffer Length.

WSANOTINITIALIZED The WS2_32.DLL has not beeninitialized. The
application must first call WSAStartup before
calling any Windows Sockets functions.

WSA NOT ENOUGH MEMORY There was insufficient memory to perform the
operation.

Quicklnfo

WindowsNT: Yes

Windows:. Yes

Windows CE: Unsupported.

Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

WSAEnumNetwor KEvents

The Windows Sockets W SAEnumNetwor k Events function discovers occurrences of network
events for the indicated socket, clear internal network event records, and reset event objects
(optional).

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 189 sur 307

i nt WSAEnunNet wor kKEvents (

SOCKET s,

WSAEVENT hEvent Obj ect,
LPWSANETWORKEVENTS | pNet wor kEvent s

);

Parameters

S
[in] A descriptor identifying the socket.
hEventObject
[in] An optional handle identifying an associated event object to be reset.
| pNetwor KEvents
[out] A pointer to a WSANETWORKEVENTS structure that isfilled with arecord of
network events that occurred and any associated error codes.

Remarks

The WSAEnumNetwor kEvents function is used to discover which network events have
occurred for the indicated socket since the last invocation of this function. It isintended for usein
conjunction with W SAEvent Select, which associates an event object with one or more network
events. The recording of network events commences when W SAEventSelect is called with a
nonzero | Networ kEvents parameter and remains in effect until another call is madeto

W SAEventSelect with the INetwor kEvents parameter set to zero, or until acall is madeto

W SAAsyncSelect.

W SAEnumNetwor kEvents only reports network activity and errors nominated through
W SAEventSelect. See the descriptions of select and W SAAsyncSelect to find out how those
functions report network activity and errors.

The socket's internal record of network eventsis copied to the structure referenced by

IpNetwor kEvents, whereafter the internal network events record is cleared. If the hEventObject
parameter is not null, the indicated event object is also reset. The Windows Sockets provider
guarantees that the operations of copying the network event record, clearing it and resetting any
associated event object are automatic, such that the next occurrence of a nominated network event
will cause the event object to become set. In the case of this function returning
SOCKET_ERROR, the associated event object is not reset and the record of network eventsis not
cleared.

The INetwor kEvents member of the WSANETWORKEVENT S structure indicates which of the
FD_XXX network events have occurred. TheiErrorCode array is used to contain any associated
error codes with the array index corresponding to the position of event bitsin INetworkEvents.
Identifiers such as FD_READ _BIT and FD_WRITE_BIT can be used to index the iErrorCode
array. Note that only those elements of the iErrorCode array are set that correspond to the bits set
in INetworkEvents field. Other fields are not modified (thisisimportant for backwards
compatibility with the applications that are not aware of new
FD_ROUTING_INTERFACE_CHANGE and FD_ADDRESS LIST_CHANGE events).

The following error codes can be returned along with the corresponding network event:

Event: FD_CONNECT

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 190 sur 307

Error Code M eaning

WSAEAFNOSUPPORT Addresses in the specified family cannot be used with
this socket.

WSAECONNREFUSED The attempt to connect was forcefully rejected.

WSAENETUNREACH The network cannot be reached from this host at this
time.

WSAENOBUFS No buffer space is available. The socket cannot be
connected.

WSAETIMEDOUT Attempt to connect timed out without establishing a
connection

Event: FD_CLOSE

Error Code Meaning

WSAENETDOWN The network subsystem has failed.

WSAECONNRESET The connection was reset by the remote side.

WSAECONNABORTED The connection was terminated due to a time-out or
other failure.

Event: FD_READ

Event: FD_WRITE
Event: FD_OOB

Event: FD_ACCEPT
Event. FD_QOS

Event: FD_GROUP_QOS

Event: FD_ADDRESS LIST_CHANGE

Error Code M eaning
WSAENETDOWN The network subsystem has failed.

Event: FD_ROUTING_INTERFACE_CHANGE

Error Code Meaning

WSAENETUNREACH The specified destination is no longer reachable
WSAENETDOWN The network subsystem has failed.

Return Values

Thereturn valueis zero if the operation was successful. Otherwise, the value SOCKET_ERROR
isreturned, and a specific error number can be retrieved by calling WSAGetL astError.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 191 sur 307

Error Codes

WSANOTINITIALISED A successful WSA Startup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL Indicates that one of the specified parameters was
invalid.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.

WSAENOTSOCK The descriptor is not a socket.

WSAEFAULT The IpNetwor kEvents argument is not avalid part of the
user address space.

Quicklnfo

WindowsNT: Yes

Windows: Yes

Windows CE: Unsupported.

Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

W SAEventSelect

W SAEnumProtocols

The Windows Sockets W SAEnumPr otocols function retrieves information about available
transport protocols.

i nt WSAEnunPr ot ocol s (
LPI NT | pi Protocol s,
LPWSAPROTOCOL | NFO | pPr ot ocol Buf f er,
| LPDWORD | pdwBuf f er Lengt h

);

Parameters

IpiProtocols
[in] A NULL-terminated array of iProtocol values. This parameter is optional; if
IpiProtocolsis NULL, information on al available protocolsis returned. Otherwise,
information is retrieved only for those protocols listed in the array.
| pProtocol Buffer
[out] A buffer that isfilled with WSAPROTOCOL _INFO structures.
|pdwBuUfferLength

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm

09/12/2003

Legal Information Page 192 sur 307

[in/out] On input, the count of bytesin the [pProtocol Buffer buffer passed to

W SAEnumProtocols. On output, the minimum buffer size that can be passed to

W SAEnumProtocolsto retrieve all the requested information. This routine has no ability
to enumerate over multiple calls; the passed-in buffer must be large enough to hold all
entriesin order for the routine to succeed. This reduces the complexity of the APl and
should not pose a problem because the number of protocolsloaded on amachineis
typicaly small.

Remarks

The WSAEnumProtocols function is used to discover information about the collection of
transport protocols and protocol chainsinstalled on the local machine. Since layered protocols are
only usable by applications when installed in protocol chains, information on layered protocolsis
not included in |pProtocol Buffer. The IpiProtocols parameter can be used as afilter to constrain
the amount of information provided. Often, IpiProtocols will be supplied asa NULL pointer that
will cause the function to return information on all available transport protocols and protocol
chains.

A WSAPROTOCOL _INFO structureis provided in the buffer pointed to by |pProtocol Buffer
for each requested protocol. If the supplied buffer is not large enough (as indicated by the input
value of |pdwBuffer Length), the value pointed to by |pdwBuffer Length will be updated to indicate
the required buffer size. The application should then obtain a large enough buffer and call this

W SAEnumProtocols again.

The order in which the WSAPROTOCOL _INFO structures appear in the buffer coincides with
the order in which the protocol entries were registered by the service provider using the
WS2_32.DLL, or with any subsequent re-ordering that can have occurred through the Windows
Sockets applet or DLL supplied for establishing default TCP/IP providers.

Return Values
If no error occurs, W SAEnumPr otocols returns the number of protocols to be reported.

Otherwise, avalue of SOCKET_ERROR isreturned and a specific error code can be retrieved by
caling WSAGetL astError.

Error Codes

WSANOTINITIALISED A successful WSA Startup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress.

WSAEINVAL Indicates that one of the specified parameters was
invalid.

WSAENOBUFS The buffer length was too small to receive al the

relevant WSAPROTOCOL _INFO structures and
associated information. Passin abuffer at least as large
as the value returned in IpdwBuffer Length.

WSAEFAULT One or more of the |piProtocols, |pProtocol Buffer, or
|pdwBufferLength arguments are not avalid part of the
user address space.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 193 sur 307

Quicklnfo

WindowsNT: Yes

Windows: Yes

Windows CE: Unsupported.

Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

W SAEventSelect

The Windows Sockets W SAEvent Select function specifies an event object to be associated with
the supplied set of FD_XXX network events.

i nt WSAEvent Sel ect (
SOCKET s,
WEAEVENT hEvent Obj ect,
| ong | Net wor kEvent s

);

Parameters

S
[in] A descriptor identifying the socket.

hEventObject
[in] A handleidentifying the event object to be associated with the supplied set of FD_XXX
network events.

INetwor kEvents
[in] A bitmask that specifies the combination of FD_XXX network eventsin which the
application has interest.

Remarks

The WSAEventSelect function is used to specify an event object, hEventObject, to be associated
with the selected FD_XXX network events, |NetworkEvents. The socket for which an event object
is specified isidentified by the s parameter. The event object is set when any of the nominated
network events occur.

The WSAEventSelect function operates very similarly to W SAAsyncSelect, the difference being
in the actions taken when a nominated network event occurs. The W SAAsyncSelect function
causes an application-specified Windows message to be posted. The W SAEventSelect setsthe
associated event object and records the occurrence of this event in an internal network event
record. An application can use WSAWaitFor M ultipleEvents to wait or poll on the event object,
and use WSAEnumNetwor kEvents to retrieve the contents of the internal network event record
and thus determine which of the nominated network events have occurred.

W SAEventSelect isthe only function that causes network activity and errors to be recorded and
retrievable through W SAEnumNetwor kEvents. See the descriptions of select and
WSAAsyncSelect to find out how those functions report network activity and errors.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 194 sur 307

The WSAEventSelect function automatically sets socket s to nonblocking mode, regardless of the
value of INetworkEvents. Seeioctlsocket/W SAl octl about how to set the socket back to blocking
mode.

The INetwor kEvents parameter is constructed by or'ing any of the values specified in the
following list.

Value Meaning

FD_READ Want to receive notification of readiness for reading

FD_WRITE Want to receive notification of readiness for writing

FD_0OOB Want to receive notification of the arrival of out-of-band
data

FD_ACCEPT Want to receive notification of incoming connections

FD_CONNECT Want to receive notification of completed connection or
multipoint "join" operation

FD_CLOSE Want to receive notification of socket closure

FD_QOS Want to receive notification of socket Quality of Service
(QOS) changes

FD_GROUP_QOS Reserved for future use with socket groups. Want to receive
notification of socket group Quality of Service (QOS)
changes

FD_ROUTING Want to receive notification of routing interface changes for

_INTERFACE_CHANGE the specified destination

FD_ADDRESS LIST Want to receive notification of local address list changes for

_CHANGE the address family of the socket

Issuing a W SAEventSelect for a socket cancels any previous WSAAsyncSelect or

W SAEventSelect for the same socket and clears the internal network event record. For example,
to associate an event object with both reading and writing network events, the application must
call WSAEventSelect with both FD_READ and FD_WRITE, asfollows:

rc = WBAEvent Sel ect (s, hEvent Obj ect, FD_READ| FD_WRI TE);

It is not possible to specify different event objects for different network events. The following
code will not work; the second call will cancel the effects of the first, and only FD_WRITE
network event will be associated with hEventObject2:

rc
rc

WEAEvent Sel ect (s, hEvent Obj ect1l, FD READ);
WEAEvent Sel ect (s, hEvent Object2, FD WRI TE); //bad

To cancel the association and selection of network events on a socket, INetwor kEvents should be
Set to zero, in which case the hEventObject parameter will be ignored.
rc = WBAEvent Sel ect (s, hEvent Object, 0);

Closing a socket with closesocket also cancels the association and selection of network events

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 195 sur 307

specified in WSAEventSelect for the socket. The application, however, still must call
W SACloseEvent to explicitly close the event object and free any resources.

The socket created when the accept function is called has the same properties as the listening
socket used to accept it. Any W SAEventSelect association and network events selection set for
the listening socket apply to the accepted socket. For example, if alistening socket has

W SAEventSelect association of hEventOject with FD_ACCEPT, FD_READ, and FD_WRITE,
then any socket accepted on that listening socket will also have FD_ACCEPT, FD_READ, and
FD_WRITE network events associated with the same hEventObject. If a different hEventObject or
network events are desired, the application should call W SAEventSelect, passing the accepted
socket and the desired new information.

Return Values
Thereturn value is zero if the application’s specification of the network events and the associated

event object was successful. Otherwise, the value SOCKET_ERROR is returned, and a specific
error number can beretrieved by calling WSAGetL astError.

Asin the case of the select and WSAAsyncSelect functions, WSAEventSelect will frequently be
used to determine when a data transfer operation (send or recv) can be issued with the
expectation of immediate success. Nevertheless, arobust application must be prepared for the
possibility that the event object is set and it issues a Windows Sockets call that returns
WSAEWOULDBLOCK immediately. For example, the following sequence of operationsis
possible:

1. Dataarrives on socket s; Windows Sockets sets the W SAEvent Select event object.

2. The application does some other processing.

3. While processing, application issues an ioctlsocket(s, FIONREAD...) and notices that there
is data ready to be read.

4. The application issuesarecv(s,...) to read the data.

5. The application eventually waits on event object specified in W SAEventSelect, which
returns immediately indicating that data is ready to read.

6. The application issuesrecv(s,...), which fails with the error WSAEWOULDBLOCK.

Having successfully recorded the occurrence of the network event (by setting the corresponding
bit in the internal network event record) and signaled the associated event object, no further
actions are taken for that network event until the application makes the function call that
implicitly re-enables the setting of that network event and signaling of the associated event object.

Network Event Re-enabling function

FD_READ recv, recvfrom, WSARecv, or WSARecvFrom

FD WRITE send, sendto, WSASend, or WSASendTo

FD_0OOB recv, recvfrom, WSARecv, or WSARecvFrom
FD_ACCEPT accept or WSAA ccept unless the error code returned is

WSATRY_AGAIN indicating that the condition function
returned CF_DEFER

FD_CONNECT NONE
FD _CLOSE NONE
FD_QOS WSAI octl with command SIO_GET_QOS

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 196 sur 307

FD_GROUP_QOS Reserved for future use with socket groups. WSAl octl with
command SIO_GET_GROUP_QOS

FD_ROUTING W SAI octl with command

_INTERFACE_CHANGE SIO_ROUTING_INTERFACE_CHANGE

FD_ADDRESS LIST WSAI octl with command SIO_ADDRESS LIST_CHANGE

_CHANGE

Any call to the re-enabling routine, even one that fails, resultsin re-enabling of recording and
signaling for the relevant network event and event object.

For FD_READ, FD_OOB, and FD_ACCEPT network events, network event recording and event
object signaling are "level-triggered.” This meansthat if the re-enabling routine is called and the
relevant network condition is still valid after the call, the network event is recorded and the
associated event object is set. This allows an application to be event-driven and not be concerned
with the amount of data that arrives at any one time. Consider the following sequence:

1. Transport provider receives 100 bytes of data on socket s and causesWS2_32.DLL to
record the FD_READ network event and set the associated event object.

2. Theapplication issuesrecv(s, buffptr, 50, 0) to read 50 bytes.

3. Thetransport provider causes WS2_32.DLL to record the FD_READ network event and
sets the associated event object again since there is still datato be read.

With these semantics, an application need not read all available datain responseto an FD_READ
network event—asinglerecv in response to each FD_READ network event is appropriate.

The FD_QOS and FD_GROUP_QOS events are considered edge triggered. A message will be
posted exactly once when a quality of service change occurs. Further messages will not be
forthcoming until either the provider detects a further change in quality of service or the
application renegotiates the quality of service for the socket.

The FD_ROUTING_INTERFACE_CHANGE and FD_ADDRESS _LIST_CHANGE events are
considered "edge triggered” aswell. A message will be posted exactly once when a change occurs
AFTER the application has request the notification by issuing W SAl octl with
SIO_ROUTING_INTERFACE_CHANGE or SIO_ADDRESS LIST_CHANGE
correspondingly. Further messages will not be forthcoming until the application reissues the
IOCTL AND another change is detected since the IOCTL has been issued.

If a network event has already happened when the application calls W SAEventSelect or when the
re-enabling function is called, then a network event is recorded and the associated event object is
set as appropriate. For example, consider the following sequence:

1. anapplication callslisten,

2. aconnect request is received but not yet accepted,

3. theapplication calls WSAEventSelect specifying that it isinterested in the FD_ACCEPT
network event for the socket. Due to the persistence of network events, Windows Sockets
records the FD_ACCEPT network event and sets the associated event object immediately.

The FD_WRITE network event is handled dightly differently. An FD_WRITE network event is
recorded when a socket is first connected with connect/W SAConnect or accepted with
accept/W SAAccept, and then after a send fails with WSAEWOULDBLOCK and buffer space
becomes available. Therefore, an application can assume that sends are possible starting from the
first FD_WRITE network event setting and lasting until a send returns WSAEWOULDBLOCK.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 197 sur 307

After such afailure the application will find out that sends are again possible when an
FD_WRITE network event is recorded and the associated event object is set.

