
Legal Information Page 1 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Legal Information

Windows Sockets 2 Application
Programming Interface
This is a preliminary document and may be changed substantially prior to final commercial
release. This document is provided for informational purposes only and Microsoft makes no
warranties, either express or implied, in this document. Information in this document is subject to
change without notice. The entire risk of the use or the results of the use of this document remains
with the user. The names of companies, products, people, characters, and/or data mentioned
herein are fictitious and are in no way intended to represent any real individual, company, product,
or event, unless otherwise noted. Complying with all applicable copyright laws is the
responsibility of the user. No part of this document may be reproduced or transmitted in any form
or by any means, electronic or mechanical, for any purpose, without the express written
permission of Microsoft Corporation. If, however, your only means of access is electronic,
permission to print one copy is hereby granted.

Portions of this document specify and accompany software that is still in development. Some of
the information in this documentation may be inaccurate or may not be an accurate representation
of the functionality of final documentation or software. Microsoft assumes no responsibility for
any damages that might occur directly or indirectly from these inaccuracies.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

©1996-1998 Microsoft Corporation. All rights reserved.

Microsoft, MS, Win32, Windows, and Windows NT are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

Intel is a registered trademark of Intel Corporation.

All other product and company names mentioned herein are the trademarks of their respective
owners.

Welcome To Windows Sockets 2
This document describes the Windows Sockets 2 Application Programming Interface (API). It
consists, primarily, of information from the Windows Sockets 2 API specification, but also
includes additional information. The information in this document is not presented in exactly the
same way as specification.

Legal Information Page 2 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Using This Document

This document provides the on-line material needed to create a Windows Sockets application for
the Windows NT and the Windows 95 operating systems, using the Microsoft implementation of
Windows Sockets 2. It is intended as a reference tool and outlines the functions in the Windows
Sockets API.

You should be familiar with Win32 programming concepts to make the best use of this document.
Thus, you may want to refer to other references that provide a more systematic guide to writing
Windows Sockets applications.

Note This documentation is intended for application developers. If you are developing a transport
or service provider, see the "Service Provider Documentation" installed with the Platform SDK.

Overview of Windows Sockets 2

Windows Sockets 2 utilizes the sockets paradigm that was first popularized by Berkeley Software
Distribution (BSD) UNIX. It was later adapted for Microsoft Windows in the Windows Sockets
1.1.

One of the primary goals of Windows Sockets 2 has been to provide a protocol-independent
interface fully capable of supporting the emerging networking capabilities, such as real-time
multimedia communications.

Windows Sockets 2 is an interface, not a protocol. As an interface, it is used to discover and
utilize the communications capabilities of any number of underlying transport protocols. Because
it is not a protocol, it does not in any way affect the "bits on the wire", and does not need to be
utilized on both ends of a communications link.

Windows Sockets programming previously centered around TCP/IP. Some of the programming
practices that worked with TCP/IP do not work with every protocol. As a result, the Windows
Sockets 2 API added new functions where necessary.

Windows Sockets 2 has changed its architecture to provide easier access to multiple transport
protocols. Following the Windows Open System Architecture (WOSA) model, Windows Sockets
2 now defines a standard service provider interface (SPI) between the application programming
interface (API), with its functions exported from WS2_32.DLL, and the protocol stacks.
Consequently, Windows Sockets 2 support is not limited to TCP/IP protocol stacks as is the case
for Windows Sockets 1.1. For more information, see Windows Sockets 2 Architecture.

There are new challenges in developing Windows Sockets 2 applications. When sockets only
supported TCP/IP, a developer could create an application that supported only two socket types:
connectionless and connection-oriented. Connectionless protocols used SOCK_DGRAM sockets
and connection-oriented protocols used SOCK_STREAM sockets. Now, these are just two of the
many new socket types. Additionally, developers can no longer rely on socket type to describe all
the essential attributes of a transport protocol.

Legal Information Page 3 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Windows Sockets 2 Features

The new Windows Sockets 2 extends functionality in a number of areas.

Windows Sockets 2 Features

Conventions for New Functions

Windows Sockets 2, with its expanded scope, takes the socket paradigm beyond the original
design. As a result, a number of new functions have been added. These have been assigned names
that begin with "WSA." In all but a few instances, these new functions are expanded versions of
existing functions from BSD sockets.

The new functions are described in the reference section of the document, following the
conventions of the Platform SDK. The new functions are also listed in Summary of New
Functions.

Microsoft Extensions and Windows Sockets 2

The Windows Sockets 2 specification defines an extension mechanism that exposes advanced
transport functionality to application programs. For more information, see Function Extension

Access to protocols other than TCP/IP Windows Sockets 2 allows an application to use the
familiar socket interface to achieve simultaneous
access to a number of installed transport protocols.

Overlapped I/O with scatter/gather Windows Sockets 2 incorporates the overlapped
paradigm for socket I/O and incorporates
scatter/gather capabilities as well, following the
model established in Win32 environments.

Protocol-independent name resolution
facilities:

Windows Sockets 2 includes a standardized set of
functions for querying and working with the myriad
of name resolution domains that exist today (for
example DNS, SAP, and X.500).

Protocol-independent multicast and
multipoint:

Windows Sockets 2 applications discover what type
of multipoint or multicast capabilities a transport
provides and use these facilities in a generic manner.

Quality of service Window Sockets 2 establishes conventions
applications use to negotiate required service levels
for parameters such as bandwidth and latency. Other
QOS-related enhancements include mechanisms for
network-specific QOS extensions.

Other frequently requested extensions Windows Sockets 2 incorporates shared sockets and
conditional acceptance; exchange of user data at
connection setup/teardown time; and protocol-
specific extension mechanisms.

Legal Information Page 4 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Mechanism.

The following Microsoft-specific extensions were added to Windows Sockets 1.1. They are also
available in Windows Sockets 2.

AcceptEx

GetAcceptExSockaddrs

TransmitFile

WSARecvEx

These functions are not exported from the WS2_32.DLL; they are exported from
MSWSOCK.DLL.

An application written to use the Microsoft-specific extensions to Windows Sockets will not run
correctly over a Windows Sockets service provider that does not support those extensions.

Socket Handles for Windows Sockets 2

A socket handle can optionally be a file handle In Windows Sockets 2. It is possible to use socket
handles with ReadFile, WriteFile, ReadFileEx, WriteFileEx, DuplicateHandle, and other
Win32 functions. Not all transport service providers will support this option. For an application to
run over the widest possible number of service providers, it should not assume that socket handles
are file handles.

Windows Sockets 2 has expanded certain functions used for transferring data between sockets
using handles. The functions offer advantages specific to sockets for transferring data and include
WSARecv, WSASend, and WSADuplicateSocket.

New Concepts, Additions and Changes for
Windows Sockets 2
This section summarizes Windows Sockets 2 and describes the major changes and additions it
contains. Windows Sockets 2 differs from Windows Sockets 1.1 in several ways, particularly in
the architecture. The new architecture, discussed in Windows Sockets 2 Architecture, provides
the foundation for many of the new concepts that have been incorporated into Windows Sockets
2.

An overview of the additions and changes in Windows Sockets 2 follows the discussion of the
new architecture.

Many of the functions in Windows Sockets 2 are the same as in the other versions of sockets.
However, there are several new functions, which are summarized in Summary of New
Functions. For detailed information on how to use a specific function or feature, refer to the

Legal Information Page 5 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Reference section.

Windows Sockets 2 Architecture

A number of Windows Sockets 2 features required a substantial change in the Windows Sockets
architecture. The resulting architecture is considerably different from previous versions, but the
benefits are numerous. Foremost among these is Simultaneous Access to Multiple Transport
Protocols, explained in detail in the following section.

Other features include the adoption of protocol-independent name resolution facilities, provisions
for layered protocols and protocol chains, and a different mechanism for Windows Sockets
service providers to offer extended, provider-specific functionality.

Simultaneous Access to Multiple Transport Protocols

In order to provide simultaneous access to multiple transport protocols, the architecture has
changed for Windows Sockets 2. With Windows Sockets 1.1, the DLL that implements the
Windows Sockets interface is supplied by the vendor of the TCP/IP protocol stack. The interface
between the Windows Sockets DLL and the underlying stack was both unique and proprietary.
Windows Sockets 2 changes the model by defining a standard service provider interface (SPI)
between the Windows Sockets DLL and protocol stacks. In this way, multiple stacks from
different vendors can be accessed simultaneously from a single Windows Sockets DLL.
Furthermore, Windows Sockets 2 support is not limited to TCP/IP protocol stacks as it is in
Windows Sockets 1.1.

The Windows Open System Architecture (WOSA) compliant Windows Sockets 2 architecture is
illustrated as follows:

Legal Information Page 6 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Windows Sockets 2 Architecture

With the Windows Sockets 2 architecture, it is not necessary, or desirable, for stack vendors to
supply their own implementation of WS2_32.DLL, since a single WS2_32.DLL must work across
all stacks. The WS2_32.DLL and compatibility shims should be viewed in the same way as an
operating system component.

Backward Compatibility For Windows Sockets 1.1 Applications

Windows Sockets 2 has been made backward compatible with Windows Sockets 1.1 on two
levels: source and binary. This maximizes interoperability between Windows Sockets applications
of any version and Windows Sockets implementations of any version. It also minimizes problems
for users of Windows Sockets applications, network stacks, and service providers. Current
Windows Sockets 1.1-compliant applications will run over a Windows Sockets 2 implementation
without modification of any kind, as long as at least one TCP/IP service provider is properly
installed.

Source Code Compatibility

Source code compatibility in Windows Sockets 2 means, with few exceptions, that all the
Windows Sockets 1.1 functions are preserved in Windows Sockets 2. Windows Sockets 1.1
applications that make use of blocking hooks will need to be modified since blocking hooks are
no longer supported in Windows Sockets 2. (For more information, see Windows Sockets 1.1
Blocking routines & EINPROGRESS.)

Thus, existing Windows Sockets 1.1 application source code can easily be moved to the Windows
Sockets 2 system by including the new header file, WINSOCK2.H, and performing a
straightforward relink with the appropriate Windows Sockets 2 libraries. Application developers
are encouraged to view this as the first step in a full transition to Windows Sockets 2 because
there are numerous ways in which a Windows Sockets 1.1 application can be improved by
exploring and using the new functionality in Windows Sockets 2.

Binary Compatibility

A major design goal for Windows Sockets 2 was to enable existing Windows Sockets 1.1
applications to work, unchanged at a binary level, with Windows Sockets 2. Since Windows
Sockets 1.1 applications are TCP/IP-based, binary compatibility implies that TCP/IP-based
Windows Sockets 2 Transport and Name Resolution Service Providers are present in the
Windows Sockets 2 system. In order to enable Windows Sockets 1.1 applications in this scenario,
the Windows Sockets 2 system has an additional "shim" component supplied with it: a Version
1.1-compliant WINSOCK.DLL.

Installation guidelines for Windows Sockets 2 ensure there will be no negative impact to existing
Windows Sockets-based applications on an end user system by the introduction of any Windows
Sockets 2 components.

Legal Information Page 7 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Windows Sockets 1.1 Compatibility Architecture

Important To obtain information about the underlying TCP/IP stack, Windows Sockets 1.1
applications currently use certain members of the WSAData structure (obtained through a call to
WSAStartup). These members include: iMaxSockets, iMaxUdpDg, and lpVendorInfo.

While Windows Sockets 2 applications ignore these values (since they cannot uniformly apply to
all available protocol stacks), safe values are supplied to avoid breaking Windows Sockets 1.1
applications.

Making Transport Protocols Available To Windows Sockets

A transport protocol must be properly installed on the system and registered with Windows
Sockets to be accessible to an application. The WS2_32.DLL exports a set of functions to
facilitate the registration process. This includes creating a new registration and removing an
existing one.

When new registrations are created, the caller (that is, the stack vendor's installation script)
supplies one or more filled in WSAPROTOCOL_INFO structures containing a complete set of
information about the protocol. (See the Welcome To Windows Sockets 2 SPI for information on
how this is accomplished.) Any transport stack that is installed this way will be referred to as a
Windows Sockets service provider.

Legal Information Page 8 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

The Windows Sockets 2 SDK includes a small Windows applet, SPORDER.EXE, that allows the
user to view and modify the order in which service providers are enumerated. By using this
SPORDER.EXE, a user can manually establish a particular TCP/IP protocol stack as the default
TCP/IP provider if more than one such stack is present.

The SPORDER.EXE applet exports functions from SPORDER.DLL to reorder the service
providers. As a result, installation applications can use the interface of SPORDER.DLL to
programmatically reorder service providers to suit their needs.

Layered Protocols and Protocol Chains

Windows Sockets 2 incorporates the concept of a layered protocol. A layered protocol is one that
implements only higher level communications functions while relying on an underlying transport
stack for the actual exchange of data with a remote endpoint. An example of this type of layered
protocol is a security layer that adds a protocol to the socket connection process in order to
perform authentication and establish an encryption scheme. Such a security protocol generally
requires the services of an underlying, reliable transport protocol such as TCP or SPX.

The term base protocol refers to a protocol, such as TCP or SPX, that is fully capable of
performing data communications with a remote endpoint. A layered protocol is a protocol that
cannot stand alone, while a protocol chain is one or more layered protocols strung together and
anchored by a base protocol.

A protocol chain is created by having the layered protocols support the Windows Sockets 2 SPI at
both their upper and lower edges. A special WSAPROTOCOL_INFO structure is created that
refers to the protocol chain as a whole, and that describes the explicit order in which the layered
protocols are joined. This is illustrated in the figure Layered Protocol Architecture. Since only
base protocols and protocol chains are directly usable by applications, they are the only ones listed
when the installed protocols are enumerated with the WSAEnumProtocols function.

Legal Information Page 9 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Layered Protocol Architecture

Using Multiple Protocols

An application uses the WSAEnumProtocols function to determine which transport protocols
and protocol chains are present, and to obtain information about each as contained in the
associated WSAPROTOCOL_INFO structure.

In most instances, there is a single WSAPROTOCOL_INFO structure for each protocol or
protocol chain. However, some protocols exhibit multiple behaviors. For example, the SPX
protocol is message oriented (that is, the sender's message boundaries are preserved by the
network), but the receiving socket can ignore these message boundaries and treat it as a byte
stream. Thus, two different WSAPROTOCOL_INFO structure entries could exist for SPX—one
for each behavior.

In Windows Sockets 2, several new address family, socket type, and protocol values appear.
Windows Sockets 1.1 supported a single address family (AF_INET) comprising a small number
of well-known socket types and protocol identifiers. The existing address family, socket type, and
protocol identifiers are retained for compatibility reasons, but new transport protocols with new
media types are supported.

A Windows Sockets 2 clearinghouse has been established for protocol stack vendors to obtain
unique identifiers for new address families, socket types, and protocols. FTP and World Wide
Web servers are used to supply current identifier/value mappings, and email is used to request
allocation of new ones. This is the World Wide Web URL for the Windows Sockets 2 Identifier
Clearinghouse:

http://www.stardust.com/wsresource/winsock2/ws2ident.html

New, unique identifiers are not necessarily well known, but this should not pose a problem.
Applications that need to be protocol-independent are encouraged to select a protocol on the basis
of its suitability rather than the values assigned to their socket_type or protocol fields. Protocol
suitability is indicated by the communications attributes, such as message versus byte stream, and
reliable versus unreliable, that are contained in the protocol WSAPROTOCOL_INFO structure.
Selecting protocols on the basis of suitability as opposed to well-known protocol names and
socket types lets protocol-independent applications take advantage of new transport protocols and
their associated media types, as they become available.

The server half of a client/server application benefits by establishing listening sockets on all
suitable transport protocols. Then, the client can establish its connection using any suitable
protocol. For example, this would let a client application be unmodified whether it was running
on a desktop system connected through LAN or on a laptop using a wireless network.

Multiple Provider Restrictions on select

Legal Information Page 10 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

The select function is used to determine the status of one or more sockets in a set. For each
socket, the caller can request information on read, write, or error status. A set of sockets is
indicated by an FD_SET structure.

Windows Sockets 2 allows an application to use more than one service provider, but the select
function is limited to a set of sockets associated with a single service provider. This does not in
any way restrict an application from having multiple sockets open through multiple providers.

There are two ways to determine the status of set of sockets that span more than one service
provider: 1) using the WSAWaitForMultipleEvents or WSAEventSelect functions when
blocking semantics are employed, and 2) using the WSAAsyncSelect function when nonblocking
operations are employed.

When an application needs to use blocking semantics on a set of sockets that spans multiple
providers, WSAWaitForMultipleEvents is recommended. The application can also use the
WSAEventSelect function, which allows the FD_XXX network events (see WSAEventSelect)
to associate with an event object and be handled from within the event object paradigm (described
in Overlapped I/O and Event Objects).

The WSAAsyncSelect function is recommended when nonblocking operations are preferred. This
function is not restricted to a single provider because it takes a socket descriptor as an input
parameter.

Function Extension Mechanism

The Windows Sockets DLL, WS2_32.DLL, is no longer supplied by each individual stack vendor.
As a result, it is no longer possible for a stack vendor to offer extended functionality by just
adding entry points to the WS2_32.DLL. To overcome this limitation, Windows Sockets 2 takes
advantage of the new WSAIoctl function to accommodate service providers who want to offer
provider-specific functionality extensions. This mechanism assumes, of course, that an application
is aware of a particular extension and understands both the semantics and syntax involved. Such
information would typically be supplied by the service provider vendor.

In order to invoke an extension function, the application must first ask for a pointer to the desired
function. This is done through the WSAIoctl function using the
SIO_GET_EXTENSION_FUNCTION_POINTER command code. The input buffer to the
WSAIoctl function contains an identifier for the desired extension function while the output
buffer contains the function pointer itself. The application can then invoke the extension function
directly without passing through the WS2_32.DLL.

The identifiers assigned to extension functions are globally unique identifiers (GUIDs) that are
allocated by service provider vendors. Vendors who create extension functions are urged to
publish full details about the function including the syntax of the function prototype. This makes
it possible for common and popular extension functions to be offered by more than one service
provider vendor. An application can obtain the function pointer and use the function without
needing to know anything about the particular service provider that implements the function.

Legal Information Page 11 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Debug and Trace Facilities

Windows Sockets 2 application developers need to isolate bugs in 1) the application, 2) the
WS2_32.DLL or one of the compatibility "shim" DLLs, or 3) the service provider. Windows
Sockets 2 addresses this need through a specially devised version of the WS2_32.DLL and a
separate debug/trace DLL. This combination allows all procedure calls across the Windows
Sockets 2 API or SPI to be monitored and, to some extent, be controlled.

Developers can use this mechanism to trace procedure calls, procedure returns, parameter values,
and return values. Parameter values and return values can be altered on procedure call or
procedure return. If desired, a procedure call can be prevented or redirected. With access to this
level of information and control, a developer can isolate any problem in the application,
WS2_32.DLL, or service provider.

The Windows Sockets 2 SDK includes the debug WS2_32.DLL, a sample debug/trace DLL, and a
document containing a detailed description of the components. The sample debug/trace DLL is
provided in both source and object form. Developers are free to use the source to develop versions
of the debug/trace DLL that meet their specific needs.

Name Resolution

Windows Sockets 2 includes provisions for standardizing the way applications access and use the
various network name resolution services. Windows Sockets 2 applications do not need to be
aware of the widely differing interfaces associated with name services such as DNS, NIS, X.500,
SAP, and others. An introduction to this topic and the details of the functions are currently located
in Protocol-Independent Name Resolution.

Overlapped I/O and Event Objects

Windows Sockets 2 introduces overlapped I/O and requires that all transport providers support
this capability. Overlapped I/O follows the model established in Win32 and can be performed
only on sockets created through the WSASocket function with the WSA_FLAG_OVERLAPPED
flag set or sockets created through the socket function.

Note Creating a socket with the overlapped attribute has no impact on whether a socket is
currently in the blocking or nonblocking mode. Sockets created with the overlapped attribute can
be used to perform overlapped I/O—doing so does not change the blocking mode of a socket.
Since overlapped I/O operations do not block, the blocking mode of a socket is irrelevant for these
operations.

For receiving, applications use the WSARecv or WSARecvFrom functions to supply buffers into
which data is to be received. If one or more buffers are posted prior to the time when data has
been received by the network, that data could be placed in the user's buffers immediately as it
arrives. Thus, it can avoid the copy operation that would otherwise occur at the time the recv or
recvfrom function is invoked. If data is already present when receive buffers are posted, it is
copied immediately into the user's buffers.

Legal Information Page 12 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

If data arrives when no receive buffers have been posted by the application, the network resorts to
the familiar synchronous style of operation. That is, the incoming data is buffered internally until
the application issues a receive call and thereby supplies a buffer into which the data can be
copied. An exception to this is when the appliation uses setsockopt to set the size of the receive
buffer to zero. In this instance, reliable protocols would only allow data to be received when
application buffers had been posted and data on unreliable protocols would be lost.

On the sending side, applications use WSASend or WSASendTo to supply pointers to filled
buffers and then agree to not disturb the buffers in any way until the network has consumed the
buffer's contents.

Overlapped send and receive calls return immediately. A return value of zero indicates that the
I/O operation was completed immediately and that the corresponding completion indication
already occurred. That is, the associated event object has been signaled, or a completion routine
has been queued and will be executed when the calling thread gets into the alertable wait state.

A return value of SOCKET_ERROR coupled with an error code of WSA_IO_PENDING
indicates that the overlapped operation has been successfully initiated and that a subsequent
indication will be provided when send buffers have been consumed or when a receive operation
has been completed. However, for sockets that are byte-stream style, the completion indication
occurs whenever the incoming data is exhausted, regardless of whether the buffers are full. Any
other error code indicates that the overlapped operation was not successfully initiated and that no
completion indication will be forthcoming.

Both send and receive operations can be overlapped. The receive functions can be invoked several
times to post receive buffers in preparation for incoming data, and the send functions can be
invoked several times to queue multiple buffers to send. While the application can rely upon a
series of overlapped send buffers being sent in the order supplied, the corresponding completion
indications might occur in a different order. Likewise, on the receiving side, buffers will be filled
in the order they are supplied, but the completion indications might occur in a different order.

Canceling individual overlapped operations pending on a given socket is impossible. However,
the closesocket function can be called to close the socket and eventually discontinue all pending
operations.

The deferred completion feature of overlapped I/O is also available for WSAIoctl, which is an
enhanced version of ioctlsocket.

Event Objects

Introducing overlapped I/O requires a mechanism for applications to unambiguously associate
send and receive requests with their subsequent completion indications. In Windows Sockets 2,
this is accomplished with event objects that are modeled after Win32 events. Windows Sockets
event objects are fairly simple constructs that can be created and closed, set and cleared, and
waited upon and polled. Their prime utility is the ability of an application to block and wait until
one or more event objects become set.

Applications use WSACreateEvent to obtain an event object handle that can then be supplied as
a required parameter to the overlapped versions of send and receive calls (WSASend,

Legal Information Page 13 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

WSASendTo, WSARecv, WSARecvFrom). The event object, which is cleared when first
created, is set by the transport providers when the associated overlapped I/O operation has
completed (either successfully or with errors). Each event object created by WSACreateEvent
should have a matching WSACloseEvent to destroy it.

Event objects are also used in WSAEventSelect to associate one or more FD_XXX network
events with an event object. This is described in Asynchronous Notification Using Event Objects.

In 32-bit environments, event object – related functions, including WSACreateEvent,
WSACloseEvent, WSASetEvent, WSAResetEvent, and WSAWaitForMultipleEvents are
directly mapped to the corresponding native Win32 functions, using the same function name, but
without the WSA prefix.

Receiving Completion Indications

Several options are available for receiving completion indications, thus providing applications
with appropriate levels of flexibility. These include: waiting (or blocking) on event objects,
polling event objects, and socket I/O completion routines.

Blocking and Waiting for Completion Indication

Applications can block while waiting for one or more event objects to become set using the
WSAWaitForMultipleEvents function. In Win32 implementations, the process or thread will
truly block. Since Windows Sockets 2 event objects are implemented as Win32 events, the native
Win32 function, WaitForMultipleObjects can also be used for this purpose. This is especially
useful if the thread needs to wait on both socket and nonsocket events.

Polling for Completion Indication

Applications that prefer not to block can use the WSAGetOverlappedResult function to poll for
the completion status associated with any particular event object. This function indicates whether
or not the overlapped operation has completed, and if completed, arranges for the
WSAGetLastError function to retrieve the error status of the overlapped operation.

Using socket I/O completion routines

The functions used to initiate overlapped I/O (WSASend, WSASendTo, WSARecv,
WSARecvFrom) all take lpCompletionRoutine as an optional input parameter. This is a pointer
to an application-specific function that will be called after a successfully initiated overlapped I/O
operation was completed (successfully or otherwise). The completion routine follows the same
rules as stipulated for Win32 file I/O completion routines. That is, the completion routine will not
be invoked until the thread is in an alertable wait state, such as when the function
WSAWaitForMultipleEvents is invoked with the fAlertable flag set. An application that uses
the completion routine option for a particular overlapped I/O request may not use the "wait"
option of WSAGetOverlappedResult for that same overlapped I/O request.

The transports allow an application to invoke send and receive operations from within the context
of the socket I/O completion routine and guarantee that, for a given socket, I/O completion
routines will not be nested. This permits time-sensitive data transmissions to occur entirely within
a preemptive context.

Legal Information Page 14 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Summary of overlapped completion indication mechanisms

The particular overlapped I/O completion indication to be used for a given overlapped operation is
determined by whether the application supplies a pointer to a completion function, whether a
WSAOVERLAPPED structure is referenced, and by the value of the hEvent member within the
WSAOVERLAPPED structure (if supplied). The following table summarizes the completion
semantics for an overlapped socket and shows the various combinations of lpOverlapped, hEvent,
and lpCompletionRoutine:

Asynchronous Notification Using Event Objects

The WSAEventSelect and WSAEnumNetworkEvents functions are provided to accommodate
applications such as daemons and services that have no user interface (and hence do not use
Windows handles). The WSAEventSelect function behaves exactly like the WSAAsyncSelect
function. However, instead of causing a Windows message to be sent on the occurrence of an
FD_XXX network event (for example, FD_READ and FD_WRITE), an application-designated
event object is set.

Also, the fact that a particular FD_XXX network event has occurred is "remembered" by the
service provider. The application can call WSAEnumNetworkEvents to have the current
contents of the network event memory copied to an application-supplied buffer and to have the
network event memory automatically cleared. If needed, the application can also designate a
particular event object that is cleared along with the network event memory.

Flow Specification Quality of Service

The basic Quality of Service (QOS) mechanism in Windows Sockets 2 descends from the flow

lpOverlapped hEvent lpCompletionRoutine Completion Indication

NULL not
applicable

ignored Operation completes
synchronously. It behaves as if it
were a nonoverlapped socket.

!NULL NULL NULL Operation completes overlapped,
but there is no Windows Sockets
2-supported completion
mechanism. The completion port
mechanism (if supported) can be
used in this case. Otherwise, there
will be no completion notification.

!NULL !NULL NULL Operation completes overlapped,
notification by signaling event
object.

!NULL ignored !NULL Operation completes overlapped,
notification by scheduling
completion routine.

Legal Information Page 15 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

specification as described in RFC 1363, dated September 1992. Following is a brief overview of
this concept:

Flow specifications describe a set of characteristics about a proposed, unidirectional flow through
the network. An application can associate a pair of flow specifications with a socket (one for each
direction) at the time a connection request is made using WSAConnect, or at other times using
WSAIoctl with the SIO_SET_QOS/SIO_SET_GROUP_QOS command. Flow specifications
indicate parametrically what level of service is required and provide a feedback mechanism for
applications to use in adapting to network conditions.

This is the usage model for QOS in Windows Sockets 2: An application can establish its QOS
requirements at any time with WSAIoctl or coincident with the connect operation with
WSAConnect. For connection-oriented transports, it is often most convenient for an application
to use the WSAConnect function because any QOS values supplied at connect time supersede
those supplied earlier with the WSAIoctl function. If the WSAConnect function completes
successfully, the application knows that its QOS request has been honored by the network. The
application is then free to use the socket for data exchange. If the connect operation fails because
of limited resources, an appropriate error indication is given. At this point, the application can
scale down its service request and try again, or it can give up.

Transport providers update the associated flowspec structures after every connection attempt
(successful or otherwise) in order to indicate, as well as possible, the existing network conditions.
(Updating with the Default Values will indicate that information about the current network
conditions is not available.) This update from the service provider about current network
conditions is especially useful when the application's QOS request consists entirely of the default
(unspecified) values, which any service provider should be able to meet.

Applications expect to use this information about current network conditions to guide their use of
the network, including any subsequent QOS requests. However, the information provided by the
transport in the updated flowspec structure is only an indication. It might be little more than a
rough estimate that only applies to the first hop and not to the complete, end-to-end connection.
The application must take appropriate precautions in interpreting this information.

Connectionless sockets can also use the WSAConnect function to establish a specified QOS level
to a single designated peer. Otherwise, connectionless sockets use the WSAIoctl function to
stipulate the initial QOS request, and any subsequent QOS renegotiations.

Even after a flow is established, conditions in the network can change or one of the
communicating parties might invoke a QOS renegotiation that results in a reduction (or increase)
in the available service level. A notification mechanism is included that utilizes the usual
Windows Sockets notification techniques (FD_QOS and FD_GROUP_QOS events) to indicate to
the application that QOS levels have changed.

A service provider generates FD_QOS/FD_GROUP_QOS notifications when the current level of
service supported is significantly different (especially in the negative direction) from what was
last reported as a basic guideline. The application should use the WSAIoctl function with
SIO_GET_QOS and/or SIO_GET_GROUP_QOS to retrieve the corresponding flowspec structure
and examine them in order to discover what aspect of the service level has changed. The QOS
structures will be updated where appropriate. regardless of whether FD_QOS/FD_GROUP_QOS
is registered and generated.

If the updated level of service is not acceptable, the application can adjust itself to accommodate
it, attempt to renegotiate QOS, or close the socket. If a renegotiation is attempted, a successful

Legal Information Page 16 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

return from the WSAIoctl function indicates that the revised QOS request was accepted.,
Otherwise, an appropriate error will be indicated.

The flow specifications proposed for Windows Sockets 2 divide QOS characteristics into the
following general areas:

Source Traffic Description
The manner in which the application's traffic will be injected into the network. This
includes specifications for the token rate, the token bucket size, and the peak bandwidth.
Though the bandwidth requirement is expressed in terms of a token rate, a service provider
need not implement token buckets. Any traffic management scheme that yields equivalent
behavior is permitted.

Latency
Upper limits on the amount of delay and delay variation that are acceptable.

