
Event Logging Page 1 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

Event Logging
Many applications record errors and events in various proprietary error logs. These proprietary
error logs have different formats and display different user interfaces. Moreover, you cannot
merge the data to provide a complete report. Therefore, you need to check a variety of sources to
diagnose problems. Event logging in Microsoft® Windows NT® provides a standard, centralized
way for applications (and the operating system) to record important software and hardware events.
The event-logging service stores events from various sources in a single collection called an event
log. Windows NT also supplies Event Viewer for viewing the logs, and a programming interface
for examining the logs.

This overview contains the following topics, which discuss the programming interface for writing
to and examining event logs.

Event types
Logging guidelines
Event logging elements
Event logging operations
Event logging model
Event logging security

About Event Logging
When an error occurs, the system administrator or support technicians must determine what
caused the error, attempt to recover any lost data, and prevent the error from recurring. It is
helpful if applications, the operating system, and other system services record important events
such as low-memory conditions or excessive attempts to access a disk. Then the system
administrator can use the event log to help determine what conditions caused the error and the
context in which it occurred. By periodically viewing the event log, the system administrator may
be able to identify problems (such as a failing hard drive) before they cause damage.

Event Types

Windows NT defines five types of events that can be logged. All event classifications have well-
defined common data and can optionally include event-specific data. The application indicates the
event type when it reports an event. Each event must be of a single type. The Event Viewer uses
this type to determine which icon to display in the list view of the log.

The following table describes the event types used in event logging.

Event Logging Page 2 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

Selected activities of users on can be tracked by auditing security events and then placing entries
in a computer's security log. To determine the types of security events that will be logged for the
computer, use the Windows NT User Manager. For more information, look up "auditing" in the
online help provided with the Windows NT User Manager.

Logging Guidelines

Event logs store records of significant events on behalf of Windows NT and applications running
on Windows NT. Because the logging functions are general purpose, you must decide what
information is appropriate to log. Generally, you should log only information that could be useful
in diagnosing a hardware or software problem. Event logging is not intended to be used as a
tracing tool.

The following are examples of cases in which event logging can be helpful.

Resource problems. If an application gets into a low-memory situation (caused by a code
bug or inadequate memory) that degrades performance, logging a warning event when
memory allocation fails might provide a clue about what went wrong.
Hardware problems. If a device driver encounters a disk controller time-out, a power failure
in a parallel port, or a data error from a network or serial card, logging information about
these events can help the system administrator diagnose hardware problems. The device
driver logs the error.
Bad sectors. If a disk driver encounters a bad sector, it may be able to read from or write to
the sector after retrying the operation, but the sector will go bad eventually. Therefore, if the

Event type Description

Information Information events indicate infrequent but significant successful
operations. For example, when Microsoft® SQL Server™ successfully
loads, it may be appropriate to log an information event stating that "SQL
Server has started." Note that while this is appropriate behavior for major
server services, it is generally inappropriate for a desktop application
(Microsoft® Excel, for example) to log an event each time it starts.

Warning Warning events indicate problems that are not immediately significant, but
that may indicate conditions that could cause future problems. Resource
consumption is a good candidate for a warning event. For example, an
application can log a warning event if disk space is low. If an application
can recover from an event without loss of functionality or data, it can
generally classify the event as a warning event.

Error Error events indicate significant problems that the user should know about.
Error events usually indicate a loss of functionality or data. For example, if
a service cannot be loaded as the system boots, it can log an error event.

Success audit Success audit events are security events that occur when an audited access
attempt is successful. For example, a successful logon attempt is a success
audit event.

Failure audit Failure audit events are security events that occur when an audited access
attempt fails. For example, a failed attempt to open a file is a failure audit
event.

Event Logging Page 3 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

disk driver can proceed, it should log a warning; otherwise, it should log an error event. If a
file system driver finds a large number of bad sectors, fixes them, and logs warning events,
logging information of this type might indicate that the disk is about to fail.
Information events. A server application (such as a database server) records a user logging
on, opening a database, or starting a file transfer. The server can also log error events it
encounters (cannot access file, host process disconnected, and so on), a corruption in the
database, or whether a file transfer was successful.

Event logging consumes resources such as disk space and processor time. The amount of disk
space that an event log requires and the overhead for an application that logs events depend on
how much information you choose to log. This is why it is important to log only essential
information. It is also good to place event logging calls in an error path in the code rather than in
the main code path, which would reduce performance.

The amount of disk space required per event log record includes the members of the
EVENTLOGRECORD structure. This is a variable length structure; strings and binary data are
stored following the structure.

Event Logging Elements

The following are the major elements used in event logging:

Logfiles
Event sources
Event categories
Event identifiers
Message files
Event data

Logfiles

The event-logging service uses the information stored in the EventLog registry key. The
EventLog key (shown in the following example) contains several subkeys, called logfiles. Logfile
registry information is used to locate resources that the event logging service needs when an
application writes to and reads from the event log. The default logfiles are Application, Security,
and System. The structure is as follows:

HKEY_LOCAL_MACHINE
 SYSTEM
 CurrentControlSet
 Services
 EventLog
 Application
 Security
 System

Applications and services use the Application logfile. Device drivers use the System logfile.
Windows NT will generate success and failure audit events in the Security log when auditing is

Event Logging Page 4 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

turned on. For more information about auditing security events, see the documentation for the
Windows NT User Manager.

Event Sources

Each logfile can contain subkeys called event sources. The event source is the name of the
software that logs the event. It is often the name of the application, or the name of a
subcomponent of the application, if the application is large. Applications and services should add
their names to the Application logfile. Device drivers should add their names to the System
logfile. The structure is as follows:

HKEY_LOCAL_MACHINE
 SYSTEM
 CurrentControlSet
 Services
 EventLog
 Application
 AppName
 Security
 System
 DriverName

The application provides its name when it opens the event log using the RegisterEventSource
function. You cannot use a source name that has already been used as a logfile name. In addition,
source names cannot be hierarchical (that is, you cannot use the backslash character [\]).