The FD_OOB network event is used only when a socket is configured to receive out-of-band data
separately. If the socket is configured to receive out-of-band data in-line, the out-of-band
(expedited) datais treated as normal data and the application should register an interest in, and
will get, FD_READ network event, not FD_OOB network event. An application can set or inspect
the way in which out-of-band data is to be handled by using setsockopt or getsockopt for the
SO_OOBINLINE option.

The error code in an FD_CLOSE network event indicates whether the socket close was graceful
or abortive. If the error code is zero, then the close was graceful; if the error codeis
WSAECONNRESET, then the socket's virtual circuit was reset. This only applies to connection-
oriented sockets such as SOCK_STREAM.

The FD_CLOSE network event is recorded when a close indication is received for the virtual
circuit corresponding to the socket. In TCP terms, this means that the FD_CLOSE is recorded
when the connection goes into the TIME WAIT or CLOSE WAIT states. This results from the
remote end performing a shutdown on the send side or a closesocket. FD_CLOSE should only be
posted after all datais read from a socket, but an application should check for remaining data
upon receipt of FD_CLOSE to avoid any possibility of losing data.

Please note Windows Sockets will record ONLY an FD_CLOSE network event to indicate
closure of avirtua circuit. It will not record an FD_READ network event to indicate this
condition.

The FD_QOS or FD_GROUP_QOS network event is recorded when any field in the flow
specification associated with socket s or the socket group that s belongs to has changed,
respectively. Applications should use W SAl octl with command SIO_GET_QOS or
SIO_GET_GROUP_QOS to get the current QOS for socket s or for the socket group s belongs to,
respectively.

The FD_ROUTING_INTERFACE_CHANGE nework event is recorded when the local interface
that should be used to reach the destination specified in WSAl octl with
SIO_ROUTING_INTERFACE_CHANGE changes after such IOCTL has been issued.

The FD_ADDRESS LIST_CHANGE network event is recorded when the list of addresses of
protocol family for the socket to which the application can bind changes after W SAl octl with
SIO_ADDRESS LIST_CHANGE has been issued.

Error Codes

WSANOTINITIALISED A successful WSA Startup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL Indicates that one of the specified parameters was
invalid, or the specified socket isin an invalid state.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is till processing a callback
function.

WSAENOTSOCK The descriptor is not a socket.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 198 sur 307

Quicklnfo

WindowsNT: Yes

Windows: Yes

Windows CE: Unsupported.

Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

WSAAsyncSelect, WSACloseEvent, WSACreateEvent, WSAEnumNetwor KEvents,
WSAWaitFor M ultipleEvents

WSAGetL astError

The Windows Sockets WSAGetL astError function gets the error status for the last operation
that failed.

int WSAGetLastError (void);
Remarks

The WSAGetL astError function returns the last network error that occurred. When a particular
Windows Sockets function indicates that an error has occurred, this function should be called to
retrieve the appropriate error code. This error code can be different from the error code obtained
from getsockopt SO_ERROR, which is socket-specific since WSAGetL astError isfor all
thread-specific sockets.

A successful function call, or acall to WSAGetL astError, does not reset the error code. To reset
the error code, use the WSASetL astError function call with iError set to zero. A getsockopt
SO _ERROR also resets the error code to zero.

The WSAGetL astError function should not be used to check for an error value on receipt of an
asynchronous message. In this case, the error value is passed in the [Param field of the message,
and this can differ from the value returned by WSAGetL astError.

Return Values

The return value indicates the error code for this thread's last Windows Sockets operation that
failed.

Quicklnfo

WindowsNT: Yes

Windows:. Yes

Windows CE: Useversion 1.0 and later.
Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 199 sur 307

See Also

getsockopt, WSASetL astError

W SAGetOverlappedResult

The Windows Sockets W SAGetOver lappedResult function returns the results of an overlapped
operation on the specified socket.

BOOL WBAGet Over | appedResult (
SOCKET s,
LPWSAOVERLAPPED | pOver | apped,
LPDWORD | pcbTr ansf er,
BOOL fWit,
LPDWORD | pdwFl ags

Parameters

S
[in] A descriptor identifying the socket. Thisis the same socket that was specified when the
overlapped operation was started by acall to WSARecv, WSARecvFrom, WSASend,
WSASendTo, or WSAIoctl.

[pOverlapped
[in] A pointer to aWSAOVERLAPPED structure that was specified when the overlapped
operation was started.

pcbTransfer
[out] A pointer to a32-hit variable that receives the number of bytes that were actually
transferred by a send or receive operation, or by WSAI octl.

fWait
[in] A flag that specifies whether the function should wait for the pending overlapped
operation to complete. If TRUE, the function does not return until the operation has been
completed. If FALSE and the operation is still pending, the function returns FALSE and the
WSAGetL astError function returns WSA_|O_INCOMPLETE. The fWait parameter may
be set to TRUE only if the overlapped operation selected the event-based completion
notification.

[pawFlags
[out] A pointer to a32-bit variable that will receive one or more flags that supplement the
completion status. If the overlapped operation was initiated through W SARecv or
W SARecvFrom, this parameter will contain the results value for |pFlags parameter.

Remarks

The WSAGetOver lappedResult function reports results of |ast overlapped operation for the
specified socket. The WSAOverlappedResult function is passed the socket descriptor and the
WSAOVERLAPPED structure that were specified when the overlapped function was called. A
pending operation isindicated when the function that started the operation returns FALSE and the
WSAGetL astError function returns WSA_|O_PENDING. When an 1/0O operation such as
WSARecv is pending, the function that started the operation resets the hEvent member of the

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 200 sur 307

WSAOVERLAPPED structure to the nonsignaled state. Then when the pending operation has
completed, the system sets the event object to the signaled state.

If the fWait parameter is TRUE, WSAGetOver lappedResult determines whether the pending
operation has been completed by waiting for the event object to be in the signaled state. A client
may set fWait parameter to TRUE only if it selected event-based completion notification when the
IO operation was requested. If another form of notification was selected, the usage of the hEvent
parameter of the WSAOVERL APPED structure is different, and setting fWait to TRUE causes
unpredictable results.

Return Values

If WSAGetOverlappedResult succeeds, the return valueis TRUE. This means that the
overlapped operation has completed successfully and that the value pointed to by IpcbTransfer
has been updated. If WSAGetOverlappedResult returns FALSE, this means that either the
overlapped operation has not completed, the overlapped operation completed but with errors, or
the overlapped operation's compl etion status could not be determined due to errorsin one or more
parameters to WSA GetOver lappedResult. On failure, the value pointed to by |pcbTransfer will
not be updated. Use WSAGetL astError to determine the cause of the failure (either of

W SAGetOverlappedResult or of the associated overlapped operation).

Error Codes
WSANOTINITIALISED A successful WSAStar tup must occur before
using this function.
WSAENETDOWN The network subsystem has failed.
WSAENOTSOCK The descriptor is not a socket.
WSA_INVALID_HANDLE The hEvent field of the WSAOVERL APPED
structure does not contain a valid event object
handle.
WSA_INVALID_PARAMETER One of the parametersis unacceptable.
WSA_IO_INCOMPLETE The fWait parameter is FALSE and the I/O
operation has not yet completed.
WSAEFAULT One or more of the IpOverlapped, |pcbTransfer, or
|pdwFlags arguments are not a valid part of the
user address space.
Quicklnfo

WindowsNT: Yes

Windows: Yes

Windows CE: Unsupported.

Header: Declared in winsock?2.h.
Import Library: Link withws2_32.lib.

See Also

W SAAccept, WSAConnect, WSACreateEvent, WSAIl octl, WSARecv, WSARecvFrom,
W SASend, WSASendTo, WSAWaitFor MultipleEvents

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 201 sur 307

WSAGetQOSByName

The Windows Sockets WSAGetQOSByName function initializesa QUALITYOFSERVICE
structure based on a named template, or it supplies a buffer to retrieve an enumeration of the
available template names.

BOOL WSAGet QOSBy Nare(
SOCKET s,
LPWSABUF | pQUSNare,

LPQOS | pQos
)

Parameters

S
[in] A descriptor identifying a socket.
IpQOSName
[in out] A pointer to a specific quality of service template.
IpQOS
[out] A pointer to the QUALITY OFSERVICE structure to be filled.

Remarks

The WSAGetQOSByName function is used by applicationsto initialize a
QUALITYOFSERVICE structure to a set of known values appropriate for a particular service
class or mediatype. These values are stored in atemplate that is referenced by a well-known
name. The client may retrieve these values by setting the buf parameter of the WSABUF indicated
by IpQOSName, which points to a string of non-zero length specifying a template name. In this
case, the usage of IpQOSName isIN only, and results are returned through |pQOS.

Alternatively, the client may use this function to retrieve an enumeration of available template
names. The client may do this by setting the buf parameter of the WSABUF indicated by
IpQOSName to a zero-length null-terminated string. In this case the buffer indicated by buf is
over-written with a sequence of as many null-terminated template names that are available up to
the number of bytes available in buf as indicated by the len parameter of the WSABUF indicated
by IpQOSName. The list of namesitself isterminated by a zero-length name. When the

W SAGetQOSByName function is used to retrieve template names, the |pQOS parameter is
ignored.

Return Values

If WSAGetQOSByName succeeds, the return value is TRUE. If the function fails, the return
valueis FALSE. To get extended error information, call WSAGetL astError.

Error Codes

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 202 sur 307

WSANOTINITIALISED A successful WSA Startup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAENOTSOCK The descriptor is not a socket.

WSAEFAULT The IpQOSName or |pQOS parameter are not avalid part
of the user address space, or the buffer length for IpQOSis
too small.

WSAENVAL The specified quality of service template nameisinvalid.

Quicklnfo

WindowsNT: Yes

Windows: Yes

Windows CE: Unsupported.

Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

getsockopt, W SAAccept, WSAConnect

W SAGetServiceClassl nfo

The Windows Sockets W SA Get Ser viceClassl nfo function retrieves all of the class information
(schema) pertaining to a specified service class from a specified name space provider.

I NT WBACet Servi ced assl nf o(

LPGUI D | pProvi derld,

LPGUI D | pServi ceC assl d,

LPDWORD | pdwBuf f er Lengt h,

LPWSASERVI CECLASSI NFO | pServi ceC assl nfo
)

Parameters

IpProviderid
[in] A pointer to a GUID that identifies a specific name space provider

IpServiceClassld
[in] A pointer to a GUID identifying the service classin question

|pdwBuUfferLength
[in/out] On input, the number of bytes contained in the buffer pointed to by
IpServiceClasslnfos. On output, if the function fails and the error is WSAEFAULT, then it
contains the minimum number of bytes to pass for the |pServiceClassInfo to retrieve the
record.

|pServiceClassinfo
[out] A pointer to the service class information from the indicated name space provider for
the specified service class.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 203 sur 307

Remarks

The W SAGet Ser viceClassl nfo function retrieves service class information but the service class
information retrieved from a particular name space provider might not be the complete set of class
information that was supplied when the service class was installed. Individual name space
providers are only required to retain service class information that is applicable to the name
spaces that they support. See section Service Class Data Structures for more information.

Return Values

Thereturn valueis zero if the W SAGetSer viceClassl nfo was successful. Otherwise, the value
SOCKET_ERROR isreturned, and a specific error number can be retrieved by calling
WSAGetL astError.

Error Codes
WSAEACCESS The calling routine does not have sufficient
privileges to access the information.
WSAEFAULT The buffer referenced by IpServiceClassinfo is
too small. Passin alarger buffer.
WSAEINVAL the specified service class ID or name space
provider ID isinvalid.
WSANOTINITIALIZED The WS2_32.DLL hasnot been initialized. The
application must first call WSAStartup before
calling any Windows Sockets functions.
WSATYPE NOT FOUND The specified class was not found.
WSA NOT ENOUGH MEMORY There was insufficient memory to perform the
operation.
Quicklnfo

WindowsNT: Yes

Windows: Yes

Windows CE: Unsupported.

Header: Declared in winsock?2.h.
Import Library: Link withws2_32.lib.

WSAGetServiceClassNameByClassld The
Windows Sockets

W SAGet ServiceClassNameByClassl d
function returnsthe name of the service
associated with the given type. Thisnameis

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 204 sur 307

thegeneric service name, like FTP or SNA,
and not the name of a specific instance of that
Ser vice.

I NT WBACGet Ser vi ceC assNaneByd assl d(
LPGUI D | pServi ceC assl d,
LPTSTR | pszServi ceC assNane,
LPDWORD | pdwBuf f er Lengt h

)

Parameters

IpServiceClassld
[in] A pointer to the GUID for the service class.
| pszServiceClassName
[out] A pointer to the service name.
|pdwBufferLength
[in/out] On input, the length of the buffer returned by |pszServiceClassName. On output, the
length of the service name copied into |pszServiceClassName.

Return Values
The WSAGet ServiceClassNameByClassl d function returns a value of zero if successful.

Otherwise, the value SOCKET_ERROR is returned, and a specific error number can be retrieved
by calling WSAGetL astError.

Error Codes

WSAEFAULT The specified buffer referenced by
|pszServiceClassName is too small. Passin a
larger buffer.

WSA _INVALID_PARAMETER The IpServiceClassld parameter specified is
invalid.

WSANOTINITIALIZED The WS2_32.DLL hasnot been initialized. The
application must first call WSAStartup before
calling any Windows Sockets functions.

WSA NOT ENOUGH MEMORY There was insufficient memory to perform the
operation.

Quicklnfo

WindowsNT: Yes

Windows:. Yes

Windows CE: Unsupported.

Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 205 sur 307

W SAHtonl

The Windows Sockets W SAHtonl function converts au_long from host byte order to network
byte order.

i nt WBAHt onl (

SOCKET s,

u_l ong hostl ong,

u_l ong FAR * | pnetl ong
);

Parameters

S
[in] A descriptor identifying a socket.
hostlong
[in] A 32-bit number in host byte order.
Ipnetlong
[out] A pointer to a 32-bit number in network byte order.

Remarks

The WSAHtonl function takes a 32-bit number in host byte order and returns a 32-bit number
pointed to by the Ipnetlong parameter in the network byte order associated with socket s.

Return Values

If no error occurs, WSAHtonl returns zero. Otherwise, a value of SOCKET_ERROR is returned,
and a specific error code can be retrieved by calling WSAGetL astError.

Error Codes
WSANOTINITIALISED A successful WSA Startup must occur before using this
function.
WSAENETDOWN The network subsystem has failed.
WSAENOTSOCK The descriptor is not a socket.
WSAEFAULT The Ipnetlong parameter is not completely contained in
avalid part of the user address space.
Quicklnfo

WindowsNT: Yes

Windows: Yes

Windows CE: Unsupported.

Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 206 sur 307

htonl, htons, ntohl, ntohs, WSANtohl, WSAHtons, WSANtohs

W SAHtons

The Windows Sockets W SAHtons function converts au_short from host byte order to network
byte order.

i nt WSAHt ons (

SCOCKET s,

u_short hostshort,
u_short FAR * | pnetshort

);

Parameters

S
[in] A descriptor identifying a socket.
hostshort
[in] A 16-bit number in host byte order.
Ipnetshort
[out] A pointer to a 16-bit number in network byte order.

Remarks

The WSAHtons function takes a 16-bit number in host byte order and returns a 16-bit number
pointed to by the Ipnetshort parameter in the network byte order associated with socket s.

Return Values

If no error occurs, WSAHtons returns zero. Otherwise, avalue of SOCKET _ERROR isreturned,
and a specific error code can be retrieved by calling WSAGetL astError.

Error Codes
WSANOTINITIALISED A successful WSA Startup must occur before using this
function.
WSAENETDOWN The network subsystem has failed.
WSAENOTSOCK The descriptor is not a socket.
WSAEFAULT The Ipnetshort parameter is not completely contained in
avalid part of the user address space.
Quicklnfo

WindowsNT: Yes

Windows:. Yes

Windows CE: Unsupported.
Header: Declared in winsock2.h.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 207 sur 307

Import Library: Link withws2_32.lib.
See Also

htonl, htons, ntohl, ntohs, WSAHtonl, WSANtohl, WSANtohs

W SAInstallServiceClass

The Windows Sockets W SAl nstall Ser viceClass function registers a service class schemawithin
aname space. This schema includes the class name, class ID, and any name-space-specific
information that is common to all instances of the service, such asthe SAP ID or object ID.

I NT WBAI nst al | Servi ceC ass(
LPWSASERVI CECLASSI NFO | pServi ced asslnfo

);

Parameters

IpServiceClassinfo
[in] The service class to name-space-specific type-mapping information. Multiple mappings
can be handled at one time.