Level of service guarantee
Whether or not an absolute guarantee is required as opposed to best effort. Providers that
have no feasible way to provide the level of service requested are expected to fail the
connection attempt.

Provider-specific parameters
The flow specification itself can be extended in ways that are particular to specific
providers.

QOS Templates

It is possible for QOS templates to be established for well-known media flows such as H.323,
G.711, and others. The WSAGetQOSByName function can be used to obtain the appropriate
QOS structure for named media streams. It is up to each service provider to determine the
appropriate values for each element in the QOS structure, as well as any protocol or media-
dependent QOS extensions. The documentation for the WSAGetQOSByName function will be
periodically updated with a list of flow specifications and general descriptions as they become
well-known. The WSAGetQOS ByName function can also be used to enumerate the set of known
QOS template names.

Default Values

A default flowspec structure is associated with each eligible socket at the time it is created. The
member values for the default flowspec structure, in all cases, indicate that no particular flow
characteristics are being requested from the network. Applications only need to modify values
important to that application, but must be aware that there is some coupling between fields such
as TokenRate and TokenBucketSize. These are the values for the default flow spec:

TokenRate = 0XFFFFFF(not specified)
TokenBucketSize = 0XFFFFFF(not specified)
PeakBandwidth = 0XFFFFFF(not specified)
Latency = 0XFFFFFF(not specified)
DelayVariation = 0XFFFFFF(not specified)
ServiceType = SERVICETYPE
MaxSduSize =… 0XFFFFFF
MinimumPolicedSize = 0XFFFFFF

Legal Information Page 17 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Socket Groups

Important Reserved for future use with socket groups:

Windows Sockets 2 introduces a number of function parameters, data types, structure members,
and manifest constant values that are reserved for future use in grouping sockets together. As of
the version 2.2.1 of the specification, the intended future use of these items is fully described,
however, none of the group-related parameters is interpreted in software releases corresponding to
the version 2.2.1 specification. Since a client always has the option to elect not to use socket
groups, there are always default values and behaviors defined for group-related definitions. It is
simple for an application not employing socket groups to use default values in such a fashion that
the application will not be harmed if and when socket groups are "turned on" in the future.
Definitions related to socket groups are marked in version 2.2.1 specification with the phrase:
"Reserved for future use with socket groups" preceding the description of the intended future use.

Windows Sockets 2 introduces the concept of a socket group as a means for an application (or
cooperating set of applications) to indicate to an underlying service provider that a particular set
of sockets are related, and that the group thus formed has certain attributes. Group attributes
include relative priorities of the individual sockets within the group and a group's quality of
service specification.

Applications needing to exchange multimedia streams over the network benefit by establishing a
specific relationship among the set of sockets being utilized. This can include, as a minimum, an
indication to the service provider about the relative priorities of the media streams being carried.
For example, a conferencing application would likely give the socket used for carrying the audio
stream a higher priority than the socket used for the video stream. Furthermore, there are transport
providers (for example, digital telephony and ATM) that can utilize a group, quality-of-service
specification to determine the appropriate characteristics for the underlying call or circuit
connection. The sockets within a group are then multiplexed in the usual manner over this call. By
allowing the application to identify the sockets that make up a group and to specify the required
group attributes, service providers can operate with maximum effectiveness.

The WSASocket and WSAAccept functions are two new functions used to specifically create
and join a socket group coincident with creating a new socket. Socket group identifiers can be
retrieved by using getsockopt with option SO_GROUP_ID. Relative priority can be accessed by
using get/setsockopt with option SO_GROUP_PRIORITY.

Shared Sockets

The WSADuplicateSocket function is introduced to enable socket sharing across processes. A
source process calls WSADuplicateSocket to obtain a special WSAPROTOCOL_INFO structure
for a target process ID. It uses some interprocess communications (IPC) mechanism to pass the
contents of this structure to a target process. The target process then uses the
WSAPROTOCOL_INFO structure in a call to WSPSocket. The socket descriptor returned by this
function will be an additional socket descriptor to an underlying socket which thus becomes
shared. Sockets can be shared among threads in a given process without using the
WSADuplicateSocket function because a socket descriptor is valid in all threads of a process.

Legal Information Page 18 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

The two (or more) descriptors that reference a shared socket can be used independently as far as
I/O is concerned. However, the Windows Sockets interface does not implement any type of access
control, so the processes must coordinate any operations on a shared socket. A typical example of
sharing sockets is to use one process for creating sockets and establishing connections. This
process then hands off sockets to other processes that are responsible for information exchange.

The WSADuplicateSocket function creates socket descriptors and not the underlying socket. As
a result, all the states associated with a socket are held in common across all the descriptors. For
example, a setsockopt operation performed using one descriptor is subsequently visible using a
getsockopt from any or all descriptors. A process can call closesocket on a duplicated socket and
the descriptor will become deallocated. The underlying socket, however, will remain open until
closesocket is called with the last remaining descriptor.

Notification on shared sockets is subject to the usual constraints of the WSAAsyncSelect and
WSAEventSelect functions. Issuing either of these calls using any of the shared descriptors
cancels any previous event registration for the socket, regardless of which descriptor was used to
make that registration. Thus, for example, it would not be possible to have process A receive
FD_READ events and process B receive FD_WRITE events. For situations when such tight
coordination is required, it is suggested that developers use threads instead of separate processes.

Enhanced Functionality During Connection Setup and
Teardown

The WSAAccept function lets an application obtain caller information such as caller ID and QOS
before deciding whether to accept an incoming connection request. This is done with a callback to
an application-supplied condition function.

User-to-user data specified by parameters in the WSAConnect function and the condition
function of WSAAccept can be transferred to the peer during connection establishment, provided
this feature is supported by the service provider.

It is also possible (for protocols that support this) to exchange user data between the endpoints at
connection teardown time. The end that initiates the teardown can call the WSASendDisconnect
function to indicate that no more data be sent and to initiate the connection teardown sequence.
For certain protocols, part of this teardown sequence is the delivery of disconnect data from the
teardown initiator. After receiving notice that the remote end has initiated the teardown sequence
(typically by the FD_CLOSE indication), the WSARecvDisconnect function can be called to
receive the disconnect data, if any.

To illustrate how disconnect data can be used, consider the following scenario. The client half of a
client/server application is responsible for terminating a socket connection. Coincident with the
termination, it provides (using disconnect data) the total number of transactions it processed with
the server. The server in turn responds with the cumulative total of transactions that it has
processed with all clients. The sequence of calls and indications might occur as follows:

Legal Information Page 19 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Note that step (5a) must follow step (5), but has no timing relationship with step (6), (7), or (8).

Extended Byte Order Conversion Routines

Windows Sockets 2 does not assume that the network byte order for all protocols is the same. A
set of conversion routines is supplied for converting 16-bit and 32-bit quantities to and from
network byte order. These routines take as an input parameter parameter the socket handle that
has a WSAPROTOCOL_INFO structure associated with it. The NetworkByteOrder member of
the WSAPROTOCOL_INFO structure specifies the desired network byte order (currently either
"big-endian" or "little-endian").

Support for Scatter/Gather I/O

The WSASend, WSASendTo, WSARecv, and WSARecvFrom functions all take an array of
application buffers as input parameters and can be used for scatter/gather (or vectored) I/O. This
can be very useful in instances where portions of each message being transmitted consist of one or
more fixed-length "header" components in addition to message body. Such header components
need not be concatenated by the application into a single contiguous buffer prior to sending.
Likewise on receiving, the header components can be automatically split off into separate buffers,
leaving the message body "pure."

When receiving into multiple buffers, completion occurs as data arrives from the network,
regardless of whether all the supplied buffers are utilized.

Client Side Server Side

(1) Invoke WSASendDisconnect to conclude
session and supply transaction total

(2) Get FD_CLOSE, recv with a return value of
zero, or WSAEDISCON error return from
WSARecv indicating graceful shutdown in
progress

(3) Invoke WSARecvDisconnect to get client's
transaction total

(4) Compute cumulative grand total of all
transactions

(5) Invoke WSASendDisconnect to transmit
grand total

(6) Receive FD_CLOSE indication (5a) Invoke closesocket

(7) Invoke WSARecvDisconnect to receive
and store cumulative grand total of
transactions

(8) Invoke closesocket

Legal Information Page 20 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Protocol-Independent Multicast and Multipoint

Windows Sockets 2 provides a generic method for utilizing the multipoint and multicast
capabilities of transports. This generic method implements these features just as it allows the
basic data transport capabilities of numerous transport protocols to be accessed. The term
multipoint is used hereafter to refer to both multicast and multipoint communications.

Current multipoint implementations (for example, IP multicast, ST-II, T.120, and ATM UNI) vary
widely. How nodes join a multipoint session, whether a particular node is designated as a central
or root node, and whether data is exchanged between all nodes or only between a root node and
the various leaf nodes differ among implementations. The WSAPROTOCOL_INFO structure for
Windows Sockets 2 is used to declare the various multipoint attributes of a protocol. By
examining these attributes, the programmer knows what conventions to follow with the applicable
Windows Sockets 2 functions to setup, utilize and teardown multipoint sessions.

Following is a summary of the features of Windows Sockets 2 that support multipoint:

Two attribute bits in the WSAPROTOCOL_INFO structure.
Four flags defined for the dwFlags parameter of the WSASocket function.
One function, WSAJoinLeaf, for adding leaf nodes into a multipoint session
Two WSAIoctl command codes for controlling multipoint loopback and establishing the
scope for multicast transmissions. (The latter corresponds to the IP multicast time-to-live or
TTL parameter.)

Note The inclusion of these multipoint features in Windows Sockets 2 does not preclude an
application from using an existing protocol-dependent interface, such as the Deering socket
options for IP multicast.

See Multipoint and Multicast Semantics for detailed information on how the various multipoint
schemes are characterized and how the applicable features of Windows Sockets 2 are utilized.

Summary of New Socket Options

The new socket options for Windows Sockets 2 are summarized in the following table. See
getsockopt and setsockopt for detailed information on these options. The other new protocol-
specific socket options can be found in the Protocol-specific Annex (a separate document
included with the Platform SDK).

Value Type Meaning Default Note

SO_GROUP_ID GROUP Reserved for future
use with socket
groups: The
identifier of the
group to which this
socket belongs.

NULL get only

Legal Information Page 21 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Summary of New Socket Ioctl Opcodes

The new socket ioctl opcodes for Windows Sockets 2 are summarized in the following table. See
WSAIoctl for detailed information on these opcodes. The WSAIoctl function also supports all
the ioctl opcodes specified in ioctlsocket. Theother new protocol-specific ioctl opcodes can be
found in the Protocol-specific Annex (a separate document included with the Platform SDK).

SO_GROUP
_PRIORITY

int Reserved for future
use with socket
groups: The relative
priority for sockets
that are part of a
socket group.

0

SO_MAX_MSG
_SIZE

int Maximum
outbound (send)
size of a message
for message-
oriented socket
types. There is no
provision for
finding out the
maximum inbound
message size. Has
no meaning for
stream-oriented
sockets.

Implementation
dependent

get only

SO_PROTOCOL
_INFO

struct
WSAPROTOCOL_INFO

Description of
protocol info for
protocol that is
bound to this
socket.

protocol
dependent

get only

PVD_CONFIG char FAR * An opaque data
structure object
containing
configuration
information of the
service provider.

Implementation
dependent

Opcode Input Type Output Type Meaning

SIO_ASSOCIATE
_HANDLE

companion
API
dependent

<not used> Associate the socket with the specified
handle of a companion interface.

SIO_ENABLE
_CIRCULAR_QUEUEING

<not used> <not used> Circular queuing is enabled.

SIO_FIND_ROUTE struct
sockaddr

<not used> Request the route to the specified
address to be discovered.

SIO_FLUSH <not used> <not used> Discard current contents of the sending
queue.

Legal Information Page 22 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Summary of New Functions

The new API functions for Windows Sockets 2 are summarized in the following table.

Data Transport Functions

SIO_GET_BROADCAST
_ADDRESS

<not used> struct
sockaddr

Retrieve the protocol-specific broadcast
address to be used in
sendto/WSASendTo.

SIO_GET_QOS <not used> QOS Retrieve current flow specification(s) for
the socket.

SIO_GET_GROUP_QOS <not used> QOS Reserved for future use with socket
groups: Retrieve current group flow
specification(s) for the group this socket
belongs to.

SIO_MULTIPOINT
_LOOPBACK

BOOL <not used> Control whether data sent in a multipoint
session will also be received by the same
socket on the local host.

SIO_MULTICAST
_SCOPE

int <not used> Specify the scope over which multicast
transmissions will occur.

SIO_SET_QOS QOS <not used> Establish new flow specification(s) for
the socket.

SIO_SET_GROUP_QOS QOS <not used> Reserved for future use with socket
groups: Establish new group flow
specification(s) for the group this socket
belongs to.

SIO_TRANSLATE
_HANDLE

int companion
API
dependent

Obtain a corresponding handle for
socket s that is valid in the context of a
companion interface.

SIO_ROUTING
_INTERFACE_QUERY

SOCKADDR SOCKADDR Obtain the address of local interface
which should be used to send to the
specified address

SIO_ROUTING
_INTERFACE_CHANGE

SOCKADDR <not used> Request notification of changes in
information reported via
SIO_ROUTING_INTERFACE_QUERY
for the specified address

SIO_ADDRESS
_LIST_QUERY

<not used> SOCKET
_ADDRESS
_LIST

Obtain the list of addresses to which
application can bind.

SIO_ADDRESS
_LIST_CHANGE

<not used> <not used> Request notification of changes in
information reported via
SIO_ADDRESS_LIST_QUERY

Legal Information Page 23 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Function Description

WSAAccept1 An extended version of accept which allows for
conditional acceptance and socket grouping.

WSACloseEvent Destroys an event object.

WSAConnect1 An extended version of connect which allows for
exchange of connect data and QOS specification.

WSACreateEvent Creates an event object.

WSADuplicateSocket Creates a new socket descriptor for a shared
socket.

WSAEnumNetworkEvents Discovers occurrences of network events.

WSAEnumProtocols Retrieves information about each available
protocol.

WSAEventSelect Associates network events with an event object.

WSAGetOverlappedResult Gets completion status of overlapped operation.

WSAGetQOSByName Supplies QOS parameters based on a well-known
service name.

WSAHtonl Extended version of htonl.

WSAHtons Extended version of htons.

WSAIoctl1 Overlapped-capable version of ioctlsocket.

WSAJoinLeaf1 Joins a leaf node into a multipoint session.

WSANtohl Extended version of ntohl.

WSANtohs Extended version of ntohs.

WSAProviderConfigChange Receive notifications of service providers being
installed/removed.

WSARecv1 An extended version of recv which accommodates
scatter/gather I/O, overlapped sockets, and
provides the flags parameter as IN OUT.

WSARecvDisconnect Terminates reception on a socket and retrieves the
disconnect data, if the socket is connection-
oriented.

WSARecvFrom1 An extended version of recvfrom which
accommodates scatter/gather I/O, overlapped
sockets, and provides the flags parameter as IN
OUT.

WSAResetEvent Resets an event object.

WSASend1 An extended version of send which
accommodates scatter/gather I/O and overlapped
sockets.

WSASendDisconnect Initiates termination of a socket connection and
optionally sends disconnect data.

WSASendTo1 An extended version of sendto which
accommodates scatter/gather I/O and overlapped
sockets.

Legal Information Page 24 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Name Registration and Resolution Functions

Windows Sockets Programming
Considerations
This section provides programmers with important information on a number of topics. It is
especially pertinent to those who are porting socket applications from UNIX-based environments
or who are upgrading their Windows Sockets 1.1 applications to Windows Sockets 2.

WSASetEvent Sets an event object.

WSASocket An extended version of socket which takes a
WSAPROTOCOL_INFO structure as input and
allows overlapped sockets to be created. Also
allows socket groups to be formed.

WSAWaitForMultipleEvents1 Blocks on multiple event objects.

1 The routine can block if acting on a blocking socket.

Function Description

WSAAddressToString Convert an address structure into a
human-readable numeric string

WSAEnumNameSpaceProviders Retrieve the list of available Name
Registration and Resolution service
providers

WSAGetServiceClassInfo Retrieves all of the class-specific
information pertaining to a service class

WSAGetServiceClassNameByClassId Returns the name of the service
associated with the given type

WSAInstallServiceClass Create a new new service class type and
store its class-specific information

WSALookupServiceBegin Initiate a client query to retrieve name
information as constrained by a
WSAQUERYSET data structure

WSALookupServiceEnd Finish a client query started by
WSALookupServiceBegin and free
resources associated with the query

WSALookupServiceNext Retrieve the next unit of name
information from a client query initiated
by WSALookupServiceBegin

WSARemoveServiceClass Permanently removes a service class type

WSASetService Register or deregister a service instance
within one or more name spaces

WSAStringToAddress Convert a human-readable numeric string
to a socket address structure suitable for
passing to Windows Sockets routines.

Legal Information Page 25 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Deviation from Berkeley Sockets

There are a few limited instances where Windows Sockets has had to divert from strict adherence
to the Berkeley conventions, usually because of difficulties of implementation in a Windows
environment.

Socket Data Type

A new data type, SOCKET, has been defined. This is needed because a Windows Sockets
application cannot assume that socket descriptors are equivalent to file descriptors as they are in
UNIX. Furthermore, in UNIX, all handles, including socket handles, are small, non-negative
integers, and some applications make assumptions that this will be true. Windows Sockets
handles have no restrictions, other than that the value INVALID_SOCKET is not a valid socket.
Socket handles may take any value in the range 0 to INVALID_SOCKET-1.

Because the SOCKET type is unsigned, compiling existing source code from, for example, a
UNIX environment may lead to compiler warnings about signed/unsigned data type mismatches.

This means, for example, that checking for errors when the socket and accept routines return
should not be done by comparing the return value with -1, or seeing if the value is negative (both
common, and legal, approaches in BSD). Instead, an application should use the manifest constant
INVALID_SOCKET as defined in WINSOCK2.H. For example:

TYPICAL BSD STYLE:

s = socket(...);
if (s == -1) /* or s < 0 */
 {...}

PREFERRED STYLE:

s = socket(...);
if (s == INVALID_SOCKET)
 {...}

select and FD_*

Because a SOCKET is no longer represented by the UNIX-style "small non-negative integer", the
implementation of the select function was changed in Windows Sockets. Each set of sockets is
still represented by the fd_set type, but instead of being stored as a bitmask the set is implemented
as an array of SOCKETs. To avoid potential problems, applications must adhere to the use of the
FD_XXX macros to set, initialize, clear, and check the fd_set structures.

Legal Information Page 26 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Error codes - errno, h_errno & WSAGetLastError

Error codes set by Windows Sockets are NOT made available via the errno variable. Additionally,
for the getXbyY class of functions, error codes are NOT made available via the h_errno variable.
Instead, error codes are accessed by using the WSAGetLastError function. This function is
provided in Windows Sockets as a precursor (and eventually an alias) for the Win32 function
GetLastError. This is intended to provide a reliable way for a thread in a multi-threaded process
to obtain per-thread error information.

For compatibility with BSD, an application may choose to include a line of the form:

#define errno WSAGetLastError

This will allow networking code which was written to use the global errno to work correctly in a
single-threaded environment. There are, obviously, some drawbacks. If a source file includes code
which inspects errno for both socket and non-socket functions, this mechanism cannot be used.
Furthermore, it is not possible for an application to assign a new value to errno. (In Windows
Sockets the function WSASetLastError may be used for this purpose.)

TYPICAL BSD STYLE:

r = recv(...);
if (r == -1
 && errno == EWOULDBLOCK)
 {...}

PREFERRED STYLE:

r = recv(...);
if (r == -1 /* (but see below) */
 && WSAGetLastError == EWOULDBLOCK)
 {...}

Although error constants consistent with 4.3 Berkeley Sockets are provided for compatibility
purposes, applications should, where possible, use the "WSA" error code definitions. This is
because error codes returned by certain WinSock routines fall into the standard range of error
codes as defined by Microsoft C. Thus, a better version of the above source code fragment is:

r = recv(...);
if (r == -1 /* (but see below) */
 && WSAGetLastError == WSAEWOULDBLOCK)
 {...}

This specification defines a recommended set of error codes, and lists the possible errors that can
be returned as a result of each function. It may be the case in some implementations that other
Windows Sockets error codes will be returned in addition to those listed, and applications should
be prepared to handle errors other than those enumerated under each function description.
However Windows Sockets will not return any value that is not enumerated in the table of legal
Windows Sockets errors given in the section Error Codes.

Legal Information Page 27 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Pointers

All pointers used by applications with Windows Sockets should be FAR although this is only
relevant to 16-bit applications and meaningless in a 32-bit. To facilitate this, data type definitions
such as LPHOSTENT are provided.

Renamed functions

In two cases it was necessary to rename functions which are used in Berkeley Sockets in order to
avoid clashes with other Win32 API functions.

close & closesocket

Sockets are represented by standard file descriptors in Berkeley Sockets, so the close function can
be used to close sockets as well as regular files. While nothing in the Windows Sockets prevents
an implementation from using regular file handles to identify sockets, nothing requires it either.
Sockets must be closed by using the closesocket routine. Using the close routine to close a socket
is incorrect and the effects of doing so are undefined by this specification.

ioctl & ioctlsocket/WSAIoctl

Various C language run-time systems use the ioctl routine for purposes unrelated to Windows
Sockets. As a consequence, the ioctlsocket function and the WSAIoctl function were defined to
handle socket functions that were performed by ioctl and fcntl in the Berkeley Software
Distribution.

Maximum number of sockets supported

The maximum number of sockets supported by a particular Windows Sockets service provider is
implementation specific. An application should make no assumptions about the availability of a
certain number of sockets. For more information on this topic see WSAStartup.

The maximum number of sockets that an application can actually use is independent of the
number of sockets supported by a particular implementation. The maximum number of sockets
that a Windows Sockets application can use is determined at compile time by the manifest
constant FD_SETSIZE. This value is used in constructing the fd_set structures used in select. The
default value in WINSOCK2.H is 64. If an application is designed to be capable of working with
more than 64 sockets, the implementor should define the manifest FD_SETSIZE in every source
file before including WINSOCK2.H. One way of doing this may be to include the definition
within the compiler options in the makefile. For example, you could add "-DFD_SETSIZE=128"
as an option to the compiler command line for Microsoft C. It must be emphasized that defining
FD_SETSIZE as a particular value has no effect on the actual number of sockets provided by a
Windows Sockets service provider.

Include files

Legal Information Page 28 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

A number of standard Berkeley include files are supported for ease of porting existing source code
based on Berkeley sockets. However, these Berkeley header files merely include the
WINSOCK2.H include file, and it is therefore sufficient (and recommended) that Windows
Sockets application source files just include WINSOCK2.H.

Return values on function failure

The manifest constant SOCKET_ERROR is provided for checking function failure. Although use
of this constant is not mandatory, it is recommended. The following example illustrates the use of
the SOCKET_ERROR constant:

TYPICAL BSD STYLE:

r = recv(...);
if (r == -1 /* or r < 0 */
 && errno == EWOULDBLOCK)
 {...}

PREFERRED STYLE:

r = recv(...);
if (r == SOCKET_ERROR
 && WSAGetLastError == WSAEWOULDBLOCK)
 {...}

Service Provided Raw Sockets

The Windows Sockets specification does not mandate that a Windows Sockets service provider
support raw sockets, that is, sockets of type SOCK_RAW. However, service providers are
encouraged to supply raw socket support. A Windows Sockets-compliant application that wishes
to use raw sockets should attempt to open the socket with the socket call, and if it fails either
attempt to use another socket type or indicate the failure to the user.

Byte Ordering

Care must always be taken to account for any differences between the byte ordering used by Intel
Architecture and the byte ordering used on the wire by individual transport protocols. Any
reference to an address or port number passed to or from a Windows Sockets routine must be in
the network order for the protocol being utilized. In the case of IP, this includes the IP address and
port fields of a sockaddr_in structure (but not the sin_family field).

Consider an application that normally contacts a server on the TCP port corresponding to the
"time" service, but provides a mechanism for the user to specify an alternative port. The port
number returned by getservbyname is already in network order, which is the format required for
constructing an address so no translation is required. However, if the user elects to use a different

Legal Information Page 29 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

port, entered as an integer, the application must convert this from host to TCP/IP network order
(using the WSAHtons function) before using it to construct an address. Conversely, if the
application were to display the number of the port within an address (returned by getpeername
for example), the port number must be converted from network to host order (using WSANtohs)
before it can be displayed.

Since the Intel and Internet byte orders are different, the conversions described above are
unavoidable. Application writers are cautioned that they should use the standard conversion
functions provided as part of Windows Sockets rather than writing their own conversion code
since future implementations of Windows Sockets are likely to run on systems for which the host
order is identical to the network byte order. Only applications that use the standard conversion
functions are likely to be portable.

Windows Sockets Compatibility Issues

Windows Sockets 2 continues to support all of the Windows Sockets 1.1 semantics and function
calls except for those dealing with psuedo-blocking. Since Windows Sockets 2 runs only in 32-
bit, pre-emptively scheduled environments such as Windows NT and Windows 95, there is no
need to implement the psuedo-blocking found in Windows Sockets 1.1. This means that the
WSAEINPROGRESS error code will never be indicated and that the following Windows Sockets
1.1 functions are not available to Windows Sockets 2 applications:

WSACancelBlockingCall
WSAIsBlocking
WSASetBlockingHook
WSAUnhookBlockingHook

Windows Sockets 1.1 programs that are written to utilize psuedo-blocking will continue to
operate correctly since they link to either WINSOCK.DLL or WSOCK32.DLL. Both continue to
support the complete set of Windows Sockets 1.1 functions. In order for programs to become
Windows Sockets 2 applications, some amount of code modification must occur. In most cases,
you will substitute the judicious use of threads to accommodate processing that was being
accomplished with a blocking hook function.

Default state for a socket's overlapped attribute

The socket function created sockets with the overlapped attribute set by default in the first
WSOCK32.DLL, the 32-bit version of Windows Sockets 1.1. In order to insure backward
compatibility with currently deployed WSOCK32.DLL implementations, this will continue to be
the case for WinSock 2 as well. That is, in WinSock 2, sockets created with the socket function
will have the overlapped attribute. However, in order to be more compatible with the rest of the
Win32 API, sockets created with WSASocket will, by default, NOT have the overlapped
attribute. This attribute will only be applied if the WSA_FLAG_OVERLAPPED bit is set.

Windows Sockets 1.1 Blocking routines & EINPROGRESS

Legal Information Page 30 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

One major issue in porting applications from a Berkeley sockets environment to a Windows
environment involves "blocking"; that is, invoking a function that does not return until the
associated operation is completed. A problem arises when the operation takes an arbitrarily long
time to complete: an example is a recv, which might block until data has been received from the
peer system. The default behavior within the Berkeley sockets model is for a socket to operate in a
blocking mode unless the programmer explicitly requests that operations be treated as
nonblocking. Windows Sockets 1.1 environments could not assume pre-emptive scheduling.
Therefore, it was strongly recommended that programmers use the nonblocking (asynchronous)
operations if at all possible with Windows Sockets 1.1. Because this was not always possible, the
psuedo-blocking facilities described below were provided.

Note Windows Sockets 2 only runs on pre-emptive 32-bit operating systems where deadlocks are
not a problem. Programming practices for recommended for Windows Sockets 1.1 are not
necessary in Windows Sockets 2.

Even on a blocking socket, some functions — bind, getsockopt, and getpeername for example
— complete immediately. There is no difference between a blocking and a nonblocking operation
for those functions. Other operations, such as recv, can complete immediately or could take an
arbitrary time to complete, depending on various transport conditions. When applied to a blocking
socket, these operations are referred to as blocking operations. All routines that can block are
listed with an asterisk in the tables above and below.

With 16-bit Windows Sockets 1.1, a blocking operation that cannot complete immediately is
handled by psuedo-blocking as follows. The service provider initiates the operation, then enters a
loop in which it dispatches any Windows messages (yielding the processor to another thread if
necessary), and then checks for the completion of the Windows Sockets function. If the function
has completed, or if WSACancelBlockingCall has been invoked, the blocking function
completes with an appropriate result.

A service provider must allow installation of a blocking hook function that does not process
messages in order to avoid the possibility of re-entrant messages while a blocking operation is
outstanding. The simplest such blocking hook function would return FALSE. If a Windows
Sockets DLL depends on messages for internal operation, it can execute PeekMessage
(hMyWnd...) before executing the application blocking hook so that it can get its messages
without affecting the rest of the system.

In a 16-bit Windows Sockets 1.1 environment, if a Windows message is received for a process for
which a blocking operation is in progress, there is a risk that the application will attempt to issue
another Windows Sockets call. Because of the difficulty in managing this condition safely,
Windows Sockets 1.1 does not support such application behavior. An application it not permitted
to make more than one nested Windows Sockets function calls. Only one outstanding function
call will be allowed for a particular task. The only exceptions are two functions that are provided
to assist the programmer in this situation: WSAIsBlocking and WSACancelBlockingCall.

The WSAIsBlocking function can be called at any time to determine whether or not a blocking
Windows Sockets 1.1 call is in progress. Similarly, the WSACancelBlockingCall fucntion can be
called at any time to cancel an in-progress blocking call. Any other nesting of Windows Sockets
functions will fail with the error WSAEINPROGRESS.

It should be emphasized that this restriction applies to both blocking and non-blocking operations.
For Windows Sockets 2 applications that negotiate version 2.0 or higher at the time of calling
WSAStartup, no restriction on the nesting of operations exits. Operations can become nested

Legal Information Page 31 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

under some rare circumstances such as during a WSAAccept conditional-acceptance callback, or
if a service provider in turn invokes a Windows Sockets 2 function.

Although this mechanism is sufficient for simple applications, it cannot support the complex
message-dispatching requirements of more advanced applications (for example, those using the
MDI model). For such applications, the Windows Sockets API includes the function
WSASetBlockingHook, which allows the application to specify a special routine which will be
called instead of the default message dispatch routine described above.

The Windows Sockets provider calls the blocking hook only if all of the following are true: the
routine is one that is defined as being able to block, the specified socket is a blocking socket, and
the request cannot be completed immediately. (A socket is set to blocking by default, but the
IOCTL FIONBIO or the WSAAsyncSelect function set a socket to nonblocking mode.)

The blocking hook will never be called and the application does not need to be concerned with the
re-entrancy issues the blocking hook can introduce if an application follows these guideline:

It uses only nonblocking sockets, and;
It uses the WSAAsyncSelect and/or the WSAAsyncGetXByY routines instead of select
and the getXbyY routines.