Each event source contains information specific to the software that will be logging the events,
such as the message files, as shown in the following table.

Registry Value Description

EventMessageFile Specifies the path for the event message file. You can list
multiple files, separated by semicolons. An event message file
contains language-dependent strings that describe the events.
This value has the type REG_EXPAND_SZ.

CategoryMessageFile Specifies the path for the category message file. You can list
multiple files, separated by semicolons. A category message
file contains language-dependent strings that describe the
categories. This value has the type REG_EXPAND_SZ.

ParameterMessageFile Specifies the path for the parameter message file. You can list
multiple files, separated by semicolons. A parameter message
file contains language-independent strings that are to be
inserted into the event description strings. This value has the
type REG_EXPAND_SZ.

CategoryCount Specifies the number of event categories supported. This value
has the type REG_DWORD.

Event Logging Page 5 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

When an application uses the RegisterEventSource or OpenEventLog function to get a handle
to an event log, the event-logging service searches for the specified event source in the registry.
For example, the Application logfile might contain event sources for Microsoft SQL Server and
Microsoft Excel. If an application uses RegisterEventSource or OpenEventLog with a source
name of Application, SQL, or Excel, the event-logging service returns a handle to the
Application logfile.

An application can use the Application event log without adding a new event source to the
registry. If the application calls RegisterEventSource, passing a source name that cannot be
found in the registry, the event-logging service uses the Application logfile by default. However,
because there are no message files, the Event Viewer cannot map any event identifiers or event
categories to a description string, and will display an error. For this reason, you should add a
unique event source to the registry for your application and specify a message file.

Event Categories

Categories help you organize events so Event Viewer can filter them. Each event source can
define its own numbered categories and the text strings to which they are mapped. The categories
must be numbered consecutively beginning with the number 1. For example, the security system
uses the following categories:

Logon/logoff
File system access
Privileged actions
Change in security policy

Event Identifiers

Event identifiers uniquely identify a particular event. Each event source can define its own
numbered events and the description strings to which they are mapped. Event viewers can present
these strings to the user. They should help the user understand what went wrong and suggest what
actions to take. Direct the description at users solving their own problems, not at administrators or
support technicians. Make the description clear and concise and avoid culture-specific phrases.

The following sections discuss these description strings, and the insertion strings that serve as
placeholders in the description strings.

Description Strings

TypesSupported Specifies a bitmask of supported types. This value has the type
REG_DWORD. It can be one or more of the following values:

EVENTLOG_ERROR_TYPE
EVENTLOG_WARNING_TYPE
EVENTLOG_INFORMATION_TYPE
EVENTLOG_AUDIT_SUCCESS
EVENTLOG_AUDIT_FAILURE

Event Logging Page 6 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

The description strings in the event message file are indexed by event identifier, enabling Event
Viewer to display event-specific text for any event based on the event identifier. All descriptions
are localized and language dependent. The description strings may contain insertion string
placeholders, of the form %n, where %1 indicates the first insertion string, and so on. For
example, the following is a sample entry in the .MC file:

MessageId=0x4
Severity=Error
Facility=System
SymbolicName=MSG_CMD_DELETE
Language=English
File %1 contains %2, which is in error.

In this case, the buffer returned by ReadEventLog contains insertion strings. The NumStrings
member of the EVENTLOGRECORD structure indicates the number of insertion strings. The
StringOffset member of the EVENTLOGRECORD structure indicates the location of the first
insertion string in the buffer.

The description string can also contain placeholders for parameter strings from the parameter
message file. The placeholders are of the form %%n, where %%1 is replaced by the parameter
string with the identifier of 1, and so on. In this case, the event viewer uses LoadLibraryEx and
FormatMessage to retrieve the insertion string from the file indicated by the source's
ParameterMessageFile registry value.

Insertion Strings

Insertion strings are optional language-independent strings used to fill in values for placeholders
in description strings. Because the strings are not localized, it is critical that these placeholders be
used only to represent language-independent strings such as numeric values, file names, user
names, and so on. The string length must not exceed 32 kilobytes – 1 characters.

It is not acceptable to use several strings to create a larger description. The insertion string should
be treated as data, not text. For example, the following example is not recommended:

LPSTR pszString1 = "successfully";
LPSTR pszString2 = "not";
LPSTR pszDescription = "The user was %1 added to the database.";

It is not acceptable to use pszString1 and pszString2 to form the strings "The user was
successfully added to the database." and "The user was not added to the database." There are three
reasons this substitution is not effective:

The strings "successfully" and "not" should be localized.
Even if the description strings are obtained from language-dependent message files, this is
done when the event is logged, not when it is viewed. When the event is viewed, the
language may be wrong.
Such substitutions of adverbs and adjectives will not work in many other languages. The
preceding example should use two separate events, each with its own description string.

In the following example, it is appropriate to use either pszString1 or pszString2 for the
insertion string in pszDescription.

Event Logging Page 7 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

LPSTR pszString1 = "c:\\testapp1.c";
LPSTR pszString2 = "c:\\testapp2.c";
LPSTR pszDescription = "Access denied. Attempted to open the file %1."

Message Files

Each event sources should register message files that contain description strings for each event
identifier, event category, and parameter. Register these files in the EventMessageFile,
CategoryMessageFile, and ParameterMessageFile registry values for the event source. You can
create one message file that contains descriptions for the event identifiers, categories, and
parameters, or create three separate message files. Several applications can share the same
message file.

You should typically create message files as dynamic-link libraries (DLL). Use the following
procedure to create these DLLs.

 To create a message file

1. Do not include exported functions in the .C file; include only a stub for the DllMain
function. The stub should simply return TRUE.

2. Use the following command to compile the .C file:
cl options -fo filename.obj filename.c.

3. Create an .MC file to define the message resource table. For more information, see Message
Compiler Source Files.

4. Use the message compiler to create .RC and .BIN files from the .MC file. Use the following
command: mc filename.mc.

5. Use the resource compiler to create a .RES file. Use the following command: rc -r -fo
filename.res filename.rc.

6. Use the linker to create a .DLL file. Use the following command line: link -dll -
out:filename.dll filename.obj filename.res.