See section Service Class Data Structures for a description of pertinent data structures.

Return Values

Thereturn valueis zero if the operation was successful. Otherwise, the value SOCKET _ERROR
isreturned, and a specific error number can be retrieved by calling WSAGetL astError.

Error Codes
WSAEACCES The calling function does not have sufficient
privilegesto install the Service.
WSAEALREADY Service class information has already been
registered for this service class ID. To modify
service classinfo, first use
W SARemoveSer viceClass, and then re-install with
updated class info data.
WSAEINVAL The service class information was invalid or
improperly structured.
WSANOTINITIALIZED The WS2_32.DLL has not been initialized. The
application must first call WSAStartup before
calling any Windows Sockets functions.
WSA NOT ENOUGH MEMORY There was insufficient memory to perform the
operation.
Quicklnfo

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 208 sur 307

WindowsNT: Yes

Windows: Yes

Windows CE: Unsupported.

Header: Declared in winsock?2.h.
Import Library: Link withws2_32.lib.

W SAI octl

The Windows Sockets W SAI octl function controls the mode of a socket.

i nt WSAl octl (
SOCKET s,
DWORD dwl oCont r ol Code,
LPVA D | pvl nBuf fer,
DWORD cbl nBuf f er,
LPVA D | pvQUTBUf f er,
DWORD cbQUTBuUf f er,
LPDWORD | pchByt esRet ur ned,
LPWSAOVERLAPPED | pOver | apped,
LPWSAOVERLAPPED COVPLETI ON_ROUTI NE | pConpl et i onROUTI NE

Parameters

S
[in] A descriptor identifying a socket.
dwloControlCode
[in] The control code of operation to perform.
|pvinBuffer
[in] A pointer to the input buffer.
cblnBuffer
[in] A number indicating the size of the input buffer.
|pvOutBuffer
[out] A pointer to the output buffer.
cbOutBuffer
[in] A number indicating the size of the output buffer.
|pcbBytesReturned
[out] A pointer to actual number of bytes of output.
|pOverlapped
[in] A pointer to aWSAOVERLAPPED structure (ignored for non-overlapped sockets).
|pCompl etionRoutine
[in] A pointer to the completion routine called when the operation has been completed
(ignored for non-overlapped sockets).

Remarks

The WSAI octl function is used to set or retrieve operating parameters associated with the socket,
the transport protocol, or the communications subsystem.

If both IpOverlapped and IpCompletionRoutine are NULL, the socket in this function will be

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 209 sur 307

treated as a non-overlapped socket. For a non-overlapped socket, IpOverlapped and
IpCompletionRoutine parameters are ignored, which cause the function to behave like the standard
ioctlsocket function except that W SAl octl can block if socket sisin the blocking mode. If socket
sisin the nonblocking mode, this function can return WSAEWOULDBLOCK when the specified
operation cannot be finished immediately. In this case, the application may change the socket to
the blocking mode and reissue the request or wait for the corresponding network event (such as
FD_ROUTING_INTERFACE_CHANGE or FD_ADDRESS LIST_CHANGE in case of
SIO_ROUTING_INTERFACE_CHANGE or SIO_ADDRESS _LIST _CHANGE) using Windows
message (using W SAAsyncSelect) or event (using W SAEventSelect) based notification
mechanism

For overlapped sockets, operations that cannot be completed immediately will be initiated, and
completion will beindicated at alater time. The final completion statusis retrieved through
WSAGetOverlappedResult. The IpcbhBytesReturned parameter isignored.

Any ioctl may block indefinitely, depending on the service provider'simplementation. If the
application cannot tolerate blocking in a W SAl octl call, overlapped 1/0 would be advised for
ioctlsthat are especialy likely to block including:

SIO_FINDROUTE
SIO_FLUSH

SIO_GET_QOS
SI0_GET_GROUP_QOS
SIO_SET_QOS

SIO_SET_GROUP_QOS
SIO_ROUTING_INTERFACE_CHANGE
SIO_ADDRESS LIST_CHANGE

Some protocol-specific ioctls may aso be especially likely to block. Check the relevant protocol -
specific annex for any available information.

It is possible to adopt an encoding scheme that preserves the currently defined ioctlsock et
opcodes while providing a convenient way to partition the opcode identifier space in as much as
the dwloControl Code parameter is now a 32-bit entity. The dwloControl Code parameter is
architected to alow for protocol and vendor independence when adding new control codes while
retaining backward compatibility with the Windows Sockets 1.1 and Unix control codes. The
dwloControl Code parameter has the following form:

3 3 2 22 22222221111 111111
1 0 9 87 65432109876 5432109876543210
I O Vv T Vendor/Address Family Code

| isset if theinput buffer isvalid for the code, aswith IOC_IN.

O issetif the output buffer isvalid for the code, aswith IOC_OUT. Codes with both input and
output parameters set both | and O.

V isset if there are no parameters for the code, aswith |IOC_VOID.

T isatwo-bit quantity that defines the type of ioctl. The following values are defined:

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 210 sur 307

0 —-Theioctl isastandard Unix ioctl code, as with FIONREAD and FIONBIO.

1-Theioctl isageneric Windows Sockets 2 ioctl code. New ioctl codes defined for Windows
Sockets 2 will have T == 1.

2—Theioctl applies only to a specific address family.

3—Theioctl applies only to a specific vendor's provider. This type allows companiesto be
assigned a vendor number that appearsin the Vendor/Address family field. Then, the vendor can
define new ioctls specific to that vendor without having to register the ioctl with a clearinghouse,
thereby providing vendor flexibility and privacy.

Vendor/Address family — An 11-bit quantity that defines the vendor who ownsthe code (if T ==
3) or that contains the address family to which the code applies (if T == 2). If thisisaUnix ioctl
code (T == 0) then this field has the same value as the code on Unix. If thisis a generic Windows
Sockets 2 ioctl (T == 1) then thisfield can be used as an extension of the "code" field to provide
additional code values.

Code— The 16-hit quantity that contains the specific ioctl code for the operation.
The following Unix ioctl codes (commands) are supported:

FIONBIO
Enable or disable nonblocking mode on socket s. IpvinBuffer points at an unsigned long,
which is nonzero if nonblocking mode is to be enabled and zero if it isto be disabled. When
asocket is created, it operates in blocking mode (that is, nonblocking mode is disabled).
Thisis consistent with BSD sockets.

The WSAAsyncSelect or WSAEventSelect routine automatically sets a socket to
nonblocking mode. If WSAAsyncSelect or WSAEventSelect has been issued on a socket,
then any attempt to use W SAI octl to set the socket back to blocking mode will fail with
WSAEINVAL. To set the socket back to blocking mode, an application must first disable
WSAAsyncSelect by calling WSAAsyncSelect with the |[Event parameter equal to zero, or
disable WSAEventSelect by calling W SAEvent Select with the INetwor kEvents parameter
equal to zero.

FIONREAD
Determine the amount of data that can be read atomically from socket s. |pvOutBuffer
points at an unsigned long in which WSAI octl stores the result. If sis stream oriented (for
example, type SOCK_STREAM), FIONREAD returns the total amount of data that can be
read in asingle receive operation; thisis normally the same as the total amount of data
gueued on the socket (since data stream is byte-oriented, this is not guaranteed). If sis
message oriented (for example, type SOCK_DGRAM), FIONREAD returns the size of the
first datagram (message) queued on the socket.

SIOCATMARK
Determine whether or not all out-of-band data has been read. This applies only to a socket
of stream-style (for example, type SOCK_STREAM) that has been configured for in-line
reception of any out-of-band data (SO_OOBINLINE). If no out-of-band data is waiting to
be read, the operation returns TRUE. Otherwise, it returns FALSE, and the next receive
operation performed on the socket will retrieve some or all of the data preceding the
"mark"; the application should use the SSOCATMARK operation to determine whether any
remains. If there is any normal data preceding the "urgent” (out of band) data, it will be

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 211 sur 307

received in order. (Note that receive operations will never mix out-of-band and normal data
in the same call.) |pvOutBuffer points at a BOOL in which WSAl octl stores the result.

The following Windows Sockets 2 commands are supported:

SIO_ASSOCIATE_HANDLE (opcode setting: 1, T==1)
Associate this socket with the specified handle of a companion interface. The input buffer
contains the integer value corresponding to the manifest constant for the companion
interface (for example, TH_NETDEV and TH_TAPI.), followed by a value that is a handle
of the specified companion interface, along with any other required information. Refer to
the appropriate section in the Windows Sockets 2 Protocol -Specific Annex (a separate
document) for details specific to a particular companion interface. The total sizeis reflected
in the input buffer length. No output buffer is required. The WSAENOPROTOOPT error
code isindicated for service providers that do not support thisioctl. The handle associated
by thisioctl can beretrieved using SIO_TRANSLATE_HANDLE.

A companion interface might be used, for example, if a particular provider provides (1) a
great deal of additional controls over the behavior of a socket and (2) the controls are
provider-specific enough that they do not map to existing Windows Socket functions or
ones likely to be defined in the future. It is recommend that the Component Object Model
(COM) be used instead of thisioctl to discover and track other interfaces that might be
supported by a socket. Thisioctl is present for (reverse) compatibility with systems where
COM is not available or cannot be used for some other reason.
SIO_ENABLE_CIRCULAR_QUEUEING (opcode setting: V, T==1)
Indicates to the underlying message-oriented service provider that a newly arrived message
should never be dropped because of a buffer queue overflow. Instead, the oldest message in
the queue should be eliminated in order to accommodate the newly arrived message. No
input and output buffers are required. Note that thisioctl isonly valid for sockets associated
with unreliable, message-oriented protocols. The WSAENOPROTOORPT error codeis
indicated for service providers that do not support thisioctl.
SIO_FIND_ROUTE (opcode setting: O, T==1)
When issued, thisioctl requests that the route to the remote address specified as a
SOCKADDR in the input buffer be discovered. If the address already existsin the local
cache, itsentry isinvalidated. In the case of Novell's IPX, this call initiates an IPX
GetLocal Target (GLT), which queries the network for the given remote address.
SIO_FLUSH (opcode setting: V, T==1)
Discards current contents of the sending queue associated with this socket. No input and
output buffers are required. The WSAENOPROTOOPT error code isindicated for service
providers that do not support thisioctl.
SIO_GET_BROADCAST_ADDRESS (opcode setting: O, T==1)
Thisioctl fills the output buffer with a SOCK ADDR structure containing a suitable
broadcast address for use with sendto/W SASendT o.
SIO_GET_EXTENSION_FUNCTION_POINTER (opcode setting: O, |, T==1)
Retrieve a pointer to the specified extension function supported by the associated service
provider. The input buffer contains a globally unique identifier (GUID) whose value
identifies the extension function in question. The pointer to the desired function is returned
in the output buffer. Extension function identifiers are established by service provider
vendors and should be included in vendor documentation that describes extension function
capabilities and semantics.
SIO_GET_QOS (opcode setting: O, T==1)
Reserved for future use with sockets. Retrieve the QUALITY OFSERVICE structure
associated with the socket. The input buffer is optional. Some protocols (for example,
RSVP) alow the input buffer to be used to qualify a quality of service request. The

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 212 sur 307

QUALITYOFSERVICE structure will be copied into the output buffer. The output buffer
must be sized large enough to be able to contain the full QUALITYOFSERVICE
structure. The WSAENOPROTOORPT error code isindicated for service providers that do
not support quality of service.

SIO_GET_GROUP_QOS (opcode setting: O, I, T==1)
Retrieve the QUALITY OFSERVICE structure associated with the socket group to which
this socket belongs. The input buffer is optional. Some protocols (for example, RSV P)
allow the input buffer to be used to qualify aquality of service request. The
QUALITYOFSERVICE structure will be copied into the output buffer. If this socket does
not belong to an appropriate socket group, the SendingFlowspec and ReceivingFlowspec
fields of the returned QUALITYOFSERVICE structure are set to NULL. The
WSAENOPROTOORPT error code isindicated for service providers that do not support
quality of service.

SIO_MULTIPOINT_LOOPBACK (opcode setting: I, T==1)
Controls whether data sent in a multipoint session will also be received by the same socket
on the local host. A value of TRUE causes loopback reception to occur while a value of
FALSE prohibits this. By default, loopback is enabled.

SIO_MULTICAST_SCOPE (opcode setting: I, T==1)
Specifies the scope over which multicast transmissions will occur. Scopeis defined as the
number of routed network segments to be covered. A scope of zero would indicate that the
multicast transmission would not be placed "on the wire" but could be disseminated across
sockets within the local host. A scope vaue of one (the default) indicates that the
transmission will be placed on the wire, but will not cross any routers. Higher scope values
determine the number of routers that can be crossed. Note that this corresponds to the time-
to-live (TTL) parameter in IP multicasting. By default, scopeis 1.

SIO_SET_QOS (opcode setting: |, T==1)
Associate the supplied QUAL ITY OFSERVICE structure with the socket. No output
buffer is required, the QUALITYOFSERVICE structure will be obtained from the input
buffer. The WSAENOPROTOOPT error code isindicated for service providers that do not
support quality of service.

SIO_SET_GROUP_QOS(opcode setting: I, T==1)
Reserved for future use with sockets. Establish the supplied QUALITYOFSERVICE
structure with the socket group to which this socket belongs. No output buffer is required,
the QUALITYOFSERVICE structure will be obtained from the input buffer. The
WSAENOPROTOORPT error code isindicated for service providers that do not support
quality of service, or if the socket descriptor specified is not the creator of the associated
socket group.

SIO_TRANSLATE_HANDLE (opcode setting: I, O, T==1)
To obtain a corresponding handle for socket s that isvalid in the context of a companion
interface (for example, TH_NETDEV and TH_TAPI). A manifest constant identifying the
companion interface along with any other needed parameters are specified in the input
buffer. The corresponding handle will be available in the output buffer upon completion of
this function. Refer to the appropriate section in Windows Sockets 2 Protocol -Specific
Annex for details specific to a particular companion interface. The WSAENOPROTOOPT
error code isindicated for service providers that do not support thisioctl for the specified
companion interface. Thisioctl retrieves the handle associated using
SIO TRANSLATE HANDLE.

It is recommend that the Component Object Model (COM) be used instead of thisioctl to
discover and track other interfaces that might be supported by a socket. Thisioctl is present
for (reverse) compatibility with systems where COM is not available or cannot be used for
some other reason.

SIO_ROUTING_INTERFACE_QUERY (opcode setting: |, O, T==1)

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 213 sur 307

To obtain the address of the local interface (represented as SOCKADDR structure) which
should be used to send to the remote address specified in the input buffer (as
SOCKADDR). Remote multicast addresses may be submitted in the input buffer to get the
address of the preferred interface for multicast transmission. In any case, the interface
address returned may be used by the application in a subsequent bind() request.

Note that routes are subject to change. Therefore, applications cannot rely on the
information returned by SIO_ ROUTING_INTERFACE_QUERY to be persistent.
Applications may register for routing change notifications viathe
SIO_ROUTING_INTERFACE_CHANGE IOCTL which provides for notification via
either overlapped IO or FD_ROUTING_INTERFACE_CHANGE event. The following
seguence of actions can be used to guarantee that the application always has current routing
interface information for a given destination:
e issue SIO_ROUTING_INTERFACE_CHANGE IOCTL
e issue SIO_ROUTING_INTERFACE_QUERY IOCTL
o Whenever SIO_ ROUTING_INTERFACE_CHANGE IOCTL notifies the application
of routing change (either via overlapped IO or by signaling
FD_ROUTING_INTERFACE_CHANGE event), the whole sequence of actions
should be repeated.

If output buffer is not large enough to contain the interface address, SOCKET_ERROR is
returned as the result of this IOCTL and WSAGetL astError returns WSAEFAULT. The
required size of the output buffer will be returned in IpcbBytesReturned in this case. Note
the WSAEFAULT error codeis aso returned if the IpvinBuffer, |pvOutBuffer or
[pcbBytesReturned parameter is not totally contained in avalid part of the user address
space.

If the destination address specified in the input buffer cannot be reached via any of the
available interfaces, SOCKET _ERROR isreturned as the result of thisIOCTL and
WSAGetL astError returns WSAENETUNREACH or even WSAENETDOWN if all of
the network connectivity islost.

SIO_ROUTING_INTERFACE_CHANGE (opcode setting: |, T==1)
To receive notification of the interface change that should be used to reach the remote
addressin the input buffer (specified asa SOCKADDR structure). No output information
will be provided upon completion of this IOCTL; the completion merely indicates that
routing interface for a given destination has changed and should be queried again via
SIO_ROUTING_INTERFACE_QUERY.