If a Windows Sockets 1.1 application invokes an asynchronous or nonblocking operation that
takes a pointer to a memory object (a buffer, or a global variable for example) as an argument, it is
the responsibility of the application to ensure that the object is available to Windows Sockets
throughout the operation. The application must not invoke any Windows function that might
affect the mapping or addressability of the memory involved.

Graceful shutdown, linger options and socket closure

The following material is provided as clarification for the subject of shutting down socket
connections closing the sockets. It is important to distinguish the difference between shutting
down a socket connection and closing a socket. Shutting down a socket connection involves an
exchange of protocol messages between the two endpoints, hereafter referred to as a shutdown
sequence. Two general classes of shutdown sequences are defined: graceful and abortive (also
called "hard"). In a graceful shutdown sequence, any data that has been queued but not yet
transmitted can be sent prior to the connection being closed. In an abortive shutdown, any unsent
data is lost. The occurrence of a shutdown sequence (graceful or abortive) can also be used to
provide an FD_CLOSE indication to the associated applications signifying that a shutdown is in
progress.

Closing a socket, on the other hand, causes the socket handle to become deallocated so that the
application can no longer reference or use the socket in any manner.

In Windows Sockets, both the shutdown function, and the WSASendDisconnect function can be
used to initiate a shutdown sequence, while the closesocket function is used to deallocate socket
handles and free up any associated resources. Some amount of confusion arises, however, from
the fact that the closesocket function will implicitly cause a shutdown sequence to occur if it has
not already happened. In fact, it has become a rather common programming practice to rely on
this feature and use closesocket to both initiate the shutdown sequence and deallocate the socket
handle.

Legal Information Page 32 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

To facilitate this usage, the sockets interface provides for controls by way of the socket option
mechanism that allow the programmer to indicate whether the implicit shutdown sequence should
be graceful or abortive, and also whether the closesocket function should linger (that is not
complete immediately) to allow time for a graceful shutdown sequence to complete. These
important distinctions and the ramifications of using closesocket in this manner have not been
widely understood.

By establishing appropriate values for the socket options SO_LINGER and SO_DONTLINGER,
the following types of behavior can be obtained with the closesocket function:

Abortive shutdown sequence, immediate return from closesocket.
Graceful shutdown, delaying return until either shutdown sequence completes or a specified
time interval elapses. If the time interval expires before the graceful shutdown sequence
completes, an abortive shutdown sequence occurs, and closesocket returns.
Graceful shutdown, immediate return — allowing the shutdown sequence to complete in
the background. Although this is the default behavior, the application has no way of
knowing when (or whether) the graceful shutdown sequence actually completes.

One technique that can be used to minimize the chance of problems occurring during connection
teardown is to avoid relying on an implicit shutdown being initiated by closesocket. Instead, use
one of the two explicit shutdown functions, shutdown or WSASendDisconnect. This in turn will
cause an FD_CLOSE indication to be received by the peer application indicating that all pending
data has been received. To illustrate this, the following table shows the functions that would be
invoked by the client and server components of an application, where the client is responsible for
initiating a graceful shutdown.

Note The timing sequence is maintained from step (1) to step (6) between the client and the
server, except for step (4') and (5') which only has local timing significance in the sense that step
(5) follows step (5') on the client side while step (4') follows step (4) on the server side, with no
timing relationship with the remote party.

Protocol-independent Out-Of-Band data

The stream socket abstraction includes the notion of "out of band'' (OOB) data. Many protocols

Client Side Server Side

(1) Invoke shutdown(s, SD_SEND) to signal
end of session and that client has no more
data to send.

(2) Receive FD_CLOSE, indicating graceful
shutdown in progress and that all data has been
received.

(3) Send any remaining response data.

(5') Get FD_READ and invoke recv to get
any response data sent by server

(4) Invoke shutdown(s, SD_SEND) to indicate
server has no more data to send.

(5) Receive FD_CLOSE indication (4') Invoke closesocket

(6) Invoke closesocket

Legal Information Page 33 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

allow portions of incoming data to be marked as special in some way, and these special data
blocks can be delivered to the user out of the normal sequence. Examples include "expedited
data" in X.25 and other OSI protocols, and "urgent data" in BSD Unix's use of TCP. The next
section describes OOB data handling in a protocol-independent manner. A discussion of OOB
data implemented using TCP "urgent data" follows it. In the each discussion, the use of recv also
implies recvfrom, WSARecv, and WSARecvFrom, and references to WSAAsyncSelect also
apply to WSAEventSelect.

Protocol Independent OOB data

OOB data is a logically independent transmission channel associated with each pair of connected
stream sockets. OOB data may be delivered to the user independently of normal data. The
abstraction defines that the OOB data facilities must support the reliable delivery of at least one
OOB data block at a time. This data block can contain at least one byte of data, and at least one
OOB data block can be pending delivery to the user at any one time. For communications
protocols that support in-band signaling (such as TCP, where the "urgent data" is delivered in
sequence with the normal data), the system normally extracts the OOB data from the normal data
stream and stores it separately (leaving a gap in the "normal" data stream). This allows users to
choose between receiving the OOB data in order and receiving it out of sequence without having
to buffer all the intervening data. It is possible to "peek'' at out-of-band data.

A user can determine if there is any OOB data waiting to be read using the ioctlsocket
(SIOCATMARK) function (q.v.). For protocols where the concept of the "position" of the OOB
data block within the normal data stream is meaningful such as TCP, a Windows Sockets service
provider will maintain a conceptual "marker" indicating the position of the last byte of OOB data
within the normal data stream. This is not necessary for the implementation of the ioctlsocket
(SIOCATMARK) functionality - the presence or absence of OOB data is all that is required.

For protocols where the concept of the "position" of the OOB data block within the normal data
stream is meaningful, an application might process out-of-band data "in-line", as part of the
normal data stream. This is achieved by setting the socket option SO_OOBINLINE with
setsockopt. For other protocols where the OOB data blocks are truly independent of the normal
data stream, attempting to set SO_OOBINLINE will result in an error. An application can use the
SIOCATMARK ioctlsocket command to determine whether there is any unread OOB data
preceding the mark. For example, it can use this to resynchronize with its peer by ensuring that all
data up to the mark in the data stream is discarded when appropriate.

With SO_OOBINLINE disabled (the default setting):

Windows Sockets notifies an application of an FD_OOB event, if the application registered
for notification with WSAAsyncSelect, in exactly the same way FD_READ is used to
notify of the presence of normal data. That is, FD_OOB is posted when OOB data arrives
with no OOB data previously queued. The FD_OOB is also posted when data is read using
the MSG_OOB flag while some OOB data remains queued after the read operation has
returned. FD_READ messages are not posted for OOB data.
Windows Sockets returns from select with the appropriate exceptfds socket set if OOB data
is queued on the socket.
The application can call recv with MSG_OOB to read the urgent data block at any time.
The block of OOB data "jumps the queue".
The application can call recv without MSG_OOB to read the normal data stream. The OOB
data block will not appear in the data stream with "normal data." If OOB data remains after
any call to recv, Windows Sockets notifies the application with FD_OOB or with exceptfds
when using select.

Legal Information Page 34 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

For protocols where the OOB data has a position within the normal data stream, a single
recv operation will not span that position. One recv will return the normal data before the
"mark", and a second recv is required to begin reading data after the "mark".

With SO_OOBINLINE enabled:

FD_OOB messages are NOT posted for OOB data. OOB data is treated as normal for the
purpose of the select and WSAAsyncSelect functions, and indicated by setting the socket
in readfds or by sending an FD_READ message respectively.
The application can not call recv with the MSG_OOB flag set to read the OOB data block.
The error code WSAEINVAL will be returned.
The application can call recv without the MSG_OOB flag set. Any OOB data will be
delivered in its correct order within the "normal" data stream. OOB data will never be
mixed with normal data. There must be three read requests to get past the OOB data. The
first returns the normal data prior to the OOB data block, the second returns the OOB data,
the third returns the normal data following the OOB data. In other words, the OOB data
block boundaries are preserved.

The WSAAsyncSelect routine is particularly well suited to handling notification of the presence
of out-of-band-data when SO_OOBINLINE is off.

OOB data in TCP

Important The following discussion of out-of-band (OOB) data, implemented using TCP Urgent
data, follows the model used in the Berkeley software distribution. Users and implementors
should be aware that there are, at present, two conflicting interpretations of RFC 793 (where the
concept is introduced), and that the implementation of out-of-band data in the Berkeley Software
Distribution (BSD) does not conform to the Host Requirements laid down in RFC 1122.

Specifically, the TCP urgent pointer in BSD points to the byte after the urgent data byte, and an
RFC-compliant TCP urgent pointer points to the urgent data byte. As a result, if an application
sends urgent data from a BSD-compatible implementation to an RFC-1122 compatible
implementation, the receiver will read the wrong urgent data byte (it will read the byte located
after the correct byte in the data stream as the urgent data byte).

To minimize interoperability problems, applications writers are advised not to use out-of-band
data unless this is required to interoperate with an existing service. Windows Sockets suppliers
are urged to document the out-of-band semantics (BSD or RFC 1122) that their product
implements.

Arrival of a TCP segment with the "URG" (for urgent) flag set indicates the existence of a single
byte of "OOB" data within the TCP data stream. The "OOB data block" is one byte in size. The
urgent pointer is a positive offset from the current sequence number in the TCP header that
indicates the location of the "OOB data block" (ambiguously, as noted above). It might, therefore,
point to data that has not yet been received.

If SO_OOBINLINE is disabled (the default) when the TCP segment containing the byte pointed
to by the urgent pointer arrives, the OOB data block (one byte) is removed from the data stream
and buffered. If a subsequent TCP segment arrives with the urgent flag set (and a new urgent
pointer), the OOB byte currently queued can be lost as it is replaced by the new OOB data block
(as occurs in Berkeley Software Distribution). It is never replaced in the data stream, however.

With SO_OOBINLINE enabled, the urgent data remains in the data stream. As a result, the OOB

Legal Information Page 35 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

data block is never lost when a new TCP segment arrives containing urgent data. The existing
OOB data "mark" is updated to the new position.

Summary of Windows Sockets 2 Functions

The following tables summarize the functions included in Windows Sockets 2, separated into two
groups: Berkeley-style functions, and Microsoft Windows-specific Extension functions that have
been ratified as part of the Windows Sockets 2 specification. These tables do not include the
Windows Sockets functions known that are used with Registration and Name Resolution.

Socket Functions

The Windows Sockets specification includes all the following Berkeley-style socket routines that
were part of the Windows Sockets 1.1 API:

accept1 An incoming connection is acknowledged and associated
with an immediately created socket. The original socket is
returned to the listening state.

bind Assign a local name to an unnamed socket.

closesocket1 Remove a socket from the per-process object reference
table. Only blocks if SO_LINGER is set with a non-zero
timeout on a blocking socket.

connect1 Initiate a connection on the specified socket.

getpeername Retrieve the name of the peer connected to the specified
socket.

getsockname Retrieve the local address to which the specified socket is
bound.

getsockopt Retrieve options associated with the specified socket.

htonl2 Convert a 32-bit quantity from host byte order to network
byte order.

htons2 Convert a 16-bit quantity from host byte order to network
byte order.

inet_addr2 Converts a character string representing a number in the
Internet standard ".'' notation to an Internet address value.

inet_ntoa2 Converts an Internet address value to an ASCII string in ".''
notation i.e. "a.b.c.d''.

ioctlsocket Provide control for sockets.

listen Listen for incoming connections on a specified socket.

ntohl2 Convert a 32-bit quantity from network byte order to host
byte order.

ntohs2 Convert a 16-bit quantity from network byte order to host
byte order.

recv1 Receive data from a connected or unconnected socket.

Legal Information Page 36 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Microsoft Windows-specific Extension Functions

The Windows Sockets specification provides a number of extensions to the standard set of
Berkeley Sockets routines. Principally, these extended functions allow message or function-based,
asynchronous access to network events, as well as enable overlapped I/O. While use of this
extended API set is not mandatory for socket-based programming (with the exception of
WSAStartup and WSACleanup), it is recommended for conformance with the Microsoft
Windows programming paradigm. For features introduced in Windows Sockets 2, please see New
Concepts, Additions and Changes for Windows Sockets 2.

recvfrom1 Receive data from either a connected or unconnected
socket.

select1 Perform synchronous I/O multiplexing.

send1 Send data to a connected socket.

sendto1 Send data to either a connected or unconnected socket.

setsockopt Store options associated with the specified socket.

shutdown Shut down part of a full-duplex connection.

socket Create an endpoint for communication and return a socket
descriptor.

1 The routine can block if acting on a blocking socket.

2 The routine is retained for backward compatibility with Windows Sockets 1.1, and should
only be used for sockets created with AF_INET address family.

WSAAccept1 An extended version of accept which allows for
conditional acceptance and socket grouping.

WSAAsyncGetHostByAddr2 3

WSAAsyncGetHostByName2 3

WSAAsyncGetProtoByName2 3

WSAAsyncGetProtoByNumber2 3

WSAAsyncGetServByName2 3

WSAAsyncGetServByPort2 3

A set of functions which provide asynchronous
versions of the standard Berkeley getXbyY
functions. For example, the
WSAAsyncGetHostByName function provides
an asynchronous, message-based
implementation of the standard Berkeley
gethostbyname function.

WSAAsyncSelect 3 Perform asynchronous version of select

WSACancelAsyncRequest2 3 Cancel an outstanding instance of a
WSAAsyncGetXByY function.

WSACleanup Sign off from the underlying Windows Sockets
DLL.

WSACloseEvent Destroys an event object.

WSAConnect1 An extended version of connect which allows
for exchange of connect data and QOS
specification.

Legal Information Page 37 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

WSACreateEvent Creates an event object.

WSADuplicateSocket Allow an underlying socket to be shared by
creating a virtual socket.

WSAEnumNetworkEvents Discover occurrences of network events.

WSAEnumProtocols Retrieve information about each available
protocol.

WSAEventSelect Associate network events with an event object.

WSAGetLastError 3 Obtain details of last Windows Sockets error

WSAGetOverlappedResult Get completion status of overlapped operation.

WSAGetQOSByName Supply QOS parameters based on a well-known
service name.

WSAHtonl Extended version of htonl

WSAHtons Extended version of htons

WSAIoctl1 Overlapped-capable version of ioctl

WSAJoinLeaf1 Add a multipoint leaf to a multipoint session

WSANtohl Extended version of ntohl

WSANtohs Extended version of ntohs

WSAProviderConfigChange Receive notifications of service providers being
installed/removed.

WSARecv1 An extended version of recv which
accommodates scatter/gather I/O, overlapped
sockets and provides the flags parameter as IN
OUT

WSARecvFrom1 An extended version of recvfrom which
accommodates scatter/gather I/O, overlapped
sockets and provides the flags parameter as IN
OUT

WSAResetEvent Resets an event object.

WSASend1 An extended version of send which
accommodates scatter/gather I/O and overlapped
sockets

WSASendTo1 An extended version of sendto which
accommodates scatter/gather I/O and overlapped
sockets

WSASetEvent Sets an event object.

WSASetLastError 3 Set the error to be returned by a subsequent
WSAGetLastError

WSASocket An extended version of socket which takes a
WSAPROTOCOL_INFO struct as input and
allows overlapped sockets to be created. Also
allows socket groups to be formed.

WSAStartup 3 Initialize the underlying Windows Sockets DLL.

WSAWaitForMultipleEvents1 Blocks on multiple
event objects.

Legal Information Page 38 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Registration and Name Resolution
Windows Sockets 2 includes a new set of API functions that standardize the way applications
access and use the various network naming services. When using these new functions, Windows
Sockets 2 applications need not be cognizant of the widely differing protocols associated with
name services such as DNS, NIS, X.500, SAP, etc. To maintain full backward compatibility with
Windows Sockets 1.1, all of the existing getXbyY and asynchronous WSAAsyncGetXbyY
database lookup functions continue to be supported, but are implemented in the Windows Sockets
service provider interface in terms of the new name resolution capabilities. For more information,
see the getservbyname and getservbyport functions. Also, see Windows Sockets 1.1
Compatibile Name Resolution for TCP/IP.

Protocol-Independent Name Resolution

In developing a protocol-independent client/server application, there are two basic requirements
that exist with respect to name resolution and registration:

The ability of the server half of the application (hereafter referred to as a service) to register
its existence within (or become accessible to) one or more name spaces
The ability of the client application to find the service within a name space and obtain the
required transport protocol and addressing information

For those accustomed to developing TCP/IP based applications, this may seem to involve little
more than looking up a host address and then using an agreed upon port number. Other
networking schemes, however, allow the location of the service, the protocol used for the service,
and other attributes to be discovered at run-time. To accommodate the broad diversity of
capabilities found in existing name services, the Windows Sockets 2 interface adopts the model
described below.

Name Resolution Model

A name space refers to some capability to associate (as a minimum) the protocol and addressing
attributes of a network service with one or more human-friendly names. Many name spaces are
currently in wide use including the Internet's Domain Name System(DNS), the bindery and
Netware Directory Services (NDS) from Novell, X.500, etc. These name spaces vary widely in
how they are organized and implemented. Some of their properties are particularly important to
understand from the perspective of Windows Sockets name resolution.

1 The routine can block if acting on a blocking socket.

2 The routine is always realized by the name resolution provider associated with the default
TCP/IP service provider, if any.

3 The routine was originally a Windows Sockets 1.1 function

Legal Information Page 39 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Types of Name Spaces

There are three different types of name spaces in which a service could be registered:

dynamic
static
persistent

Dynamic name spaces allow services to register with the name space on the fly, and for clients to
discover the available services at run-time. Dynamic name spaces frequently rely on broadcasts to
indicate the continued availability of a network service. Examples of dynamic name spaces
include the SAP name space used within a Netware environment and the NBP name space used
by Appletalk.

Static name spaces require all of the services to be registered ahead of time, i.e. when the name
space is created. The DNS is an example of a static name space. Although there is a programmatic
way to resolve names, there is no programmatic way to register names.

Persistent name spaces allow services to register with the name space on the fly. Unlike dynamic
name spaces however, persistent name spaces retain the registration information in non-volatile
storage where it remains until such time as the service requests that it be removed. Persistent
name spaces are typified by directory services such as X.500 and the NDS (Netware Directory
Service). These environments allow the adding, deleting, and modification of service properties.
In addition, the service object representing the service within the directory service could have a
variety of attributes associated with the service. The most important attribute for client
applications is the service's addressing information.

Name Space Organization

Many name spaces are arranged hierarchically. Some, such as X.500 and NDS, allow unlimited
nesting. Others allow services to be combined into a single level of hierarchy or "group." This is
typically referred to as a workgroup. When constructing a query, it is often necessary to establish a
context point within a name space hierarchy from which the search will begin.

Name Space Provider Architecture

Naturally, the programmatic interfaces used to query the various types of name spaces and to
register information within a name space (if supported) differ widely. A name space provider is a
locally-resident piece of software that knows how to map between Windows Sockets's name space
SPI and some existing name space (which could be implemented locally or be accessed via the
network). This is illustrated as follows:

Legal Information Page 40 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Name Space Provider Architecture

Note that it is possible for a given name space, say DNS, to have more than one name space
provider installed on a given machine.

As mentioned above, the generic term service refers to the server-half of a client/server
application. In Windows Sockets, a service is associated with a service class, and each instance of
a particular service has a service name which must be unique within the service class. Examples
of service classes include FTP Server, SQL Server, XYZ Corp. Employee Info Server, etc. As the
example attempts to illustrate, some service classes are "well known" while others are very unique
and specific to a particular vertical application. In either case, every service class is represented by
both a class name and a class ID. The class name does not necessarily need to be unique, but the
class ID must be. Globally Unique Identifiers (GUIDs) are used to represent service class IDs. For
well-known services, class names and class ID's (GUIDs) have been pre-allocated, and macros are
available to convert between, for example, TCP port numbers (inhost-byte order) and the
corresponding class ID GUIDs. For other services, the developer chooses the class name and uses
the UUIDGEN.EXE utility to generate a GUID for the class ID.

The notion of a service class exists to allow a set of attributes to be established that are held in
common by all instances of a particular service. This set of attributes is provided at the time the
service class is defined to Windows Sockets, and is referred to as the service class schema
information. When a service is installed and made available on a host machine, that service is
considered instantiated, and its service name is used to distinguish a particular instance of the
service from other instances which may be known to the name space.

Note that the installation of a service class only needs to occur on machines where the service
executes, not on all of the clients which may utilize the service. Where possible, the
WS2_32.DLL will provide service class schema information to a name space provider at the time
an instantiation of a service is to be registered or a service query is initiated. The WS2_32.DLL
does not, of course, store this information itself, but attempts to retrieve it from a name space
provider that has indicated its ability to supply this data. Since there is no guarantee that the
WS2_32.DLL will be able to supply the service class schema, name space providers that need this
information must have a fallback mechanism to obtain it through name space-specific means.

As noted above, the Internet has adopted what can be termed a host-centric service model.
Applications needing to locate the transport address of a service generally must first resolve the
address of a specific host known to host the service. To this address they add in the well-known
port number and thus create a complete transport address. To facilitate the resolution of host
names, a special service class identifier has been pre-allocated (SVCID_HOSTNAME). A query
that specifies SVCID_HOSTNAME as the service class and uses the host name the service
instance name will, if the query is successful, return host address information.

In Windows Sockets 2, applications that are protocol-independent wish to avoid the need to
comprehend the internal details of a transport address. Thus the need to first get a host address
and then add in the port is problematic. To avoid this, queries may also include the well-known
name of a particular service and the protocol over which the service operates, such as "ftp/tcp". In

Legal Information Page 41 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

this case, a successful query will return a complete transport address for the specified service on
the indicated host, and the application will not be required to "crack open" a sockaddr structure.
This is described in more detail below.

The Internet's Domain Name System does not have a well-defined means to store service class
schema information. As a result, DNS name space providers will only be able to accommodate
well-known TCP/IP services for which a service class GUID has been preallocated. In practice
this is not a serious limitation since service class GUIDs have been preallocated for the entire set
of TCP and UDP ports, and macros are available to retrieve the GUID associated with any TCP or
UDP port with the port expressed in host-byte order. Thus all of the familiar services such as ftp,
telnet, whois, etc. are well supported.

Continuing with our service class example, instance names of the ftp service may be
"alder.intel.com" or "rhino.microsoft.com" while an instance of the XYZ Corp. Employee Info
Server might be named "XYZ Corp. Employee Info Server Version 3.5". In the first two cases, the
combination of the service class GUID for ftp and the machine name (supplied as the service
instance name) uniquely identify the desired service. In the third case, the host name where the
service resides can be discovered at service query time, so the service instance name does not
need to include a host name.

Summary of Name Resolution Functions

The name resolution functions can be grouped into three categories: Service installation, client
queries, and helper functions (and macros). The sections that follow identify the functions in each
category and briefly describe their intended use. Key data structures are also described.

Service Installation

WSAInstallServiceClass
WSARemoveServiceClass
WSASetService

When the required service class does not already exist, an application uses
WSAInstallServiceClass to install a new service class by supplying a service class name, a
GUID for the service class ID, and a series of WSANSCLASSINFO structures. These structures
are each specific to a particular name space, and supply common values such as recommended
TCP port numbers or Netware SAP Identifiers. A service class can be removed by calling
WSARemoveServiceClass and supplying the GUID corresponding to the class ID.

Once a service class exists, specific instances of a service can be installed or removed via
WSASetService. This function takes a WSAQUERYSET structure as an input parameter along
with an operation code and operation flags. The operation code indicates whether the service is
being installed or removed. The WSAQUERYSET structure provides all of the relevant
information about the service including service class ID, service name (for this instance),
applicable name space identifier and protocol information, and a set of transport addresses at
which the service listens. Services should invoke WSASetService when they initialize in order to
advertise their presence in dynamic name spaces.

Client Query

Legal Information Page 42 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

WSAEnumNameSpaceProviders
WSALookupServiceBegin
WSALookupServiceNext
WSALookupServiceEnd

The WSAEnumNameSpaceProviders function allows an application to discover which name
spaces are accessible via Windows Sockets's name resolution facilities. It also allows an
application to determine whether a given name space is supported by more than one name space
provider, and to discover the provider ID for any particular name space provider. Using a provider
ID, the application can restrict a query operation to a specified name space provider.

Windows Sockets' name space query operations involves a series of calls:
WSALookupServiceBegin, followed by one or more calls to WSALookupServiceNext and
ending with a call to WSALookupServiceEnd. WSALookupServiceBegin takes a
WSAQUERYSET structure as input in order to define the query parameters along with a set of
flags to provide additional control over the search operation. It returns a query handle which is
used in the subsequent calls to WSALookupServiceNext and WSALookupServiceEnd.

The application invokes WSALookupServiceNext to obtain query results, with results supplied
in an application-supplied WSAQUERYSET buffer. The application continues to call
WSALookupServiceNext until the error code WSA_E_NO_MORE is returned indicating that all
results have been retrieved. The search is then terminated by a call to WSALookupServiceEnd.
The WSALookupServiceEnd function can also be used to cancel a currently pending
WSALookupServiceNext when called from another thread.

In Windows Socket 2, conflicting error codes are defined for WSAENOMORE (10102) and
WSA_E_NO_MORE (10110). The error code WSAENOMORE will be removed in a future
version and only WSA_E_NO_MORE will remain. For Windows Socket 2, however, applications
should check for both WSAENOMORE and WSA_E_NO_MORE for the widest possible
compatibility with Name Space Providers that use either one.

Helper Functions

WSAGetServiceClassNameByClassId
WSAAddressToString
WSAStringToAddress
WSAGetServiceClassInfo

The name resolution helper functions include a function to retrieve a service class name given a
service class ID, a pair of functions used to translate a transport address between a sockaddr
struct and an ASCII string representation, a function to retrieve the service class schema
information for a given service class, and a set of macros for mapping well known services to pre-
allocated GUIDs.

The following macros from winsock2.h aid in mapping between well known service classes and
these name spaces.

Legal Information Page 43 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Name Resolution Data Structures

There are several important data structures that are used extensively throughout the name
resolution functions. These are described below.

Query-Related Data Structures

The WSAQUERYSET structure is used to form queries for WSALookupServiceBegin, and used
to deliver query results for WSALookupServiceNext. It is a complex structure since it contains
pointers to several other structures, some of which reference still other structures. The relationship
between WSAQUERYSET and the structures it references is illustrated as follows:

SVCID_TCP(Port)

SVCID_UDP(Port)

SVCID_NETWARE(Object Type)

Given a port for TCP/IP or UDP/IP or
the object type in the case of Netware,
return the GUID (port number in host
order)

IS_SVCID_TCP(GUID)
IS_SVCID_UDP(GUID)
IS_SVCID_NETWARE(GUID)

Returns TRUE if the GUID is within
the allowable range

SET_TCP_SVCID(GUID, port)
SET_UDP_SVCID(GUID, port)

Initializes a GUID structure with the
GUID equivalent for a TCP or UDP
port number (port number must be in
host order)

PORT_FROM_SVCID_TCP(GUID)

PORT_FROM_SVCID_UDP(GUID)

SAPID_FROM_SVCID_NETWARE(GUID)

Returns the port or object type
associated with the GUID (port
number in host order)

Legal Information Page 44 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

WSAQUERYSET and Friends

Within the WSAQUERYSET structure, most of the fields are self explanatory, but some deserve
additional explanation. The dwSize field must always be filled in with sizeof(WSAQUERYSET),
as this is used by name space providers to detect and adapt to different versions of the
WSAQUERYSET structure that may appear over time.

The dwOutputFlags field is used by a name space provider to provide additional information
about query results. For details, see WSALookupServiceNext.

The WSAECOMPARATOR structure referenced by lpversion is used for both query constraint
and results. For queries, the dwVersion field indicates the desired version of the service. The
ecHow field is an enumerated type which specifies how the comparison will be made. The choices
are COMP_EQUALS which requires that an exact match in version occurs, or COMP_NOTLESS
which specifies that the service's version number be no less than the value of dwVersion.

The interpretation of dwNameSpace and lpNSProviderId depends upon how the structure is being
used and is described further in the individual function descriptions that utilize this structure.

The lpszContext field applies to hierarchical name spaces, and specifies the starting point of a
query or the location within the hierarchy where the service resides. The general rules are:

A value of NULL, blank ("") will start the search at the default context.
A value of "\" starts the search at the top of the name space.
Any other value starts the search at the designated point.

Providers that do not support containment may return an error if anything other than "" or "\" is
specified. Providers that support limited containment, such as groups, should accept "", '\", or a
designated point. Contexts are name space specific. If dwNameSpace is NS_ALL, then only "" or
"\" should be passed as the context since these are recognized by all name spaces.

The lpszQueryString field is used to supply additional, name space-specific query information
such as a string describing a well-known service and transport protocol name, as in "ftp/tcp".

The AFPROTOCOLS structure referenced by lpafpProtocols is used for query purposes only, and
supplies a list of protocols to constrain the query. These protocols are represented as (address
family, protocol) pairs, since protocol values only have meaning within the context of an address
family.

The array of CSADDR_INFO structure referenced by lpcsaBuffer contain all of the information
needed to for either a service to use in establishing a listen, or a client to use in establishing a
connection to the service. The LocalAddr and RemoteAddr fields both directly contain a
SOCKET_ADDRESS structure. A service would create a socket using the tuple
(LocalAddr.lpSockaddr->sa_family, iSocketType, iProtocol). It would bind the socket to a local
address using LocalAddr.lpSockaddr, and LocalAddr.lpSockaddrLength. The client creates its
socket with the tuple (RemoteAddr.lpSockaddr->sa_family, iSocketType, iProtocol), and uses the
combination of RemoteAddr.lpSockaddr, and RemoteAddr.lpSockaddrLength when making a

Legal Information Page 45 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

remote connection.

Service Class Data Structures

When a new service class is installed, a WSASERVICECLASSINFO structure must be prepared
and supplied. This structure also consists of substructures which contain a series of parameters
that apply to specific name spaces.

Class Info Data Structures

For each service class, there is a single WSASERVICECLASSINFO structure. Within the
WSASERVICECLASSINFO structure, the service class' unique identifier is contained in
lpServiceClassId, and an associated display string is referenced by lpServiceClassName. This is
the string that will be returned by WSAGetServiceClassNameByClassId.

The lpClassInfos field in the WSASERVICECLASSINFO structure references an array of
WSANSCLASSINFO structures, each of which supplies a named and typed parameter that
applies to a specified name space. Examples of values for the lpszName field include: "SapId",
"TcpPort", "UdpPort", etc. These strings are generally specific to the name space identified in
dwNameSpace. Typical values for dwValueType might be REG_DWORD, REG_SZ, etc. The
dwValueSize field indicates the length of the data item pointed to by lpValue.