To make it easier for the application to use your message file, create a header file that lists each
event. For example, suppose you have defined the following message in your .MC file:

MessageId=0x4
Severity=Error
Facility=System
SymbolicName=MSG_CMD_DELETE
Language=English
File %1 contains %2, which is in error.

Your header file should contain the following code:

//
// MessageId: MSG_CMD_DELETE
// MessageText:
// File %1 contains %2, which is in error.
//
#define MSG_CMD_DELETE ((DWORD)0xC0000004L)

Event Logging Page 8 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

Now the event-viewing application can use the following procedure to gain access to the
description strings in the message file.

 To obtain description strings

1. Use the RegOpenKey function to open the event source.
2. Use the RegQueryValueEx function to obtain the EventMessageFile value for the event

source, which is the name of the event message DLL.
3. Use the LoadLibraryEx function to load the event message DLL.
4. Use the FormatMessage function to obtain the description from the DLL and add the

insertion strings.

Event Data

Each event can have event-specific data associated with it. The Event Viewer does not interpret
this data; it displays extra data only in a combined hexadecimal and text format. Use event-
specific data sparingly, including it only if you are sure it will be useful to someone debugging the
problem. For example, many network-related events include network control blocks (NCBs) as
event-specific data.

When you use event-specific data, the last part of its description string should provide a note
about the information provided as event-specific data. For example, the network software could
provide a note such as: "(The NCB is the event data)." As a convention, use parentheses around
such remarks, as indicated in this example.

You can also use event-specific data to store information the application can process
independently of the Event Viewer. For example, you could write a viewer specifically for your
events, or write a program that scans the logfile and makes reports that include information from
the event-specific data.

Event Logging Operations

The OpenEventLog, OpenBackupEventLog, RegisterEventSource, DeregisterEventSource,
and CloseEventLog functions open and close event log handles. Accessing the object through its
handle provides an object-oriented model for the event-logging functions, as well as some
performance gain when requesting multiple operations on the logs.

The following table shows the operations that can be performed on an open event log, and the
corresponding function for each operation.

Operation Function

Backup BackupEventLog

Clear ClearEventLog

Monitor NotifyChangeEventLog

Query GetOldestEventLogRecord, GetNumberOfEventLogRecords

Event Logging Page 9 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

The OpenEventLog and ReportEvent functions take an optional server name as a parameter so
the operations can be performed on the remote server. Use OpenEventLog for reading or
performing administrative operations (backup, clear, monitor, and query) on the log, and use
RegisterEventSource for writing to the log.

Each call to an event logging function is an atomic operation. When you read from the event log,
only whole event records are returned. When you write to the event log, each event record is
guaranteed to be written sequentially as a complete record in the log. The following list describes
how the event-logging service handles special conditions:

The event-logging service receives a read operation and a write operation at the same time.
If the read position is at the end of the file, either the read operation fails with an "end-of-
file" status (if the write operation has not been completed), or it returns the new record (if
the write operation has been completed).
The event-logging service completes a clear operation before receiving a read operation.
The read operation fails with "end-of-file" status.
The event-logging service completes a clear operation before receiving a write operation.
The clear operation truncates the log, then the write operation adds the new record at the
beginning of the log.

Event Logging Model

The following sections describe the processes that form the event-logging model.

Writing to the Event Log
Reading from the Event Log
Viewing the Event Log

Writing to the Event Log

When an application calls the ReportEvent function to write an entry to the log, Windows NT
passes the parameters to the event-logging service. The event-logging service uses the information
to write an EVENTLOGRECORD structure to the event log. The following diagram illustrates
this process.

Read ReadEventLog

Write ReportEvent

Event Logging Page 10 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

Reading from the Event Log

An event viewer application uses the OpenEventLog function to open the event log for an event
source. The event viewer can then use the ReadEventLog function to read event records from the
log. ReadEventLog returns a buffer containing an EVENTLOGRECORD structure and
additional information that describes a logged event. The following diagram illustrates this
process.

Viewing the Event Log

When the user starts Event Viewer to view the event log entries, it calls the ReadEventLog
function to obtain the EVENTLOGRECORD structures. The Event Viewer uses the event
source and event identifier to get message text for each event from the registered message file
(indicated by the EventMessageFile registry value for the source). The Event Viewer uses the
LoadLibraryEx function to load the message file. The Event Viewer then uses the
FormatMessage function to retrieve the description string from the loaded module.

The following illustration shows how the Event Viewer presents this information.

Event Logging Page 11 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

If the user double-clicks on an event log entry, the Event Viewer displays more information, as
shown in the following illustration.

Event Logging Security

Access to the event logs is determined by the account under which the application is running. The
LocalSystem account is a special account that Windows NT services can use. The Administrator
account consists of the administrators for the system. The Server Operator account (ServerOp)
consists of the administrators of the domain server. The World account includes all users on all

Event Logging Page 12 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

systems.

The following table shows which accounts are granted read, write, and clear access to each log.

In addition, users can read and clear the Security log if they have been granted one of the
following:

The "manage auditing and security log" user right. Use the Windows NT User Manager.
Click the Policies menu, then click User Rights.
The SE_AUDIT_NAME privilege. For more information, see Windows NT Privileges.

The following table shows which types of access are required for each event logging function:

As an example, OpenEventLog requires read access. A member of the ServerOp account can call
OpenEventLog for the Application event log and the System event log, because ServerOp has
read access for both of these logs. However, a member of the ServerOp account cannot call
OpenEventLog for the Security log, because it does not have read access for this log.

Using Event Logging
You can use the Windows NT Registry Editor (REGEDT32.EXE) to view the event log registry
keys, and you can use the Windows NT Event Viewer to view the event logs. To create event log
entries, use the event logging functions as shown in the following topics.