It is assumed (although not required) that the application uses overlapped 10 to be notified
of routing interface change via completion of SIO_ROUTING_INTERFACE_CHANGE
request. Alternatively, if the SIO_ROUTING_INTERFACE_CHANGE IOCTL isissued on
non-blocking socket and without overlapped parameters (IpOverlapped /
CompletionRoutine are set NULL), it will complete immediately with error
WSAEWOULDBLOCK, and the application can then wait for routing change events via
call to WSAEventSelect or WSAAsyncSelect with
FD_ROUTING_INTERFACE_CHANGE hit set in the network event bitmask

It is recognized that routing information remains stable in most cases so that requiring the
application to keep multiple outstanding IOCTLs to get notifications about all destinations
that it isinterested in as well as having service provider to keep track of al them will
unnecessarily tie significant system resources. This situation can be avoided by extending
the meaning of the input parameters and relaxing the service provider requirements as
follows:

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 214 sur 307

o The application can specify a protocol family specific wildcard address (same as one
used in bind call when requesting to bind to any available address) to request
notifications of any routing changes. This allows the application to keep only one
outstanding SIO_ROUTING_INTERFACE_CHANGE for all the
socketg/destinations it has and then use SIO_ROUTING_INTERFACE_QUERY to
get the actual routing information

e Service provider has the option to ignore the information supplied by the application
in the input buffer of the SIO_ROUTING_INTERFACE_CHANGE (as though the
application specified awildcard address) and complete the
SIO_ROUTING_INTERFACE_CHANGE IOCTL or signa
FD_ROUTING_INTERFACE_CHANGE event in the event of any routing
information change (not just the route to the destination specified in the input buffer).

SIO_ADDRESS LIST_QUERY (opcode setting: I, O, T==1)
To obtain alist of local transport addresses of socket's protocol family to which the
application can bind. The list returned in the output buffer using the following format:

typedef struct _SOCKET_ADDRESS LI ST {
I NT i Addr essCount ;
SOCKET_ADDRESS Address|[1];
} SOCKET_ADDRESS LI ST, FAR * LPSOCKET_ADDRESS LI ST;
Menber s:
i AddressCount - nunber of address structures in the |ist;
Address - array of protocol famly specific address structures.

Note that in Win32 Plug-n-Play environments addresses can be added/removed
dynamically. Therefore, applications cannot rely on the information returned by
SIO_ADDRESS LIST_QUERY to be persistent. Applications may register for address
change notifications viathe SIO_ADDRESS LIST_CHANGE IOCTL which provides for
notification via either overlapped 10 or FD_ADDRESS _LIST_CHANGE event. The
following sequence of actions can be used to guarantee that the application always has
current address list information:eissue SIO_ADDRESS LIST_CHANGE IOCTL
e issue SIO ADDRESS LIST_QUERY IOCTL
e whenever SIO_ADDRESS LIST_CHANGE IOCTL notifies the application of
address list change (either via overlapped 10 or by signaling
FD_ADDRESS LIST_CHANGE event), the whole sequence of actions should be
repeated.

If output buffer is not large enough to contain the address list, SOCKET_ERROR is
returned as the result of this IOCTL and WSAGetL astError returns WSAEFAULT. The
required size of the output buffer will be returned in IpcbBytesReturned in this case. Note
the WSAEFAULT error code is also returned if the IpvinBuffer, |pvOutBuffer or
IpcbBytesReturned parameter is not totally contained in avalid part of the user address
space.

SIO_ADDRESS LIST _CHANGE (opcode setting: T==1)
To receive notification of changesin the list of local transport addresses of socket's protocol
family to which the application can bind. No output information will be provided upon
completion of this|OCTL; the completion merely indicates that list of available local
address has changed and should be queried again viaSIO_ADDRESS LIST_QUERY.

It is assumed (although not required) that the application uses overlapped 10 to be notified
of change viacompletion of SIO_ADDRESS LIST _CHANGE request. Alternatively, if the
SIO_ADDRESS LIST_CHANGE IOCTL isissued on non-blocking socket AND without
overlapped parameters (IpOverlapped / |pCompletionRoutine are set to NULL), it will
complete immediately with error WSAEWOULDBLOCK. The application can then wait

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 215 sur 307

for addresslist change events via call to WSAEventSelect or WSAAsyncSelect with
FD_ADDRESS LIST CHANGE bit set in the network event bitmask.

If an overlapped operation completes immediately, WSAl octl returns a value of zero and the
|pcbBytesReturned parameter is updated with the number of bytesin the output buffer. If the
overlapped operation is successfully initiated and will complete later, this function returns
SOCKET_ERROR and indicates error code WSA _|O_PENDING. In this case,
IpcbBytesReturned is not updated. When the overlapped operation compl etes the amount of data
in the output buffer isindicated either through the cbTransferred parameter in the completion
routine (if specified), or through the IpcbTransfer parameter in W SAGetOver lappedResult.

When called with an overlapped socket, the |pOverlapped parameter must be valid for the
duration of the overlapped operation. The IpOverlapped parameter contains the address of a
WSAOVERLAPPED structure.

If the IpCompletionRoutine parameter is NULL, the hEvent field of IpOverlapped is signaled
when the overlapped operation completesif it contains avalid event object handle. An application
can use WSAWaitFor M ultipleEvents or WSAGetOverlappedResult to wait or poll on the
event object.

If IpCompletionRoutine is not NULL, the hEvent field isignored and can be used by the
application to pass context information to the completion routine. A caller that passes a non-
NULL IpCompletionRoutine and later calls WSAGetOver lappedResult for the same overlapped
1O request may not set the fWait parameter for that invocation of WSAGetOverlappedResult to
TRUE. In this case the usage of the hEvent field is undefined, and attempting to wait on the
hEvent field would produce unpredictable results.

The prototype of the completion routine is as follows:

voi d CALLBACK Conpl eti onRout i ne(
IN DWORD dwError,
IN DWORD cbTransferred,
I N LPWSAOVERLAPPED | pOver | apped,
IN DWORD dwkl ags

);

This CompletionRoutineis a placeholder for an application-defined or library-defined function.
The dwError parameter specifies the completion status for the overlapped operation as indicated
by IpOverlapped. The chTransferred parameter specifies the number of bytes returned. Currently,
there are no flag values defined and dwFlags will be zero. The CompletionRoutine function does
not return avalue.

Returning from this function allows invocation of another pending completion routine for this
socket. The completion routines can be called in any order, not necessarily in the same order the
overlapped operations are compl eted.

Windows CE: For secure sockets, the |pcbBytesReturned parameter is a pointer to a DWORD
receiving the number of bytes returned in output buffer. Also, the last two parameters, namely,
IpOverlapped and |pCompl etionRoutine, must be NULL.

In addition to the ioctlsocket control codes (FIONBIO, SIOCATMARK, FIONREAD), the
dwloControl Code parameter may al so assume the following SSL-specific control flags:

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information

Value
SO SSL_GET_CAPABILITIES

SO _SSL_GET FLAGS

SO SSL_SET_FLAGS

SO _SSL_GET_PROTOCOLS

SO SSL_SET PROTOCOLS

Page 216 sur 307

M eaning

Retrieves a set of flags describing the WinSock securi
capabilities. The output buffer must be apointer to al
field. At present, only the SO_CAP_CLIENT flagisd

Retrieves s-channel specific flags associated with a pe
socket. The output buffer must be a pointer to aDWO
See SO_SSL_SET_FLAGSfor details on valid flags.

Sets the sockets' current s-channel-specific flag values
buffer must be a pointer to a DWORD bit field. Curre
SSL_FLAG_DEFER_HANDSHAKE flagisdefined t
application to send and receive plain text data before ¢
cipher text. It isrequired for setting up communicatior
proxy servers.

Normally the WinSock security provider performs the
handshake in the WinSock connect API. However, if 1
set, the handshake is deferred until the application isst
SO _SSL. PERFORM_HANDSHAKE control code. A
handshaking, thisflag is reset.

Retrieves alist of protocols that the provider currently
this socket. The output buffer must be a pointer to a
SSLPROTOCOLS structure as described below:

typedef struct _SSLPROTOCOL {
DWORD dwPr ot ocol
DWORD dw\er si on;
DWORD dwrl ags;
} SSLPROTOCOL, *LPSSLPROTOCOL;
typedef struct _SSLPROTOCOLS {
DWORD dwCount ;
SSLPROTOCOL Protocol List[1];
} SSLPROTOCOLS, FAR *LPSSLPROTOCCLS

Valid protocolsinclude SSL_PROTOCOL_SSL 2,
SSL_PROTOCOL_SSL 3, and SSL_PROTOCOL_PC

Specifies alist of protocols the provider isto support «
socket. The input buffer must be a pointer to SSLPRC
structure described above.

SO SSL_SET VALIDATE_CERT_HOOK Sets the pointer to the socket's certificate validation he

to specify the callback function invoked by the WinSc
provider when a set of credentialsis received from the
party. The input buffer must be a pointer to the

SSLVALIDEATECERTHOOK structure, described b

typedef struct {
SSLVALI DATECERTFUNC HookFunc;
LPVA D pvArg;
} SSLVALI DATEPROTOCOLCERTHOOK, *PSSLVALI DAT

where HookFunc is a pointer to the certificate validati
function (see "Certificate Validation Callback" below)
pointer to application specific data and may be used by
application for any purpose.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information

Page 217 sur 307

SO _SSL. PERFORM_HANDSHAKE Initiates the secure handshake sequence on a connecte

wherethe SSL_FLAG_DEFER_HANDSHAKE flag |
prior to the connection. Data buffers are not required,
SSL_FLAG_DEFER_HANDSHAKE flag will be res

Certificate Validation Callback

The WinSock security provider invokes the certificate validation callback when the remote party
receives a certificate for server authentication. All the client applications must implement the
callback function to ensure that the certificate should meet the following minimum requirements:

o The certificate has not expired;
o Theidentity contained within the certificate matches that of the remote party.

The certificate validation callback function is of the following type:

typedef int (CALLBACK *SSLVALIDATECERTFUNC)Y
DWORD dwType, /l'in
LPVOID pvArg, Il'in
DWORD dwChainLen, //in
LPBLOB pCertChain, //in
DWORD dwFlags Il'in

h

The parameters are defined in the following table.

Parameters
dwType
PVArg
DwChainLen

PCertChain
DwFlags

Meaning
Specifies the type of data pointed to be pCertChain. This must be

SSL_CERT_X59 to specify that pCertChain be a pointer to an X509 style
certificate.

An application-defined context passed into the
SSLVALIDATECERTHOOK structure.

The number of certificates pointed to by pCertChain. In Windows CE this
will aways be one.

Pointer to the remote party's certificate.

To be designed to indicate that the certificate issuer list has been checked
with thelist of known certificate authorities and that the certificate is either
trusted or not. Thisis required since not all the certificate chain is passed to
the application.

The application-defined callback function will typically return one of the following error codes:

Value Meaning

SSL_ERR_OKAY The remote party's certificate is acceptable.
SSL_ERR _BAD_DATA The certificate isimproperly formatted.
SSL_ERR BAD_SIG The signature check fails.

SSL_ ERR _CERT_EXPIRED The certificate has expired.

SSL_ERR _CERT_REVOKED The certificate has been revoked by itsissuer.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 218 sur 307

SSL_ERR_CERT_UNKNOWN The issuer of the certificate is not recognized or some
unspecified issue arose in the processing of the
certificate, rendering it unacceptable.

Compatibility

Theioctl codeswith T == 0 are a subset of theioctl codes used in Berkeley sockets. In particular,
there is no command that is equivalent to FIOASYNC.

Return Values
Upon successful completion, the WSAl octl returns zero. Otherwise, avaue of

SOCKET_ERROR is returned, and a specific error code can be retrieved by calling
WSAGetL astError.

Error Codes

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The IpvinBuffer, |pvOutBuffer |pcbBytesReturned,
IpOverlapped, or |pCompletionRoutine argument is not
totally contained in avalid part of the user address
space, or the cbinBuffer or cbOutBuffer argument is too
small.

WSAEINVAL dwloControlCodeis not avalid command, or a supplied
input parameter is not acceptable, or the command is not
applicable to the type of socket supplied.

WSAEINPROGRESS The function isinvoked when a callback isin progress.

WSAENOTSOCK The descriptor sis not a socket.

WSAEOPNOTSUPP The specified ioctl command cannot be realized. (For
examle, the FL OW SPEC structures specified in
SIO_SET _QOSor SIO_SET_GROUP_QOQOS cannot be
satisfied.)

WSA 10 _PENDING An overlapped operation was successfully initiated and
completion will beindicated at alater time.

WSAEWOULDBLOCK The socket is marked as nonblocking and the requested
operation would block.

Quicklnfo

WindowsNT: Yes

Windows: Yes

Windows CE: Unsupported.

Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

getsockopt, ioctlsocket, setsockopt, socket, \W SA Sock et

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 219 sur 307

W SAI sBlocking

This function has been removed in compliance with the Windows Sockets 2 specification,
revision 2.2.0.

The function is not exported directly by the WS2_32.DLL, and Windows Sockets 2 applications
should not use this function. Windows Sockets 1.1 applications that call this function are still
supported through the WINSOCK.DLL and WSOCK32.DLL.

Blocking hooks are generally used to keep a single-threaded GUI application responsive during
callsto blocking functions. Instead of using blocking hooks, an applications should use a separate
thread (separate from the main GUI thread) for network activity.

W SAJoinL eaf

The Windows Sockets WSAJoinL eaf function joins aleaf node into a multipoint session,
exchanges connect data, and specifies needed quality of service based on the supplied
FL OWSPEC structures.

SOCKET WBAJoi nLeaf (
SOCKET s,
const struct sockaddr FAR * name,
i nt nanel en,
LPWSABUF | pCal | er Dat a,
LPWSABUF | pCal | eeDat a,
LPQOS | pSQCS,
LPQCS | pGCs,
DWORD dwkl ags

);

Parameters

S
[in] A descriptor identifying a multipoint socket.
name
[in] The name of the peer to which the socket isto be joined.
namelen
[in] The length of the name.
IpCallerData
[in] A pointer to the user datathat isto be transferred to the peer during multipoint session
establishment.
IpCalleeData
[out] A pointer to the user data that isto be transferred back from the peer during multipoint
session establishment.
[pSQOS
[in] A pointer to the FL OW SPEC structures for socket s, one for each direction.
IpGQOS

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 220 sur 307

[in] Reserved for future use with socket groups. A pointer to the FL OW SPEC structures
for the socket group (if applicable).

dwFlags
[in] Flagsto indicate that the socket is acting as a sender, receiver, or both.

Remarks

The WSAJoinL eaf function is used to join aleaf node to a multipoint session, and to perform a
number of other ancillary operations that occur at session join time aswell. If the socket, s, is
unbound, unique values are assigned to the local association by the system, and the socket is
marked as bound.

The WSAJoinL eaf function has the same parameters and semantics as W SAConnect except that
it returns a socket descriptor (asin WSAAccept), and it has an additional dwFlags parameter.
Only multipoint sockets created using W SA Socket with appropriate multipoint flags set can be
used for input parameter s in this function. The returned socket descriptor will not be useable until
after the join operation completes. For example, if the socket isin nonblocking mode after a
corresponding FD_CONNECT indication has been received from W SAAsyncSelect or

W SAEventSelect on the original socket s, except that closesocket may be invoked on this new
socket descriptor to cancel a pending join operation. A root application in a multipoint session
may call WSAJoinL eaf one or more timesin order to add a number of leaf nodes, however at
most one multipoint connection request may be outstanding at atime. Refer to Multipoint and
Multicast Semantics for additional information.

For nonblocking sockets it is often not possible to complete the connection immediately. In such a
case, this function returns an as-yet unusable socket descriptor and the operation proceeds. There
isno error code such as WSAEWOULDBLOCK in this case, since the function has effectively
returned a "successful start" indication. When the final outcome success or failure becomes
known, it may be reported through WSAAsyncSelect or W SAEventSelect depending on how the
client registers for notification on the original socket s. In either case, the notification is
announced with FD_CONNECT and the error code associated with the FD_CONNECT indicates
either success or a specific reason for failure. The select function cannot be used to detect
completion notification for WSAJoinL eaf.