The entire collection of data represented in a WSASERVICECLASSINFO structure is provided to
each name space provider when WSAInstallServiceClass is invoked. Each individual name
space provider then sifts through the list of WSANSCLASSINFO structures and retain the
information applicable to it.

Windows Sockets 1.1 Compatibile Name Resolution for
TCP/IP

Windows Sockets 1.1 defined a number of routines that were used for name resolution with
TCP/IP (IP version 4) networks. These are customarily called the getXbyY functions and include
the following:

Legal Information Page 46 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Asynchronous versions of these functions were also defined:

There are also two functions (now implemented in the WinSock 2 DLL) used to convert dotted
Ipv4 internet address notation to and from string and binary representations, respectively:

All of these functions are specific to Ipv4 TCP/IP networks and developers of protocol-
independent applications are discouraged from continuing to utilize these transport-specific
functions. However, in order to retain strict backwards compatibility with Windows Sockets 1.1,
all of the above functions continue to be supported as long as at least one name space provider is
present that supports the AF_INET address family (these functions are not relevant to IP version
6, denoted by AF_INET6).

The WS2_32.DLL implements these compatibility functions in terms of the new, protocol-
independent name resolution facilities using an appropriate sequence of
WSALookupServiceBegin/Next/End function calls. The details of how the getXbyY functions are
mapped to name resolution functions are provided below. The WS2_32.DLL handles the
differences between the asynchronous and synchronous versions of the getXbyY functions, so
only the implementation of the synchronous getXbyY functions are discussed.

Basic Approach for getxbyy

Most getXbyY functions are translated by the WS2_32.DLL to a
WSAServiceLookupBegin/Next/End sequence that uses one of a set of special GUIDs as the
service class. These GUIDs identify the type of getXbyYoperation that is being emulated. The
query is constrained to those NSPs that support AF_INET. Whenever a getXbyY function returns
a hostent or servent structure, the WS2_32.DLL will specify the LUP_RETURN_BLOB flag in

gethostname

gethostbyaddr

gethostbyname

getprotobyname

getprotobynumber

getservbyname

getservbyport

WSAAsyncGetHostByAddr

WSAAsyncGetHostByName

WSAAsyncGetProtoByName

WSAAsyncGetProtoByNumber

WSAAsyncGetServByName

WSAAsyncGetServByPort

inet_addr

inet_ntoa

Legal Information Page 47 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

WSALookupServiceBegin so that the desired information will be returned by the NSP. These
structures must be modified slightly in that the pointers contained within must be replaced with
offsets that are relative to the start of the blob's data. All values referenced by these pointer fields
must, of course, be completely contained within the blob, and all strings are ASCII.

The getprotobyname and getprotobynumber functions

These functions are implemented within the WS2_32.DLL by consulting a local protocols
database. They do not result in any name resolution query.

The getservbyname and getservbyport functions

The WSALookupServiceBegin query uses SVCID_INET_SERVICEBYNAME as the service
class GUID. The lpszServiceInstanceName field references a string which indicates the service
name or service port, and (optionally) the service protocol. The formatting of the string is
illustrated as "ftp/tcp" or "21/tcp" or just "ftp". The string is not case sensitive. The slash mark, if
present, separates the protocol identifier from the preceding part of the string. The WS2_32.DLL
will specify LUP_RETURN_BLOB and the NSP will place a servent struct in the blob (using
offsets instead of pointers as described above). NSPs should honor these other LUP_RETURN_*
flags as well:

The gethostbyname function

The WSALookupServiceBegin query uses SVCID_INET_HOSTADDRBYNAME as the service
class GUID. The host name is supplied in lpszServiceInstanceName. The WS2_32.DLL specifies
LUP_RETURN_BLOB and the NSP places a hostent struct in the blob (using offsets instead of
pointers as described above). NSPs should honor these other LUP_RETURN_* flags as well:

LUP_RETURN_NAME return the s_name field from servent struct in
lpszServiceInstanceName.

LUP_RETURN_TYPE return canonical GUID in lpServiceClassId It is
understood that a service identified either as "ftp"
or "21" may in fact be on some other port
according to locally established conventions. The
s_port field of the servent structure should
indicate where the service can be contacted in the
local environment. The canonical GUID returned
when LUP_RETURN_TYPE is set should be one
of the predefined GUIDs from svcs.h that
corresponds to the port number indicated in the
servent structure.

Legal Information Page 48 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

The gethostbyaddr function

The WSALookupServiceBegin query uses SVCID_INET_HOSTNAMEBYADDR as the service
class GUID. The host address is supplied in lpszServiceInstanceName as a dotted internet string
(e.g. "192.9.200.120"). The WS2_32.DLL specifies LUP_RETURN_BLOB and the NSP places a
hostent struct in the blob (using offsets instead of pointers as described above). NSPs should
honor these other LUP_RETURN_* flags as well:

The gethostname function

The WSALookupServiceBegin query uses SVCID_HOSTNAME as the service class GUID. If
lpszServiceInstanceName is NULL or references a NULL string (that is . ""), the local host is to be
resolved. Otherwise, a lookup on a specified host name shall occur. For the purposes of emulating
gethostname the WS2_32.DLL will specify a null pointer for lpszServiceInstanceName, and
specify LUP_RETURN_NAME so that the host name is returned in the lpszServiceInstanceName
field. If an application uses this query and specifies LUP_RETURN_ADDR then the host address
will be provided in a CSADDR_INFO struct. The LUP_RETURN_BLOB action is undefined for
this query. Port information will be defaulted to zero unless the lpszQueryString references a
service such as "ftp", in which case the complete transport address of the indicated service will be
supplied.

Multipoint and Multicast Semantics
In considering how to support multipoint and multicast in Windows Sockets 2 a number of
existing and proposed multipoint/multicast schemes (including IP-multicast, ATM point-to-
multipoint connection, ST-II, T.120, H.320 (MCU), etc.) were examined. While common in some
aspects, each is widely different in others. To enable a coherent discussion of the various schemes,
it is valuable to first create a taxonomy that characterizes the essential attributes of each. For
simplicity, the term "multipoint" will hereafter be used to represent both multipoint and multicast.

LUP_RETURN_NAME return the h_name field from hostent struct in
lpszServiceInstanceName.

LUP_RETURN_ADDR return addressing info from hostent in
CSADDR_INFO structs, port information is
defaulted to zero. Note that this routine does not
resolve host names that consist of a dotted
internet address.

LUP_RETURN_NAME return the h_name field from hostent struct in
lpszServiceInstanceName.

LUP_RETURN_ADDR return addressing info from hostent in
CSADDR_INFO structs, port information is
defaulted to zero.

Legal Information Page 49 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Multipoint Taxonomy

The taxonomy described in this section first distinguishes the control plane that concerns itself
with the way a multipoint session is established, from the data plane that deals with the transfer of
data amongst session participants.

In the control plane there are two distinct types of session establishment: rooted and non-rooted.
In the case of rooted control, there exists a special participant, called c_root, that is different from
the rest of the members of this multipoint session, each of which is called a c_leaf. The c_root
must remain present for the whole duration of the multipoint session, as the session will be broken
up in the absence of the c_root. The c_root usually initiates the multipoint session by setting up
the connection to a c_leaf, or a number of c_leafs. The c_root may add more c_leafs, or (in some
cases) a c_leaf can join the c_root at a later time. Examples of the rooted control plane can be
found in ATM and ST-II.

For a non-rooted control plane, all the members belonging to a multipoint session are leaves, i.e.,
no special participant acting as a c_root exists. Each c_leaf needs to add itself to a pre-existing
multipoint session that either is always available (as in the case of an IP multicast address), or has
been set up through some out-of-band mechanism which is outside the scope of the Windows
Sockets specification. Another way to look at this is that a c_root still exists, but can be
considered to be in the network cloud as opposed to one of the participants. Because a control root
still exists, a non-rooted control plane could also be considered to be implicitly rooted. Examples
for this kind of implicitly rooted multipoint schemes are: a teleconferencing bridge, the IP
multicast system, a Multipoint Control Unit (MCU) in a H.320 video conference, etc.

In the data plane, there are two types of data transfer styles: rooted and non-rooted. In a rooted
data plane, a special participant called d_root exists. Data transfer only occurs between the d_root
and the rest of the members of this multipoint session, each of which is referred to as a d_leaf.
The traffic could be undsi-directional, or bi-directional. The data sent out from the d_root will be
duplicated (if required) and delivered to every d_leaf, while the data from d_leafs will only go to
the d_root. In the case of a rooted data plane, there is no traffic allowed among d_leafs. An
example of a protocol that is rooted in the data plane is ST-II.

In a non-rooted data plane, all the participants are equal in the sense that any data they send will
be delivered to all the other participants in the same multipoint session. Likewise each d_leaf
node will be able to receive data from all other d_leafs, and in some cases, from other nodes
which are not participating in the multipoint session as well. No special d_root node exists. IP-
multicast is non-rooted in the data plane.

Note that the question of where data unit duplication occurs, or whether a shared single tree or
multiple shortest-path trees are used for multipoint distribution are protocol issues, and are
irrelevant to the interface the application would use to perform multipoint communications.
Therefore these issues are not addressed either in this appendix or by the Windows Sockets
interface.

The following table depicts the taxonomy described above and indicates how existing schemes fit
into each of the categories. Note that there does not appear to be any existing schemes that employ
a non-rooted control plane along with a rooted data plane.

Legal Information Page 50 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Windows Sockets 2 Interface Elements for Multipoint and
Multicast

The mechanisms that have been incorporated into Windows Sockets 2 for utilizing multipoint
capabilities can be summarized as follows:

Three attribute bits in the WSAPROTOCOL_INFO struct

1. Four flags defined for the dwFlags parameter of WSASocket
2. One function, WSAJoinLeaf, for adding leaf nodes into a multipoint session
3. Two WSAIoctl command codes for controlling multipoint loopback and the scope of

multicast transmissions.

The paragraphs which follow describe these interface elements in more detail.

Attributes in WSAPROTOCOL_INFO struct

In support of the taxonomy described above, three attribute fields in the WSAPROTOCOL_INFO
structure are use to distinguish the different schemes used in the control and data planes
respectively:

1. XP1_SUPPORT_MULTIPOINT with a value of 1 indicates this protocol entry supports
multipoint communications, and that the following two fields are meaningful.

2. XP1_MULTIPOINT_CONTROL_PLANE indicates whether the control plane is rooted
(value = 1) or non-rooted (value = 0).

3. XP1_MULTIPOINT_DATA_PLANE indicates whether the data plane is rooted (value = 1)
or non-rooted (value = 0).

Note that two WSAPROTOCOL_INFO entries would be present if a multipoint protocol
supported both rooted and non-rooted data planes, one entry for each.

The application can use WSAEnumProtocols to discover whether multipoint communications is
supported for a given protocol and, if so, how it is supported with respect to the control and data
planes, respectively.

Flag bits for WSASocket

In some instances sockets joined to a multipoint session may have some behavioral differences
from point-to-point sockets. For example, a d_leaf socket in a rooted data plane scheme can only
send information to the d_root participant. This creates a need for the application to be able to

rooted control plane non-rooted (implicit rooted)
control plane

rooted data plane ATM, ST-II No known examples.

non-rooted data plane T.120 IP-multicast, H.320 (MCU)

Legal Information Page 51 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

indicated the intended use of a socket coincident with its creation. This is done through four flag
bits that can be set in the dwFlags parameter to WSASocket:

WSA_FLAG_MULTIPOINT_C_ROOT, for the creation of a socket acting as a c_root, and
only allowed if a rooted control plane is indicated in the corresponding
WSAPROTOCOL_INFO entry.
WSA_FLAG_MULTIPOINT_C_LEAF, for the creation of a socket acting as a c_leaf, and
only allowed if XP1_SUPPORT_MULTIPOINT is indicated in the corresponding
WSAPROTOCOL_INFO entry.
WSA_FLAG_MULTIPOINT_D_ROOT, for the creation of a socket acting as a d_root, and
only allowed if a rooted data plane is indicated in the corresponding
WSAPROTOCOL_INFO entry.
WSA_FLAG_MULTIPOINT_D_LEAF, for the creation of a socket acting as a d_leaf, and
only allowed if XP1_SUPPORT_MULTIPOINT is indicated in the corresponding
WSAPROTOCOL_INFO entry.

Note that when creating a multipoint socket, exactly one of the two control plane flags, and one of
the two data plane flags must be set in WSASocket's dwFlags parameter. Thus, the four
possibilities for creating multipoint sockets are: "c_root/d_root", "c_root/d_leaf", "c_leaf/d_root",
or "c_leaf /d_leaf".

SIO_MULTIPOINT_LOOPBACK command code for WSAIoctl

When d_leaf sockets are used in a non-rooted data plane, it is generally desirable to be able to
control whether traffic sent out is also received back on the same socket. The
SIO_MULTIPOINT_LOOPBACK command code for WSAIoctl is used to enable or disable
loopback of multipoint traffic.

SIO_MULTICAST_SCOPE command code for WSAIoctl

When multicasting is employed, it is usually necessary to specify the scope over which the
multicast should occur. Scope is defined as the number of routed network segments to be covered.
A scope of zero would indicate that the multicast transmission would not be placed "on the wire"
but could be disseminated across sockets within the local host. A scope value of one (the default)
indicates that the transmission will be placed on the wire, but will not cross any routers. Higher
scope values determine the number of routers that may be crossed. Note that this corresponds to
the time-to-live (TTL) parameter in IP multicasting.

The function WSAJoinLeaf is used to join a leaf node into the multipoint session. See below for
a discussion on how this function is utilized.

Semantics for joining multipoint leaves

In the following, a multipoint socket is frequently described by defining its role in one of the two
planes (control or data). It should be understood that this same socket has a role in the other plane,
but this is not mentioned in order to keep the references short. For example when a reference is
made to a "c_root socket", this could be either a c_root/d_root or a c_root/d_leaf socket.

In rooted control plane schemes, new leaf nodes are added to a multipoint session in one or both
of two different ways. In the first method, the root uses WSAJoinLeaf to initiate a connection

Legal Information Page 52 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

with a leaf node and invite it to become a participant. On the leaf node, the peer application must
have created a c_leaf socket and used listen to set it into listen mode. The leaf node will receive
an FD_ACCEPT indication when invited to join the session, and signals its willingness to join by
calling WSAAccept. The root application will receive an FD_CONNECT indication when the
join operation has been completed.

In the second method, the roles are essentially reversed. The root application creates a c_root
socket and sets it into listen mode. A leaf node wishing to join the session creates a c_leaf socket
and uses WSAJoinLeaf to initiate the connection and request admittance. The root application
receives FD_ACCEPT when an incoming admittance request arrives, and admits the leaf node by
calling WSAAccept. The leaf node receives FD_CONNECT when it has been admitted.

In a non-rooted control plane, where all nodes are c_leaf's, the WSAJoinLeaf is used to initiate the
inclusion of a node into an existing multipoint session. An FD_CONNECT indication is provided
when the join has been completed and the returned socket descriptor is useable in the multipoint
session. In the case of IP multicast, this would correspond to the IP_ADD_MEMBERSHIP socket
option.

(Readers familiar with IP multicast's use of the connectionless UDP protocol may be concerned
by the connection-oriented semantics presented here. In particular the notion of using
WSAJoinLeaf on a UDP socket and waiting for an FD_CONNECT indication may be troubling.
There is, however, ample precedent for applying connection-oriented semantics to connectionless
protocols. It is allowed and sometime useful, for example, to invoke the standard connect
function on a UDP socket. The general result of applying connection-oriented semantics to
connectionless sockets is a restriction in how such sockets may be used, and such is the case here
as well. A UDP socket used in WSAJoinLeaf will have certain restrictions, and waiting for an
FD_CONNECT indication (which in this case simply indicates that the corresponding IGMP
message has been sent) is one such limitation.)

There are, therefore, three instances where an application would use WSAJoinLeaf:

1. Acting as a multipoint root and inviting a new leaf to join the session
2. Acting as a leaf making an admittance request to a rooted multipoint session
3. Acting as a leaf seeking admittance to a non-rooted multipoint session (e.g. IP multicast)

Using WSAJoinLeaf

As mentioned previously, the function WSAJoinLeaf is used to join a leaf node into a multipoint
session. WSAJoinLeaf has the same parameters and semantics as WSAConnect except that it
returns a socket descriptor (as in WSAAccept), and it has an additional dwFlags parameter. The
dwFlags parameter is used to indicate whether the socket will be acting only as a sender, only as a
receiver, or both. Only multipoint sockets may be used for input parameter s in this function. If
the multipoint socket is in the non-blocking mode, the returned socket descriptor will not be
useable until after a corresponding FD_CONNECT indication has been received. A root
application in a multipoint session may call WSAJoinLeaf one or more times in order to add a
number of leaf nodes, however at most one multipoint connection request may be outstanding at a
time.

The socket descriptor returned by WSAJoinLeaf is different depending on whether the input
socket descriptor, s, is a c_root or a c_leaf. When used with a c_root socket, the name parameter
designates a particular leaf node to be added and the returned socket descriptor is a c_leaf socket
corresponding to the newly added leaf node. It is not intended to be used for exchange of
multipoint data, but rather is used to receive FD_XXX indications (e.g. FD_CLOSE) for the

Legal Information Page 53 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

connection that exists to the particular c_leaf. Some multipoint implementations may also allow
this socket to be used for "side chats" between the root and an individual leaf node. An
FD_CLOSE indication will be received for this socket if the corresponding leaf node calls
closesocket to drop out of the multipoint session. Symmetrically, invoking closesocket on the
c_leaf socket returned from WSAJoinLeaf will cause the socket in the corresponding leaf node to
get FD_CLOSE notification.

When WSAJoinLeaf is invoked with a c_leaf socket, the name parameter contains the address of
the root application (for a rooted control scheme) or an existing multipoint session (non-rooted
control scheme), and the returned socket descriptor is the same as the input socket descriptor. In a
rooted control scheme, the root application would put its c_root socket in the listening mode by
calling listen. The standard FD_ACCEPT notification will be delivered when the leaf node
requests to join itself to the multipoint session. The root application uses the usual
accept/WSAAccept functions to admit the new leaf node. The value returned from either accept
or WSAAccept is also a c_leaf socket descriptor just like those returned from WSAJoinLeaf. To
accommodate multipoint schemes that allow both root-initiated and leaf-initiated joins, it is
acceptable for a c_root socket that is already in listening mode to be used as in input to
WSAJoinLeaf.

A multipoint root application is generally responsible for the orderly dismantling of a multipoint
session. Such an application may use shutdown or closesocket on a c_root socket to cause all of
the associated c_leaf sockets, including those returned from WSAJoinLeaf and their
corresponding c_leaf sockets in the remote leaf nodes, to get FD_CLOSE notification.

Semantic differences between multipoint sockets and regular
sockets

In the control plane, there are some significant semantic differences between a c_root socket and a
regular point-to-point socket:

1. the c_root socket can be used in WSAJoinLeaf to join a new a leaf;
2. placing a c_root socket into the listening mode (by callings listen) does not preclude the

c_root socket from being used in a call to WSAJoinLeaf to add a new leaf, or for sending
and receiving multipoint data;

3. the closing of a c_root socket will cause all the associated c_leaf sockets to get FD_CLOSE
notification.

There is no semantic differences between a c_leaf socket and a regular socket in the control plane,
except that the c_leaf socket can be used in WSAJoinLeaf, and the use of c_leaf socket in listen
indicates that only multipoint connection requests should be accepted.

In the data plane, the semantic differences between the d_root socket and a regular point-to-point
socket are

1. the data sent on the d_root socket will be delivered to all the leaves in the same multipoint
session;

2. the data received on the d_root socket may be from any of the leaves.

The d_leaf socket in the rooted data plane has no semantic difference from the regular socket,
however, in the non-rooted data plane, the data sent on the d_leaf socket will go to all the other

Legal Information Page 54 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

leaf nodes, and the data received could be from any other leaf nodes. As mentioned earlier, the
information about whether the d_leaf socket is in a rooted or non-rooted data plane is contained in
the corresponding WSAPROTOCOL_INFO structure for the socket.

How existing multipoint protocols support these extensions

In this section we indicate how IP multicast and ATM point-to-multipoint capabilities would be
accessed via the Windows Sockets 2 multipoint functions. We chose these two as examples
because they are very popular and well understood.

IP multicast

IP multicast falls into the category of non-rooted data plane and non-rooted control plane. All
applications play a leaf role. Currently most IP multicast implementations use a set of socket
options proposed by Steve Deering to the IETF. Five operations are made thus available:

IP_MULTICAST_TTL - set time to live, controls scope of multicast session
IP_MULTICAST_IF - determine interface to be used for multicasting
IP_ADD_MEMBERSHIP - join a specified multicast session
IP_DROP_MEMBERSHIP - drop out of a multicast session
IP_MULTICAST_LOOP - control loopback of multicast traffic

Setting the time-to-live for an IP multicast socket maps directly to using the
SIO_MULTICAST_SCOPE command code for WSAIoctl. The method for determining the IP
interface to be used for multicasting is via a TCP/IP-specific socket option as described in the
Windows Sockets 2 Protocol Specific Annex.

The remaining three operations are covered well with the Windows Sockets 2 semantics described
here. The application would open sockets with c_leaf/d_leaf flags in WSASocket. It would use
WSAJoinLeaf to add itself to a multicast group on the default interface designated for multicast
operations. If the flag in WSAJoinLeaf indicates that this socket is only a sender, then the join
operation is essentially a no-op and no IGMP messages need to be sent. Otherwise, an IGMP
packet is sent out to the router to indicate interests in receiving packets sent to the specified
multicast address. Since the application created special c_leaf/d_leaf sockets used only for
performing multicast, the standard closesocket function would be used to drop out of the
multicast session. The SIO_MULTIPOINT_LOOPBACK command code for WSAIoctl provides
a generic control mechanism for determining whether data sent on a d_leaf socket in a non-rooted
multipoint scheme will be also received on the same socket.

ATM Point to Multipoint

ATM falls into the category of rooted data and rooted control planes. An application acting as the
root would create c_root sockets and counterparts running on leaf nodes would utilize c_leaf
sockets. The root application will use WSAJoinLeaf to add new leaf nodes. The corresponding
applications on the leaf nodes will have set their c_leaf sockets into listen mode. WSAJoinLeaf
with a c_root socket specified will be mapped to the Q.2931 ADDPARTY message. The leaf-

Legal Information Page 55 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

initiated join is not supported in ATM UNI 3.1, but will be supported in ATM UNI 4.0. Thus
WSAJoinLeaf with a c_leaf socket specified will be mapped to the appropriate ATM UNI 4.0
message.

Additional Windows Socket Information
This section contains information on the Windows Sockets 2 header file, additional Windows
Sockets reference material, and the error codes encountered in programming for Windows
Sockets 2.

Windows Sockets 2 Header File - WINSOCK2.H

New versions of WINSOCK2.H will appear periodically as new identifiers are allocated by the
Windows Sockets Identifier Clearinghouse. The clearinghouse can be reached via the world wide
web at

http://www.stardust.com/wsresource/winsock2/ws2ident.html

Socket Options Specific to Microsoft's Service Providers

Microsoft's service providers support addtional socket options not included in the Windows
Sockets 2 API.

Socket Option for NT 4.0 Only

The following socket options are Microsoft-specific extensions for connect and disconnect data
and options and are used only by non-TCP/IP transports such as DECNet, OSI TP4, etc. These are
only used in Microsoft's implementation of Windows Sockets on NT 4.0.

SO_CONNDATA

SO_CONNOPT

SO_DISCDATA

SO_DISCOPT

SO_CONNDATALEN

SO_CONNOPTLEN

SO_DISCDATALEN

Legal Information Page 56 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

SO_DISCOPTLEN

The following socket options are Microsoft-specific extensions for controlling the size of
datagrams:

SO_MAXDG

SO_MAXPATHDG

Socket Option for NT 4.0 and Win95

SO_SNDTIMEO

SO_RCVTIMEO

Details on SO_SNDTIMEO and SO_RCVTIMEO

These two options set up timeouts for the send, sendto, recv, and recvfrom functions. You can
obtain the same functionality by calling select with a timeout just before the I/O call, but these
options offer a significant improvement in performance by avoiding a kernel transition and the
other overhead of the select call. For any code whose performance is very critical, applications
should use these timeout options rather than select.

You can set these options on any type of socket in any state. The default value for these options is
zero, which refers to an infinite timeout. Any other setting is the timeout, in milliseconds. It is
valid to set the timeout to any value, but values less than 500 milliseconds (half a second) are
interpreted to be 500 milliseconds.

To set a send timeout, use

int timeout = TIMEOUT_VALUE;
int err;
SOCKET s;

s = socket(...);
err = setsockopt(
 s,
 SOL_SOCKET,
 SO_SNDTIMEO,
 (char *)&timeout,
 sizeof(timeout));
if (err != NO_ERROR) {
 /* failed for some reason... */
}

The TIMEOUT_VALUE is the needed timeout in milliseconds. To set a receive timeout,
substitute SO_RCVTIMEO for SO_SNDTIMEO in the preceding example.

After setting one of these options to a nonzero value, I/O through the Windows Sockets calls fails
with the error WSAETIMEDOUT if the request cannot be satisfied within the specified timeout.
If a request times out, an application has no guarantees as to how much data was actually sent or
received in the I/O call.

Legal Information Page 57 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

The following socket option is used in conjunction with the MS Extension function AcceptEx.

SO_UPDATE_ACCEPT_CONTEXT

Additional Documentation

This specification is intended to cover the Windows Sockets interface in detail. Many details of
specific protocols and Windows, however, are intentionally omitted in the interest of brevity, and
this specification often assumes background knowledge of these topics. For more information, the
following references may be helpful:

Networking Books

Braden, R.[1989], RFC 1122, Requirements for Internet Hosts--Communication Layers, Internet
Engineering Task Force.

Comer, D. [1991], Internetworking with TCP/IP Volume I: Principles, Protocols, and
Architecture, Prentice Hall, Englewood Cliffs, New Jersey.

Comer, D. and Stevens, D. [1991], Internetworking with TCP/IP Volume II: Design,
Implementation, and Internals, Prentice Hall, Englewood Cliffs, New Jersey.

Comer, D. and Stevens, D. [1991], Internetworking with TCP/IP Volume III: Client-Server
Programming and Applications, Prentice Hall, Englewood Cliffs, New Jersey.

Leffler, S. et al., An Advanced 4.3BSD Interprocess Communication Tutorial.

Stevens, W.R. [1990], Unix Network Programming, Prentice Hall, Englewood Cliffs, New Jersey.

Stevens, W.R. [1994]. TCP/IP Illustrated, Volume 1: The Protocols, Addison-Wesley,
Massachusetts

Wright, G.R. and Stevens, W.R. [1995], TCP/IP Illustrated Volume 2: The Implementation,
Addison-Wesley., Massachusetts

Windows Sockets Books

Bonner, P. [1995], Network Programming with Windows Sockets, ISBN: 0-13-230152-0, Prentice
Hall, Englewood Cliffs, New Jersey.

Dumas, A. [1995], Programming Windows Sockets, ISBN: 0-672-30594-1, Sams Publishing,
Indianapolis, Indiana

Quinn, B. and Shute, D. [1995], Windows Sockets Network Programming, ISBN: 0-201-63372-8,
Addison-Wesley Publishing Company, Reading, Massachusetts

Roberts, D. [1995], Developing for the Internet with Winsock, ISBN 1-883577-42-X, Coriolis
Group Books.

Legal Information Page 58 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Error Codes
The following is a list of possible error codes returned by the WSAGetLastError call, along with
their extended explanations. Errors are listed in alphabetical order by error macro. Some error
codes defined in WINSOCK2.H are not returned from any function - these have not been listed
here.

WSAEACCES
(10013)
Permission denied.

An attempt was made to access a socket in a way forbidden by its access permissions.
An example is using a broadcast address for sendto without broadcast permission
being set using setsockopt(SO_BROADCAST).

WSAEADDRINUSE
(10048)
Address already in use.

Only one usage of each socket address (protocol/IP address/port) is normally
permitted. This error occurs if an application attempts to bind a socket to an IP
address/port that has already been used for an existing socket, or a socket that wasn't
closed properly, or one that is still in the process of closing. For server applications
that need to bind multiple sockets to the same port number, consider using
setsockopt(SO_REUSEADDR). Client applications usually need not call bind at all
- connect will choose an unused port automatically. When bind is called with a wild-
card address (involving ADDR_ANY), a WSAEADDRINUSE error could be
delayed until the specific address is "committed." This could happen with a call to
other function later, including connect, listen, WSAConnect or WSAJoinLeaf.

WSAEADDRNOTAVAIL
(10049)
Cannot assign requested address.

The requested address is not valid in its context. Normally results from an attempt to
bind to an address that is not valid for the local machine. This can also result from
connect, sendto, WSAConnect, WSAJoinLeaf, or WSASendTo when the remote
address or port is not valid for a remote machine (e.g. address or port 0).

WSAEAFNOSUPPORT
(10047)
Address family not supported by protocol family.

An address incompatible with the requested protocol was used. All sockets are
created with an associated "address family" (i.e. AF_INET for Internet Protocols) and
a generic protocol type (i.e. SOCK_STREAM). This error will be returned if an
incorrect protocol is explicitly requested in the socket call, or if an address of the
wrong family is used for a socket, e.g. in sendto.

WSAEALREADY
(10037)
Operation already in progress.

An operation was attempted on a non-blocking socket that already had an operation
in progress - i.e. calling connect a second time on a non-blocking socket that is
already connecting, or canceling an asynchronous request (WSAAsyncGetXbyY) that
has already been canceled or completed.

WSAECONNABORTED

Legal Information Page 59 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

(10053)
Software caused connection abort.

An established connection was aborted by the software in your host machine,
possibly due to a data transmission timeout or protocol error.

WSAECONNREFUSED
(10061)
Connection refused.

No connection could be made because the target machine actively refused it. This
usually results from trying to connect to a service that is inactive on the foreign host -
i.e. one with no server application running.

WSAECONNRESET
(10054)
Connection reset by peer.

A existing connection was forcibly closed by the remote host. This normally results if
the peer application on the remote host is suddenly stopped, the host is rebooted, or
the remote host used a "hard close" (see setsockopt for more information on the
SO_LINGER option on the remote socket.) This error may also result if a
connection was broken due to "keep-alive" activity detecting a failure while one or
more operations are in progress. Operations that were in progress fail with
WSAENETRESET. Subsequent operations fail with WSAECONNRESET.

WSAEDESTADDRREQ
(10039)
Destination address required.