Adding a source to the registry

Log Account Access

Application LocalSystem Read Write Clear

Adminstrator Read Write Clear

ServerOp Read Write Clear

World Read Write

Security LocalSystem Read Write Clear

Adminstrator Read Clear

World Read Clear

System LocalSystem Read Write Clear

Adminstrator Read Write Clear

ServerOp Read Clear

World Read

Function Access Required

OpenEventLog Read

OpenBackupEventLog Read

RegisterEventSource Write

ClearEventLog Clear

Event Logging Page 13 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

Reporting an event
Querying the event log
Reading the event log
Displaying the user for an event
Displaying the local time for an event

Adding a Source to the Registry

You can use the default Application event log without adding an event source to the registry.
However, Event Viewer will not be able to map your event identifier codes to message strings
unless you register your event source and provide a message file.

You can add a new source name to the registry by opening a new registry subkey under the
Application key using the RegCreateKey function, and adding registry values to the new subkey
using the RegSetValueEx function. The following example opens a new source name called
SamplApp and adds a message-file name and a bitmask of supported types.

void AddEventSource()
{
 HKEY hk;
 DWORD dwData;
 UCHAR szBuf[80];

 // Add your source name as a subkey under the Application
 // key in the EventLog registry key.

 if (RegCreateKey(HKEY_LOCAL_MACHINE,
 "SYSTEM\\CurrentControlSet\\Services\
 \\EventLog\\Application\\SamplApp", &hk))
 ErrorExit("Could not create the registry key.");

 // Set the name of the message file.

 strcpy(szBuf, "%SystemRoot%\\System\\SamplApp.dll");

 // Add the name to the EventMessageFile subkey.

 if (RegSetValueEx(hk, // subkey handle
 "EventMessageFile", // value name
 0, // must be zero
 REG_EXPAND_SZ, // value type
 (LPBYTE) szBuf, // pointer to value data
 strlen(szBuf) + 1)) // length of value data
 ErrorExit("Could not set the event message file.");

 // Set the supported event types in the TypesSupported subkey.

 dwData = EVENTLOG_ERROR_TYPE | EVENTLOG_WARNING_TYPE |
 EVENTLOG_INFORMATION_TYPE;

 if (RegSetValueEx(hk, // subkey handle
 "TypesSupported", // value name
 0, // must be zero
 REG_DWORD, // value type
 (LPBYTE) &dwData, // pointer to value data
 sizeof(DWORD))) // length of value data
 ErrorExit("Could not set the supported types.");

 RegCloseKey(hk);
}

Event Logging Page 14 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

Reporting an Event

After you have added a source name to the registry, use the RegisterEventSource function to get
a handle to the Application event log. The following example obtains the handle and then adds an
event to the log using the ReportEvent function.

void MyReportEvent(LPSTR szMsg)
{
 HANDLE h;

 h = RegisterEventSource(NULL, // uses local computer
 "SamplApp"); // source name
 if (h == NULL)
 ErrorExit("Could not register the event source.");

 if (!ReportEvent(h, // event log handle
 EVENTLOG_ERROR_TYPE, // event type
 0, // category zero
 MSG_ERR_EXIST, // event identifier
 NULL, // no user security identifier
 1, // one substitution string
 0, // no data
 (LPTSTR *) szMsg, // pointer to string array
 NULL)) // pointer to data
 ErrorExit("Could not report the event.");

 DeregisterEventSource(h);
}

Recall that your header file contains the event identifiers. For this example, the following event
identifier was used:

//
// MessageId: MSG_ERR_EXIST
// MessageText:
// File %1 does not exist.
//
#define MSG_ERR_EXIST ((DWORD)0xC0000004L)

Querying the Event Log

If you want to find out how many event records are in the event log, use the
GetNumberOfEventLogRecords function. The following example displays the number of event
records in the Application event log and the System event log. It opens the logs using the
OpenEventLog function and obtains the number of records using
GetNumberOfEventLogRecords.

void DisplayEventCount()
{
 HANDLE h;
 DWORD cRecords;

Event Logging Page 15 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

 // Open the System log.

 h = OpenEventLog(NULL, // uses local computer
 "System"); // source name
 if (h == NULL)
 ErrorExit("Could not open the System event log.");

 // Get the number of records in the System event log.

 if (!GetNumberOfEventLogRecords(h, &cRecords))
 ErrorExit("Could not get the number of records.");

 printf("There are %d records in the System event log.\n",
 cRecords);

 CloseEventLog(h);

 // Open the Application log.

 h = OpenEventLog(NULL, // uses local computer
 "Application"); // source name
 if (h == NULL)
 ErrorExit("Could not open the Application event log.");

 // Get the number of records in the Application event log.

 if (!GetNumberOfEventLogRecords(h, &cRecords))
 ErrorExit("Could not get number of records.");

 printf("There are %d records in the Application event log.\n",
 cRecords);

 CloseEventLog(h);
}

Reading the Event Log

The following example reads all the records in the Application log file and displays the event
identifier, event type, and event source for each event log entry.

void DisplayEntries()
{
 HANDLE h;
 EVENTLOGRECORD *pevlr;
 BYTE bBuffer[BUFFER_SIZE];
 DWORD dwRead, dwNeeded, cRecords, dwThisRecord = 0;

 // Open the Application event log.

 h = OpenEventLog(NULL, // use local computer
 "Application"); // source name
 if (h == NULL)
 ErrorExit("Could not open the Application event log.");

 pevlr = (EVENTLOGRECORD *) &bBuffer;

 // Opening the event log positions the file pointer for this
 // handle at the beginning of the log. Read the records
 // sequentially until there are no more.

 while (ReadEventLog(h, // event log handle
 EVENTLOG_FORWARDS_READ | // reads forward
 EVENTLOG_SEQUENTIAL_READ, // sequential read

Event Logging Page 16 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

 0, // ignored for sequential reads
 pevlr, // pointer to buffer
 BUFFER_SIZE, // size of buffer
 &dwRead, // number of bytes read
 &dwNeeded)) // bytes in next record
 {
 while (dwRead > 0)
 {
 // Print the event identifier, type, and source name.
 // The source name is just past the end of the
 // formal structure.