The socket descriptor returned by W SAJoinL eaf is different depending on whether the input
socket descriptor, s, isac_root or ac_leaf. When used with ac_root socket, the name parameter
designates a particular leaf node to be added and the returned socket descriptor isac_|leaf socket
corresponding to the newly added leaf node. The newly created socket has the same properties as
sincluding asynchronous events registered with WSAAsyncSelect or with W SAEventSelect, but
not including the c¢_root socket's group ID, if any. It is not intended to be used for exchange of
multipoint data, but rather is used to receive network event indications (for example, FD_CLOSE)
for the connection that exists to the particular ¢_|leaf. Some multipoint implementations can also
allow this socket to be used for "side chats" between the root and an individual leaf node. An
FD_CLOSE indication will be received for this socket if the corresponding leaf node calls
closesocket to drop out of the multipoint session. Symmetrically, invoking closesocket on the
c_leaf socket returned from W SAJoinL eaf will cause the socket in the corresponding leaf node to
get FD_CLOSE natification.

When WSAJoinL eaf isinvoked with ac_leaf socket, the name parameter contains the address of
the root application (for arooted control scheme) or an existing multipoint session (nonrooted
control scheme), and the returned socket descriptor is the same as the input socket descriptor. In
other words, a new socket descriptor is not allocated. In arooted control scheme, the root
application would put its c_root socket in the listening mode by calling listen. The standard

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 221 sur 307

FD_ACCEPT notification will be delivered when the leaf node requests to join itself to the
multipoint session. The root application uses the usual accept/W SAAccept functions to admit the
new leaf node. The value returned from either accept or WSAAccept isalso ac_leaf socket
descriptor just like those returned from W SAJoinL eaf. To accommodate multipoint schemes that
allow both root-initiated and leaf-initiated joins, it is acceptable for ac_root socket that is aready
in listening mode to be used as an input to WSAJoinL eaf.

The application is responsible for allocating any memory space pointed to directly or indirectly by
any of the parameters it specifies.

The IpCallerData is a value parameter that contains any user data that isto be sent along with the
multipoint session join request. If IpCallerData is NULL, no user datawill be passed to the peer.
The IpCalleeData is aresult parameter that will contain any user data passed back from the peer
as part of the multipoint session establishment. The IpCalleeData->len initially contains the
length of the buffer allocated by the application and pointed to by IpCalleeData-> buf.
IpCalleeData->len will be set to zero if no user data has been passed back. The IpCalleeData
information will be valid when the multipoint join operation is complete. For blocking sockets,
thiswill be when the WSAJoinL eaf function returns. For nonblocking sockets, thiswill be after
the join operation has completed. For example, this could occur after FD_CONNECT notification
on the original socket s). If IpCalleeData is NULL, no user datawill be passed back. The exact
format of the user datais specific to the address family to which the socket belongs.

At multipoint session establishment time, an application can use the |pSQOS and/or IpGQOS
parameters to override any previous quality of service specification made for the socket through
WSAIl octl with either the SIO_SET _QOSor SIO_SET _GROUP_QOS opcodes.

The [pSQOS parameter specifies the FL OW SPEC structures for socket s, one for each direction,
followed by any additional provider-specific parameters. If either the associated transport provider
in general or the specific type of socket in particular cannot honor the quality of service request,
an error will be returned as indicated below. The sending or receiving flow specification values
will beignored, respectively, for any unidirectional sockets. If no provider-specific parameters are
supplied, the buf and len fields of |pSQOS-> Provider Specific should be set to NULL and zero,
respectively. A NULL value for IpSQOS indicates no application supplied quality of service.

Reserved for future socket groups. The IpGQOS parameter specifies the FL OW SPEC structures
for the socket group (if applicable), one for each direction, followed by any additional provider-
specific parameters. If no provider-specific parameters are supplied, the buf and len fields of
IpGQOS->Provider Specific should be set to NULL and zero, respectively. A NULL value for
IpGQOS indicates no application-supplied group quality of service. This parameter will be
ignored if sisnot the creator of the socket group.

The dwFlags parameter is used to indicate whether the socket will be acting only as a sender
(JL_SENDER_ONLY), only asareceiver (JL_RECEIVER_ONLY), or both (JL_BOTH).

When connected sockets break (that is, become closed for whatever reason), they should be
discarded and recreated. It is safest to assume that when things go awry for any reason on a
connected socket, the application must discard and recreate the needed sockets in order to return
to a stable point.

Return Values

If no error occurs, WSAJoinL eaf returns a value of type SOCKET that is a descriptor for the
newly created multipoint socket. Otherwise, avalue of INVALID _SOCKET isreturned, and a

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 222 sur 307

specific error code can be retrieved by calling WSA GetL astError.
On a blocking socket, the return value indicates success or failure of the join operation.

With a nonblocking socket, successful initiation of ajoin operation isindicated by areturn of a
valid socket descriptor. Subsequently, an FD_CONNECT indication will be given on the original
socket s when the join operation completes, either successfully or otherwise. The application must
use either WSAAsyncSelect or WSAEventSelect with interest registered for the FD_CONNECT
event in order to determine when the join operation has completed and checks the associated error
code to determine the success or failure of the operation. The select function cannot be used to
determine when the join operation completes.

Also, until the multipoint session join attempt completes all subsequent callsto W SAJoinL eaf on
the same socket will fail with the error code WSAEALREADY . After the WSAJoinL eaf
operation completes successfully, a subsequent attempt will usually fail with the error code
WSAEISCONN. An exception to the WSAEISCONN rule occursfor ac_root socket that allows
root-initiated joins. In such a case, another join may be initiated after a prior W SAJoinL eaf
operation completes.

If the return error code indicates the multipoint session join attempt failed (that is,
WSAECONNREFUSED, WSAENETUNREACH, WSAETIMEDOUT) the application can call
WSAJoinL eaf again for the same socket.

Error Codes

WSANOTINITIALISED A successful WSA Startup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEADDRINUSE The socket's local addressis aready in use and the
socket was not marked to allow address reuse with
SO_REUSEADDR. Thiserror usually occurs at the
time of bind, but could be delayed until this function if
the bind was to a partially wild-card address (involving
ADDR_ANY) and if a specific address needs to be
"committed" at the time of this function.

WSAEINTR A blockingWindows Socket 1.1 call was canceled
through W SA Cancel BlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.

WSAEALREADY A nonblocking WSAJoinL eaf call isin progress on the
specified socket.

WSAEADDRNOTAVAIL The remote address is not avalid address (such as
ADDR_ANY).

WSAEAFNOSUPPORT Addresses in the specified family cannot be used with
this socket.

WSAECONNREFUSED The attempt to join was forcefully rejected.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 223 sur 307

WSAEFAULT The name or the namelen parameter isnot avalid part of
the user address space, the namelen parameter istoo
small, the buffer length for IpCalleeData, |pSQOS, and
IpGQOS are too small, or the buffer length for
IpCallerDataistoo large.

WSAEISCONN The socket is already member of the multipoint session.

WSAENETUNREACH The network cannot be reached from this host at this
time.

WSAENOBUFS No buffer space is available. The socket cannot be
joined.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP The FL OW SPEC structures specified in [pSQOS and
IpGQOS cannot be satisfied.

WSAEPROTONOSUPPORT The IpCallerData augment is not supported by the
service provider.

WSAETIMEDOUT Attempt to join timed out without establishing a

multipoint session.

Quicklnfo

WindowsNT: Yes

Windows: Yes

Windows CE: Unsupported.

Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

accept, bind, select, WSAAccept, WSAAsyncSelect, WSAEventSelect, W SA Socket

W SAL ookupServiceBegin

The Windows Sockets W SAL ookupSer viceBegin function initiates a client query that is
constrained by the information contained within a WSAQUERY SET structure.

W SAL ookupServiceBegin only returns a handle, which should be used by subsequent calls to
WSAL ookupServiceNext to get the actual results.

I NT WSALookupSer vi ceBegin (
LPWSAQUERYSET | pgsRestri cti ons,
DWORD dwCont r ol Fl ags,

LPHANDLE | phLookup

);

Parameters

|pgsRestrictions
[in] A pointer to the search criteria. See below for details.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 224 sur 307

dwControlFlags
[in] A flag that controls the depth of the search.

LUP_DEEP Query deep as opposed to just the first level.

LUP_CONTAINERS Return containers only

LUP_NOCONTAINERS Do not return any containers

LUP_FLUSHCACHE If the provider has been caching information,
ignore the cache and go query the name space
itself.

LUP_FLUSHPREVIOUS Used as avalue for the dwControlFlags

argument in W SAL ookupServiceNext. Setting
this flag instructs the provider to discard the last
result set, which was too large for the supplied
buffer, and move on to the next result set.

LUP_NEAREST If possible, return results in the order of
distance. The measure of distance is provider
specific.

LUP_RES SERVICE This indicates whether prime responseisin the

remote or local part of CSADDR_INFO
structure. The other part needs to be "usable" in
either case.

LUP_RETURN_ALIASES Any available dias information is to be returned
in successive calsto
WSAL ookupServiceNext, and each alias
returned will havethe RESULT_IS ALIASflag

Set.
LUP_RETURN_NAME Retrieve the nameas | pszSer vicel nstanceName.
LUP_RETURN_TYPE Retrieve the type as |pServiceClassld.
LUP_RETURN_VERSION Retrieve the version as |[pVersion.
LUP_RETURN_COMMENT Retrieve the comment as |pszComment.
LUP_RETURN_ADDR Retrieve the addresses as |pcsaBuffer.
LUP_RETURN_BLOB Retrieve the private data as | pBlob.
LUP_RETURN_ALL Retrieve al of the information

[phLookup
[out] A handleto be used when calling W SAL ookupSer viceNext in order to start
retrieving the results set.

Remarks

If LUP_CONTAINERS s specified in acall, all other restriction values should be avoided. If any
are supplied, it is up to the name service provider to decide if it can support this restriction over
the containers. If it cannot, it should return an error.

Some name service providers can have other means of finding containers. For example, containers
might all be of some well-known type, or of a set of well-known types, and therefore a query
restriction can be created for finding them. No matter what other means the name service provider
has for locating containers, LUP_CONTAINERS and LUP_NOCONTAINERS take precedence.
Hence, if aquery restriction is given that includes containers, specifying LUP_NOCONTAINERS

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 225 sur 307

will prevent the container items from being returned. Similarly, no matter the query restriction, if
LUP_CONTAINERS is given, only containers should be returned. If a name space does not
support containers, and LUP_CONTAINERS is specified, it should simply return

WSANO DATA.

The preferred method of obtaining the containers within another container, isthe call:

dwsSt at us = WSALookupSer vi ceBegi n(
| pgsRestrictions,
LUP_CONTAI NERS,
| phLookup) ;

This call isfollowed by the requisite number of W SAL ookupServiceNext calls. Thiswill return
all containers contained immediately within the starting context; that is, it is not a deep query.
With this, one can map the address space structure by walking the hierarchy, perhaps enumerating
the content of selected containers. Subsequent uses of W SAL ookupServiceBegin use the
containers returned from a previous call.

As mentioned above, aWSAQUERY SET structure is used as an input parameter to

WSAL ookupBegin in order to qualify the query. The following table indicates how the
WSAQUERYSET isused to construct a query. When afield is marked as (Optional) aNULL
pointer can be supplied, indicating that the field will not be used as a search criteria. See section
Query-Related Data Structures for additional information.

WSAQUERYSET Field Name Query Interpretation

dwSze Must be set to sizeof(WSAQUERYSET). Thisisa
versioning mechanism.

DwOutputflags Ignored for queries.

L pszSer vicel nstanceName (Optional) Referenced string contains service

name. The semantics for wildcarding within the
string are not defined, but can be supported by
certain name space providers.

LpServiceClassld (Required) The GUID corresponding to the service
class.
LpVersion (Optional) References desired version number and

provides version comparison semantics (that is,
version must match exactly, or version must be not
less than the value supplied).

LpszComment Ignored for queries.

DwNameSpacel Identifier of a single name space in which to
constrain the search, or NS_ALL toinclude all
name spaces.

LpNSProviderid (Optional) References the GUID of a specific name
space provider, and limits the query to this provider
only.

LpszContext (Optional) Specifiesthe starting point of the query
in a hierarchical name space.

DwNumber OfProtocols Size of the protocol constraint array, can be zero.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 226 sur 307

LpafpProtocols (Optional) References an array of
AFPROTOCOLS structure. Only services that
utilize these protocols will be returned.

LpszQuerySiring (Optional) Some namespaces (such as whoist+)
support enriched SQL like queriesthat are
contained in asimple text string. This parameter is
used to specify that string.

DwNumber OfCsAddrs Ignored for queries.

L pcsaBuffer Ignored for queries.

LpBlob (Optional) Thisis apointer to a provider-specific
entity.

1 Seethe Important note below

I mportant In most instances, applications interested in only a particular transport protocol should
constrain their query by address family and protocol rather than by name space. Thiswould allow
an application that needs to locate a TCP/IP service, for example, to have its query processed by
all available name spaces such asthe local hostsfile, DNS, and NIS.

Return Values

Thereturn valueis zero if the operation was successful. Otherwise, the value SOCKET_ERROR
isreturned, and a specific error number can be retrieved by calling WSAGetL astError.

Error Codes
WSAEINVAL One ormore parameters were missing or invalid for
this provider.
WSANO_DATA The name was found in the database but no data
matching the given restrictions was located.
WSANOTINITIALIZED The WS2_32.DLL has not been initialized. The
application must first call WSAStartup before
calling any Windows Sockets functions.
WSASERVICE_NOT_FOUND No such service is known. The service cannot be
found in the specified name space.
WSA NOT ENOUGH MEMORY There was insufficient memory to perform the
operation.
Quicklnfo

WindowsNT: Yes

Windows:. Yes

Windows CE: Unsupported.

Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

WSAL ookupServiceEnd, W SAL ookupSer viceNext

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 227 sur 307

W SAL ookupServiceEnd

The Windows Sockets W SAL ookupServiceEnd function is called to free the handle after
previous callsto W SAL ookupServiceBegin and W SAL ookupSer viceNext.

If you call WSAL ookupServiceEnd from another thread while an existing
W SAL ookupServiceNext is blocked, the end call will have the same effect as a cancel and will
cause the WSAL ookupServiceNext call to return immediately.

I NT WSALookupServi ceEnd (
HANDLE hLookup

);

Parameters

hLookup
[in] A handle previously obtained by calling W SAL ookupServiceBegin.

Return Values

Thereturn valueis zero if the operation was successful. Otherwise, the value SOCKET _ERROR
isreturned, and a specific error number can be retrieved by calling WSAGetL astError.

Error Codes
WSA INVALID_HANDLE The handleisnot valid
WSANOTINITIALIZED The WS2_32.DLL has not been initialized. The
application must first call WSAStartup before
calling any Windows Socketsfunctions.
WSA NOT ENOUGH MEMORY There was insufficient memory to perform the
operation.
Quicklnfo

WindowsNT: Yes

Windows: Yes

Windows CE: Unsupported.

Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

W SAL ookupServiceBegin, WSAL ookupSer viceNext

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 228 sur 307

W SAL ookupServiceNext

The Windows Sockets W SAL ookupServiceNext function is called after obtaining a handle from
aprevious cal to WSAL ookupServiceBegin in order to retrieve the requested service
information.

The provider will pass back aWSAQUERY SET structure in the IpgsResults buffer. The client
should continue to call this function until it returns WSA_E _NOMORE, indicating that all of
WSAQUERY SET has been returned.

I NT WEALookupServi ceNext (
HANDLE hLookup,
DWORD dwCont r ol Fl ags,
LPDWORD | pdwBuf f er Lengt h,
LPWSAQUERYSET | pgsResults

);

Parameters

hLookup
[in] A handle returned from the previous call to W SAL ookupSer viceBegin.
dwControlFlags
[in] Flags to control the next operation. Currently only LUP_FLUSHPREVIOUS is defined
as ameans to cope with aresult set which istoo large. If an application does not wish to (or
cannot) supply alarge enough buffer, setting LUP_FLUSHPREVI0OUS instructs the
provider to discard the last result set - which was too large - and move on to the next set for
this call.
[pawBufferLength
[in/out] On input, the number of bytes contained in the buffer pointed to by IpgsResults. On
output, if the function fails and the error is WSAEFAULT, then it contains the minimum
number of bytesto pass for the IpgsResults to retrieve the record.
IpgsResults
[out] A pointer to ablock of memory, which will contain oneresult setin a
WSAQUERY SET structure on return.