A required address was omitted from an operation on a socket. For example, this
error will be returned if sendto is called with the remote address of ADDR_ANY.

WSAEFAULT
(10014)
Bad address.

The system detected an invalid pointer address in attempting to use a pointer
argument of a call. This error occurs if an application passes an invalid pointer value,
or if the length of the buffer is too small. For instance, if the length of an argument
which is a struct sockaddr is smaller than sizeof(struct sockaddr).

WSAEHOSTDOWN
(10064)
Host is down.

A socket operation failed because the destination host was down. A socket operation
encountered a dead host. Networking activity on the local host has not been initiated.
These conditions are more likely to be indicated by the error WSAETIMEDOUT.

WSAEHOSTUNREACH
(10065)
No route to host.

A socket operation was attempted to an unreachable host. See
WSAENETUNREACH

WSAEINPROGRESS
(10036)
Operation now in progress.

A blocking operation is currently executing. Windows Sockets only allows a single
blocking operation to be outstanding per task (or thread), and if any other function
call is made (whether or not it references that or any other socket) the function fails
with the WSAEINPROGRESS error.

WSAEINTR
(10004)
Interrupted function call.

Legal Information Page 60 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

A blocking operation was interrupted by a call to WSACancelBlockingCall.
WSAEINVAL

(10022)
Invalid argument.

Some invalid argument was supplied (for example, specifying an invalid level to the
setsockopt function). In some instances, it also refers to the current state of the
socket - for instance, calling accept on a socket that is not listening.

WSAEISCONN
(10056)
Socket is already connected.

A connect request was made on an already connected socket. Some implementations
also return this error if sendto is called on a connected SOCK_DGRAM socket (For
SOCK_STREAM sockets, the to parameter in sendto is ignored), although other
implementations treat this as a legal occurrence.

WSAEMFILE
(10024)
Too many open files.

Too many open sockets. Each implementation may have a maximum number of
socket handles available, either globally, per process or per thread.

WSAEMSGSIZE
(10040)
Message too long.

A message sent on a datagram socket was larger than the internal message buffer or
some other network limit, or the buffer used to receive a datagram into was smaller
than the datagram itself.

WSAENETDOWN
(10050)
Network is down.

A socket operation encountered a dead network. This could indicate a serious failure
of the network system (i.e. the protocol stack that the WinSock DLL runs over), the
network interface, or the local network itself.

WSAENETRESET
(10052)
Network dropped connection on reset.

The connection has been broken due to "keep-alive" activity detecting a failure while
the operation was in progress. It can also be returned by setsockopt if an attempt is
made to set SO_KEEPALIVE on a connection that has already failed.

WSAENETUNREACH
(10051)
Network is unreachable.

A socket operation was attempted to an unreachable network. This usually means the
local software knows no route to reach the remote host.

WSAENOBUFS
(10055)
No buffer space available.

An operation on a socket could not be performed because the system lacked sufficient
buffer space or because a queue was full.

WSAENOPROTOOPT
(10042)
Bad protocol option.

An unknown, invalid or unsupported option or level was specified in a getsockopt or
setsockopt call.

WSAENOTCONN

Legal Information Page 61 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

(10057)
Socket is not connected.

A request to send or receive data was disallowed because the socket is not connected
and (when sending on a datagram socket using sendto) no address was supplied. Any
other type of operation might also return this error - for example, setsockopt setting
SO_KEEPALIVE if the connection has been reset.

WSAENOTSOCK
(10038)
Socket operation on non-socket.

An operation was attempted on something that is not a socket. Either the socket
handle parameter did not reference a valid socket, or for select, a member of an
fd_set was not valid.

WSAEOPNOTSUPP
(10045)
Operation not supported.

The attempted operation is not supported for the type of object referenced. Usually
this occurs when a socket descriptor to a socket that cannot support this operation, for
example, trying to accept a connection on a datagram socket.

WSAEPFNOSUPPORT
(10046)
Protocol family not supported.

The protocol family has not been configured into the system or no implementation for
it exists. Has a slightly different meaning to WSAEAFNOSUPPORT, but is
interchangeable in most cases, and all Windows Sockets functions that return one of
these specify WSAEAFNOSUPPORT.

WSAEPROCLIM
(10067)
Too many processes.

A Windows Sockets implementation may have a limit on the number of applications
that may use it simultaneously. WSAStartup may fail with this error if the limit has
been reached.

WSAEPROTONOSUPPORT
(10043)
Protocol not supported.

The requested protocol has not been configured into the system, or no
implementation for it exists. For example, a socket call requests a SOCK_DGRAM
socket, but specifies a stream protocol.

WSAEPROTOTYPE
(10041)
Protocol wrong type for socket.

A protocol was specified in the socket function call that does not support the
semantics of the socket type requested. For example, the ARPA Internet UDP
protocol cannot be specified with a socket type of SOCK_STREAM.

WSAESHUTDOWN
(10058)
Cannot send after socket shutdown.

A request to send or receive data was disallowed because the socket had already been
shut down in that direction with a previous shutdown call. By calling shutdown a
partial close of a socket is requested, which is a signal that sending or receiving or
both has been discontinued.

WSAESOCKTNOSUPPORT
(10044)
Socket type not supported.

Legal Information Page 62 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

The support for the specified socket type does not exist in this address family. For
example, the optional type SOCK_RAW might be selected in a socket call, and the
implementation does not support SOCK_RAW sockets at all.

WSAETIMEDOUT
(10060)
Connection timed out.

A connection attempt failed because the connected party did not properly respond
after a period of time, or established connection failed because connected host has
failed to respond.

WSATYPE_NOT_FOUND
(10109)
Class type not found.

The specified class was not found.
WSAEWOULDBLOCK

(10035)
Resource temporarily unavailable.

This error is returned from operations on non-blocking sockets that cannot be
completed immediately, for example recv when no data is queued to be read from the
socket. It is a non-fatal error, and the operation should be retried later. It is normal for
WSAEWOULDBLOCK to be reported as the result from calling connect on a non-
blocking SOCK_STREAM socket, since some time must elapse for the connection to
be established.

WSAHOST_NOT_FOUND
(11001)
Host not found.

No such host is known. The name is not an official hostname or alias, or it cannot be
found in the database(s) being queried. This error may also be returned for protocol
and service queries, and means the specified name could not be found in the relevant
database.

WSA_INVALID_HANDLE
(OS dependent)
Specified event object handle is invalid.

An application attempts to use an event object, but the specified handle is not valid.
WSA_INVALID_PARAMETER

(OS dependent)
One or more parameters are invalid.

An application used a Windows Sockets function which directly maps to a Win32
function. The Win32 function is indicating a problem with one or more parameters.

WSAINVALIDPROCTABLE
(OS dependent)
Invalid procedure table from service provider.

A service provider returned a bogus proc table to WS2_32.DLL. (Usually caused by
one or more of the function pointers being NULL.)

WSAINVALIDPROVIDER
(OS dependent)
Invalid service provider version number.

A service provider returned a version number other than 2.0.
WSA_IO_INCOMPLETE

(OS dependent)
Overlapped I/O event object not in signaled state.

The application has tried to determine the status of an overlapped operation which is
not yet completed. Applications that use WSAGetOverlappedResult (with the fWait
flag set to false) in a polling mode to determine when an overlapped operation has

Legal Information Page 63 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

completed will get this error code until the operation is complete.
WSA_IO_PENDING

(OS dependent)
Overlapped operations will complete later.

The application has initiated an overlapped operation which cannot be completed
immediately. A completion indication will be given at a later time when the operation
has been completed.

WSA_NOT_ENOUGH_MEMORY
(OS dependent)
Insufficient memory available.

An application used a Windows Sockets function which directly maps to a Win32
function. The Win32 function is indicating a lack of required memory resources.

WSANOTINITIALISED
(10093)
Successful WSAStartup not yet performed.

Either the application hasn't called WSAStartup or WSAStartup failed. The
application may be accessing a socket which the current active task does not own (i.e.
trying to share a socket between tasks), or WSACleanup has been called too many
times.

WSANO_DATA
(11004)
Valid name, no data record of requested type.

The requested name is valid and was found in the database, but it does not have the
correct associated data being resolved for. The usual example for this is a hostname -
> address translation attempt (using gethostbyname or
WSAAsyncGetHostByName) which uses the DNS (Domain Name Server), and an
MX record is returned but no A record - indicating the host itself exists, but is not
directly reachable.

WSANO_RECOVERY
(11003)
This is a non-recoverable error.

This indicates some sort of non-recoverable error occurred during a database lookup.
This may be because the database files (e.g. BSD-compatible HOSTS, SERVICES or
PROTOCOLS files) could not be found, or a DNS request was returned by the server
with a severe error.

WSAPROVIDERFAILEDINIT
(OS dependent)
Unable to initialize a service provider.

Either a service provider's DLL could not be loaded (LoadLibrary failed) or the
provider's WSPStartup/NSPStartup function failed.

WSASYSCALLFAILURE
(OS dependent)
System call failure.

Returned when a system call that should never fail does. For example, if a call to
WaitForMultipleObjects fails or one of the registry functions fails trying to
manipulate theprotocol/namespace catalogs.

WSASYSNOTREADY
(10091)
Network subsystem is unavailable.

This error is returned by WSAStartup if the Windows Sockets implementation
cannot function at this time because the underlying system it uses to provide network
services is currently unavailable. Users should check:
that the appropriate Windows Sockets DLL file is in the current path,

Legal Information Page 64 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

that they are not trying to use more than one Windows Sockets implementation
simultaneously. If there is more than one WINSOCK DLL on your system, be sure
the first one in the path is appropriate for the network subsystem currently loaded.
the Windows Sockets implementation documentation to be sure all necessary
components are currently installed and configured correctly.

WSATRY_AGAIN
(11002)
Non-authoritative host not found.

This is usually a temporary error during hostname resolution and means that the local
server did not receive a response from an authoritative server. A retry at some time
later may be successful.

WSAVERNOTSUPPORTED
(10092)
WINSOCK.DLL version out of range.

The current Windows Sockets implementation does not support the Windows
Sockets specification version requested by the application. Check that no old
Windows Sockets DLL files are being accessed.

WSAEDISCON
(10094)
Graceful shutdown in progress.

Returned by WSARecv and WSARecvFrom to indicate the remote party has
initiated a graceful shutdown sequence.

WSA_OPERATION_ABORTED
(OS dependent)
Overlapped operation aborted.

An overlapped operation was canceled due to the closure of the socket, or the
execution of the SIO_FLUSH command in WSAIoctl.

accept
The Windows Sockets accept function accepts an incoming connection attempt on a socket.

SOCKET accept (
 SOCKET s,
 struct sockaddr FAR* addr,
 int FAR* addrlen
);

Parameters

s
[in] A descriptor identifying a socket that has been placed in a listening state with the listen
function. The connection will actually be made with the socket that is returned by accept.

addr
[out] An optional pointer to a buffer that receives the address of the connecting entity, as
known to the communications layer. The exact format of the addr parameter is determined
by the address family established when the socket was created.

addrlen
[out] An optional pointer to an integer that contains the length of the address addr.

Legal Information Page 65 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Remarks

The accept function extracts the first connection on the queue of pending connections on socket s.
It then creates a new socket and returns a handle to the new socket. The newly created socket is
the socket that will handle the actual the connection and has the same properties as socket s,
including the asynchronous events registered with the WSAAsyncSelect or WSAEventSelect
functions. The socket s does not have the listening socket's group ID, if any was applied.

The accept function can block the caller until a connection is present if no pending connections
are present on the queue, and the socket is marked as blocking. If the socket is marked
nonblocking and no pending connections are present on the queue, accept returns an error as
described below. After the successful completion of accept returns a new socket handle, the
accepted socket cannot be used to accept more connections. The original socket remains open and
listens for new connection requests.

The parameter addr is a result parameter that is filled in with the address of the connecting entity,
as known to the communications layer. The exact format of the addr parameter is determined by
the address family in which the communication is occurring. The addrlen is a value-result
parameter; it should initially contain the amount of space pointed to by addr; on return it will
contain the actual length (in bytes) of the address returned.

The accept function is used with connection-oriented socket types such as SOCK_STREAM.

If addr and/or addrlen are equal to NULL, then no information about the remote address of the
accepted socket is returned.

Windows CE: Windows CE does not support the WSAEINTR error value.

For IrSocket implementation, the addr and addrlen parameters should always be NULL.

Return Values

If no error occurs, accept returns a value of type SOCKET that is a descriptor for the new socket.
This returned value is a handle for the socket on which the actual connection will be made.

Otherwise, a value of INVALID_SOCKET is returned, and a specific error code can be retrieved
by calling WSAGetLastError.

The integer referred to by addrlen initially contains the amount of space pointed to by addr. On
return it will contain the actual length in bytes of the address returned.

Error Codes

WSANOTINITIALISED A successful WSAStartup must occur before using this
FUNCTION.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The addrlen parameter is too small or addr is not a valid
part of the user address space.

WSAEINTR A blocking Windows Sockets 1.1 call was canceled
through WSACancelBlockingCall.

Legal Information Page 66 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Use version 1.0 and later.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

bind, connect, listen, select, socket, WSAAsyncSelect, WSAAccept

AcceptEx
Notice This function is a Microsoft-specific extension to the Windows Sockets specification. For
more information, see Microsoft Extensions and Windows Sockets 2.

The Windows Sockets AcceptEx function accepts a new connection, returns the local and remote
address, and receives the first block of data sent by the client application.

BOOL AcceptEx (
 SOCKET sListenSocket,
 SOCKET sAcceptSocket,
 PVOID lpOutputBuffer,
 DWORD dwReceiveDataLength,
 DWORD dwLocalAddressLength,
 DWORD dwRemoteAddressLength,
 LPDWORD lpdwBytesReceived,
 LPOVERLAPPED lpOverlapped
);

Parameters

sListenSocket
[in] A descriptor identifying a socket that has already been called with the listen function. A

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAEINVAL The listen function was not invoked prior to accept.

WSAEMFILE The queue is nonempty upon entry to accept and there
are no descriptors available.

WSAENOBUFS No buffer space is available.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP The referenced socket is not a type that supports
connection-oriented service.

WSAEWOULDBLOCK The socket is marked as nonblocking and no
connections are present to be accepted.

Legal Information Page 67 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

server application waits for attempts to connect on this socket.
sAcceptSocket

[in] A descriptor identifying a socket on which to accept an incoming connection. This
socket must not be bound or connected.

lpOutputBuffer
[in] A pointer to a buffer that receives the first block of data sent on a new connection, the
local address of the server, and the remote address of the client. The receive data is written
to the first part of the buffer starting at offset zero, while the addresses are written to the
latter part of the buffer. This parameter must be specified.

dwReceiveDataLength
[in] The number of bytes in the buffer that will be used for receiving data. If this parameter
is specified as zero, then no receive operation is performed in conjunction with accepting
the connection. Instead, the AcceptEx function completes as soon as a connection arrives
without waiting for any data.

dwLocalAddressLength
[in] The number of bytes reserved for the local address information. This must be at least 16
bytes more than the maximum address length for the transport protocol in use.

dwRemoteAddressLength
[in] The number of bytes reserved for the remote address information. This must be at least
16 bytes more than the maximum address length for the transport protocol in use.

lpdwBytesReceived
[out] A pointer to a DWORD that receives the count of bytes received. This is set only if
the operation completes synchronously. If it returns ERROR_IO_PENDING and is
completed later, then this DWORD is never set and you must obtain the number of bytes
read from the completion notification mechanism.

lpOverlapped
[in] An OVERLAPPED structure that is used to process the request. This parameter must
be specified; it cannot be NULL.

Return Values

If no error occurs, the AcceptEx function completed successfully and a value of TRUE is
returned.

If the function fails, AcceptEx returns FALSE. The WSAGetLastError function can then be
called to return extended error information. If WSAGetLastError returns
ERROR_IO_PENDING, then the operation was successfully initiated and is still in progress.

Remarks

The AcceptEx function combines several socket functions into a single API/kernel transition. The
AcceptEx function, when successful, performs three tasks: a new connection is accepted, both the
local and remote addresses for the connection are returned, and the first block of data sent by the
remote is received. A program will make a connection to a socket more quickly using
AcceptExinstead of the accept function.

A single output buffer receives the data, the local socket address (the server), and the remote
socket address (the client). Using a single buffer improves performance, but the
GetAcceptExSockaddrs function must be called to parse the buffer into its three distinct parts.

The buffer size for the local and remote address must be 16 bytes more than the size of the
SOCKADDR structure for the transport protocol in use because the addresses are written in an
internal format. For example, the size of a SOCKADDR_IN (the address structure for TCP/IP) is

Legal Information Page 68 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

16 bytes. Therefore, a buffer size of at least 32 bytes must be specified for the local and remote
addresses.

The AcceptEx function uses overlapped I/O, unlike the Windows Sockets 1.1 accept function. If
your application uses AcceptEx, it can service a large number of clients with a relatively small
number of threads. As with all overlapped Win32 functions, either Win32 events or completion
ports can be used as a completion notification mechanism.

Another key difference between the AcceptEx function and the Windows Sockets 1.1 accept
function is that the AcceptEx function requires the caller to already have two sockets: one that
specifies the socket on which to listen and one that specifies the socket on which to accept the
connection. The sAcceptSocket parameter must be an open socket that is neither bound nor
connected.

The lpNumberOfBytesTransferred parameter of the GetQueuedCompletionStatus function or
the GetOverlappedResult function indicates the number of bytes received in the request.

When this operation is successfully completed, sAcceptHandle can be passed only to the
following functions:

ReadFile
WriteFile

send
recv
TransmitFile
closesocket

Note If you have called the TransmitFile function with both the TF_DISCONNECT and
TF_REUSE_SOCKET flags, the specified socket has been returned to a state in which it is
neither bound nor connected. You can then pass the handle of the socket to the AcceptEx
function in the sAcceptSocket parameter.

When the AcceptEx function returns, the socket sAcceptSocket is in the default state for a
connected socket. The socket sAcceptSocket does not inherit the properties of the socket
associated with sListenSocket parameter until SO_UPDATE_ACCEPT_CONTEXT is set on the
socket. Use the setsockopt function to set the SO_UPDATE_ACCEPT_CONTEXT option,
specifying sAcceptSocket as the socket handle and sListenSocket as the option value.

For example:

err = setsockopt(sAcceptSocket,
 SOL_SOCKET,
 SO_UPDATE_ACCEPT_CONTEXT,
 (char *)&sListenSocket,
 sizeof(sListenSocket));

Use the getsockopt function with the SO_CONNECT_TIME option to check whether a
connection has been accepted. If it has been accepted, you can determine how long the connection
has been established. The return value is the number of seconds that the socket has been
connected. If the socket is not connected, the getsockopt returns 0xFFFFFFFF. Checking a
connection like this is necessary in order to check for connections that have been established for a
while, but no data has been received. It is recommended that you terminate those connections.

Legal Information Page 69 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

For example:

INT seconds;
INT bytes = sizeof(seconds);
err = getsockopt(sAcceptSocket, SOL_SOCKET, SO_CONNECT_TIME,
 (char *)&seconds, (PINT)&bytes);
if (err != NO_ERROR) {
 printf("getsockopt(SO_CONNECT_TIME) failed: %ld\n", WSAGetLastError());
 exit(1);
}

QuickInfo

 Windows NT: Yes
 Windows CE: Unsupported.
 Header: Declared in mswsock.h.
 Import Library: Link with mswsock.lib.

bind
The Windows Sockets bind function associates a local address with a socket.

int bind (
 SOCKET s,
 const struct sockaddr FAR* name,
 int namelen
);

Parameters

s
[in] A descriptor identifying an unbound socket.

name
[in] The address to assign to the socket from the SOCKADDR structure.

namelen
[in] The length of the name.

Remarks

The bind function is used on an unconnected socket before subsequent calls to the connect or
listen functions. It is used to bind to either connection-oriented (stream) or connectionless
(datagram) sockets. When a socket is created with a call to the socket function, it exists in a name
space (address family), but it has no name assigned to it. Use bind to establish the local
association of the socket by assigning a local name to an unnamed socket.

A name consists of three parts when using the Internet address family: the address family, a host
address, and a port number that identifies the application. In Windows Sockets 2, the name
parameter is not strictly interpreted as a pointer to a SOCKADDR structure. It is cast this way for
Windows Sockets 1.1 compatibility. Service Providers are free to regard it as a pointer to a block
of memory of size namelen. The first two bytes in this block (corresponding to the sa_family

Legal Information Page 70 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

member of the SOCKADDR structure) must contain the address family that was used to create
the socket. Otherwise, an error WSAEFAULT will occur.

If an application does not care what local address is assigned, specify the manifest constant value
ADDR_ANY for the sa_data member of the name parameter. This allows the underlying service
provider to use any appropriate network address, potentially simplifying application programming
in the presence of multihomed hosts (that is, hosts that have more than one network interface and
address).

For TCP/IP, if the port is specified as zero, the service provider will assign a unique port to the
application with a value between 1024 and 5000. The application can use getsockname after bind
to learn the address and the port that has been assigned to it. If the Internet address is equal to
INADDR_ANY, getsockname will not necessarily be able to supply the address until the socket
is connected, since several addresses can be valid if the host is multihomed. Binding to a specific
port number other than port 0 is discouraged for client applications, since there is a danger of
conflicting with another socket already using that port number.

Windows CE: For IrSocket implementation of this function:

The Af_irda.h must be explicitly included.
The SOCKADDR_IRDA_wcesdk_SOCKADDR_IRDA structure is used in the addr
parameter.
The WSAENETDOWN error value is not supported.
There is no wildcard address equivalent to INADDR_ANY.

IrSockets clients must call bind before using a connect function. If the service name is of
the form "LSAP-SELxxx" where xxx is a decimal integer in the range 0-255, the address
indicates a specific LSAP-SEL xxx rather than a service name. LSAP-SELxxx service
names will cause no IAS calls. The socket will be bound directly to the LSAP-SEL
specified bypassing IAS.

Return Values

If no error occurs, bind returns zero. Otherwise, it returns SOCKET_ERROR, and a specific error
code can be retrieved by calling WSAGetLastError.

Error Codes

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEADDRINUSE A process on the machine is already bound to the same
fully-qualified address and the socket has not been
marked to allow address re-use with
SO_REUSEADDR. For example, IP address and port
are bound in the af_inet case) . (See the
SO_REUSEADDR socket option under setsockopt.)

WSAEADDRNOTAVAIL The specified address is not a valid address for this
machine

Legal Information Page 71 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Use version 1.0 and later.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

connect, getsockname, listen, setsockopt, socket, WSACancelBlockingCall

closesocket
The Windows Sockets closesocket function closes an existing socket.

int closesocket (
 SOCKET s
);

Parameters

s
[in] A descriptor identifying a socket to close.

Remarks

The closesocket function closes a socket. Use it to release the socket descriptor s so further
references to s will fail with the error WSAENOTSOCK. If this is the last reference to an
underlying socket, the associated naming information and queued data are discarded. Any pending
blocking, asynchronous calls issued by any thread in this process are canceled without posting any
notification messages.

Any pending overlapped send and receive operations

WSAEFAULT The name or the namelen parameter is not a valid part of
the user address space, the namelen parameter is too
small, the name parameter contains incorrect address
format for the associated address family, or the first two
bytes of the memory block specified by name does not
match the address family associated with the socket
descriptor s.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAEINVAL The socket is already bound to an address.

WSAENOBUFS Not enough buffers available, too many connections.

WSAENOTSOCK The descriptor is not a socket.

Legal Information Page 72 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

(WSASend/WSASendTo/WSARecv/WSARecvFrom with an overlapped socket) issued by any
thread in this process are also canceled. Any event, completion routine, or completion port action
specified for these overlapped operations is performed. The pending overlapped operations fail
with the error status WSA_OPERATION_ABORTED.

An application should always have a matching call to closesocket for each successful call to
socket to return any socket resources to the system.

The semantics of closesocket are affected by the socket options SO_LINGER and
SO_DONTLINGER as follows (SO_DONTLINGER is enabled by default; SO_LINGER is
disabled):

If SO_LINGER is set with a zero time-out interval (that is, the LINGER structure members
l_onoff is not zero and l_linger is zero), closesocket is not blocked even if queued data has not
yet been sent or acknowledged. This is called a "hard" or "abortive" close, because the socket's
virtual circuit is reset immediately, and any unsent data is lost. Any recv call on the remote side of
the circuit will fail with WSAECONNRESET.

If SO_LINGER is set with a nonzero time-out interval on a blocking socket, the closesocket call
blocks on a blocking socket until the remaining data has been sent or until the time-out expires.
This is called a graceful disconnect. If the time-out expires before all data has been sent, the
Windows Sockets implementation terminates the connection before closesocket returns.

Enabling SO_LINGER with a nonzero time-out interval on a nonblocking socket is not
recommended. In this case, the call to closesocket will fail with an error of
WSAEWOULDBLOCK if the close operation cannot be completed immediately. If closesocket
fails with WSAEWOULDBLOCK the socket handle is still valid, and a disconnect is not
initiated. The application must call closesocket again to close the socket.If SO_DONTLINGER is
set on a stream socket by setting the l_onoff member of the LINGER structure to zero, the
closesocket call will return immediately and does not receive WSAWOULDBLOCK whether the
socket is blocking or nonblocking. However, any data queued for transmission will be sent, if
possible, before the underlying socket is closed. This is also called a graceful disconnect. In this
case, the Windows Sockets provider cannot release the socket and other resources for an arbitrary
period, thus affecting applications that expect to use all available sockets. This is the default
behavior (SO_DONTLINGER is set by default).

Note To assure that all data is sent and received on a connection, an application should call
shutdown before calling closesocket (see Graceful shutdown, linger options and socket closure
for more information). Also note, an FD_CLOSE network event will not be posted after
closesocket is called.

Here is a summary of closesocket behavior:

if SO_DONTLINGER enabled (the default setting) it always returns immediately –
connection is gracefully closed "in the background"
if SO_LINGER enabled with a zero time-out: it always returns immediately - connection is

Option Interval Type of close Wait for close?

SO_DONTLINGER Do not care Graceful No

SO_LINGER Zero Hard No

SO_LINGER Nonzero Graceful Yes

Legal Information Page 73 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

reset/terminated
if SO_LINGER enabled with nonzero time-out:

– with blocking socket it blocks until all data sent or time-out expires

– with nonblocking socket it returns immediately indicating failure

For additional information please see Graceful shutdown, linger options and socket closure for
more information.

Windows CE: Windows CE does not support the WSAEINTR error value.

For IrSocket implementation:

The Af_irda.h file must be explicitly included.
The WSAENETDOWN error value is not supported.
The standard linger options are supported.

Although IrDA does not provide a graceful close, IrSockets will defer closing until receive
queues are purged. Thus, an application can send data and immediately call the socket
function confident that the receiver will copy the data before receiving an FD_CLOSE
message.

.

Return Values

If no error occurs, closesocket returns zero. Otherwise, a value of SOCKET_ERROR is returned,
and a specific error code can be retrieved by calling WSAGetLastError.

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Use version 1.0 and later.
 Header: Declared in winsock2.h.

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAENOTSOCK The descriptor is not a socket.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAEINTR The (blocking) Windows Socket 1.1 call was canceled
through WSACancelBlockingCall.

WSAEWOULDBLOCK The socket is marked as nonblocking and SO_LINGER
is set to a nonzero time-out value.

Legal Information Page 74 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

 Import Library: Link with ws2_32.lib.

See Also

accept, ioctlsocket, setsockopt, socket, WSAAsyncSelect, WSADuplicateSocket

connect
The Windows Sockets connect function establishes a connection to a specifed socket.

int connect (
 SOCKET s,
 const struct sockaddr FAR* name,
 int namelen
);

Parameters

s
[in] A descriptor identifying an unconnected socket.

name
[in] The name of the socket to connect to.

namelen
[in] The length of the name parameter.

Remarks

The connect function is used to create a connection to the specified destination. If the socket, s, is
unbound, unique values are assigned to the local association by the system, and the socket is
marked as bound.

For connection-oriented sockets (for example, type SOCK_STREAM), an active connection is
initiated to the foreign host using name (an address in the name space of the socket; for a detailed
description, please see bind and SOCKADDR). When the socket call completes successfully, the
socket is ready to send/receive data. If the address member of the structure specified by the name
parameter is all zeroes, connect will return the error WSAEADDRNOTAVAIL. Any attempt to
re-connect an active connection will fail with the error code WSAEISCONN.

For connection-oriented, nonblocking sockets, it is often not possible to complete the connection
immediately. In such a case, this function returns the error WSAEWOULDBLOCK. However, the
operation proceeds. When the success or failure outcome becomes known, it may be reported in
one of several ways depending on how the client registers for notification. If the client uses the
select function, success is reported in the writefds set and failure is reported in the exceptfds set.
If the client uses the functions WSAAsyncSelect or WSAEventSelect, the notification is
announced with FD_CONNECT and the error code associated with the FD_CONNECT indicates
either success or a specific reason for failure

For a connectionless socket (for example, type SOCK_DGRAM), the operation performed by
connect is merely to establish a default destination address that will be used on subsequent
send/WSASend and recv/WSARecv calls. Any datagrams received from an address other than

Legal Information Page 75 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

the destination address specified will be discarded. If the address member of the structure specifed
by name is all zeroes, the socket will be "dis-connected." Then, the default remote address will be
indeterminate, so send/WSASend and recv/WSARecv calls will return the error code
WSAENOTCONN. However, sendto/WSASendTo and recvfrom/WSARecvFrom can still be
used. The default destination can be changed by simply calling connect again, even if the socket
is already connected. Any datagrams queued for receipt are discarded if name is different from the
previous connect.

For connectionless sockets, name can indicate any valid address, including a broadcast address.
However, to connect to a broadcast address, a socket must use setsockopt to enable the
SO_BROADCAST option. Otherwise, connect will fail with the error code WSAEACCES.

When a connection between sockets is broken, the sockets should be discarded and recreated.
When a problem develops on a connected socket, the application must discard and recreate the
needed sockets in order to return to a stable point.

Windows CE: Windows CE does not support the WSAEINTR error value.

For IrSocket implementation:

The Af_irda.h file must be explicitly included.
If WSAENETDOWN is returned, an existing IrDA connection was detected at the media
access level.
If WSAEADDRINUSE is returned, active connections to a device with a different address
exist.
If WSAEINPROGRESS is returned, IAS name resolution failed because another IAS query
is in progress. Retry the operation at one second intervals.
If WSAEISCONN is returned, the socket is already connected or an exclusive/multiplexed
mode change failed.