 printf("%02d Event ID: 0x%08X ",
 dwThisRecord++, pevlr->EventID);
 printf("EventType: %d Source: %s\n",
 pevlr->EventType, (LPSTR) ((LPBYTE) pevlr +
 sizeof(EVENTLOGRECORD)));

 dwRead -= pevlr->Length;
 pevlr = (EVENTLOGRECORD *)
 ((LPBYTE) pevlr + pevlr->Length);
 }

 pevlr = (EVENTLOGRECORD *) &bBuffer;
 }

 CloseEventLog(h);
}

Displaying the User for an Event

The following example retrieves the name of the user for an event. The function parameters are a
pointer to the EVENTLOGRECORD structure, a pointer to a buffer to receive the user name,
and a pointer to the size of the allocated buffer. If the function succeeds, it returns TRUE;
otherwise, it returns FALSE. To get extended error information, call GetLastError.

BOOL
GetEventUserName(EVENTLOGRECORD *pelr, LPSTR pszUser, LPDWORD pcbUser)
{
 PSID lpSid;
 char szName[256];
 char szDomain[256];
 SID_NAME_USE snu;
 DWORD dwLen;
 DWORD cbName = 256;
 DWORD cbDomain = 256;

 // Point to the SID.
 lpSid = (PSID)((LPBYTE) pelr + pelr->UserSidOffset);

 if (LookupAccountSid(NULL, lpSid, szName, &cbName, szDomain,
 &cbDomain, &snu))
 {
 // Determine whether the buffer is large enough.
 dwLen = lstrlen(lpszUser) + 1;

 if (dwLen > *lpcbUser)
 {
 SetLastError(ERROR_INSUFFICIENT_BUFFER);
 *lpcbUser = dwLen;
 return FALSE;
 }

Event Logging Page 17 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

 // Return the user's name.
 lstrcpy(lpszUser, szName);

 }
 else
 {
 // Use the error status from LookupAccountSid.
 return FALSE;
 }

 SetLastError(0);
 return TRUE;
}

Displaying the Local Time for an Event

The following example displays the time information for an event. The function parameter is a
pointer to the EVENTLOGRECORD structure. The function has no return value.

void PrintTimeGenerated(EVENTLOGRECORD *pevlr)
{
 FILETIME FileTime, LocalFileTime;
 SYSTEMTIME SysTime;
 __int64 lgTemp;
 __int64 SecsTo1970 = 116444736000000000;

 lgTemp = Int32x32To64(pevlr->TimeGenerated,10000000) + SecsTo1970;

 FileTime.dwLowDateTime = (DWORD) lgTemp;
 FileTime.dwHighDateTime = (DWORD)(lgTemp >> 32);

 FileTimeToLocalFileTime(&FileTime, &LocalFileTime);
 FileTimeToSystemTime(&LocalFileTime, &SysTime);

 printf("Time Generated: %02d/%02d/%02d %02d:%02d:%02d\n",
 SysTime.wMonth,
 SysTime.wDay,
 SysTime.wYear,
 SysTime.wHour,
 SysTime.wMinute,
 SysTime.wSecond);
}

Event Logging Reference
The following elements are used with event logging.

Event Logging Functions
Event Logging Structures

Event Logging Functions

Event Logging Page 18 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

The following functions are used with event logging.

BackupEventLog
The BackupEventLog function saves the specified event log to a backup file. The function does
not clear the event log.

BOOL BackupEventLog(
 HANDLE hEventLog, // handle to event log
 LPCTSTR lpBackupFileName // name of backup file
);

Parameters

hEventLog
Handle to the open event log. This handle is returned by the OpenEventLog or
OpenBackupEventLog function.

lpBackupFileName
Pointer to a null-terminated string that names the backup file.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks

The backup file cannot be written to a remote server because this function is implemented by a
service running in the LocalSystem account, which does not have credentials on the remote

BackupEventLog

ClearEventLog

CloseEventLog

DeregisterEventSource

GetNumberOfEventLogRecords

GetOldestEventLogRecord

NotifyChangeEventLog

OpenBackupEventLog

OpenEventLog

ReadEventLog

RegisterEventSource

ReportEvent

Event Logging Page 19 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

machine. However, it is possible to write the file to a remote machine using a null session.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winbase.h.
 Import Library: Use advapi32.lib.
 Unicode: Implemented as Unicode and ANSI versions on Windows NT.

See Also

Event Logging Overview, Event Logging Functions, OpenBackupEventLog, OpenEventLog

ClearEventLog
The ClearEventLog function clears the specified event log, and optionally saves the current copy
of the logfile to a backup file.

BOOL ClearEventLog(
 HANDLE hEventLog, // handle to event log
 LPCTSTR lpBackupFileName // name of backup file
);

Parameters

hEventLog
Handle to the event log to be cleared. This handle is returned by the OpenEventLog
function.

lpBackupFileName
Pointer to the null-terminated string specifying the name of a file in which a current copy of
the event logfile will be placed. If this file already exists, the function fails.

If the lpBackupFileName parameter is NULL, the current event logfile is not backed up.

Return Values

If the function succeeds, the return value is nonzero. The specified event log has been backed up
(if lpBackupFileName is not NULL) and then cleared.

If the function fails, the return value is zero. To get extended error information, call
GetLastError. The ClearEventLog function fails if the event log is empty or a file already exists
with the same name as lpBackupFileName.

Remarks

After this function returns, any handles that reference the cleared event log cannot be used to read
the log.

Event Logging Page 20 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

The ClearEventLog function is used to optionally back up an existing logfile of the module
represented by hEventLog. The function backs up the logfile to another file, and then clears the
existing logfile. The caller must have write permission for the path specified, and must also have
permission to clear the current logfile.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winbase.h.
 Import Library: Use advapi32.lib.
 Unicode: Implemented as Unicode and ANSI versions on Windows NT.