Remarks

The dwControl Flags specified in this function and the ones specified at the time of

W SAL ookupServiceBegin are treated as "restrictions’ for the purpose of combination. The
restrictions are combined between the ones at W SAL ookupServiceBegin time and the ones at
W SAL ookupServiceNext time. Therefore the flags at W SAL ook upServiceNext can never
increase the amount of data returned beyond what was requested at W SAL ookupServiceBegin,
although it isNOT an error to specify more or fewer flags. The flags specified at agiven

W SAL ookupServiceNext apply only to that call.

The dwControlFlags LUP_FLUSHPREVIOUS and LUP_RES SERVICE are exceptions to the
"combined restrictions” rule (because they are "behavior” flagsinstead of "restriction” flags). If
either of these flags are used in W SAL ookupServiceNext they have their defined effect
regardless of the setting of the same flags at W SAL ookupSer viceBegin.

For example, if LUP_RETURN_VERSION is specified at W SAL ookupSer viceBegin the service

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information

Page 229 sur 307

provider retrieves records including the "version”. If LUP_RETURN_VERSION isNOT
specified at W SAL ookupServiceNext, the returned information does not include the "version”,
even though it was available. No error is generated.

Also for example, if LUP_RETURN_BLOB isNOT specified at WSAL ookupServiceBegin but
is specified at WSAL ookupServiceNext, the returned information does not include the private

data. No error is generated.

Query Results

The following table describes how the query results are represented in the WSAQUERY SET

structure.

WSAQUERYSET Field Name
dwSze

DwOuputFlags

L pszServicel nstanceName
LpServiceClassld
LpVersion

LpszComment
DwNameSpace
LpNSProviderid
LpszContext

DwNumber OfProtocols
L pafpProtocols

LpszQueryString

DwNumber OfCsAddrs

Result Interpretation

Will be set to sizeof(WSAQUERY SET). Thisis
used as a versioning mechanism.

RESULT IS ALIASflagindicatesthisisan alias
result.

Referenced string contains service name.
The GUID corresponding to the service class.

References version number of the particular service
instance.

Optional comment string supplied by service
instance.

Name space in which the service instance was
found.

Identifies the specific name space provider that
supplied this query resuilt.

Specifies the context point in a hierarchical name
space at which the serviceis located.

Undefined for results.

Undefined for results, al needed protocol
information isin the CSADDR_INFO structures.

When dwControl Flags includes
LUP_RETURN_QUERY_STRING, thisfield
returns the unparsed remainder of the

| pszSer vicel nstanceName specified in the original
query. For example, in a name space that identifies
services by hierarchical names that specify a host
name and afile path within that host, the address
returned might be the host address and the
unparsed remainder might be the file path. If the

| pszServicel nstanceName is fully parsed and
LUP_RETURN_QUERY_STRING is used, this
field isNULL or pointsto a zero-length string.

Indicates the number of elementsin the array of
CSADDR_INFO structures.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 230 sur 307

L pcsaBuffer A pointer to an array of CSADDR_INFO
structures, with one complete transport address
contained within each element.

LpBlob (Optional) Thisis apointer to a provider-specific
entity.

Return Values

Thereturn valueis zero if the operation was successful. Otherwise, the value SOCKET _ERROR
isreturned, and a specific error number can be retrieved by calling WSAGetL astError.

Error Codes

WSA _E NO MORE There isno more data available. In Windows
Sockets version 2, conflicting error codes are
defined for WSAENOMORE (10102) and
WSA_E NO_MORE (10110). The error code
WSAENOMORE will be removed in afuture
version and only WSA_E NO_MORE will
remain. For Windows Sockets version 2, however,
applications should check for both
WSAENOMORE and WSA_E_NO_MORE for
the widest possible compatibility with Name
Space Providers that use either one.

WSA_E CANCELLED A call to WSAL ookupServiceEnd was made
while this call was still processing. The call has
been canceled. The datain the IpgsResults buffer
is undefined. In Windows Sockets version 2,
conflicting error codes are defined for
WSAECANCELLED (10103) and
WSA E CANCELLED (10111). The error code
WSAECANCELLED will be removed in afuture
version and only WSA_E _CANCELLED will
remain. For Windows Sockets version 2, however,
applications should check for both
WSAECANCELLED and
WSA E CANCELLED for the widest possible
compatibility with Name Space Providers that use

either one.

WSAEFAULT The IpgsResults buffer was too small to contain a
WSAQUERY SET set.

WSAEINVAL One or more required parameters were invalid or
missing.

WSA_INVALID_HANDLE The specified Lookup handleisinvalid.

WSANOTINITIALIZED The WS2_32.DLL has not been initialized. The

application must first call WSAStartup before
calling any Windows Sockets functions.

WSANO_DATA The name was ound in the database, but no data
matching the given restrictions was located.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 231 sur 307

WSASERVICE_NOT_FOUND No such service is known. The service cannot be
found in the specified name space.

WSA NOT ENOUGH MEMORY There was insufficient memory to perform the
operation.

Quicklnfo

WindowsNT: Yes

Windows: Yes

Windows CE: Unsupported.

Header: Declared in winsock?2.h.
Import Library: Link withws2_32.lib.

See Also

W SAL ookupServiceBegin, WSAL ookupServiceEnd

W SANtohl

The Windows Sockets W SANtohl function converts au_long from network byte order to host
byte order.

i nt WSANt ohl (

SOCKET s,

u_l ong netl ong,

u_l ong FAR * | phostl ong
);

Parameters

S

[in] A descriptor identifying a socket.
netlong

[in] A 32-bit number in network byte order.
Iphostlong

[out] A pointer to a 32-bit number in host byte order.

Remarks

The WSANtohl function takes a 32-bit number in the network byte order associated with socket s
and returns a 32-bit number pointed to by the Iphostlong parameter in host byte order.

Return Values

If no error occurs, WSANTtohl returns zero. Otherwise, avalue of SOCKET _ERROR isreturned,
and a specific error code can be retrieved by calling WSAGetL astError.

Error Codes

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information

WSANOTINITIALISED

WSAENETDOWN
WSAENOTSOCK
WSAEFAULT

Quicklnfo

Windows NT: Yes
Windows: Yes

Windows CE: Unsupported.
Header: Declared in winsock?2.h.

Page 232 sur 307

A successful WSA Startup must occur before using this
function.

The network subsystem has failed.
The descriptor is not a socket.

The Iphostlong parameter is not completely contained in
avalid part of the user address space.

Import Library: Link withws2_32.lib.

See Also

htonl, htons, ntohl, ntohs, WSAHtonl, WSAHtons, WSANtohs

W SANtohs

The Windows Sockets W SANtohs function converts au_short from network byte order to host

byte order.

i nt WSANt ohs (
SOCKET s,
u_short netshort,

);

Parameters

S

u_short FAR * | phostshort

[in] A descriptor identifying a socket.

netshort

[in] A 16-bit number in network byte order.

Iphostshort

[out] A pointer to a 16-bit number in host byte order.

Remarks

The W SANtohs function takes a 16-bit number in the network byte order associated with socket s
and returns a 16-bit number pointed to by the Iphostshort parameter in host byte order.

Return Values

If no error occurs, WSANtohs returns zero. Otherwise, avalue of SOCKET_ERROR is returned,

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 233 sur 307

and a specific error code can be retrieved by calling WSAGetL astError.

Error Codes

WSANOTINITIALISED A successful WSA Startup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAENOTSOCK The descriptor is not a socket.

WSAEFAULT The Iphostshort parameter is not completely contained
inavalid part of the user address space.

Quicklnfo

WindowsNT: Yes

Windows: Yes

Windows CE: Unsupported.

Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

htonl, htons, ntohl, ntohs, WSAHtonl, WSANtohl, WSAHtons

W SAProvider ConfigChange

The WSAProvider ConfigChange function notifies the application when the provider
configuration is changed.

i nt WBAAPI
WEAPr ovi der Conf i gChange(
LPHANDLE | pNoti fi cati onHandl e,
LPWSAOVERLAPPED | pOver | apped,
LPWSAOVERLAPPED COVPLETI ON_ROUTI NE | pConpl et i onRout i ne

)1
Parameters

IpNotificationHandle
(infout) A pointer to notification handle; if the notification handleis set to NULL (the
handle value not the pointer itself), this function returns notification handle in the location
pointed by |pNotificationHandle.

|pOverlapped
(in) A pointer to aWSAOVERLAPPED structure.

|pCompl etionRoutine
(in) A pointer to the completion routine called when the provider change notification is
received.

Remarks

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 234 sur 307

The WSAProvider ConfigChange function notifies the application of provider (both transport
and name space) installation or removal in Win32 operating environments that support such
configuration change without requiring arestart. When called for the first time
(IpNotificationHandle parameter pointsto NULL handle), this function completes immediately
and returns notification handle in the location pointed by IpNotificationHandl e that can be used in
subsequent callsto receive notifications of provider installation and removal. The second and any
subsequent calls only complete when provider information changes since the time the call was
made It is expected (but not required) that that application uses overlapped 1/0 on second and
subsequent callsto W SAProvider ConfigChange, in which case the call will return immediately
and application will be notified of provider configuration changes using the completion
mechanism chosen through specified overlapped completion parameters.

Notification handle returned by W SAProvider ConfigChange is like any regular operating
system handle that should be closed (when no longer needed) using Win32 CloseHandle call.

The following sequence of actions can be used to guarantee that application always has current
protocol configuration information:

o call WSAProvider ConfigChange

o call WSAEnumProtocols and/or W SAEnumNameSpaceProviders

o whenever WSAProvider ConfigChange notifies application of provider configuration
change (viablocking or overlapped 10), the whole sequence of actions should be repeated

Return Values

If no error occurs the W SAProvider ConfigChange returns 0. Otherwise, a value of
SOCKET_ERROR isreturned and a specific error code may be retrieved by calling

WSAGetL astError. The error code WSA_10_PENDING indicates that the overlapped operation
has been successfully initiated and that completion (and thus change event) will be indicated at a
later time

Error Codes
WSANOTINITIALISED A successful WSA Startup must occur before using this
function.
WSAENETDOWN The network subsystem has failed.
WSA_NOT_ENOUGH Not enough free memory available to complete the
_MEMORY operation.
WSA _INVALID_HANDLE Vaue pointed by |pNotificationHandle parameter is not
avalid notification handle.
WSAEOPNOTSUPP Current operating system environment does not support
provider installation or removal without restart.
Quicklnfo

WindowsNT: Yes

Windows: Yes

Windows CE: Unsupported.

Header: Declared in winsock2.h.
Import Library: Link withws_32.lib.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 235 sur 307

See Also

WSAEnumProtocols, WSAEnumNameSpaceProviders

W SARecv

The Windows Sockets W SARecv function receives data from a connected socket.

i nt WSARecv (
SCOCKET s,
LPWSABUF | pBuf fers,
DWORD dwBuf f er Count ,
LPDWORD | pNumber Of Byt esRecvd,
LPDWORD | pFl ags,
LPWSAOVERLAPPED | pOver | apped,
LPWSAOVERLAPPED_COVPLETI ON_ROUTI NE | pConpl et i onROUTI NE

Parameters

S
[in] A descriptor identifying a connected socket.
|pBuffers
[in/out] A pointer to an array of WSABUF structures. Each W SABUF structure contains a
pointer to a buffer and the length of the buffer.
dwBuffer Count
[in] The number of WSABUF structuresin the |pBuffers array.
[pNumber OfBytesRecvd
[out] A pointer to the number of bytes received by this call if the receive operation
completesimmediately.
IpFlags
[in/out] A pointer to flags.
|pOverlapped
[in] A pointer to aWSAOVERLAPPED structure (ignored for nonoverlapped sockets).
IpCompletionRoutine
[in] A pointer to the completion routine called when the receive operation has been
completed (ignored for nonoverlapped sockets).

Remarks

The WSARecv function provides functionality over and above the standard recv function in three
important areas:

1. It can be used in conjunction with overlapped sockets to perform overlapped receive
operations.

2. It alows multiple receive buffers to be specified making it applicable to the scatter/gather
type of 1/0.

3. ThelpFlags parameter is both an input and an output parameter, allowing applications to
sense the output state of the MSG_PARTIAL flag bit. However, the MSG_PARTIAL flag

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 236 sur 307

bit is not supported by all protocols.

The WSARecv function is used on connected sockets or bound connectionless sockets specified
by the s parameter and is used to read incoming data. The socket's local address must be known.
For server applications, thisis usually done explicitly through bind or implicitly through accept
or WSAAccept. Explicit binding is discouraged for client applications. For client applications the
socket can become bound implicitly to alocal address through connect, W SA Connect, sendto,
WSASendTo, or WSAJoinL eaf.

For connected, connectionless sockets, this function restricts the addresses from which received
messages are accepted. The function only returns messages from the remote address specified in
the connection. Messages from other addresses are (silently) discarded.

For overlapped sockets, WSARecv is used to post one or more buffers into which incoming data
will be placed as it becomes available, after which the application-specified completion indication
(invocation of the completion routine or setting of an event object) occurs. If the operation does
not complete immediately, the final completion status is retrieved through the completion routine
or WSAGetOver lappedResult.

If both IpOverlapped and IpCompletionRoutine are NULL, the socket in this function will be
treated as a nonoverlapped socket.

For nonoverlapped sockets, the blocking semantics are identical to that of the standard recv
function and the IpOverlapped and |pCompl etionRoutine parameters are ignored. Any data that
has already been received and buffered by the transport will be copied into the supplied user
buffers. In the case of a blocking socket with no data currently having been received and buffered
by the transport, the call will block until datais received. Windows Socket 2 does not define any
standard blocking timeout mechanism for this function. For protocols acting as byte-stream
protocols the stack tries to return as much data as possible subject to the supplied buffer space and
amount of received data available. However, receipt of asingle byte is sufficient to unblock the
caller. Thereis no guarantee that more than a single byte will be returned. For protocols acting as
message-oriented, afull message is required to unblock the caller.

Whether or not a protocol is acting as byte-stream is determined by the setting of

XP1 MESSAGE ORIENTED and XP1 PSEUDO STREAM inits WSAPROTOCOL_INFO
structure and the setting of the MSG_PARTIAL flag passed in to this function (for protocols that
support it). The relevant combinations are summarized in the following table (an asterisk (*)
indicates that the setting of this bit does not matter in this case).

XP1_MESSAGE XP1_PSEUDO MSG_PARTIAL Actsas
_ORIENTED _STREAM

not set * * byte-stream

* set * byte-stream

set not set set byte-stream

set not set not set message-oriented

The supplied buffers are filled in the order in which they appear in the array pointed to by
IpBuffers, and the buffers are packed so that no holes are created.

The array of WSABUF structures pointed to by the [pBuffers parameter istransient. If this
operation completes in an overlapped manner, it is the service provider's responsibility to capture

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 237 sur 307

these WSABUF structures before returning from this call. This enables applications to build
stack-based WSABUF arrays.

For byte stream-style sockets (for example, type SOCK_STREAM), incoming datais placed into
the buffers until the buffers are filled, the connection is closed, or the internally buffered datais
exhausted. Regardless of whether or not the incoming datafills all the buffers, the completion
indication occurs for overlapped sockets.

For message-oriented sockets (for example, type SOCK_DGRAM), an incoming message is
placed into the supplied buffers up to the total size of the buffers supplied, and the completion
indication occurs for overlapped sockets. If the message is larger than the buffers supplied, the
buffers are filled with the first part of the message. If the MSG_PARTIAL feature is supported by
the underlying service provider, the MSG_PARTIAL flag is set in IpFlags and subsequent receive
operations will retrieve the rest of the message. If MSG_PARTIAL is not supported but the
protocol isreliable, WSARecv generates the error WSAEM SGSIZE and a subsequent receive
operation with alarger buffer can be used to retrieve the entire message. Otherwise, (that is, the
protocol is unreliable and does not support MSG_PARTIAL), the excess dataislost, and

W SARecv generates the error WSAEM SGSIZE.

For connection-oriented sockets, W SARecv can indicate the graceful termination of the virtual
circuit in one of two ways that depend on whether the socket is a byte stream or message oriented.
For byte streams, zero bytes having been read (as indicated by zero return value to indicate
success, and |pNumber OfBytesRecvd value of zero) indicates graceful closure and that no more
bytes will ever be read. For message-oriented sockets, where a zero byte message is often
allowable, afailure with an error code of WSAEDISCON is used to indicate graceful closure. In
any case areturn error code of WSAECONNRESET indicates an abortive close has occurred.

The IpFlags parameter can be used to influence the behavior of the function invocation beyond
the options specified for the associated socket. That is, the semantics of this function are
determined by the socket options and the IpFlags parameter. The latter is constructed by or-ing
any of the following values:

Value Meaning

MSG_PEEK Peek at the incoming data. The dataiis copied into the buffer but is
not removed from the input queue. Thisflagisvalid only for
nonoverlapped sockets.