IrSockets implements the connect function with addresses of the form sockaddr_irda. Typically,
a client application will create a socket with the socket function, scan the immediate vicinity for
IrDA devices with the IRLMP_ENUMDEVICES socket option, choose a device from the
returned list, form an address, and call connect. There is no difference in blocking and non-
blocking semantics.

Return Values

If no error occurs, connect returns zero. Otherwise, it returns SOCKET_ERROR, and a specific
error code can be retrieved by calling WSAGetLastError.

On a blocking socket, the return value indicates success or failure of the connection attempt.

With a nonblocking socket, the connection attempt cannot be completed immediately. In this case,
connect will return SOCKET_ERROR, and WSAGetLastError will return
WSAEWOULDBLOCK. In this case, there are three different steps you can take:

1. Use the select function to determine the completion of the connection request by checking
to see if the socket is writeable.

2. If the application is using WSAAsyncSelect to indicate interest in connection events, then
the application will receive an FD_CONNECT notification indicating that the connect
operation is complete (successfully or not).

Legal Information Page 76 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

3. If the application is using WSAEventSelect to indicate interest in connection events, then
the associated event object will be signaled indicating that the connect operation is
complete (successfully or not).

Until the connection attempt completes on a nonblocking socket, all subsequent calls to connect
on the same socket will fail with the error code WSAEALREADY, and WSAEISCONN when the
connection completes successfully. Due to ambiguities in version 1.1 of the Windows Sockets
specification, error codes returned from connect while a connection is already pending may vary
among implementations. As a result, it is not recommended that applications use multiple calls to
connect to detect connection completion. If they do, they must be prepared to handle
WSAEINVAL and WSAEWOULDBLOCK error values the same way that they handle
WSAEALREADY, to assure robust execution.

If the error code returned indicates the connection attempt failed (that is,
WSAECONNREFUSED, WSAENETUNREACH, WSAETIMEDOUT) the application can call
connect again for the same socket.

Error Codes

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEADDRINUSE The socket's local address is already in use and the
socket was not marked to allow address reuse with
SO_REUSEADDR. This error usually occurs when
executing bind, but could be delayed until this function
if the bind was to a partially wild-card address
(involving ADDR_ANY) and if a specific address needs
to be committed at the time of this function.

WSAEINTR The (blocking) Windows Socket 1.1 call was canceled
through WSACancelBlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAEALREADY A nonblocking connect call is in progress on the
specified socket.

Note In order to preserve backward compatibility, this
error is reported as WSAEINVAL to Windows Sockets
1.1 applications that link to either WINSOCK.DLL or
WSOCK32.DLL.

WSAEADDRNOTAVAIL The remote address is not a valid address (such as
ADDR_ANY).

WSAEAFNOSUPPORT Addresses in the specified family cannot be used with
this socket.

WSAECONNREFUSED The attempt to connect was forcefully rejected.

WSAEFAULT The name or the namelen parameter is not a valid part of
the user address space, the namelen parameter is too
small, or the name parameter contains incorrect address
format for the associated address family.

Legal Information Page 77 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Use version 1.0 and later.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

accept, bind, getsockname, select, socket, WSAAsyncSelect, WSAConnect

EnumProtocols
Important The EnumProtocols function is a Microsoft-specific extension to the Windows
Sockets 1.1 specification. This function is obsolete. For the convenience of Windows Sockets 1.1
developers, the reference material is below.

The WSAEnumProtocols function provides equivalent functionality in Windows Sockets 2.

The EnumProtocols function obtains information about a specified set of network protocols that
are active on a local host.

INT EnumProtocols(
 LPINT lpiProtocols, // pointer to array of protocol
 // identifiers
 LPVOID lpProtocolBuffer, // pointer to buffer to receive protocol
 // information
 LPDWORD lpdwBufferLength // pointer to variable that specifies
 // the size of the receiving buffer

WSAEINVAL The parameter s is a listening socket, or the destination
address specified is not consistent with that of the
constrained group the socket belongs to.

WSAEISCONN The socket is already connected (connection-oriented
sockets only).

WSAENETUNREACH The network cannot be reached from this host at this
time.

WSAENOBUFS No buffer space is available. The socket cannot be
connected.

WSAENOTSOCK The descriptor is not a socket.

WSAETIMEDOUT Attempt to connect timed out without establishing a
connection.

WSAEWOULDBLOCK The socket is marked as nonblocking and the connection
cannot be completed immediately.

WSAEACCES Attempt to connect datagram socket to broadcast
address failed because setsockopt option
SO_BROADCAST is not enabled.

Legal Information Page 78 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

);

Parameters

lpiProtocols
Pointer to a null-terminated array of protocol identifiers. The EnumProtocols function
obtains information about the protocols specified by this array.

If lpiProtocols is NULL, the function obtains information about all available protocols.

The following protocol identifier values are defined:

lpProtocolBuffer
Pointer to a buffer that the function fills with an array of PROTOCOL_INFO data
structures.

lpdwBufferLength
Pointer to a variable that, on input, specifies the size, in bytes, of the buffer pointed to by
lpProtocolBuffer.

On output, the function sets this variable to the minimum buffer size needed to retrieve all
of the requested information. For the function to succeed, the buffer must be at least this
size.

Return Values

If the function succeeds, the return value is the number of PROTOCOL_INFO data structures
written to the buffer pointed to by lpProtocolBuffer.

If the function fails, the return value is SOCKET_ERROR (– 1). To get extended error
information, call GetLastError. GetLastError can return the following extended error code:

Remarks

In the following sample code, the EnumProtocols function obtains information about all

Value Protocol

IPPROTO_TCP TCP/IP, a connection/stream oriented protocol

IPPROTO_UDP User Datagram Protocol (UDP/IP), a connectionless
datagram protocol

ISOPROTO_TP4 ISO connection-oriented transport protocol

NSPROTO_IPX IPX

NSPROTO_SPX SPX

NSPROTO_SPXII SPX II

Value Meaning

ERROR_INSUFFICIENT_BUFFER The buffer pointed to by lpProtocolBuffer was
too small to receive all of the relevant
PROTOCOL_INFO structures. Call the
function with a buffer at least as large as the
value returned in *lpdwBufferLength.

Legal Information Page 79 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

protocols that are available on a system. The code then examines each of the protocols in greater
detail.

SOCKET
OpenConnection (
 PTSTR ServiceName,
 PGUID ServiceType,
 BOOL Reliable,
 BOOL MessageOriented,
 BOOL StreamOriented,
 BOOL Connectionless,
 PINT ProtocolUsed
)
{
 // local variables
 INT protocols[MAX_PROTOCOLS+1];
 BYTE buffer[2048];
 DWORD bytesRequired;
 INT err;
 PPROTOCOL_INFO protocolInfo;
 PCSADDR_INFO csaddrInfo;
 INT protocolCount;
 INT addressCount;
 INT i;
 DWORD protocolIndex;
 SOCKET s;

 // First look up the protocols installed on this machine.
 //
 bytesRequired = sizeof(buffer);
 err = EnumProtocols(NULL, buffer, &bytesRequired);
 if (err <= 0)
 return INVALID_SOCKET;

 // Walk through the available protocols and pick out the ones which
 // support the desired characteristics.
 //
 protocolCount = err;
 protocolInfo = (PPROTOCOL_INFO)buffer;

 for (i = 0, protocolIndex = 0;
 i < protocolCount && protocolIndex < MAX_PROTOCOLS;
 i++, protocolInfo++) {

 // If connection-oriented support is requested, then check if
 // supported by this protocol. We assume here that connection-
 // oriented support implies fully reliable service.
 //

 if (Reliable) {
 // Check to see if the protocol is reliable. It must
 // guarantee both delivery of all data and the order in
 // which the data arrives.
 //
 if ((protocolInfo->dwServiceFlags &
 XP_GUARANTEED_DELIVERY) == 0
 ||
 (protocolInfo->dwServiceFlags &
 XP_GUARANTEED_ORDER) == 0) {

 continue;
 }

 // Check to see that the protocol matches the stream/message
 // characteristics requested.
 //
 if (StreamOriented &&
 (protocolInfo->dwServiceFlags & XP_MESSAGE_ORIENTED)

Legal Information Page 80 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

 != 0 &&
 (protocolInfo->dwServiceFlags & XP_PSEUDO_STREAM)
 == 0) {
 continue;
 }

 if (MessageOriented &&
 (protocolInfo->dwServiceFlags & XP_MESSAGE_ORIENTED)
 == 0) {
 continue;
 }

 }
 else if (Connectionless) {
 // Make sure that this is a connectionless protocol.
 //
 if ((protocolInfo->dwServiceFlags & XP_CONNECTIONLESS)
 != 0)
 continue;
 }

 // This protocol fits all the criteria. Add it to the list of
 // protocols in which we're interested.
 //
 protocols[protocolIndex++] = protocolInfo->iProtocol;
 }

QuickInfo

 Windows NT: Yes
 Windows CE: Unsupported.
 Header: Declared in nspapi.h.
 Import Library: Link with wsock32.lib.

See Also

GetAddressByName, PROTOCOL_INFO

GetAcceptExSockaddrs
Notice This function is a Microsoft-specific extension to the Windows Sockets specification. For
more information, see Microsoft Extensions and Windows Sockets 2.

The Windows Sockets GetAcceptExSockaddrs function parses the data obtained from a call to
the AcceptEx function and passes the local and remote addresses to a SOCKADDR structure.

VOID GetAcceptExSockaddrs (
 PVOID lpOutputBuffer,
 DWORD dwReceiveDataLength,
 DWORD dwLocalAddressLength,
 DWORD dwRemoteAddressLength,
 LPSOCKADDR *LocalSockaddr,
 LPINT LocalSockaddrLength,
 LPSOCKADDR *RemoteSockaddr,
 LPINT RemoteSockaddrLength
);

Legal Information Page 81 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Parameters

lpOutputBuffer
[in] A pointer to a buffer that receives the first block of data sent on a connection resulting
from an AcceptEx call. It must be the same lpOutputBuffer parameter that was passed to
the AcceptEx function.

dwReceiveDataLength
[in] The number of bytes in the buffer that will be used for receiving the first data. This
must be equal to the dwReceiveDataLength parameter that was passed to the AcceptEx
function.

dwLocalAddressLength
[in] The number of bytes reserved for the local address information. This must be equal to
the dwLocalAddressLength parameter that was passed to the AcceptEx function.

dwRemoteAddressLength
[in] The number of bytes reserved for the remote address information. This must be equal to
the dwRemoteAddressLength parameter that was passed to the AcceptEx function.

LocalSockaddr
[out] A pointer to the SOCKADDR structure that receives the local address of the
connection (the same information that would be returned by the Windows Sockets
getsockname function). This parameter must be specified.

LocalSockaddrLength
[out] The size of the local address. This parameter must be specified.

RemoteSockaddr
[out] A pointer to the SOCKADDR structure that receives the remote address of the
connection (the same information that would be returned by the Windows Sockets
getpeername function). This parameter must be specified.

RemoteSockaddrLength
[out] The size of the local address. This parameter must be specified.

Remarks

The GetAcceptExSockaddrs function is used exclusively with the AcceptEx function to parse
the first data that the socket receives into local and remote addresses. You are required to use this
function because the AcceptEx function writes address information in an internal (TDI) format.
The GetAcceptExSockaddrs routine is required to locate the SOCKADDR structures in the
buffer.

Return Values

This function does not return a value.

QuickInfo

 Windows NT: Yes
 Windows CE: Unsupported.
 Header: Declared in mswsock.h.
 Import Library: Link with mswsock.lib.

Legal Information Page 82 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

GetAddressByName
Important The GetAddressByName function is a Microsoft-specific extension to the Windows
Sockets 1.1 specification. This function is obsolete. For the convenience of Windows Sockets 1.1
developers, the reference material is below.

The functions detailed in Protocol-Independent Name Resolution provide equivalent functionality
in Windows Sockets 2.

The GetAddressByName function queries a name space, or a set of default name spaces, in order
to obtain network address information for a specified network service. This process is known as
service name resolution. A network service can also use the function to obtain local address
information that it can use with the bind function.

INT GetAddressByName(
 DWORD dwNameSpace, // name space to query for service address
 // information
 LPGUID lpServiceType, // the type of the service
 LPTSTR lpServiceName, // the name of the service
 LPINT lpiProtocols, // points to array of protocol identifiers
 DWORD dwResolution, // set of bit flags that specify aspects of
 // name resolution
 LPSERVICE_ASYNC_INFO lpServiceAsyncInfo,
 // reserved for future use, must be NULL
 LPVOID lpCsaddrBuffer, // points to buffer to receive address
 // information
 LPDWORD lpdwBufferLength, // points to variable with address
 // buffer size information
 LPTSTR lpAliasBuffer, // points to buffer to receive alias
 // information
 LPDWORD lpdwAliasBufferLength
 // points to variable with alias buffer
 // size information
);

Parameters

dwNameSpace
Specifies the name space, or a set of default name spaces, that the operating system will
query for network address information.

Use one of the following constants to specify a name space:

Value Name Space

NS_DEFAULT A set of default name spaces. The function queries each
name space within this set. The set of default name
spaces typically includes all the name spaces installed on
the system. System administrators, however, can exclude
particular name spaces from the set. This is the value that
most applications should use for dwNameSpace.

NS_DNS The Domain Name System used in the Internet for host
name resolution.

Legal Information Page 83 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Most calls to GetAddressByName should use the special value NS_DEFAULT. This lets a
client get by with no knowledge of which name spaces are available on an internetwork.
The system administrator determines name space access. Name spaces can come and go
without the client having to be aware of the changes.

lpServiceType
Points to a globally unique identifier (GUID) that specifies the type of the network service.
The header file SVCGUID.H includes definitions of several GUID service types, and
macros for working with them.

lpServiceName
Points to a zero-terminated string that uniquely represents the service name. For example,
"MY SNA SERVER".

Setting lpServiceName to NULL is the equivalent of setting dwResolution to
RES_SERVICE. The function operates in its second mode, obtaining the local address to
which a service of the specified type should bind. The function stores the local address
within the LocalAddr member of the CSADDR_INFO structures stored into
*lpCsaddrBuffer.

If dwResolution is set to RES_SERVICE, the function ignores the lpServiceName
parameter.

If dwNameSpace is set to NS_DNS, *lpServiceName is the name of the host.
lpiProtocols

Points to a zero-terminated array of protocol identifiers. The function restricts a name
resolution attempt to name space providers that offer these protocols. This lets the caller
limit the scope of the search.

If lpiProtocols is NULL, the function obtains information on all available protocols.
dwResolution

A set of bit flags that specify aspects of the service name resolution process. The following
bit flags are defined:

NS_NETBT The NetBIOS over TCP/IP layer. All Windows NT
systems register their computer names with NetBIOS.
This name space is used to convert a computer name to
an IP address that uses this registration. Note that
NS_NETBT can access a WINS server to perform the
resolution.

NS_SAP The Netware Service Advertising Protocol. This can
access the Netware bindery if appropriate. NS_SAP is a
dynamic name space that allows registration of services.

NS_TCPIP_HOSTS Lookup value in the <systemroot>\system32
\drivers\etc\hosts file.

NS_TCPIP_LOCAL Local TCP/IP name resolution mechanisms, including
comparisons against the local host name and looks up
host names and IP addresses in cache of host to IP
address mappings.

Legal Information Page 84 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

lplpServiceAsyncInfo
Reserved for future use; must be set to NULL.

lpCsaddrBuffer
Points to a buffer to receive one or more CSADDR_INFO data structures. The number of
structures written to the buffer depends on the amount of information found in the
resolution attempt. You should assume that multiple structures will be written, although in
many cases there will only be one.

lpdwBufferLength
Points to a variable that, upon input, specifies the size, in bytes, of the buffer pointed to by
lpCsaddrBuffer.

Upon output, this variable contains the total number of bytes required to store the array of
CSADDR_INFO structures. If this value is less than or equal to the input value of
*lpdwBufferLength, and the function is successful, this is the number of bytes actually
stored in the buffer. If this value is greater than the input value of *lpdwBufferLength, the
buffer was too small, and the output value of *lpdwBufferLength is the minimal required
buffer size.

lpAliasBuffer
Points to a buffer to receive alias information for the network service.

If a name space supports aliases, the function stores an array of zero-terminated name
strings into the buffer pointed to by lpAliasBuffer. There is a double zero-terminator at the
end of the list. The first name in the array is the service's primary name. Names that follow
are aliases. An example of a name space that supports aliases is DNS.

If a name space does not support aliases, it stores a double zero-terminator into the buffer.

This parameter is optional, and can be set to NULL.

Value Meaning

RES_SERVICE If this flag is set, the function obtains the address to
which a service of the specified type should bind. This
is the equivalent of setting lpServiceName to NULL.

If this flag is clear, normal name resolution occurs.

RES_FIND_MULTIPLE If this flag is set, the operating system performs an
extensive search of all name spaces for the service. It
will ask every appropriate name space to resolve the
service name. If this flag is clear, the operating system
stops looking for service addresses as soon as one is
found.

RES_SOFT_SEARCH This flag is valid if the name space supports multiple
levels of searching.

If this flag is valid and set, the operating system
performs a simple and quick search of the name space.
This is useful if an application only needs to obtain
easy-to-find addresses for the service.

If this flag is valid and clear, the operating system
performs a more extensive search of the name space.

Legal Information Page 85 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

lpdwAliasBufferLength
Points to a variable that, upon input, specifies the size, in bytes, of the buffer pointed to by
lpAliasBuffer.

Upon output, this variable contains the total number of bytes required to store the array of
name strings. If this value is less than or equal to the input value of
*lpdwAliasBufferLength, and the function is successful, this is the number of bytes actually
stored in the buffer. If this value is greater than the input value of *lpdwAliasBufferLength,
the buffer was too small, and the output value of *lpdwAliasBufferLength is the minimal
required buffer size.

If lpAliasBuffer is NULL, lpdwAliasBufferLength is meaningless and can also be NULL.

Return Values

If the function succeeds, the return value is the number of CSADDR_INFO data structures
written to the buffer pointed to by lpCsaddrBuffer.

If the function fails, the return value is SOCKET_ERROR(– 1). To get extended error
information, call GetLastError. GetLastError can return the following extended error value:

Remarks

This function is a more powerful version of the Windows Sockets function gethostbyname The
GetAddressByName function works with multiple name services.

The GetAddressByName function lets a client obtain a Windows Sockets address for a network
service. The client specifies the service of interest by its service type and service name.

Many name services support a default prefix or suffix that the name service provider considers
when resolving service names. For example, in the DNS name space, if a domain is named
"nt.microsoft.com", and "ftp millikan" is provided as input, the DNS software fails to resolve
"millikan", but successfully resolves "millikan.nt.microsoft.com".

Note that the GetAddressByName function can search for a service address in two ways: within a
particular name space, or within a set of default name spaces. Using a default name space, an
administrator can specify that certain name spaces will be searched for service addresses only if
specified by name. An administrator or name space setup program can also control the ordering of
name space searches.

QuickInfo

 Windows NT: Yes
 Windows CE: Unsupported.
 Header: Declared in nspapi.h.

Value Meaning

ERROR_INSUFFICIENT_BUFFER The buffer pointed to by lpCsaddrBuffer was too
small to receive all of the relevant
CSADDR_INFO structures. Call the function
with a buffer at least as large as the value
returned in *lpdwBufferLength.

Legal Information Page 86 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

 Import Library: Link with wsock32.lib.

See Also

gethostbyname, CSADDR_INFO

gethostbyaddr
The Windows Sockets gethostbyaddr function retrieves the host information corresponding to a
network address.

struct HOSTENT FAR * gethostbyaddr (
 const char FAR * addr,
 int len,
 int type
);

Parameters

addr
[in] A pointer to an address in network byte order.

len
[in] The length of the address.

type
[in] The type of the address.

Remarks

The gethostbyaddr function returns a pointer to the HOSTENT structure that contains the name
and address corresponding to the given network address. All strings are null-terminated.

Return Values

If no error occurs, gethostbyaddr returns a pointer to the HOSTENT structure. Otherwise, it
returns a NULL pointer, and a specific error code can be retrieved by calling WSAGetLastError.

Error Codes

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or server failed.

WSANO_RECOVERY Nonrecoverable error occurred.

WSANO_DATA Valid name, no data record of requested type.

Legal Information Page 87 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Use version 1.0 and later.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

gethostbyname, HOSTENT, WSAAsyncGetHostByAddr

gethostbyname
The Windows Sockets gethostbyname function retrieves host information corresponding to a
host name from a host database.

struct hostent FAR * gethostbyname (
 const char FAR * name
);

Parameters

name
[out] A pointer to the null-terminated name of the host to resolve.

Remarks

The gethostbyname function returns a pointer to a HOSTENT structure — a structure allocated
by Windows Sockets. The HOSTENT structure contains the results of a successful search for the
host specified in the name parameter.

The application must never attempt to modify this structure or to free any of its components.
Furthermore, only one copy of this structure is allocated per thread, so the application should copy
any information it needs before issuing any other Windows Sockets function calls.

The gethostbyname function cannot resolve IP address strings passed to it. Such a request is
treated exactly as if an unknown host name were passed. Use inet_addr to convert an IP address

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAEAFNOSUPPORT The type specified is not supported by the Windows
Sockets implementation.

WSAEFAULT The addr parameter is not a valid part of the user
address space, or the len parameter is too small.

WSAEINTR A blocking Windows Socket 1.1 call was canceled
through WSACancelBlockingCall.

Legal Information Page 88 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

string the string to an actual IP address, then use another function, gethostbyaddr, to obtain the
contents of the HOSTENT structure.

The gethostbyname function resolves the string returned by a successful call to gethostname.

Return Values

If no error occurs, gethostbyname returns a pointer to the HOSTENT structure described above.
Otherwise, it returns a NULL pointer and a specific error number can be retrieved by calling
WSAGetLastError.

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Use version 1.0 and later.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

gethostbyaddr, WSAAsyncGetHostByName

gethostname
The Windows Sockets gethostname function returns the standard host name for the local
machine.

int gethostname (
 char FAR * name,

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or server failure.

WSANO_RECOVERY Nonrecoverable error occurred.

WSANO_DATA Valid name, no data record of requested type.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAEFAULT The name parameter is not a valid part of the user
address space.

WSAEINTR A blocking Windows Socket 1.1 call was canceled
through WSACancelBlockingCall.

Legal Information Page 89 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

 int namelen
);

Parameters

name
[out] A pointer to a buffer that receives the local host name.

namelen
[in] The length of the buffer.

Remarks

The gethostname function returns the name of the local host into the buffer specified by the name
parameter. The host name is returned as a null-terminated string. The form of the host name is
dependent on the Windows Sockets provider — it can be a simple host name, or it can be a fully
qualified domain name. However, it is guaranteed that the name returned will be successfully
parsed by gethostbyname and WSAAsyncGetHostByName.

Note If no local host name has been configured, gethostname must succeed and return a token
host name that gethostbyname or WSAAsyncGetHostByName can resolve.

Return Values

If no error occurs, gethostname returns zero. Otherwise, it returns SOCKET_ERROR and a
specific error code can be retrieved by calling WSAGetLastError.

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Use version 1.0 and later.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

gethostbyname, WSAAsyncGetHostByName

WSAEFAULT The name parameter is not a valid part of the user
address space, or the buffer size specified by namelen
parameter is too small to hold the complete host name.

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

Legal Information Page 90 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

GetNameByType
Important The GetNameByType function is a Microsoft-specific extension to the Windows
Sockets 1.1 specification. This function is obsolete. For the convenience of Windows Sockets 1.1
developers, the reference material is below.

The functions detailed in Protocol-Independent Name Resolution provide equivalent functionality
in Windows Sockets 2.

The GetNameByType function obtains the name of a network service. The network service is
specified by its service type.

INT GetNameByType(
 LPGUID lpServiceType, // points to network service type GUID
 LPTSTR lpServiceName, // points to buffer to receive name of
 // network service
 DWORD dwNameLength // points to variable that specifies buffer
 // size
);

Parameters

lpServiceType
Points to a globally unique identifier (GUID) that specifies the type of the network service.
The header file SVCGUID.H includes definitions of several GUID service types, and
macros for working with them.

lpServiceName
Points to a buffer to receive a zero-terminated string that uniquely represents the name of
the network service.

dwNameLength
Points to a variable that, on input, specifies the size of the buffer pointed to by
lpServiceName. On output, the variable contains the actual size of the service name string.

Return Values

If the function succeeds, the return value is not SOCKET_ERROR (–1).

If the function fails, the return value is SOCKET_ERROR (–1). To get extended error
information, call GetLastError.

QuickInfo

 Windows NT: Yes
 Windows CE: Unsupported.
 Header: Declared in nspapi.h.
 Import Library: Link with wsock32.lib.

See Also

Legal Information Page 91 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

GetTypeByName

getpeername
The Windows Sockets getpeername function retrieves the name of the peer to which a socket is
connected.

int getpeername (
 SOCKET s,
 struct sockaddr FAR* name,
 int FAR* namelen
);

Parameters

s
[in] A descriptor identifying a connected socket.

name
[out] The structure that receives the name of the peer.

namelen
[in/out] A pointer to the size of the name structure.

Remarks

The getpeername function retrieves the name of the peer connected to the socket s and stores it in
the aSOCKADDR structure identified by name. The getpeername function can be used only on a
connected socket. For datagram sockets, only the name of a peer specified in a previous connect
call will be returned—any name specified by a previous sendto call will not be returned by
getpeername.

On call, the namelen argument contains the size of the name buffer, in bytes. On return, the
namelen parameter contains the actual size in bytes of the name returned.

Return Values

If no error occurs, getpeername returns zero. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code can be retrieved by calling WSAGetLastError.

Error Codes

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The name or the namelen parameter is not a valid part of
the user address space, or the namelen parameter is too
small.

Legal Information Page 92 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows CE: Use version 1.0 and later.
 Header: Declared in winsock2.h.
 Import Library: Link with wsock32.lib.

See Also

bind, getsockname, socket

getprotobyname
The Windows Sockets getprotobyname function retrieves the protocol information
corresponding to a protocol name.

struct PROTOENT FAR * getprotobyname (
 const char FAR * name
);

Parameters

name
[in] A pointer to a null-terminated protocol name.

Remarks

The getprotobyname function returns a pointer to the PROTOENT structure containing the
name(s) and protocol number that correspond to the protocol specified in the name parameter. All
strings are null-terminated. The PROTOENT structure is allocated by the Windows Sockets
library. An application must never attempt to modify this structure or to free any of its
components. Furthermore, like HOSTENT, only one copy of this structure is allocated per thread,
so the application should copy any information that it needs before issuing any other Windows
Sockets function calls.

Return Values

If no error occurs, getprotobyname returns a pointer to the PROTOENT. Otherwise, it returns a
NULL pointer and a specific error number can be retrieved by calling WSAGetLastError.

Error Codes

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAENOTCONN The socket is not connected.

WSAENOTSOCK The descriptor is not a socket.

Legal Information Page 93 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

getprotobynumber, WSAAsyncGetProtoByName

getprotobynumber
The Windows Sockets getprotobynumber function retrieves protocol information corresponding
to a protocol number.

struct PROTOENT FAR * getprotobynumber (
 int number
);

Parameters

number
[in] A protocol number, in host byte order.

Remarks

This getprotobynumber function returns a pointer to the PROTOENT structure as previously

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAHOST_NOT_FOUND Authoritative Answer Protocol not found.

WSATRY_AGAIN Non-Authoritative Protocol not found, or server failure.

WSANO_RECOVERY Nonrecoverable errors, the protocols database is not
accessible.

WSANO_DATA Valid name, no data record of requested type.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAEFAULT The name parameter is not a valid part of the user
address space.

WSAEINTR A blocking Windows Socket 1.1 call was canceled
through WSACancelBlockingCall.

Legal Information Page 94 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

described in getprotobyname. The contents of the structure correspond to the given protocol
number.

The pointer that is returned points to the structure allocated by Windows Sockets. The application
must never attempt to modify this structure or to free any of its components. Furthermore, only
one copy of this structure is allocated per thread, so the application should copy any information
that it needs before issuing any other Windows Sockets function calls.

Return Values

If no error occurs, getprotobynumber returns a pointer to the PROTOENT structure. Otherwise,
it returns a NULL pointer and a specific error number can be retrieved by calling
WSAGetLastError.

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

getprotobyname, WSAAsyncGetProtoByNumber

getservbyname
The Windows Sockets getservbyname function retrieves service information corresponding to a
service name and protocol.

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAHOST_NOT_FOUND Authoritative Answer Protocol not found.

WSATRY_AGAIN Non-Authoritative Protocol not found, or server failure.

WSANO_RECOVERY Nonrecoverable errors, the protocols database is not
accessible.

WSANO_DATA Valid name, no data record of requested type.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAEINTR A blocking Windows Socket 1.1 call was canceled
through WSACancelBlockingCall.

Legal Information Page 95 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

struct servent FAR * getservbyname (
 const char FAR * name,
 const char FAR * proto
);

Parameters

name
[in] A pointer to a null-terminated service name.

proto
[in] An optional pointer to a null-terminated protocol name. If this pointer is NULL,
getservbyname returns the first service entry where name matches the s_name member of
the SERVENT structure or the s_aliases member of the SERVENT structure. Otherwise,
getservbyname matches both the name and the proto.

Remarks

The getservbyname function returns a pointer to the SERVENT structure containing the name(s)
and service number that match the string in the name parameter. All strings are null-terminated.

The pointer that is returned points to the SERVENT structure allocated by the Windows Sockets
library. The application must never attempt to modify this structure or to free any of its
components. Furthermore only one copy of this structure is allocated per thread, so the application
should copy any information it needs before issuing any other Windows Sockets function calls.

Return Values

If no error occurs, getservbyname returns a pointer to the SERVENT structure. Otherwise, it
returns a NULL pointer and a specific error number can be retrieved by calling
WSAGetLastError.

Error Codes

QuickInfo

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAHOST_NOT_FOUND Authoritative Answer Service not found.

WSATRY_AGAIN Non-Authoritative Service not found, or server failure.

WSANO_RECOVERY Nonrecoverable errors, the services database is not
accessible.

WSANO_DATA Valid name, no data record of requested type.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAEINTR A blocking Windows Socket 1.1 call was canceled
through WSACancelBlockingCall.

Legal Information Page 96 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

getservbyport, WSAAsyncGetServByName

getservbyport
The Windows Sockets getservbyport function retrieves service information corresponding to a
port and protocol.

struct servent FAR * getservbyport (
 int port,
 const char FAR* proto
);

Parameters

port
[in] The port for a service, in network byte order.

proto
[in] An optional pointer to a protocol name. If this is NULL, getservbyport returns the first
service entry for which the port matches the s_port of the SERVENT structure. Otherwise,
getservbyport matches both the port and the proto parameters.