See Also

Event Logging Overview, Event Logging Functions, OpenEventLog

CloseEventLog
The CloseEventLog function closes the specified event log.

BOOL CloseEventLog(
 HANDLE hEventLog // handle to event log
);

Parameters

hEventLog
Handle to the event log to be closed. This handle is returned by the OpenEventLog
function.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winbase.h.
 Import Library: Use advapi32.lib.

See Also

Event Logging Page 21 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

Event Logging Overview, Event Logging Functions, OpenEventLog

DeregisterEventSource
The DeregisterEventSource function closes a handle to the specified event log.

BOOL DeregisterEventSource(
 HANDLE hEventLog // handle to event log
);

Parameters

hEventLog
Handle to the event log. This handle is returned by the RegisterEventSource function.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winbase.h.
 Import Library: Use advapi32.lib.

See Also

Event Logging Overview, Event Logging Functions, RegisterEventSource

GetNumberOfEventLogRecords
The GetNumberOfEventLogRecords function retrieves the number of records in the specified
event log.

BOOL GetNumberOfEventLogRecords(
 HANDLE hEventLog, // handle to event log
 PDWORD NumberOfRecords // buffer for number of records
);

Parameters

Event Logging Page 22 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

hEventLog
Handle to the open event log. This handle is returned by the OpenEventLog or
OpenBackupEventLog function.

NumberOfRecords
Pointer to the buffer that receives the number of records in the specified event log.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winbase.h.
 Import Library: Use advapi32.lib.

See Also

Event Logging Overview, Event Logging Functions, GetOldestEventLogRecord,
OpenBackupEventLog, OpenEventLog

GetOldestEventLogRecord
The GetOldestEventLogRecord function retrieves the absolute record number of the oldest
record in the specified event log.

BOOL GetOldestEventLogRecord(
 HANDLE hEventLog, // handle to event log
 PDWORD OldestRecord // buffer for number of oldest record
);

Parameters

hEventLog
Handle to the open event log. This handle is returned by the OpenEventLog or
OpenBackupEventLog function.

OldestRecord
Pointer to the buffer that receives the absolute record number of the oldest record in the
specified event log.

Return Values

If the function succeeds, the return value is nonzero.

Event Logging Page 23 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winbase.h.
 Import Library: Use advapi32.lib.

See Also

Event Logging Overview, Event Logging Functions, GetNumberOfEventLogRecords,
OpenBackupEventLog, OpenEventLog

NotifyChangeEventLog
The NotifyChangeEventLog function enables an application to receive notification when an
event is written to the specified event log file. When the event is written to the event log file, the
specified event object is set to the signaled state.

BOOL NotifyChangeEventLog(
 HANDLE hEventLog, // handle to an event log
 HANDLE hEvent // handle to an event object
);

Parameters

hEventLog
Handle to an event log file. This handle is returned by the OpenEventLog or
OpenBackupEventLog function.

hEvent
Handle to an event object. Use the CreateEvent function to create the event object.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks

The NotifyChangeEventLog function does not work with remote handles. If the hEventLog
parameter is the handle to an event log on a remote computer, NotifiyChangeEventLog returns
zero, and GetLastError returns ERROR_INVALID_HANDLE.

Event Logging Page 24 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

When an event is written to the log file specified by hEventLog, the event specified by the hEvent
parameter is set to the signaled state.

QuickInfo

 Windows NT: Requires version 3.5 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winbase.h.
 Import Library: Use advapi32.lib.

See Also

Event Logging Overview, Event Logging Functions, CreateEvent, OpenBackupEventLog,
OpenEventLog

OpenBackupEventLog
The OpenBackupEventLog function opens a handle to a backup event log. This handle can be
used with the BackupEventLog function.

HANDLE OpenBackupEventLog(
 LPCTSTR lpUNCServerName, // backup file server name
 LPCTSTR lpFileName // backup filename
);

Parameters

lpUNCServerName
Pointer to a null-terminated string that specifies the Universal Naming Convention (UNC)
name of the server on which this operation is to be performed.

lpFileName
Pointer to a null-terminated string that specifies the name of the backup file.

Return Values

If the function succeeds, the return value is a handle to the backup event log.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Remarks

The backup file cannot be written to a remote server because this function is implemented by a
service running in the LocalSystem account, which does not have credentials on the remote
machine. However, it is possible to write the file to a remote machine using a null session.

If the backup filename specifies a remote server, lpUNCServerName must be NULL.

Event Logging Page 25 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winbase.h.
 Import Library: Use advapi32.lib.
 Unicode: Implemented as Unicode and ANSI versions on Windows NT.

See Also

Event Logging Overview, Event Logging Functions, BackupEventLog

OpenEventLog
The OpenEventLog function opens a handle to an event log.

HANDLE OpenEventLog(
 LPCTSTR lpUNCServerName, // pointer to server name
 LPCTSTR lpSourceName // pointer to source name
);

Parameters

lpUNCServerName
Pointer to a null-terminated string that specifies the Universal Naming Convention (UNC)
name of the server on which the event log is to be opened.

lpSourceName
Pointer to a null-terminated string that specifies the name of the logfile that the returned
handle will reference. This can be the Application, Security, or System logfile, or a custom
registered logfile. If a custom registered logfile name cannot be found, the event logging
service opens the Application logfile, however, there will be no associated message or
category string file.

Return Values

If the function succeeds, the return value is the handle to an event log.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winbase.h.
 Import Library: Use advapi32.lib.

Event Logging Page 26 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

 Unicode: Implemented as Unicode and ANSI versions on Windows NT.

See Also

Event Logging Overview, Event Logging Functions, ClearEventLog, CloseEventLog,
GetNumberOfEventLogRecords, GetOldestEventLogRecord, ReadEventLog, ReportEvent

ReadEventLog
The ReadEventLog function reads a whole number of entries from the specified event log. The
function can be used to read log entries in forward or reverse chronological order.