MSG_OOB Process out-of-band data. (See section DECnet Out-Of-band data
for adiscussion of thistopic.)
MSG_PARTIAL Thisflag is for message-oriented sockets only. On output,

indicates that the data supplied is a portion of the message
transmitted by the sender. Remaining portions of the message will
be supplied in subsequent receive operations. A subsequent
receive operation with MSG_PARTIAL flag cleared indicates end
of sender's message.

Asan input parameter, this flag indicates that the receive

operation should complete even if only part of a message has been
received by the service provider.

For message-oriented sockets, the MSG_PARTIAL bit is set in the |pFlags parameter if a partia
message is received. If acomplete messageisreceived, MSG_PARTIAL iscleared in IpFlags. In

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 238 sur 307

the case of delayed completion, the value pointed to by |pFlagsis not updated. When completion
has been indicated, the application should call WSAGetOverlappedResult and examine the flags
indicated by the [pdwFlags parameter.

Overlapped socket 1/0

If an overlapped operation completes immediately, W SARecv returns a value of zero and the
[pNumber OfBytesRecvd parameter is updated with the number of bytes received and the flag bits
indicated by the IpFlags parameter are also updated. If the overlapped operation is successfully
initiated and will complete later, WSARecv returns SOCKET_ERROR and indicates error code
WSA _10_PENDING. In this case, |pNumber OfBytesRecvd and IpFlags are not updated. When
the overlapped operation completes, the amount of data transferred is indicated either through the
cbTransferred parameter in the completion routine (if specified), or through the |pcbTransfer
parameter in WSAGetOverlappedResult. Flag values are obtained by examining the [pdwFlags
parameter of WSAGetOverlappedResult.

The WSARecv function can be called from within the completion routine of a previous
WSARecv, WSARecvFrom, WSASend or WSASendT o function. For a given socket, 1/0
completion routines will not be nested. For a given socket, 1/0O completion routines will not be
nested. This permits time-sensitive data transmissions to occur entirely within a preemptive
context.

The IpOverlapped parameter must be valid for the duration of the overlapped operation. If
multiple 1/0O operations are simultaneously outstanding, each must reference a separate
WSAOVERLAPPED structure.

If the IpCompletionRoutine parameter is NULL, the hEvent field of IpOverlapped is signaled
when the overlapped operation completesif it contains avalid event object handle. An application
can use WSAWaitFor M ultipleEvents or WSAGetOverlappedResult to wait or poll on the
event object.

If IpCompletionRoutine is not NULL, the hEvent field isignored and can be used by the
application to pass context information to the completion routine. A caller that passes a non-
NULL IpCompletionRoutine and later calls WSAGetOver lappedResult for the same overlapped
1O request may not set the fWait parameter for that invocation of WSAGetOverlappedResult to
TRUE. In this case the usage of the hEvent field is undefined, and attempting to wait on the
hEvent field would produce unpredictable results.

The completion routine follows the same rules as stipulated for Win32 file 1/0O completion
routines. The completion routine will not be invoked until the thread isin an dertable wait state
such as can occur when the function W SAW aitFor M ultipleEvents with the fAlertable parameter
set to TRUE isinvoked.

The transport providers allow an application to invoke send and receive operations from within
the context of the socket I/O completion routine, and guarantee that, for a given socket, 1/0
completion routines will not be nested. This permits time-sensitive data transmissions to occur
entirely within a preemptive context.

The prototype of the completion routine is as follows:

voi d CALLBACK Conpl et i onROUTI NE(
I N DWORD dwEr ror,
I N DWORD cbTransferred,

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 239 sur 307

I N LPWSAOVERLAPPED | pOver | apped,
I N DAWORD dwkl ags
)

CompletionRoutine is a placeholder for an application-defined or library-defined function name.
The dwError specifies the completion status for the overlapped operation as indicated by
IpOverlapped. The cbTransferred parameter specifies the number of bytes received. The dwFlags
parameter contains information that would have appeared in I[pFlags if the receive operation had
completed immediately. This function does not return a value.

Returning from this function allows invocation of another pending completion routine for this
socket. When using WSAW aitFor M ultipleEvents, all waiting completion routines are called
before the alertable thread's wait is satisfied with a return code of WSA_|O_COMPLETION. The
completion routines can be called in any order, not necessarily in the same order the overlapped
operations are completed. However, the posted buffers are guaranteed to befilled in the same
order they are supplied.

Return Values

If no error occurs and the receive operation has completed immediately, W SARecv returns zero.
In this case, the completion routine will have already been scheduled to be called once the calling
thread isin the alertable state. Otherwise, avalue of SOCKET_ERROR isreturned, and a specific
error code can be retrieved by calling WSAGetL astError. The error code WSA_10_PENDING
indicates that the overlapped operation has been successfully initiated and that completion will be
indicated at alater time. Any other error code indicates that the overlapped operation was not
successfully initiated and no completion indication will occur.

Error Codes
WSANOTINITIALISED A successful WSA Startup must occur before
using this function.
WSAENETDOWN The network subsystem has failed.
WSAENOTCONN The socket is not connected.
WSAEINTR The (blocking) call was canceled through
W SA CancelBlockingCall.
WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin

progress, or the service provider is still processing
acallback function.
WSAENETRESET The connection has been broken due to "keep-

alive" activity detecting afailure while the
operation was in progress.

WSAENOTSOCK The descriptor is not a socket.

WSAEFAULT The |pBuffers parameter is not completely
contained in avalid part of the user address space.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not

stream-style such as type SOCK_STREAM, out-of -
band data is not supported in the communication
domain associated with this socket, or the socket is
unidirectional and supports only send operations.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 240 sur 307

WSAESHUTDOWN The socket has been shut down; it is hot possible to
call WSARecv on a socket after shutdown has
been invoked with how set to SD_RECEIVE or
SD_BOTH.

WSAEWOULDBLOCK Overlapped sockets: There are too many
outstanding overlapped /O requests.
Nonoverlapped sockets: The socket is marked as
nonblocking and the receive operation cannot be
completed immediately.

WSAEMSGSIZE The message was too large to fit into the specified
buffer and (for unreliable protocols only) any
trailing portion of the message that did not fit into
the buffer has been discarded.

WSAEINVAL The socket has not been bound (for example, with
bind).

WSAECONNABORTED The virtua circuit was terminated due to atime-out
or other failure.

WSAECONNRESET The virtual circuit was reset by the remote side.

WSAEDISCON Socket s is message oriented and the virtual circuit
was gracefully closed by the remote side.

WSA _10_PENDING An overlapped operation was successfully initiated
and completion will be indicated at alater time.

WSA OPERATION_ABORTED The overlapped operation has been canceled dueto

the closure of the socket.

Quicklnfo

WindowsNT: Yes

Windows:. Yes

Windows CE: Unsupported.

Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

WSACloseEvent, WSACreateEvent, WSAGetOverlappedResult, W SA Socket,
WSAWaitFor MultipleEvents

W SARecvDisconnect

The Windows Sockets W SARecvDisconnect function terminates reception on a socket, and
retrieves the disconnect data if the socket is connection oriented.

i nt WSARecvDi sconnect (
SOCKET s,
LPWSABUF | pl nboundDi sconnect Dat a

);

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 241 sur 307

Parameters

S

[in] A descriptor identifying a socket.
[plnboundDisconnectData

[out] A pointer to the incoming disconnect data.

Remarks

The WSARecvDisconnect function is used on connection-oriented sockets to disable reception
and retrieve any incoming disconnect data from the remote party. This is equivalent to a shutdown
(SD_RECV), except that W SA SendDisconnect also allows receipt of disconnect data (in
protocols that support it).

After this function has been successfully issued, subsequent receives on the socket will be
disallowed. Calling W SARecvDisconnect has no effect on the lower protocol layers. For TCP
sockets, if thereis still data queued on the socket waiting to be received, or data arrives
subsequently, the connection is reset, since the data cannot be delivered to the user. For UDP,
incoming datagrams are accepted and queued. In no case will an ICMP error packet be generated.

To successfully receive incoming disconnect data, an application must use other mechanisms to
determine that the circuit has been closed. For example, an application needs to receive an
FD_CLOSE notification, to receive a zero return value, or to receive a WSAEDISCON or
WSAECONNRESET error code from recv/W SARecv.

The W SARecvDisconnect function does not close the socket, and resources attached to the
socket will not be freed until closesocket isinvoked.

The W SARecvDisconnect function does not block regardless of the SO_LINGER setting on the
socket.

An application should not rely on being able to re-use a socket after it has been disconnected
using W SARecvDisconnect. In particular, a Windows Sockets provider is not required to support
the use of connect/W SAConnect on such a socket.

Return Values

If no error occurs, WSARecvDisconnect returns zero. Otherwise, avalue of SOCKET _ERROR
isreturned, and a specific error code can be retrieved by calling WSAGetL astError.

Error Codes

WSANOTINITIALISED A successful WSA Startup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The buffer referenced by the parameter
[plnboundDisconnectData is too small.

WSAENOPROTOOPT The disconnect data is not supported by the indicated

protocol family.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 242 sur 307

WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is till processing a callback
function.

WSAENOTCONN The socket is not connected (connection-oriented
sockets only).

WSAENOTSOCK The descriptor is not a socket.

Quicklnfo

WindowsNT: Yes

Windows:. Yes

Windows CE: Unsupported.

Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

connect, socket

W SARecVEX

Notice This function is a Microsoft-specific extension to the Windows Sockets specification. For
more information, see Microsoft Extensions and Windows Sockets 2.

The Windows Sockets W SARecvEX function isidentical to the recv function, except the flags
parameter is an in-out parameter. When a partial message is received while using datagram
protocol, the MSG_PARTIAL bit is set in the flags parameter on return from the function.

i nt PASCAL FAR WSARecVEXx (
SOCKET s,

char FAR * buf,

int |en,

int *flags

);

Parameters

S
[in] A descriptor identifying a connected socket.
buf
[out] A buffer for the incoming data.
len
[in] The length of buf.
flags
[in/out] An indicator specifying whether the messageis fully or partially received for
datagram sockets.

Remarks

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 243 sur 307

The WSARecvEX function that is part of the Microsoft implementation of Windows Sockets 2 is
similar to the more common recv function except that the flags parameter is an in-out parameter,
not just an in parameter. The additional out parameter is used to indicate whether a partial or
compl ete message was received when a message-oriented protocol is being used.

The WSARecvEXx and recv function identically for stream oriented protocols.

Making the flags parameter an in and out parameter accomodates two common situationsin
which a partial message will be received: when the application’'s data buffer size is smaller than
the message size and the message coincidentally arrivesin two pieces; and when the messageis
rather large and must arrive in several pieces. The MSG_PARTIAL bit is set in the flags
parameter on return from W SARecvEX when a partial message was received. If acomplete
message was received, MSG_PARTIAL isnot set in flags.

The Windows Sockets recv function is different than W SARecvEX in that the recv function
always receives a single message for each call for message-oriented transport protocols. The recv
function does not have a means to indicate to the application that the data received isonly a
partial message. An application must build its own protocol for checking whether a messageis
partial or complete by checking for the error code WSAEM SGSIZE after each call to recv. When
the application buffer is smaller than the data being sent, as much of the message as will fitis
copied into the user's buffer and recv returns with the error code WSAEM SGSIZE. A subsequent
call to recv will get the next part of the message.

Applications written for message-oriented transport protocols should be coded for this possibility
if message sizing is not guaranteed by the application's data transfer protocol. An application can
use recv and manage the protocol itself. Alternatively, an applications can use W SARecvEX and
check the for the MSG_PARTIAL hit is set in the flags parameter.

The WSARecvEX function provide the developer with a more effective way of checking whether
amessage received is partial or complete when avery large message arrives alittle at atime. For
example, if an application sends a 1-megabyte message, the transport protocol must break up the
message in order to send it over the physical network. It is theoretically possible for the transport
protocol on the receiving side to buffer all the data in the message, but this would be quite
expensive in terms of resources. Instead, W SARecvEX can be used, minimizing overhead and
eliminating the need for an application-based protocol.

Return Values

If no error occurs, W SARecvEX returns the number of bytes received. If the connection has been
closed, it returns zero. Additionally, if a partial message was received, the MSG_PARTIAL bit is
set in the flags parameter. If a complete message was received, MSG_PARTIAL isnot set in
flags.

Otherwise, avalue of SOCKET _ERROR isreturned, and a specific error code can be retrieved by
caling WSAGetL astError.

I mportant For a stream oriented transport protocol, MSG_PARTIAL is never set on return from
WSARecvEX. This function behavesidentically to the Windows Sockets recv function for stream
transport protocols.

Error Codes

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information

WSANOTINITIALISED

WSAENETDOWN
WSAEFAULT

WSAENOTCONN
WSAEINTR

WSAEINPROGRESS

WSAENETRESET

WSAENOTSOCK

WSAEOPNOTSUPP

WSAESHUTDOWN

WSAEWOULDBLOCK

WSAEINVAL

WSAECONNABORTED

WSAETIMEDOUT

WSAECONNRESET

Quicklnfo

Windows NT: Yes

Page 244 sur 307

A successful WSAStartup must occur before using this
function.

The network subsystem has failed.

The buf parameter is not completely contained in avalid
part of the user address space.

The socket is not connected.

The (blocking) call was canceled through
W SA CancelBlockingCall.

A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.

The connection has been broken due to the remote host
resetting.

The descriptor is not a socket.

MSG_OOB was specified, but the socket is not stream-
style such as type SOCK_STREAM, out-of-band datais
not supported in the communication domain associated
with this socket, or the socket is unidirectional and
supports only send operations.

The socket has been shut down; it is not possible to use
W SARecvEXx on asocket after shutdown has been
invoked with how set to SD_RECEIVE or SD_BOTH.

The socket is marked as nonblocking and the receive
operation would block.

The socket has not been bound with bind, or an
unknown flag was specified, or MSG_0OOB was
specified for a socket with SO_OOBINLINE enabled or
(for byte stream sockets only) len was zero or negative.

The virtua circuit was terminated due to a time-out or
other failure. The application should close the socket as
itisno longer usable.

The connection has been dropped because of a network
failure or because the peer system failed to respond.

The virtual circuit was reset by the remote side
executing a"hard" or "abortive" close. The application
should close the socket as it is no longer usable. On a
UDP datagram socket this error would indicate that a
previous send operation resulted in an ICMP "Port
Unreachable" message.

Windows CE: Unsupported.
Header: Declared in mswsock.h.
Import Library: Link with mswsock.lib.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 245 sur 307

See Also

recvfrom, select, send, socket, W SAAsyncSel ect

W SARecvFrom

The Windows Sockets W SARecvFrom function receives a datagram and stores the source
address.

i nt WBARecvFrom (
SOCKET s,
LPWSABUF | pBuf fers,
DWORD dwBuf f er Count ,
LPDWORD | pNumber Of Byt esRecvd,
LPDWORD | pFl ags,
struct sockaddr FAR * | pFrom
LPI NT | pFroni en,
LPWSAOVERLAPPED | pOver | apped,
LPWSAOVERLAPPED_COVPLETI ON_ROUTI NE | pConpl et i onROUTI NE

Parameters

S
[in] A descriptor identifying a socket
|pBuffers
[in/out] A pointer to an array of WSABUF structures. Each WSABUF structure contains a
pointer to a buffer and the length of the buffer.
dwBuffer Count
[in] The number of WSABUF structuresin the |pBuffers array.
[pNumber OfBytesRecvd
[out] A pointer to the number of bytes received by this call if the receive operation
completesimmediately.
IpFlags
[in/out] A pointer to flags.
[pFrom
[out] An optional pointer to a buffer that will hold the source address upon the completion
of the overlapped operation.
[pFromlen
[in/out] A pointer to the size of the from buffer, required only if IpFromis specified.
[pOverlapped
[in] A pointer to aWSAOVERLAPPED structure (ignored for nonoverlapped sockets).
IpCompletionRoutine
[in] A pointer to the completion routine called when the receive operation has been
completed (ignored for nonoverlapped sockets).

Remarks

The W SARecvFrom function provides functionality over and above the standard recvfrom
function in three important areas:

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 246 sur 307

1. It can be used in conjunction with overlapped sockets to perform overlapped receive
operations.

2. It alows multiple receive buffers to be specified making it applicable to the scatter/gather
type of 1/0.

3. ThelpFlags parameter is both an input and an output parameter, allowing applications to
sense the output state of the MSG_PARTIAL flag bit. Note however, that the
MSG_PARTIAL flag bit is not supported by all protocols.