Remarks

The getservbyport function returns a pointer to a SERVENT structure as it does in the
getservbyname function.

The SERVENT structure is allocated by Windows Sockets. The application must never attempt
to modify this structure or to free any of its components. Furthermore, only one copy of this
structure is allocated per thread, so the application should copy any information it needs before
issuing any other Windows Sockets function calls.

Return Values

If no error occurs, getservbyport returns a pointer to the SERVENT structure. Otherwise, it
returns a NULL pointer and a specific error number can be retrieved by calling
WSAGetLastError.

Error Codes

Legal Information Page 97 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

getservbyname, WSAAsyncGetServByPort

GetService
Important The GetService function is a Microsoft-specific extension to the Windows Sockets
1.1 specification. This function is obsolete. For the convenience of Windows Sockets 1.1
developers, the reference material is below..

The functions detailed in Protocol-Independent Name Resolution provide equivalent functionality
in Windows Sockets 2.

The GetService function obtains information about a network service in the context of a set of
default name spaces or a specified name space. The network service is specified by its type and
name. The information about the service is obtained as a set of NS_SERVICE_INFO data
structures.

INT GetService(
 DWORD dwNameSpace, // specifies name space or spaces to search
 PGUID lpGuid, // points to a GUID service type
 LPTSTR lpServiceName,

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAHOST_NOT_FOUND Authoritative Answer Service not found.

WSATRY_AGAIN Non-Authoritative Service not found, or server failure.

WSANO_RECOVERY Nonrecoverable errors, the services database is not
accessible.

WSANO_DATA Valid name, no data record of requested type.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAEFAULT The proto parameter is not a valid part of the user
address space.

WSAEINTR A blocking Windows Socket 1.1 call was canceled
through WSACancelBlockingCall.

Legal Information Page 98 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

 // points to a service name
 DWORD dwProperties, // specifies service information to be
 // obtained
 LPVOID lpBuffer, // points to buffer to receive service
 // information
 LPDWORD lpdwBufferSize, // points to size of buffer, size of
 // service information
 LPSERVICE_ASYNC_INFO lpServiceAsyncInfo
 // reserved for future use, must be NULL
);

Parameters

dwNameSpace
Specifies the name space, or a set of default name spaces, that the operating system will
query for information about the specified network service.

Use one of the following constants to specify a name space:

Most calls to GetService should use the special value NS_DEFAULT. This lets a client get
by with no knowledge of which name spaces are available on an internetwork. The system
administrator determines name space access. Name spaces can come and go without the
client having to be aware of the changes.

lpGuid
Points to a globally unique identifier (GUID) that specifies the type of the network service.
The header file SVCGUID.H includes GUID service types from many well-known services
within the DNS and SAP name spaces.

Value Name Space

NS_DEFAULT A set of default name spaces. The operating system will
query each name space within this set. The set of default
name spaces typically includes all the name spaces
installed on the system. System administrators,
however, can exclude particular name spaces from the
set. NS_DEFAULT is the value that most applications
should use for dwNameSpace.

NS_DNS The Domain Name System used in the Internet for host
name resolution.

NS_NETBT The NetBIOS over TCP/IP layer. All Windows NT
systems register their computer names with NetBIOS.
This name space is used to resolve a computer name
into an IP address using this registration. Note that
NS_NETBT can access a WINS server to perform the
resolution.

NS_SAP The Netware Service Advertising Protocol. This can
access the Netware bindery if appropriate. NS_SAP is a
dynamic name space that allows registration of services.

NS_TCPIP_HOSTS Looks up host names and IP addresses in the
<systemroot>\system32\drivers\etc\hosts file.

NS_TCPIP_LOCAL Local TCP/IP name resolution mechanisms, including
comparisons against the local host name and looks up
host names and IP addresses in cache of host to IP
address mappings.

Legal Information Page 99 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

lpServiceName
Points to a zero-terminated string that uniquely represents the service name. For example,
"MY SNA SERVER".

dwProperties
A set of bit flags that specify the service information that the function obtains. Each of these
bit flag constants, other than PROP_ALL, corresponds to a particular member of the
SERVICE_INFO data structure. If the flag is set, the function puts information into the
corresponding member of the data structures stored in *lpBuffer. The following bit flags are
defined:

lpBuffer
Points to a buffer to receive an array of NS_SERVICE_INFO structures and associated
service information. Each NS_SERVICE_INFO structure contains service information in
the context of a particular name space. Note that if dwNameSpace is NS_DEFAULT, the
function stores more than one structure into the buffer; otherwise, just one structure is
stored.

Each NS_SERVICE_INFO structure contains a SERVICE_INFO structure. The
members of these SERVICE_INFO structures will contain valid data based on the bit flags
that are set in the dwProperties parameter. If a member's corresponding bit flag is not set in
dwProperties, the member's value is undefined.

The function stores the NS_SERVICE_INFO structures in a consecutive array, starting at
the beginning of the buffer. The pointers in the contained SERVICE_INFO structures

Value Name Space

PROP_COMMENT If this flag is set, the function stores data in the
lpComment member of the data structures stored in
*lpBuffer.

PROP_LOCALE If this flag is set, the function stores data in the lpLocale
member of the data structures stored in *lpBuffer.

PROP_DISPLAY_HINT If this flag is set, the function stores data in the
dwDisplayHint member of the data structures stored in
*lpBuffer.

PROP_VERSION If this flag is set, the function stores data in the
dwVersion member of the data structures stored in
*lpBuffer.

PROP_START_TIME If this flag is set, the function stores data in the dwTime
member of the data structures stored in *lpBuffer.

PROP_MACHINE If this flag is set, the function stores data in the
lpMachineName member of the data structures stored
in *lpBuffer.

PROP_ADDRESSES If this flag is set, the function stores data in the
lpServiceAddress member of the data structures stored
in *lpBuffer.

PROP_SD If this flag is set, the function stores data in the
ServiceSpecificInfo member of the data structures
stored in *lpBuffer.

PROP_ALL If this flag is set, the function stores data in all of the
members of the data structures stored in *lpBuffer.

Legal Information Page 100 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

point to information that is stored in the buffer between the end of the
NS_SERVICE_INFO structures and the end of the buffer.

lpdwBufferSize
Points to a variable that, on input, contains the size, in bytes, of the buffer pointed to by
lpBuffer. On output, this variable contains the number of bytes required to store the
requested information. If this output value is greater than the input value, the function has
failed due to insufficient buffer size.

lpServiceAsyncInfo
This parameter is reserved for future use. It must be set to NULL.

Return Values

If the function succeeds, the return value is the number of NS_SERVICE_INFO structures stored
in *lpBuffer. Zero indicates that no structures were stored.

If the function fails, the return value is SOCKET_ERROR (– 1). To get extended error
information, call GetLastError. GetLastError can return one of the following extended error
values:

QuickInfo

 Windows NT: Yes
 Windows CE: Unsupported.
 Header: Declared in nspapi.h.
 Import Library: Link with wsock32.lib.

See Also

SetService, NS_SERVICE_INFO, SERVICE_INFO

getsockname
The Windows Sockets getsockname function retrieves the local name for a socket.

int getsockname (
 SOCKET s,
 struct sockaddr FAR* name,
 int FAR* namelen
);

Value Meaning

ERROR_INSUFFICIENT_BUFFER The buffer pointed to by lpBuffer is too small
to receive all of the requested information.
Call the function with a buffer at least as large
as the value returned in *lpdwBufferSize.

ERROR_SERVICE_NOT_FOUND The specified service was not found, or the
specified name space is not in use. The
function return value is zero in this case.

Legal Information Page 101 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Parameters

s
[in] A descriptor identifying a bound socket.

name
[out] Receives the address (name) of the socket.

namelen
[in/out] The size of the name buffer.

Remarks

The getsockname function retrieves the current name for the specified socket descriptor in name.
It is used on the bound or connected socket specified by the s parameter. The local association is
returned. This call is especially useful when a connect call has been made without doing a bind
first; the getsockname function provides the only way to determine the local association that has
been set by the system.

On call, the namelen argument contains the size of the name buffer, in bytes. On return, the
namelen parameter contains the actual size in bytes of the name parameter.

The getsockname function does not always return information about the host address when the
socket has been bound to an unspecified address, unless the socket has been connected with
connect or accept (for example, using ADDR_ANY). A Windows Sockets application must not
assume that the address will be specified unless the socket is connected. The address that will be
used for the socket is unknown unless the socket is connected when used in a multihomed host. If
the socket is using a connectionless protocol, the address may not be available until I/O occurs on
the socket.

Return Values

If no error occurs, getsockname returns zero. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code can be retrieved by calling WSAGetLastError.

Error Codes

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The name or the namelen parameter is not a valid part of
the user address space, or the namelen parameter is too
small.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAENOTSOCK The descriptor is not a socket.

WSAEINVAL The socket has not been bound to an address with bind,
or ADDR_ANY is specified in bind but connection has
not yet occurs.

Legal Information Page 102 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows CE: Use version 1.0 and later.
 Header: Declared in winsock2.h.
 Import Library: Link with wsock32.lib.

See Also

bind, getpeername, socket

getsockopt
The Windows Sockets getsockopt function retrieves a socket option.

int getsockopt (
 SOCKET s,
 int level,
 int optname,
 char FAR* optval,
 int FAR* optlen
);

Parameters

s
[in] A descriptor identifying a socket.

level
[in] The level at which the option is defined; the supported levels include SOL_SOCKET
and IPPROTO_TCP. See the Windows Sockets 2 Protocol-Specific Annex (a separate
document included with the Platform SDK) for more information on protocol-specific
levels.

optname
[in] The socket option for which the value is to be retrieved.

optval
[out] A pointer to the buffer in which the value for the requested option is to be returned.

optlen
[in/out] A pointer to the size of the optval buffer.

Remarks

The getsockopt function retrieves the current value for a socket option associated with a socket of
any type, in any state, and stores the result in optval. Options can exist at multiple protocol levels,
but they are always present at the uppermost "socket'' level. Options affect socket operations, such
as the packet routing and out-of-band data transfer.

The value associated with the selected option is returned in the buffer optval. The integer pointed
to by optlen should originally contain the size of this buffer; on return, it will be set to the size of
the value returned. For SO_LINGER, this will be the size of a LINGER structure. For most other
options, it will be the size of an integer.

Legal Information Page 103 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

The application is responsible for allocating any memory space pointed to directly or indirectly by
any of the parameters it specified.

If the option was never set with setsockopt, then getsockopt returns the default value for the
option.

The following options are supported for getsockopt. The Type column identifies the type of data
addressed by optval.

level = SOL_SOCKET

Value Type Meaning

SO_ACCEPTCONN BOOL Socket is listening.

SO_BROADCAST BOOL Socket is configured for the
transmission of broadcast
messages.

SO_DEBUG BOOL Debugging is enabled.

SO_DONTLINGER BOOL If true, the SO_LINGER option is
disabled.

SO_DONTROUTE BOOL Routing is disabled.

SO_ERROR int Retrieve error status and clear.

SO_GROUP_ID GROUP The identifier of the group to
which this socket belongs.

SO_GROUP_PRIORITY int The relative priority for sockets
that are part of a socket group.

SO_KEEPALIVE BOOL Keepalives are being sent.

SO_LINGER struct LINGER Returns the current linger options.

SO_MAX_MSG_SIZE unsigned int Maximum size of a message for
message-oriented socket types (for
example, SOCK_DGRAM). Has
no meaning for stream oriented
sockets.

SO_OOBINLINE BOOL Out-of-band data is being received
in the normal data stream. (See
section Windows Sockets 1.1
Blocking Routines &
EINPROGRESS for a discussion
of this topic.)

SO_PROTOCOL_INFO WSAPROTOCOL_INFO Description of protocol info for
protocol that is bound to this
socket.

SO_RCVBUF int Buffer size for receives

SO_REUSEADDR BOOL The socket can be bound to an
address which is already in use.

SO_SNDBUF int Buffer size for sends

Legal Information Page 104 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

level = IPPROTO_TCP

BSD options not supported for getsockopt are:

Calling getsockopt with an unsupported option will result in an error code of
WSAENOPROTOOPT being returned from WSAGetLastError.

SO_DEBUG
Windows Sockets service providers are encouraged (but not required) to supply output
debug information if the SO_DEBUG option is set by an application. The mechanism for
generating the debug information and the form it takes are beyond the scope of this
document.

SO_ERROR
The SO_ERROR option returns and resets the per-socket based error code, which is
different from the per-thread based error code that is handled using the WSAGetLastError
and WSASetLastError function calls. A successful call using the socket does not reset the
socket based error code returned by the SO_ERROR option.

SO_GROUP_ID
This option is reserved for future use with socket groups. This option is also exclusive to
getsockopt. It indicates the identifier of the group to which this socket belongs. Socket
group IDs are unique across all processes for a given service provider. If this socket is not a
group socket, the value is NULL.

SO_GROUP_PRIORITY
This option is reserved for future use with socket groups. Group priority indicates the
priority of the specified socket relative to other sockets within the socket group. Values are
non-negative integers, with zero corresponding to the highest priority. Priority values
represent a hint to the underlying service provider about how potentially scarce resources
should be allocated. For example, whenever two or more sockets are both ready to transmit

SO_TYPE int The type of the socket (for
example, SOCK_STREAM).

PVD_CONFIG Service Provider Dependent An "opaque" data structure object
from the service provider
associated with socket s. This
object stores the current
configuration information of the
service provider. The exact format
of this data structure is service
provider specific.

TCP_NODELAY BOOL Disables the Nagle algorithm for
send coalescing.

Value Type Meaning

SO_RCVLOWAT int Receive low water mark

SO_RCVTIMEO int Receive time-out

SO_SNDLOWAT int Send low water mark

SO_SNDTIMEO int Send time-out

TCP_MAXSEG int Get TCP maximum segment size

Legal Information Page 105 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

data, the highest priority socket (lowest value for SO_GROUP_PRIORITY) should be
serviced first, with the remainder serviced in turn according to their relative priorities.

The WSAENOPROTOOPT error code is indicated for non group sockets or for service
providers that do not support group sockets.

SO_KEEPALIVE
An application can request that a TCP/IP service provider enable the use of "keep-alive"
packets on TCP connections by turning on the SO_KEEPALIVE socket option. A Windows
Sockets provider need not support the use of keep-alive: if it does, the precise semantics are
implementation-specific but should conform to section 4.2.3.6 of RFC 1122: Requirements
for Internet Hosts — Communication Layers. If a connection is dropped as the result of
"keep-alives" the error code WSAENETRESET is returned to any calls in progress on the
socket, and any subsequent calls will fail with WSAENOTCONN.

SO_LINGER
SO_LINGER controls the action taken when unsent data is queued on a socket and a
closesocket is performed. See closesocket for a description of the way in which the
SO_LINGER settings affect the semantics of closesocket. The application gets the current
behavior by retrieving a LINGER structure (pointed to by the optval parameter).

SO_MAX_MSG_SIZE
This is a get-only socket option that indicates the maximum outbound (send) size of a
message for message-oriented socket types (for example, SOCK_DGRAM) as implemented
by a particular service provider. It has no meaning for byte stream oriented sockets. There is
no provision to find out the maximum inbound message size

SO_PROTOCOL_INFO
This is a get-only option that supplies the WSAPROTOCOL_INFO structure associated
with this socket. See WSAEnumProtocols for more information about this structure.

SO_SNDBUF
When a Windows Sockets implementation supports the SO_RCVBUF and SO_SNDBUF
options, an application can request different buffer sizes (larger or smaller). The call to
setsockopt can succeed even if the implementation did not provide the whole amount
requested. An application must call this function with the same option to check the buffer
size actually provided.

SO_REUSEADDR
By default, a socket cannot be bound (see bind) to a local address that is already in use. On
occasion, however, it can be necessary to "re-use" an address in this way. Because every
connection is uniquely identified by the combination of local and remote addresses, there is
no problem with having two sockets bound to the same local address as long as the remote
addresses are different. To inform the Windows Sockets provider that a bind on a socket
should not be disallowed because the desired address is already in use by another socket,
the application should set the SO_REUSEADDR socket option for the socket before
issuing the bind. Note that the option is interpreted only at the time of the bind: it is
therefore unnecessary (but harmless) to set the option on a socket that is not to be bound to
an existing address, and setting or resetting the option after the bind has no effect on this or
any other socket.

PVD_CONFIG
This option retrieves an "opaque" data structure object from the service provider associated
with socket s. This object stores the current configuration information of the service
provider. The exact format of this data structure is service provider specific.

TCP_NODELAY
The TCP_NODELAY option is specific to TCP/IP service providers. The Nagle algorithm
is disabled if the TCP_NODELAY option is enabled (and vice versa). The Nagle algorithm
(described in RFC 896) is very effective in reducing the number of small packets sent by a
host. The process involves buffering send data when there is unacknowledged data already

Legal Information Page 106 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

"in flight" or buffering send data until a full-size packet can be sent. It is highly
recommended that Windows Sockets implementations enable the Nagle Algorithm by
default because,for the vast majority of application protocols, the Nagle Algorithm can
deliver significant performance enhancements. However, for some applications this
algorithm can impede performance, and setsockopt with the same option can be used to
turn it off. These are applications where many small messages are sent, and the time delays
between the messages are maintained.

Windows CE: For IrSockets implementation:

The Af_irda.h file must be explicitly included.
The WSAENETDOWN return value is not supported.

IrSockets supports several special socket options:

The DEVICELIST structure is an extendible array of device descriptions. IrSockets fills in as
many device descriptions as can fit in the supplied buffer and returns in the optlen result
parameter the required size if the buffer is of insufficient size. The device description consists of a
device identifier necessary to form a sockaddr_irda structure and a displayable string describing
the device.

The IAS_QUERY structure is used to retrieve a single attribute of a single class. The application
specifies the device and class to query and the attribute and attribute type. It is expected that the
application allocates a buffer of the necessary size for the returned parameters.

Many SO level socket options are not meaningful to IrSockets. Only SO_LINGER and
SO_DONTLINGER are specifically supported.

Return Values

If no error occurs, getsockopt returns zero. Otherwise, a value of SOCKET_ERROR is returned,
and a specific error code can be retrieved by calling WSAGetLastError.

Error Codes

Value Type Meaning

IRLMP_ENUMDEVICES * DEVICELIST Describes devices in range.

IRLMP_IAS_QUERY * IAS_QUERY Retrieve IAS attributes.

IRLMP_SEND_PDU_LEN * int Retrieves max number of bytes that can
be sent in any one send() call while in
IRLMP_IRLPT_MODE (printing). This
value should be retrieved after the
connect() completes but before any data
is sent.

Legal Information Page 107 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Use version 1.0 and later.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

setsockopt, socket, WSAAsyncSelect, WSAConnect, WSAGetLastError, WSASetLastError

GetTypeByName
Important The GetTypeByName function is a Microsoft-specific extension to the Windows
Sockets 1.1 specification. This function is obsolete. For the convenience of Windows Sockets 1.1
developers, the reference material is below.

The functions detailed in Protocol-Independent Name Resolution provide equivalent functionality
in Windows Sockets 2.

The GetTypeByName function obtains a service type GUID for a network service specified by
name.

INT GetTypeByName(
 LPTSTR lpServiceName, // points to the name of the network service
 PGUID lpServiceType // points to a variable to receive network
 // service type
);

Parameters

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT One of the optval or the optlen parameters is not a valid
part of the user address space, or the optlen parameter is
too small.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAEINVAL The level parameter is unknown or invalid.

WSAENOPROTOOPT The option is unknown or unsupported by the indicated
protocol family.

WSAENOTSOCK The descriptor is not a socket.

Legal Information Page 108 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

lpServiceName
Points to a zero-terminated string that uniquely represents the name of the service. For
example, "MY SNA SERVER".

lpServiceType
Points to a variable to receive a globally unique identifier (GUID) that specifies the type of
the network service. The header file SVCGUID.H includes definitions of several GUID
service types and macros for working with them.

Return Values

If the function succeeds, the return value is zero.

If the function fails, the return value is SOCKET_ERROR(– 1). To get extended error
information, call GetLastError. GetLastError can return the following extended error value:

QuickInfo

 Windows NT: Yes
 Windows CE: Unsupported.
 Header: Declared in nspapi.h.
 Import Library: Link with wsock32.lib.

See Also

GetNameByType

htonl
The Windows Sockets htonl function converts a u_long from host to TCP/IP network byte order
(which is big-endian).

u_long htonl (
 u_long hostlong
);

Parameters

hostlong
[in] A 32-bit number in host byte order.

Remarks

The htonl function takes a 32-bit number in host byte order and returns a 32-bit number in the
network byte order used in TCP/IP networks.

Value Meaning

ERROR_SERVICE_DOES_NOT_EXIST The specified service type is unknown.

Legal Information Page 109 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Return Values

The htonl function returns the value in TCP/IP's network byte order.

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Use version 1.0 and later.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

htons, ntohl, ntohs, WSAHtonl, WSAHtons, WSANtohl, WSANtohs

htons
The Windows Sockets htons function converts a u_short from host to TCP/IP network byte order
(which is big-endian).

u_short htons (
 u_short hostshort
);

Parameters

hostshort
[in] A 16-bit number in host byte order.

Remarks

The htons function takes a 16-bit number in host byte order and returns a 16-bit number in
network byte order used in TCP/IP networks.

Return Values

The htons function returns the value in TCP/IP network byte order.

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Use version 1.0 and later.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

Legal Information Page 110 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

htonl, ntohl, ntohs, WSAHtonl, WSAHtons, WSANtohl, WSANtohs

inet_addr
The Windows Sockets inet_addr function converts a string containing an (Ipv4) Internet Protocol
dotted address into a proper address for the IN_ADDR structure.

unsigned long inet_addr (
 const char FAR * cp
);

Parameters

cp
[in] A null-terminated character string representing a number expressed in the Internet
standard ".'' (dotted) notation.

Remarks

The inet_addr function interprets the character string specified by the cp parameter. This string
represents a numeric Internet address expressed in the Internet standard ".'' notation. The value
returned is a number suitable for use as an Internet address. All Internet addresses are returned in
IP's network order (bytes ordered from left to right).

Internet Addresses

Values specified using the ".'' notation take one of the following forms:

a.b.c.d a.b.c a.b a

When four parts are specified, each is interpreted as a byte of data and assigned, from left to right,
to the four bytes of an Internet address. When an Internet address is viewed as a 32-bit integer
quantity on the Intel architecture, the bytes referred to above appear as "d.c.b.a''. That is, the bytes
on an Intel processor are ordered from right to left.

The parts that make up an address in "." notation can be decimal, octal or hexidecimal as specified
in the C language. Numbers that start with "0x" or "0X" imply hexidecimal. Numbers that start
with "0" imply octal. All other numbers are interpreted at decimal.

Note The following notations are only used by Berkeley, and nowhere else on the Internet. In the
interests of compatibility with their software, they are supported as specified.

"4.3.2.16" decimal

"004.003.002.020" octal

"0x4.0x3.0x2.0x10" hexidecimal

"4.003.002.0x10" mix

Legal Information Page 111 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

When a three part address is specified, the last part is interpreted as a 16-bit quantity and placed in
the right most two bytes of the network address. This makes the three part address format
convenient for specifying Class B network addresses as "128.net.host''.

When a two part address is specified, the last part is interpreted as a 24-bit quantity and placed in
the right most three bytes of the network address. This makes the two part address format
convenient for specifying Class A network addresses as "net.host''.

When only one part is given, the value is stored directly in the network address without any byte
rearrangement.

Return Values

If no error occurs, inet_addr returns an unsigned long value containing a suitable binary
representation of the Internet address given. If the string in the cp parameter does not contain a
legitimate Internet address, for example if a portion of an "a.b.c.d" address exceeds 255,
inet_addr returns the value INADDR_NONE.

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Use version 1.0 and later.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

inet_ntoa

inet_ntoa
The Windows Sockets inet_ntoa function converts an (Ipv4) Internet network address into a
string in Internet standard dotted format.

char FAR * inet_ntoa (
 struct in_addr in
);

Parameters

in
[in] A structure that represents an Internet host address.

Remarks

The inet_ntoa function takes an Internet address structure specified by the in parameter and
returns an ASCII string representing the address in ".'' (dot) notation as in "a.b.c.d''. The string

Legal Information Page 112 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

returned by inet_ntoa resides in memory that is allocated by Windows Sockets. The application
should not make any assumptions about the way in which the memory is allocated. The data is
guaranteed to be valid until the next Windows Sockets function call within the same thread, but
no longer. Therefore, the data should be copied before another Windows Sockets call is made.

Return Values

If no error occurs, inet_ntoa returns a char pointer to a static buffer containing the text address in
standard ".'' notation. Otherwise, it returns NULL.

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Use version 1.0 and later.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

inet_addr

ioctlsocket
The Windows Sockets ioctlsocket function controls the I/O mode of a socket.

int ioctlsocket (
 SOCKET s,
 long cmd,
 u_long FAR* argp
);

Parameters

s
[in] A descriptor identifying a socket.

cmd
[in] The command to perform on the socket s.

argp
[in/out] A pointer to a parameter for cmd.

Remarks

The ioctlsocket function can be used on any socket in any state. It is used to set or retrieve
operating parameters associated with the socket, independent of the protocol and communications
subsystem. Here are the supported commands to use in the cmd parameter and their semantics:

FIONBIO
Use with a nonzero argp parameter to enable the nonblocking mode of socket s. The argp
parameter is zero if nonblocking is to be disabled. The argp parameter points to an

Legal Information Page 113 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

unsigned long value. When a socket is created, it operates in blocking mode by default
(nonblocking mode is disabled). This is consistent with BSD sockets.

The WSAAsyncSelect and WSAEventSelect functions automatically set a socket to
nonblocking mode. If WSAAsyncSelect or WSAEventSelect has been issued on a socket,
then any attempt to use ioctlsocket to set the socket back to blocking mode will fail with
WSAEINVAL. To set the socket back to blocking mode, an application must first disable
WSAAsyncSelect by calling WSAAsyncSelect with the lEvent parameter equal to zero, or
disable WSAEventSelect by calling WSAEventSelect with the lNetworkEvents parameter
equal to zero.

FIONREAD
Use to determine the amount of data pending in the network's input buffer that can be read
from socket s. The argp parameter points to an unsigned long value in which ioctlsocket
stores the result. If s is stream oriented (for example, type SOCK_STREAM), FIONREAD
returns the amount of data that can be read in a single call to the recv function; this might
not be the same as the total amount of data queued on the socket. If s is message oriented
(for example, type SOCK_DGRAM), FIONREAD returns the size of the first datagram
(message) queued on the socket.

SIOCATMARK
Use to determine whether or not all out-of-band data has been read. (See section Windows
Sockets 1.1 Blocking Routines & EINPROGRESS for a discussion on Out of Band (OOB)
data.) This applies only to a stream oriented socket (for example, type SOCK_STREAM)
that has been configured for in-line reception of any out-of-band data (SO_OOBINLINE). If
no out-of-band data is waiting to be read, the operation returns TRUE. Otherwise, it returns
FALSE, and the next recv or recvfrom performed on the socket will retrieve some or all of
the data preceding the "mark." The application should use the SIOCATMARK operation to
determine whether any data remains. If there is any normal data preceding the "urgent" (out
of band) data, it will be received in order. (A recv or recvfrom will never mix out-of-band
and normal data in the same call.) The argp parameter points to an unsigned long value in
which ioctlsocket stores the boolean result.

Compatibility

This ioctlsocket function performs only a subset of functions on a socket when compared to the
ioctl function found in Berkeley sockets. The ioctlsocket function has no command parameter
equivalent to the FIOASYNC of ioctl, and SIOCATMARK is the only socket-level command that
is supported by ioctlsocket.

Return Values

Upon successful completion, the ioctlsocket returns zero. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code can be retrieved by calling
WSAGetLastError.

Error Codes

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

Legal Information Page 114 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Use version 1.0 and later.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

getsockopt, setsockopt, socket, WSAAsyncSelect, WSAEventSelect, WSAIoctl

listen
The Windows Sockets listen function places a socket a state where it is listening for an incoming
connection.

int listen (
 SOCKET s,
 int backlog
);

Parameters

s
[in] A descriptor identifying a bound, unconnected socket.

backlog
[in] The maximum length of the queue of pending connections. If this value is
SOMAXCONN, then the underlying service provider responsible for socket s will set the
backlog to a maximum "reasonable" value. There is no standard provision to find out the
actual backlog value.

Remarks

To accept connections, a socket is first created with the socket function and bound to a local
address with the bind function, a backlog for incoming connections is specified with listen, and
then the connections are accepted with the accept function. Sockets that are connection oriented,
those of type SOCK_STREAM for example, are used with listen. The socket s is put into
"passive'' mode where incoming connection requests are acknowledged and queued pending
acceptance by the process.

The listen function is typically used by servers that can have more than one connection request at
a time. If a connection request arrives and the queue is full, the client will receive an error with an
indication of WSAECONNREFUSED.

WSAENOTSOCK The descriptor s is not a socket.

WSAEFAULT The argp parameter is not a valid part of the user
address space.

Legal Information Page 115 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

If there are no available socket descriptors, listen attempts to continue to function. If descriptors
become available, a later call to listen or accept will refill the queue to the current or most recent
"backlog'', if possible, and resume listening for incoming connections.

An application can call listen more than once on the same socket. This has the effect of updating
the current backlog for the listening socket. Should there be more pending connections than the
new backlog value, the excess pending connections will be reset and dropped.

Windows CE: As in 4.3BSD, illegal values (less than 1 or greater than 5) are replaced by the
nearest valid value.

For IrSockets implementation:

The Af_irda.h file must be explicitly included.
The WSAENETDOWN return value is not supported.
The backlog parameter is currently limited (silently) to 2.

Compatibility

The backlog parameter is limited (silently) to a reasonable value as determined by the underlying
service provider. Illegal values are replaced by the nearest legal value. There is no standard
provision to find out the actual backlog value.

Return Values

If no error occurs, listen returns zero. Otherwise, a value of SOCKET_ERROR is returned, and a
specific error code can be retrieved by calling WSAGetLastError.

Error Codes

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEADDRINUSE The socket's local address is already in use and the
socket was not marked to allow address reuse with
SO_REUSEADDR. This error usually occurs during
execution of the bind function, but could be delayed
until this function if the bind was to a partially wild-
card address (involving ADDR_ANY) and if a specific
address needs to be "committed" at the time of this
function.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAEINVAL The socket has not been bound with bind.

WSAEISCONN The socket is already connected.

WSAEMFILE No more socket descriptors are available.

WSAENOBUFS No buffer space is available.

WSAENOTSOCK The descriptor is not a socket.