BOOL ReadEventLog(
 HANDLE hEventLog, // handle to event log
 DWORD dwReadFlags, // specifies how to read log
 DWORD dwRecordOffset, // number of first record
 LPVOID lpBuffer, // address of buffer for read data
 DWORD nNumberOfBytesToRead, // number of bytes to read
 DWORD *pnBytesRead, // number of bytes read
 DWORD *pnMinNumberOfBytesNeeded
 // number of bytes required for next
 // record
);

Parameters

hEventLog
Handle to the event log to read. This handle is returned by the OpenEventLog function.

dwReadFlags
Specifies how the read operation is to proceed. This parameter can be any combination of
the following values:

Value Meaning

EVENTLOG_FORWARDS_READ The log is read in forward chronological
order.

EVENTLOG_BACKWARDS_READ The log is read in reverse chronological
order.

EVENTLOG_SEEK_READ The read operation proceeds from the
record specified by the dwRecordOffset
parameter. If this flag is used,
dwReadFlags must also specify
EVENTLOG_FORWARDS_READ or
EVENTLOG_BACKWARDS_READ. If
the buffer is large enough, more than one
record can be read at the specified seek
position; the additional flag indicates the
direction for successive read operations.

EVENTLOG_SEQUENTIAL_READ The read operation proceeds sequentially
from the last call to the ReadEventLog
function using this handle.

Event Logging Page 27 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

dwRecordOffset
Specifies the log-entry record number at which the read operation should start. This
parameter is ignored unless the dwReadFlags parameter includes the
EVENTLOG_SEEK_READ flag.

lpBuffer
Pointer to a buffer for the data read from the event log. This parameter cannot be NULL,
even if the nNumberOfBytesToRead parameter is zero.

The buffer will be filled with an EVENTLOGRECORD structure.
nNumberOfBytesToRead

Specifies the size, in bytes, of the buffer. This function will read as many whole log entries
as will fit in the buffer; the function will not return partial entries, even if there is room in
the buffer.

pnBytesRead
Pointer to a variable that receives the number of bytes read by the function.

pnMinNumberOfBytesNeeded
Pointer to a variable that receives the number of bytes required for the next log entry. This
count is valid only if ReadEventLog returns zero and GetLastError returns
ERROR_INSUFFICIENT_BUFFER.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks

When this function returns successfully, the read position in the error log is adjusted by the
number of records read. Only a whole number of event log records will be returned.

Note The configured filename for this source may also be the configured filename for other
sources (several sources can exist as subkeys under a single logfile). Therefore, this function may
return events that were logged by more than one source.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winbase.h.
 Import Library: Use advapi32.lib.
 Unicode: Implemented as Unicode and ANSI versions on Windows NT.

See Also

Event Logging Overview, Event Logging Functions, ClearEventLog, CloseEventLog,
EVENTLOGRECORD, OpenEventLog, ReportEvent

Event Logging Page 28 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

RegisterEventSource
The RegisterEventSource function returns a registered handle to an event log.

HANDLE RegisterEventSource(
 LPCTSTR lpUNCServerName, // server name for source
 LPCTSTR lpSourceName // source name for registered handle
);

Parameters

lpUNCServerName
Pointer to a null-terminated string that specifies the Universal Naming Convention (UNC)
name of the server on which this operation is to be performed. If this parameter is NULL,
the operation is performed on the local computer.

lpSourceName
Pointer to a null-terminated string that specifies the name of the source referenced by the
returned handle. The source name must be a subkey of a logfile entry under the EventLog
key in the registry. For example, WinApp is a valid source name if the registry has the
following key:

HKEY_LOCAL_MACHINE
 System
 CurrentControlSet
 Services
 EventLog
 Application
 WinApp
 Security
 System

Return Values

If the function succeeds, the return value is a handle that can be used with the ReportEvent
function.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Remarks

If the source name cannot be found, the event logging service uses the Application logfile; it does
not create a new source. Events are reported for the source, however, there are no message and
category message files specified for looking up descriptions of the event identifiers for the source.

To close the handle to the event log, call the DeregisterEventSource function.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.

Event Logging Page 29 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

 Header: Declared in winbase.h.
 Import Library: Use advapi32.lib.
 Unicode: Implemented as Unicode and ANSI versions on Windows NT.

See Also

Event Logging Overview, Event Logging Functions, DeregisterEventSource, ReportEvent

ReportEvent
The ReportEvent function writes an entry at the end of the specified event log.

BOOL ReportEvent(
 HANDLE hEventLog, // handle returned by RegisterEventSource
 WORD wType, // event type to log
 WORD wCategory, // event category
 DWORD dwEventID, // event identifier
 PSID lpUserSid, // user security identifier (optional)
 WORD wNumStrings, // number of strings to merge with message
 DWORD dwDataSize, // size of binary data, in bytes
 LPCTSTR *lpStrings, // array of strings to merge with message
 LPVOID lpRawData // address of binary data
);

Parameters

hEventLog
Handle to the event log. This handle is returned by the RegisterEventSource function.

wType
Specifies the type of event being logged. This parameter can be one of the following values:

For more information about event types, see Event Types.
wCategory

Specifies the event category. This is source-specific information; the category can have any
value.

dwEventID
Specifies the event. The event identifier specifies the message that goes with this event as
an entry in the message file associated with the event source.

lpUserSid
Pointer to the current user's security identifier. This parameter can be NULL if the security
identifier is not required.

wNumStrings
Specifies the number of strings in the array pointed to by the lpStrings parameter. A value

Value Meaning

EVENTLOG_ERROR_TYPE Error event

EVENTLOG_WARNING_TYPE Warning event

EVENTLOG_INFORMATION_TYPE Information event

EVENTLOG_AUDIT_SUCCESS Success Audit event

EVENTLOG_AUDIT_FAILURE Failure Audit event

Event Logging Page 30 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

of zero indicates that no strings are present.
dwDataSize

Specifies the number of bytes of event-specific raw (binary) data to write to the log. If this
parameter is zero, no event-specific data is present.

lpStrings
Pointer to a buffer containing an array of null-terminated strings that are merged into the
message from the message file before Event Viewer displays the string to the user. This
parameter must be a valid pointer (or NULL), even if wNumStrings is zero. Each string has
a limit of 32K bytes.

lpRawData
Pointer to the buffer containing the binary data. This parameter must be a valid pointer (or
NULL), even if the dwDataSize parameter is zero.