The WSARecvFrom functionsis used primarily on a connectionless socket specified by s. The
socket's local address must be known. For server applications, thisis usually done explicitly
through bind. Explicit binding is discouraged for client applications. For client applications using
this function the socket can become bound implicitly to alocal address through sendto,
WSASendTo, or WSAJoinL eaf.

For overlapped sockets, this function is used to post one or more buffers into which incoming data
will be placed as it becomes available on a (possibly connected) socket, after which the
application-specified completion indication (invocation of the completion routine or setting of an
event object) occurs. If the operation does not complete immediately, the final completion status
isretrieved through the completion routine or WSAGetOver lappedResult. Also, the values
indicated by IpFrom and |[pFromlen are not updated until completion isitself indicated.
Applications must not use or disturb these values until they have been updated, therefore the
application must not use automatic (that is, stack-based) variables for these parameters.

If both IpOverlapped and IpCompletionRoutine are NULL, the socket in this function will be
treated as a nonoverlapped socket.

For nonoverlapped sockets, the blocking semantics are identical to that of the standard W SARecv
function and the [pOverlapped and |pCompl etionRoutine parameters are ignored. Any data that
has already been received and buffered by the transport will be copied into the supplied user
buffers. For the case of a blocking socket with no data currently having been received and
buffered by the transport, the call will block until datais received.

The supplied buffers are filled in the order in which they appear in the array indicated by
IpBuffers, and the buffers are packed so that no holes are created.

The array of WSABUF structures pointed to by the [pBuffers parameter istransient. If this
operation completes in an overlapped manner, it is the service provider's responsibility to capture
these WSABUF structures before returning from this call. This enables applications to build
stack-based WSABUF arrays.

For connectionless socket types, the address from which the data originated is copied to the buffer
indicated by IpFrom. The value pointed to by IpFromlen isinitialized to the size of this buffer,
and is modified on completion to indicate the actual size of the address stored there. As noted
previously for overlapped sockets, the IpFrom and IpFromlen parameters are not updated until
after the overlapped 1/0O has completed. The memory pointed to by these parameters must,
therefore, remain available to the service provider and cannot be allocated on the application's
stack frame. The IpFrom and |pFromlen parameters are ignored for connection-oriented sockets.

For byte stream-style sockets (for example, type SOCK_STREAM), incoming datais placed into
the buffers until the buffers are filled, until the connection is closed, or until the internally
buffered datais exhausted. Regardless of whether or not the incoming datafills all the buffers, the
completion indication occurs for overlapped sockets. For message-oriented sockets, an incoming

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 247 sur 307

message is placed into the supplied buffers up to the total size of the buffers supplied, and the
completion indication occurs for overlapped sockets. If the message is larger than the buffers
supplied, the buffers are filled with the first part of the message. If the MSG_PARTIAL featureis
supported by the underlying service provider, the MSG_PARTIAL flagissetin IpFlagsand
subsequent receive operation(s) will retrieve the rest of the message. If MSG_PARTIAL is not
supported but the protocol is reliable, WSARecvFrom generates the error WSAEM SGSIZE and a
subsequent receive operation with alarger buffer can be used to retrieve the entire message.
Otherwise, (that is, the protocol is unreliable and does not support MSG_PARTIAL), the excess
dataislost, and W SARecvFrom generates the error WSAEM SGSIZE.

The IpFlags parameter can be used to influence the behavior of the function invocation beyond
the options specified for the associated socket. That is, the semantics of this function are
determined by the socket options and the |pFlags parameter. The latter is constructed by or-ing
any of the following values:

Value Meaning

MSG_PEEK Peek at the incoming data. The datais copied into the buffer but is
not removed from the input queue. Thisflag isvalid only for
nonoverlapped sockets.

MSG_0OOB Process out-of-band data. (See section DECnet Out-Of-band data
for adiscussion of thistopic.)
MSG_PARTIAL Thisflag is for message-oriented sockets only. On output,

indicates that the data supplied is a portion of the message
transmitted by the sender. Remaining portions of the message will
be supplied in subsequent receive operations. A subsequent
receive operation with MSG_PARTIAL flag cleared indicates end
of sender's message.

As an input parameter indicates that the receive operation should
complete even if only part of a message has been received by the
service provider.

For message-oriented sockets, the MSG_PARTIAL bit is set in the |pFlags parameter if a partia
message is received. If acomplete messageisreceived, MSG_PARTIAL iscleared in IpFlags. In
the case of delayed completion, the value pointed to by |pFlagsis not updated. When completion
has been indicated the application should call WSAGetOver lappedResult and examine the flags
pointed to by the [pdwFlags parameter.

Overlapped socket 1/0

If an overlapped operation completes immediately, W SARecvFrom returns avalue of zero and
the IpNumber OfBytesRecvd parameter is updated with the number of bytes received and the flag
bits pointed by the IpFlags parameter are also updated. If the overlapped operation is successfully
initiated and will complete later, WSARecvFrom returns SOCKET_ERROR and indicates error
code WSA 10 _PENDING. In this case, IpNumber OfBytesRecvd and |pFlags is not updated.
When the overlapped operation compl etes the amount of data transferred is indicated either
through the cbTransferred parameter in the completion routine (if specified), or through the
IpcbTransfer parameter in W SAGetOver lappedResult. Flag values are obtained either through
the dwFlags parameter of the completion routine, or by examining the |pdwFlags parameter of

W SAGetOverlappedResult.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 248 sur 307

The WSARecvFrom function can be called from within the compl etion routine of a previous
WSARecv, WSARecvFrom, WSASend or WSASendT o function. For a given socket, 1/0
completion routines will not be nested. This permits time-sensitive data transmissions to occur
entirely within a preemptive context.

The IpOverlapped parameter must be valid for the duration of the overlapped operation. If
multiple 1/0O operations are simultaneously outstanding, each must reference a separate
WSAOVERLAPPED structure.

If the IpCompletionRoutine parameter is NULL, the hEvent field of IpOverlapped is signaled
when the overlapped operation completesif it contains avalid event object handle. An application
can use WSAWaitFor M ultipleEvents or WSAGetOverlappedResult to wait or poll on the
event object.

If IpCompletionRoutine is not NULL, the hEvent field isignored and can be used by the
application to pass context information to the completion routine. A caller that passes a non-
NULL IpCompletionRoutine and later calls WSAGetOver lappedResult for the same overlapped
1O request may not set the fWait parameter for that invocation of WSAGetOverlappedResult to
TRUE. In this case the usage of the hEvent field is undefined, and attempting to wait on the
hEvent field would produce unpredictable results.

The completion routine follows the same rules as stipulated for Win32 file 1/0O completion
routines. The completion routine will not be invoked until the thread isin an dertable wait state
such as can occur when the function W SAWaitFor M ultipleEvents with the fAlertable parameter
set to TRUE isinvoked.

The transport providers allow an application to invoke send and receive operations from within
the context of the socket I/O completion routine, and guarantee that, for a given socket, 1/0
completion routines will not be nested. This permits time-sensitive data transmissions to occur
entirely within a preemptive context.

The prototype of the completion routine is as follows:

voi d CALLBACK Conpl eti onROUTI NE(
I N DAORD dwEr ror,
I N DAORD cbTransferred,
I N LPWSAOVERLAPPED | pOver | apped,
I N DAWORD dwkl ags

);

The CompletionRoutine is a placeholder for an application-defined or library-defined function
name. The dwError specifies the completion status for the overlapped operation as indicated by
IpOverlapped. The cbTransferred specifies the number of bytes received. The dwklags parameter
contains information that would have appeared in IpFlags if the receive operation had completed
immediately. This function does not return avalue.

Returning from this function allows invocation of another pending completion routine for this
socket. When using WSAW aitFor M ultipleEvents, all waiting completion routines are called
before the alertable thread's wait is satisfied with areturn code of WSA_|O_COMPLETION. The
completion routines can be called in any order, not necessarily in the same order the overlapped
operations are completed. However, the posted buffers are guaranteed to befilled in the same
order they are supplied.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information

Return Values

Page 249 sur 307

If no error occurs and the receive operation has completed immediately, W SARecvFrom returns
zero. In this case, the completion routine will have aready been scheduled to be called once the
caling thread isin the aertable state. Otherwise, avalue of SOCKET_ERROR isreturned, and a
specific error code can be retrieved by calling WSAGetL astError. The error code

WSA _10_PENDING indicates that the overlapped operation has been successfully initiated and
that completion will be indicated at alater time. Any other error code indicates that the
overlapped operation was not successfully initiated and no completion indication will occur.

Error Codes

WSANOTINITIALISED

WSAENETDOWN
WSAEFAULT

WSAEINTR

WSAEINPROGRESS

WSAEINVAL

WSAEISCONN

WSAENETRESET

WSAENOTCONN

WSAEOPNOTSUPP

WSAESHUTDOWN

A successful WSA Startup must occur before
using this function.

The network subsystem has failed.

The IpBuffers, IpFlags, IpFrom,

| pNumber OfBytesRecvd, |pFromlen, IpOverlapped,
or |pCompl etionRoutine argument is not totally
contained in avalid part of the user address space:
the IpFrom buffer was too small to accommodate
the peer address.

A blocking Windows Socket 1.1 call was canceled
through W SA CancelBlockingCall.

A blocking Windows Sockets 1.1 call isin
progress, or the service provider is still processing
acallback function.

The socket has not been bound (with bind, for
example).

The socket is connected. This function is not
permitted with a connected socket, whether the
socket is connection-oriented or connectionless.

The connection has been broken due to "keep-
alive" activity detecting afailure while the
operation was in progress.

The socket is not connected (connection-oriented
sockets only).

MSG_OOB was specified, but the socket is not
stream-style such as type SOCK_STREAM, out-of -
band datais not supported in the communication
domain associated with this socket, or the socket is
unidirectional and supports only send operations.

The socket has been shut down; it is nhot possible to
W SARecvFrom on a socket after shutdown has
been invoked with how set to SD_RECEIVE or
SD_BOTH.

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 250 sur 307

WSAEWOULDBLOCK Overlapped sockets: There are too many
outstanding overlapped /O requests.
Nonoverlapped sockets: The socket is marked as
nonblocking and the receive operation cannot be
completed immediately.

WSAEMSGSIZE The message was too large to fit into the specified
buffer and (for unreliable protocols only) any
trailing portion of the message that did not fit into
the buffer has been discarded.

WSAECONNRESET The virtual circuit was reset by the remote side
executing a"hard" or "abortive" close. The
application should close the socket asit isno
longer useable. On a UDP datagram socket this
error would indicate that a previous send operation
resulted in an ICMP "Port Unreachable" message.

WSAEDISCON Socket sis message oriented and the virtual circuit
was gracefully closed by the remote side.

WSA _10_PENDING An overlapped operation was successfully initiated
and completion will be indicated at alater time.

WSA_OPERATION_ABORTED The overlapped operation has been canceled due to

the closure of the socket.

Quicklnfo

WindowsNT: Yes

Windows: Yes

Windows CE: Unsupported.

Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

W SACloseEvent, WSACreateEvent, WSAGetOverlappedResult, W SA Socket,
W SAWaitFor MultipleEvents

W SARemoveServiceClass

The Windows Sockets W SARemoveSer viceClass function permanently unregisters service class
schema.

I NT WSARenpveSer vi ceC ass(
LPGUI D | pServi ced assld

);

Parameters

|pServiceClassld

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 251 sur 307

[in] A pointer to the GUID for the service class you want to remove.

Return Values

Thereturn valueis zero if the operation was successful. Otherwise, the value SOCKET_ERROR
isreturned, and a specific error number can be retrieved by calling WSAGetL astError.

Error Codes
WSATYPE_NOT_FOUND The specified class was not found.
WSAEACCES The calling routine does not have sufficient
privileges to remove the Service.
WSANOTINITIALIZED The WS2_32.DLL has not been initialized. The
application must first call WSAStartup before
calling any Windows Sockets functions.
WSAEINVAL The specified GUID was not valid.
WSA NOT ENOUGH MEMORY There was insufficient memory to perform the
operation
Quicklnfo

WindowsNT: Yes

Windows:. Yes

Windows CE: Unsupported.

Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

W SAResetEvent

The Windows Sockets W SAResetEvent function resets the state of the specified event object to
nonsignal ed.

BOOL WBAReset Event (
WSAEVENT hEvent
)

Parameters

hEvent
[in] A handle that identifies an open event object handle.

Remarks
The WSAResetEvent function is used to set the state of the event object to nonsignaled.

Return Values

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 252 sur 307

If the W SAResetEvent function succeeds, the return value is TRUE. If the function fails, the
return value is FALSE. To get extended error information, call WSAGetL astError.

Error Codes
WSANOTINITIALISED A successful WSA Startup must occur before using this
function.
WSAENETDOWN The network subsystem has failed.
WSAEINPROGRESS A blocking Windows Sockets 1.1 call isin progress, or
the service provider is still processing a callback
function.
WSA _INVALID_HANDLE The hEvent parameter is not avalid event object handle.
Quicklnfo

WindowsNT: Yes

Windows: Yes

Windows CE: Unsupported.

Header: Declared in winsock2.h.
Import Library: Link withws2_32.lib.

See Also

WSACloseEvent, WSACreateEvent, WSASetEvent

W SA Send

The Windows Sockets W SA Send function sends data on a connected socket.

i nt WSASend (
SOCKET s,
LPWSABUF | pBuf fers,
DWORD dwBuf f er Count ,
LPDWORD | pNumber Of Byt esSent ,
DWORD dwrl ags,
LPWSAOVERLAPPED | pOver | apped,
LPWSAOVERLAPPED_COVPLETI ON_ROUTI NE | pConpl et i onROUTI NE

Parameters

S
[in] A descriptor identifying a connected socket.

|pBuffers
[in] A pointer to an array of WSABUF structures. Each W SABUF structure contains a
pointer to a buffer and the length of the buffer. This array must remain valid for the duration
of the send operation.

dwBuffer Count

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information Page 253 sur 307

[in] The number of WSABUF structuresin the |pBuffers array.
[pNumber OfBytesSent
[out] A pointer to the number of bytes sent by this call if the I/O operation completes
immediately.
dwFlags
[in] A flag that specifies the way in which the call is made.
[pOverlapped
[in] A pointer to a WSAOVERLAPPED structure (ignored for nonoverlapped sockets).
IpCompletionRoutine
[in] A pointer to the completion routine called when the send operation has been completed
(ignored for nonoverlapped sockets).

Remarks

The WSASend function provides functionality over and above the standard send function in two
important areas:

1. It can be used in conjunction with overlapped sockets to perform overlapped send
operations.

2. It alows multiple send buffers to be specified making it applicable to the scatter/gather type
of I/0.

The WSASend function is used to write outgoing data from one or more buffers on a connection-
oriented socket specified by s. It can also be used, however, on connectionless sockets that have a
stipulated default peer address established through the connect or W SAConnect function.

For overlapped sockets (created using W SA Socket with flag WSA_FLAG_OVERLAPPED)
sending information uses overlapped I/0O, unless both IpOverlapped and |pCompletionRoutine are
NULL. In that case, the socket is treated as a nonoverlapped socket. A completion indication will
occur, invoking of the completion routine or setting of an event object, when the supplied buffer
(s) have been consumed by the transport. If the operation does not complete immediately, the final
completion status is retrieved through the compl etion routine or W SAGetOver lappedResult.

If both IpOverlapped and IpCompletionRoutine are NULL, the socket in this function will be
treated as a non-overlapped socket.

For nonoverlapped sockets, the last two parameters (IpOverlapped, |pCompletionRoutine) are
ignored and W SA Send adopts the same blocking semantics as send. Datais copied from the
supplied buffer(s) into the transport's buffer. If the socket is nonblocking and stream oriented, and
there is not sufficient space in the transport's buffer, W SASend will return with only part of the
application's buffers having been consumed. Given the same buffer situation and a blocking
socket, WSASend will block until all of the application’s buffer contents have been consumed.

The array of WSABUEF structures pointed to by the [pBuffers parameter istransient. If this
operation is completed in an overlapped manner, it is the service provider's responsibility to
capture these W SABUF structures before returning from this call. This enables applications to
build stack-based WSABUF arrays.

For message-oriented sockets, care must be taken not to exceed the maximum message size of the
underlying provider, which can be obtained by getting the value of socket option

SO MAX_MSG_SIZE. If the datais too long to pass atomically through the underlying protocol
the error WSAEM SGSIZE isreturned, and no data is transmitted.

file://C:\Documents and Settings\Administrateur\Local Settings\Tem