Return Values

If the function succeeds, the return value is nonzero, indicating that the entry was written to the
log.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks

This function is used to log an event. The entry is written to the end of the configured logfile for
the source identified by the hEventLog parameter. The ReportEvent function adds the time, the
entry's length, and the offsets before storing the entry in the log. To enable the function to add the
username, you must supply the user's SID in the lpUserSid parameter.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winbase.h.
 Import Library: Use advapi32.lib.
 Unicode: Implemented as Unicode and ANSI versions on Windows NT.

See Also

Event Logging Overview, Event Logging Functions, ClearEventLog, CloseEventLog,
OpenEventLog, ReadEventLog, RegisterEventSource

Event Logging Structures

The following structure is used with event logging.

EVENTLOGRECORD

Event Logging Page 31 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

EVENTLOGRECORD
The EVENTLOGRECORD structure contains information about an event record returned by the
ReadEventLog function.

typedef struct _EVENTLOGRECORD {
 DWORD Length;
 DWORD Reserved;
 DWORD RecordNumber;
 DWORD TimeGenerated;
 DWORD TimeWritten;
 DWORD EventID;
 WORD EventType;
 WORD NumStrings;
 WORD EventCategory;
 WORD ReservedFlags;
 DWORD ClosingRecordNumber;
 DWORD StringOffset;
 DWORD UserSidLength;
 DWORD UserSidOffset;
 DWORD DataLength;
 DWORD DataOffset;
 //
 // Then follow:
 //
 // TCHAR SourceName[]
 // TCHAR Computername[]
 // SID UserSid
 // TCHAR Strings[]
 // BYTE Data[]
 // CHAR Pad[]
 // DWORD Length;
 //
} EVENTLOGRECORD;

Members

Length
Specifies the length, in bytes, of this event record. Note that this value is stored at both ends
of the entry to ease moving forward or backward through the log. The length includes any
pad bytes inserted at the end of the record for DWORD alignment.

Reserved
Reserved.

RecordNumber
Contains a record number that can be used with the EVENTLOG_SEEK_READ flag
passed in a call to the ReadEventLog function to begin reading at a specified record.

TimeGenerated
The time at which this entry was submitted. This time is measured in the number of seconds
elapsed since 00:00:00 January 1, 1970, Universal Coordinated Time.

TimeWritten
Specifies the time at which this entry was received by the service to be written to the
logfile. This time is measured in the number of seconds elapsed since 00:00:00 January 1,
1970, Universal Coordinated Time.

EventID
Specifies the event. This is specific to the source that generated the event log entry, and is
used, together with SourceName, to identify a message in a message file that is presented
to the user while viewing the log.

Event Logging Page 32 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

EventType
Specifies the type of event. This member can be one of the following values:

For more information about event types, see Event Logging.
NumStrings

Specifies the number of strings present in the log (at the position indicated by
StringOffset). These strings are merged into the message before it is displayed to the user.

EventCategory
Specifies a subcategory for this event. This subcategory is source specific.

ReservedFlags
Reserved.

ClosingRecordNumber
Reserved.

StringOffset
Specifies the offset of the strings within this event log entry.

UserSidLength
Specifies the length, in bytes, of the UserSid member. This value can be zero if no security
identifier was provided.

UserSidOffset
Specifies the offset of the security identifier (SID) within this event record. To obtain the
user name for this SID, use the LookupAccountSid function.

DataLength
Specifies the length, in bytes, of the event-specific data (at the position indicated by
DataOffset).

DataOffset
Specifies the offset of the event-specific information within this event record. This
information could be something specific (a disk driver might log the number of retries, for
example), followed by binary information specific to the event being logged and to the
source that generated the entry.

SourceName
Contains the variable-length null-terminated string specifying the name of the source
(application, service, driver, subsystem) that generated the entry. This is the name used to
retrieve from the registry the name of the file containing the message strings for this source.
It is used, together with the event identifier, to get the message string that describes this
event.

Computername
Contains the variable-length null-terminated string specifying the name of the computer that
generated this event. There may also be some pad bytes after this field to ensure that the
UserSid is aligned on a DWORD boundary.

UserSid
Specifies the security identifier of the active user at the time this event was logged. This
member may be empty if the UserSidLength member is zero.

The defined members are followed by the replacement strings for the message identified by the
event identifier, the binary information, some pad bytes to make sure the full entry is on a

Value Meaning

EVENTLOG_ERROR_TYPE Error event

EVENTLOG_WARNING_TYPE Warning event

EVENTLOG_INFORMATION_TYPE Information event

EVENTLOG_AUDIT_SUCCESS Success Audit event

EVENTLOG_AUDIT_FAILURE Failure Audit event

Event Logging Page 33 sur 33

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh98C8.htm 10/12/2003

DWORD boundary, and finally the length of the log entry again. Because the strings and the
binary information can be of any length, no structure members are defined to reference them.

The event identifier together with SourceName and a language identifier identify a message
string that describes the event in more detail. The strings are used as replacement strings and are
merged into the message string to make a complete message. The message strings are contained in
a message file specified in the source entry in the registry. To obtain the appropriate message
string from the message file, load the message file with the LoadLibrary function and use the
FormatMessage function.

The binary information is information that is specific to the event. It could be the contents of the
processor registers when a device driver got an error, a dump of an invalid packet that was
received from the network, a dump of all the structures in a program (when the data area was
detected to be corrupt), and so on. This information should be useful to the writer of the device
driver or the application in tracking down bugs or unauthorized breaks into the application.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winnt.h.

See Also

Event Logging Overview, Event Logging Structures, LookupAccountSid, ReadEventLog