Legal Information Page 116 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Use version 1.0 and later.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

accept, connect, socket

ntohl
The Windows Sockets ntohl function converts a u_long from TCP/IP network order to host byte
order (which is big-endian).

u_long ntohl (
 u_long netlong
);

Parameters

netlong
[in] A 32-bit number in TCP/IP network byte order.

Remarks

The ntohl function takes a 32-bit number in TCP/IP network byte order and returns a 32-bit
number in host byte order.

Return Values

The ntohl function always returns a value in host byte order. If the netlong parameter was already
in host byte order, then no operation is performed.

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Use version 1.0 and later.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

WSAEOPNOTSUPP The referenced socket is not of a type that supports the
listen operation.

Legal Information Page 117 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

htonl, htons, ntohs, WSAHtonl, WSAHtons, WSANtohl, WSANtohs

ntohs
The Windows Sockets ntohs function converts a u_short from TCP/IP network byte order to host
byte order (which is big-endian).

u_short ntohs (
 u_short netshort
);

Parameters

netshort
[in] A 16-bit number in TCP/IP network byte order.

Remarks

The ntohs function takes a 16-bit number in TCP/IP network byte order and returns a 16-bit
number in host byte order.

Return Values

The ntohs function returns the value in host byte order. If the netshort parameter was already in
host byte order, then no operation is performed.

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Use version 1.0 and later.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

htonl, htons, ntohl, WSAHtonl, WSAHtons, WSANtohl, WSANtohs

recv
The Windows Sockets recv function receives data from a connected socket.

int recv (
 SOCKET s,
 char FAR* buf,
 int len,

Legal Information Page 118 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

 int flags
);

Parameters

s
[in] A descriptor identifying a connected socket.

buf
[out] A buffer for the incoming data.

len
[in] The length of buf.

flags
[in] A flag specifying the way in which the call is made.

Remarks

The recv function is used to read incoming data on connection-oriented sockets, or connectionless
sockets. When using a connection-oriented protocol, the sockets must be connected before calling
recv. When using a connectionless protocol, the sockets must be bound before calling recv.

The local address of the socket must be known. For server applications, use an explicit bind
function or an implicit accept or WSAAccept function. Explicit binding is discouraged for client
applications. For client applications the socket can become bound implicitly to a local address
using connect, WSAConnect, sendto, WSASendTo, or WSAJoinLeaf.

For connected or connectionless sockets, this function restricts the addresses from which received
messages are accepted. The function only returns messages from the remote address specified in
the connection. Messages from other addresses are (silently) discarded

For connection-oriented sockets (type SOCK_STREAM for example), calling recv will return as
much information as is currently available—up to the size of the buffer supplied. If the socket has
been configured for in-line reception of out-of-band data (socket option SO_OOBINLINE) and
out-of-band data is yet unread, only out-of-band data will be returned. The application can use the
ioctlsocket or WSAIoctl SIOCATMARK command to determine whether any more out-of-band
data remains to be read.

For connectionless sockets (type SOCK_DGRAM or other message-oriented sockets), data is
extracted from the first enqueued datagram (message) from the destination address specified by
the connect function.

If the datagram or message is larger than the buffer supplied, the buffer is filled with the first part
of the datagram, and recv generates the error WSAEMSGSIZE. For unreliable protocols (for
example, UDP) the excess data is lost; for reliable protocols, the data is retained by the service
provider until it is successfully read by calling recv with a large enough buffer. For TCP/IP, an
application cannot receive from any multicast address until after becoming a group member.

If no incoming data is available at the socket, the recv call blocks and waits for data to arrive
according to the blocking rules defined for WSARecv with the MSG_PARTIAL flag not set
unless the socket is nonblocking. In this case, a value of SOCKET_ERROR is returned with the
error code set to WSAEWOULDBLOCK. The select, WSAAsyncSelect, or WSAEventSelect
functions can be used to determine when more data arrives.

Legal Information Page 119 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

If the socket is connection oriented and the remote side has shut down the connection gracefully,
and all data has been received, a recv will complete immediately with zero bytes received. If the
connection has been reset, a recv will fail with the error WSAECONNRESET.

The flags parameter can be used to influence the behavior of the function invocation beyond the
options specified for the associated socket. The semantics of this function are determined by the
socket options and the flags parameter. The latter is constructed by or'ing the following values:

Return Values

If no error occurs, recv returns the number of bytes received. If the connection has been gracefully
closed, the return value is zero. Otherwise, a value of SOCKET_ERROR is returned, and a
specific error code can be retrieved by calling WSAGetLastError.

Error Codes

Value Meaning

MSG_PEEK Peek at the incoming data. The data is copied into the buffer but is not
removed from the input queue. The function then returns the number
of bytes currently pending to receive.

MSG_OOB Process out-of-band data. (See section DECnet Out-Of-band data for
a discussion of this topic.)

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The buf parameter is not completely contained in a valid part
of the user address space.

WSAENOTCONN The socket is not connected.

WSAEINTR The (blocking) call was canceled through
WSACancelBlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or the
service provider is still processing a callback function.

WSAENETRESET The connection has been broken due to the keep-alive activity
detecting a failure while the operation was in progress.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not stream-style
such as type SOCK_STREAM, out-of-band data is not
supported in the communication domain associated with this
socket, or the socket is unidirectional and supports only send
operations.

WSAESHUTDOWN The socket has been shut down; it is not possible to recv on a
socket after shutdown has been invoked with how set to
SD_RECEIVE or SD_BOTH.

WSAEWOULDBLOCK The socket is marked as nonblocking and the receive
operation would block.

Legal Information Page 120 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Use version 1.0 and later.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

recvfrom, select, send, socket, WSAAsyncSelect, WSARecvEx

recvfrom
The Windows Sockets recvfrom function receives a datagram and stores the source address.

int recvfrom (
 SOCKET s,
 char FAR* buf,
 int len,
 int flags,
 struct sockaddr FAR* from,
 int FAR* fromlen
);

Parameters

s
[in] A descriptor identifying a bound socket.

buf
[out] A buffer for the incoming data.

len

WSAEMSGSIZE The message was too large to fit into the specified buffer and
was truncated.

WSAEINVAL The socket has not been bound with bind, or an unknown flag
was specified, or MSG_OOB was specified for a socket with
SO_OOBINLINE enabled or (for byte stream sockets only)
len was zero or negative.

WSAECONNABORTED The virtual circuit was terminated due to a time-out or other
failure. The application should close the socket as it is no
longer usable.

WSAETIMEDOUT The connection has been dropped because of a network failure
or because the peer system failed to respond.

WSAECONNRESET The virtual circuit was reset by the remote side executing a
"hard" or "abortive" close. The application should close the
socket as it is no longer usable. On a UDP datagram socket
this error would indicate that a previous send operation
resulted in an ICMP "Port Unreachable" message.

Legal Information Page 121 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

[in] The length of buf.
flags

[in] An indicator specifying the way in which the call is made.
from

[out] An optional pointer to a buffer that will hold the source address upon return.
fromlen

[in/out] An optional pointer to the size of the from buffer.

Remarks

The recvfrom function reads incoming data on both connected and unconnected sockets and
captures the address from which the data was sent. The socket must not be connected. The local
address of the socket must be known. For server applications, this is usually done explicitly
through bind. Explicit binding is discouraged for client applications. For client applications using
this function, the socket can become bound implicitly to a local address through sendto,
WSASendTo, or WSAJoinLeaf.

For stream oriented sockets such as those of type SOCK_STREAM, a call to recvfrom returns as
much information as is currently available—up to the size of the buffer supplied. If the socket has
been configured for in-line reception of out-of-band data (socket option SO_OOBINLINE) and
out-of-band data is yet unread, only out-of-band data will be returned. The application can use the
ioctlsocket or WSAIoctl SIOCATMARK command to determine whether any more out-of-band
data remains to be read. The from and fromlen parameters are ignored for connection-oriented
sockets.

For message-oriented sockets, data is extracted from the first enqueued message, up to the size of
the buffer supplied. If the datagram or message is larger than the buffer supplied, the buffer is
filled with the first part of the datagram, and recvfrom generates the error WSAEMSGSIZE. For
unreliable protocols (for example, UDP) the excess data is lost.

If the from paramter is nonzero and the socket is not connection oriented, (type SOCK_DGRAM
for example), the network address of the peer that sent the data is copied to the corresponding
SOCKADDR structure. The value pointed to by fromlen is initialized to the size of this structure
and is modified, on return, to indicate the actual size of the address stored in the SOCKADDR
structure.

If no incoming data is available at the socket, the recvfrom function blocks and waits for data to
arrive according to the blocking rules defined for WSARecv with the MSG_PARTIAL flag not
set unless the socket is nonblocking. In this case, a value of SOCKET_ERROR is returned with
the error code set to WSAEWOULDBLOCK. The select, WSAAsyncSelect, or
WSAEventSelect can be used to determine when more data arrives.

If the socket is connection oriented and the remote side has shut down the connection gracefully,
the call to recvfrom will complete immediately with zero bytes received. If the connection has
been reset recvfrom will fail with the error WSAECONNRESET.

The flags parameter can be used to influence the behavior of the function invocation beyond the
options specified for the associated socket. The semantics of this function are determined by the
socket options and the flags parameter. The latter is constructed by or-ing the following values:

Legal Information Page 122 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Return Values

If no error occurs, recvfrom returns the number of bytes received. If the connection has been
gracefully closed, the return value is zero. Otherwise, a value of SOCKET_ERROR is returned,
and a specific error code can be retrieved by calling WSAGetLastError.

Error Codes

Value Meaning

MSG_PEEK Peek at the incoming data. The data is copied into the buffer but is
not removed from the input queue, and the function returns the
number of bytes currently pending to receive.

MSG_OOB Process out-of-band data. (See section DECnet Out-Of-band data for
a discussion of this topic.)

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The buf or from parameters are not part of the user address
space, or the fromlen parameter is too small to accommodate
the peer address.

WSAEINTR The (blocking) call was canceled through
WSACancelBlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or the
service provider is still processing a callback function.

WSAEINVAL The socket has not been bound with bind, or an unknown flag
was specified, or MSG_OOB was specified for a socket with
SO_OOBINLINE enabled, or (for byte stream-style sockets
only) len was zero or negative.

WSAEISCONN The socket is connected. This function is not permitted with a
connected socket, whether the socket is connection-oriented
or connectionless.

WSAENETRESET The connection has been broken due to the "keep-alive"
activity detecting a failure while the operation was in
progress.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not stream-style
such as type SOCK_STREAM, out-of-band data is not
supported in the communication domain associated with this
socket, or the socket is unidirectional and supports only send
operations.

WSAESHUTDOWN The socket has been shut down; it is not possible to recvfrom
on a socket after shutdown has been invoked with how set to
SD_RECEIVE or SD_BOTH.

WSAEWOULDBLOCK The socket is marked as nonblocking and the recvfrom
operation would block.

Legal Information Page 123 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Use version 1.0 and later.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

recv, send, socket, WSAAsyncSelect, WSAEventSelect

select
The Windows Sockets select function determines the status of one or more sockets, waiting if
necessary, to perform synchronous I/O.

int select (
 int nfds,
 fd_set FAR * readfds,
 fd_set FAR * writefds,
 fd_set FAR * exceptfds,
 const struct timeval FAR * timeout
);

Parameters

nfds
[in] This parameter is ignored; it is included only for compatibility with Berkeley sockets.

readfds
[in/out] An optional pointer to a set of sockets to be checked for readability.

writefds
[in/out] An optional pointer to a set of sockets to be checked for writability

exceptfds
[in/out] An optional pointer to a set of sockets to be checked for errors.

timeout
[in] The maximum time for select to wait, or NULL for blocking operation.

WSAEMSGSIZE The message was too large to fit into the specified buffer and
was truncated.

WSAETIMEDOUT The connection has been dropped, because of a network
failure or because the system on the other end went down
without notice.

WSAECONNRESET The virtual circuit was reset by the remote side executing a
"hard" or "abortive" close. The application should close the
socket as it is no longer usable. On a UDP datagram socket
this error would indicate that a previous send operation
resulted in an ICMP "Port Unreachable" message.

Legal Information Page 124 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Remarks

The select function is used to determine the status of one or more sockets. For each socket, the
caller can request information on read, write or error status. The set of sockets for which a given
status is requested is indicated by an FD_SET structure. The sockets contained within the
FD_SET structures must be associated with a single service provider. For the purpose of this
restriction, sockets are considered to be from the same service provider if the
WSAPROTOCOL_INFO structures describing their protocols have the same providerId value.
Upon return, the structures are updated to reflect the subset of these sockets that meet the
specified condition. The select function returns the number of sockets meeting the conditions. A
set of macros is provided for manipulating an FD_SET structure. These macros are compatible
with those used in the Berkeley software, but the underlying representation is completely
different.

The parameter readfds identifies the sockets that are to be checked for readability. If the socket is
currently in the listen state, it will be marked as readable if an incoming connection request has
been received such that an accept is guaranteed to complete without blocking. For other sockets,
readability means that queued data is available for reading such that a call to recv, WSARecv,
WSARecvFrom, or recvfrom is guaranteed not to block.

For connection-oriented sockets, readability can also indicate that a request to close the socket has
been received from the peer. If the virtual circuit was closed gracefully, and all data was received,
then a recv will return immediately with zero bytes read. If the virtual circuit was reset, then a
recv will complete immediately with an error code such as WSAECONNRESET. The presence of
out-of-band data will be checked if the socket option SO_OOBINLINE has been enabled (see
setsockopt).

The parameter writefds identifies the sockets that are to be checked for writability. If a socket is
processing a connect call (nonblocking), a socket is writable if the connection establishment
successfully completes. If the socket is not processing a connect call, writability means a send,
sendto, or WSASendto are guaranteed to succeed. However, they can block on a blocking socket
if the len parameter exceeds the amount of outgoing system buffer space available. It is not
specified how long these guarantees can be assumed to be valid, particularly in a multithreaded
environment.

The parameter exceptfds identifies the sockets that are to be checked for the presence of out-of-
band data (see section DECnet Out-Of-band data for a discussion of this topic) or any exceptional
error conditions.

Important Out-of-band data will only be reported in this way if the option SO_OOBINLINE is
FALSE. If a socket is processing a connect call (nonblocking), failure of the connect attempt is
indicated in exceptfds (application must then call getsockopt SO_ERROR to determine the error
value to describe why the failure occurred). This document does not define which other errors will
be included.

Any two of the parameters, readfds, writefds, or exceptfds, can be given as NULL. At least one
must be non-NULL, and any non-NULL descriptor set must contain at least one handle to a
socket.

Summary: A socket will be identified in a particular set when select returns if:

Legal Information Page 125 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

readfds:

If listen has been called and a connection is pending, accept will succeed
Data is available for reading (includes OOB data if SO_OOBINLINE is enabled)
Connection has been closed/reset/terminated

writefds:

If processing a connect call (nonblocking), connection has succeeded
Data can be sent

exceptfds:

If processing a connect call (nonblocking), connection attempt failed
OOB data is available for reading (only if SO_OOBINLINE is disabled)

Four macros are defined in the header file WINSOCK2.H for manipulating and checking the
descriptor sets. The variable FD_SETSIZE determines the maximum number of descriptors in a
set. (The default value of FD_SETSIZE is 64, which can be modified by defining FD_SETSIZE
to another value before including WINSOCK2.H.) Internally, socket handles in an FD_SET
structure are not represented as bit flags as in Berkeley Unix. Their data representation is opaque.
Use of these macros will maintain software portability between different socket environments.
The macros to manipulate and check FD_SET contents are:

FD_CLR(s, *set)
Removes the descriptor s from set.

FD_ISSET(s, *set)
Nonzero if s is a member of the set. Otherwise, zero.

FD_SET(s, *set)
Adds descriptor s to set.

FD_ZERO(*set)
Initializes the set to the NULL set.

The parameter timeout controls how long the select can take to complete. If timeout is a null
pointer, select will block indefinitely until at least one descriptor meets the specified criteria.
Otherwise, timeout points to a TIMEVAL structure that specifies the maximum time that select
should wait before returning. When select returns, the contents of the TIMEVAL structure are
not altered. If TIMEVAL is initialized to {0, 0}, select will return immediately; this is used to
"poll" the state of the selected sockets. If select returns immediately, then the select call is
considered nonblocking and the standard assumptions for nonblocking calls apply. For example,
the blocking hook will not be called, and Windows Sockets will not yield.

Note The select function has no effect on the persistence of socket events registered with
WSAAsyncSelect or WSAEventSelect.

Return Values

The select function returns the total number of socket handles that are ready and contained in the
FD_SET structures, zero if the time limit expired, or SOCKET_ERROR if an error occurred. If
the return value is SOCKET_ERROR, WSAGetLastError can be used to retrieve a specific error
code.

Legal Information Page 126 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Use version 1.0 and later.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

accept, connect, recv, recvfrom, send, WSAAsyncSelect, WSAEventSelect

send
The Windows Sockets send function sends data on a connected socket.

int send (
 SOCKET s,
 const char FAR * buf,
 int len,
 int flags
);

Parameters

s
[in] A descriptor identifying a connected socket.

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAEFAULT The Windows Sockets implementation was unable to
allocate needed resources for its internal operations, or
the readfds, writefds, exceptfds, or timeval parameters
are not part of the user address space.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL The timeout value is not valid, or all three descriptor
parameters were NULL.

WSAEINTR A blocking Windows Socket 1.1 call was canceled
through WSACancelBlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAENOTSOCK One of the descriptor sets contains an entry that is not a
socket.

Legal Information Page 127 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

buf
[in] A buffer containing the data to be transmitted.

len
[in] The length of the data in buf.

flags
[in] An indicator specifying the way in which the call is made.

Remarks

The send function is used to write outgoing data on a connected socket. For message-oriented
sockets, care must be taken not to exceed the maximum packet size of the underlying provider,
which can be obtained by using getsockopt to retrieve the value of socket option
SO_MAX_MSG_SIZE. If the data is too long to pass atomically through the underlying protocol,
the error WSAEMSGSIZE is returned, and no data is transmitted.

The successful completion of a send does not indicate that the data was successfully delivered.

If no buffer space is available within the transport system to hold the data to be transmitted, send
will block unless the socket has been placed in a nonblocking mode. On nonblocking stream
oriented sockets, the number of bytes written can be between 1 and the requested length,
depending on buffer availability on both client and server machines. The select,
WSAAsyncSelect or WSAEventSelect functions can be used to determine when it is possible to
send more data.

Calling send with a zero len parameter is permissible and will be treated by implementations as
successful. In such cases, send will return zero as a valid value. For message-oriented sockets, a
zero-length transport datagram is sent.

The flags parameter can be used to influence the behavior of the function beyond the options
specified for the associated socket. The semantics of this function are determined by the socket
options and the flags parameter. The latter is constructed by or-ing the following values:

Windows CE: For IrSockets implementation, the Af_irda.h file must be explicitly included.

Return Values

If no error occurs, send returns the total number of bytes sent, which can be less than the number
indicated by len for nonblocking sockets. Otherwise, a value of SOCKET_ERROR is returned,
and a specific error code can be retrieved by calling WSAGetLastError.

Error Codes

Value Meaning

MSG_DONTROUTE Specifies that the data should not be subject to routing. A
Windows Sockets service provider can choose to ignore
this flag.

MSG_OOB Send out-of-band data (stream-style socket such as
SOCK_STREAM only. Also see DECnet Out-Of-band
data for a discussion of this topic).

Legal Information Page 128 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEACCES The requested address is a broadcast address, but the
appropriate flag was not set. Call setsockopt with the
SO_BROADCAST parameter to allow the use of the
broadcast address.

WSAEINTR A blocking Windows Sockets 1.1 call was canceled
through WSACancelBlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or the
service provider is still processing a callback function.

WSAEFAULT The buf parameter is not completely contained in a valid
part of the user address space.

WSAENETRESET The connection has been broken due to the "keep-alive"
activity detecting a failure while the operation was in
progress.

WSAENOBUFS No buffer space is available.

WSAENOTCONN The socket is not connected.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not stream-
style such as type SOCK_STREAM, out-of-band data is
not supported in the communication domain associated
with this socket, or the socket is unidirectional and
supports only receive operations.

WSAESHUTDOWN The socket has been shut down; it is not possible to send
on a socket after shutdown has been invoked with how set
to SD_SEND or SD_BOTH.

WSAEWOULDBLOCK The socket is marked as nonblocking and the requested
operation would block.

WSAEMSGSIZE The socket is message oriented, and the message is larger
than the maximum supported by the underlying transport.

WSAEHOSTUNREACH The remote host cannot be reached from this host at this
time.

WSAEINVAL The socket has not been bound with bind, or an unknown
flag was specified, or MSG_OOB was specified for a
socket with SO_OOBINLINE enabled.

WSAECONNABORTED The virtual circuit was terminated due to a time-out or
other failure. The application should close the socket as it
is no longer usable.

WSAECONNRESET The virtual circuit was reset by the remote side executing a
"hard" or "abortive" close. For UPD sockets, the remote
host was unable to deliver a previously sent UDP datagram
and responded with a "Port Unreachable" ICMP packet.
The application should close the socket as it is no longer
usable.

Legal Information Page 129 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Use version 1.0 and later.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

recv, recvfrom, select, sendto, socket, WSAAsyncSelect, WSAEventSelect

sendto
The Windows Sockets sendto function sends data to a specific destination.

int sendto (
 SOCKET s,
 const char FAR * buf,
 int len,
 int flags,
 const struct sockaddr FAR * to,
 int tolen
);

Parameters

s
[in] A descriptor identifying a (possibly connected) socket.

buf
[in] A buffer containing the data to be transmitted.

len
[in] The length of the data in buf.

flags
[in] An indicator specifying the way in which the call is made.

to
[in] An optional pointer to the address of the target socket.

tolen
[in] The size of the address in to.

Remarks

The sendto function is used to write outgoing data on a socket. For message-oriented sockets,
care must be taken not to exceed the maximum packet size of the underlying subnets, which can
be obtained by using getsockopt to retrieve the value of socket option SO_MAX_MSG_SIZE. If
the data is too long to pass atomically through the underlying protocol, the error WSAEMSGSIZE

WSAETIMEDOUT The connection has been dropped, because of a network
failure or because the system on the other end went down
without notice.

Legal Information Page 130 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

is returned and no data is transmitted.

The to parameter can be any valid address in the socket's address family, including a broadcast or
any multicast address. To send to a broadcast address, an application must have used setsockopt
with SO_BROADCAST enabled. Otherwise, sendto will fail with the error code WSAEACCES.
For TCP/IP, an application can send to any multicast address (without becoming a group
member).

If the socket is unbound, unique values are assigned to the local association by the system, and the
socket is then marked as bound. An application can use getsockname to determine the local
socket name in this case.

The successful completion of a sendto does not indicate that the data was successfully delivered.

The sendto function is normally used on a connectionless socket to send a datagram to a specific
peer socket identified by the to parameter. Even if the connectionless socket has been previously
connected to a specific address, the to parameter overrides the destination address for that
particular datagram only. On a connection-oriented socket, the to and tolen parameters are
ignored, making sendto equivalent to send.

For sockets using IP (version 4):

To send a broadcast (on a SOCK_DGRAM only), the address in the to parameter should be
constructed using the special IP address INADDR_BROADCAST (defined in WINSOCK2.H),
together with the intended port number. It is generally inadvisable for a broadcast datagram to
exceed the size at which fragmentation can occur, which implies that the data portion of the
datagram (excluding headers) should not exceed 512 bytes.

If no buffer space is available within the transport system to hold the data to be transmitted,
sendto will block unless the socket has been placed in a nonblocking mode. On nonblocking,
stream oriented sockets, the number of bytes written can be between 1 and the requested length,
depending on buffer availability on both the client and server systems. The select,
WSAAsyncSelect or WSAEventSelect function can be used to determine when it is possible to
send more data.

Calling sendto with a len of zero is permissible and will return zero as a valid value. For
message-oriented sockets, a zero-length transport datagram is sent.

The flags parameter can be used to influence the behavior of the function invocation beyond the
options specified for the associated socket. The semantics of this function are determined by the
socket options and the flags parameter. The latter is constructed by or-ing the following values:

Return Values

Value Meaning

MSG_DONTROUTE Specifies that the data should not be subject to routing.
A Windows Sockets service provider can choose to
ignore this flag.

MSG_OOB Send out-of-band data (stream-style socket such as
SOCK_STREAM only. Also see DECnet Out-Of-band
data for a discussion of this topic.)

Legal Information Page 131 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

If no error occurs, sendto returns the total number of bytes sent, which can be less than the
number indicated by len. Otherwise, a value of SOCKET_ERROR is returned, and a specific error
code can be retrieved by calling WSAGetLastError.

Error Codes

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEACCES The requested address is a broadcast address, but the
appropriate flag was not set. Call setsockopt with the
SO_BROADCAST parameter to allow the use of the
broadcast address.

WSAEINVAL An unknown flag was specified, or MSG_OOB was
specified for a socket with SO_OOBINLINE enabled.

WSAEINTR A blocking Windows Sockets 1.1 call was canceled
through WSACancelBlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAEFAULT The buf or to parameters are not part of the user address
space, or the tolen parameter is too small.

WSAENETRESET The connection has been broken due to "keep-alive"
activity detecting a failure while the operation was in
progress.

WSAENOBUFS No buffer space is available.

WSAENOTCONN The socket is not connected (connection-oriented
sockets only)

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not stream-
style such as type SOCK_STREAM, out-of-band data is
not supported in the communication domain associated
with this socket, or the socket is unidirectional and
supports only receive operations.

WSAESHUTDOWN The socket has been shut down; it is not possible to
sendto on a socket after shutdown has been invoked
with how set to SD_SEND or SD_BOTH.

WSAEWOULDBLOCK The socket is marked as nonblocking and the requested
operation would block.

WSAEMSGSIZE The socket is message oriented, and the message is
larger than the maximum supported by the underlying
transport.

WSAEHOSTUNREACH The remote host cannot be reached from this host at this
time.

Legal Information Page 132 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Use version 1.0 and later.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

recv, recvfrom, select, send, socket, WSAAsyncSelect, WSAEventSelect

SetService
Important The SetService function is obsolete. For the convenience of Windows Sockets 1.1
developers, the reference material is below.

The functions detailed in Protocol-Independent Name Resolution provide equivalent functionality
in Windows Sockets 2.

The SetService function registers or deregisters a network service within one or more name
spaces. The function can also add or remove a network service type within one or more name
spaces.

INT SetService(
 DWORD dwNameSpace, // specifies name space(s) to operate within
 DWORD dwOperation, // specifies operation to perform
 DWORD dwFlags, // set of bit flags that modify function

WSAECONNABORTED The virtual circuit was terminated due to a time-out or
other failure. The application should close the socket as
it is no longer usable.

WSAECONNRESET The virtual circuit was reset by the remote side
executing a "hard" or "abortive" close. For UPD
sockets, the remote host was unable to deliver a
previously sent UDP datagram and responded with a
"Port Unreachable" ICMP packet. The application
should close the socket as it is no longer usable.

WSAEADDRNOTAVAIL The remote address is not a valid address, for example,
ADDR_ANY.

WSAEAFNOSUPPORT Addresses in the specified family cannot be used with
this socket.

WSAEDESTADDRREQ A destination address is required.

WSAENETUNREACH The network cannot be reached from this host at this
time.

WSAETIMEDOUT The connection has been dropped, because of a network
failure or because the system on the other end went
down without notice.

Legal Information Page 133 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

 // operation
 LPSERVICE_INFO lpServiceInfo,
 // points to structure containing service
 // information
 LPSERVICE_ASYNC_INFO lpServiceAsyncInfo,
 // reserved for future use, must be NULL
 LPDWORD lpdwStatusFlags
 // points to set of status bit flags
);

Parameters

dwNameSpace
The name space, or a set of default name spaces, within which the function will operate.

Use one of the following constants to specify a name space:

dwOperation
Specifies the operation that the function will perform. Use one of the following values to
specify an operation:

Value Name Space

NS_DEFAULT A set of default name spaces. The function queries
each name space within this set. The set of default
name spaces typically includes all the name spaces
installed on the system. System administrators,
however, can exclude particular name spaces from the
set. NS_DEFAULT is the value that most applications
should use for dwNameSpace.

NS_DNS The Domain Name System used in the Internet to
resolve the name of the host.

NS_NDS The NetWare 4 provider.

NS_NETBT The NetBIOS over TCP/IP layer. All Windows NT
and Windows 95 systems register their computer
names with NetBIOS. This name space is used to
convert a computer name to an IP address that uses
this registration.

NS_SAP The NetWare Service Advertising Protocol. This can
access the Netware bindery, if appropriate. NS_SAP is
a dynamic name space that enables the registration of
services.

NS_TCPIP_HOSTS Lookup value in the <systemroot>\system32
\drivers\etc\posts file.

NS_TCPIP_LOCAL Local TCP/IP name resolution mechanisms, including
comparisons against the local host name and lookup
value in the cache of host to IP address mappings.

Legal Information Page 134 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

dwFlags
A set of bit flags that modify the function's operation. You can set one or more of the
following bit flags:

lpService_Info
Points to a SERVICE_INFO structure that contains information about the network service
or service type.

Value Meaning

SERVICE_REGISTER Register the network service with the name space.
This operation can be used with the
SERVICE_FLAG_DEFER and
SERVICE_FLAG_HARD bit flags.

SERVICE_DEREGISTER Deregister the network service from the name space.
This operation can be used with the
SERVICE_FLAG_DEFER and
SERVICE_FLAG_HARD bit flags.

SERVICE_FLUSH Perform any operation that was called with the
SERVICE_FLAG_DEFER bit flag set to one.

SERVICE_ADD_TYPE Add a service type to the name space.

For this operation, use the ServiceSpecificInfo
member of the SERVICE_INFO structure pointed to
by lpServiceInfo to pass a
SERVICE_TYPE_INFO_ABS structure. You must
also set the ServiceType member of the
SERVICE_INFO structure. Other SERVICE_INFO
members are ignored.

SERVICE_DELETE_TYPE Remove a service type, added by a previous call
specifying the SERVICE_ADD_TYPE operation,
from the name space.

Value Name Space

SERVICE_FLAG_DEFER This bit flag is valid only if the operation is
SERVICE_REGISTER or SERVICE_DEREGISTER.

If this bit flag is one, and it is valid, the name-space
provider should defer the registration or deregistration
operation until a SERVICE_FLUSH operation is
requested.

SERVICE_FLAG_HARD This bit flag is valid only if the operation is
SERVICE_REGISTER or SERVICE_DEREGISTER.

If this bit flag is one, and it is valid, the name-space
provider updates any relevant persistent store
information when the operation is performed.

For example: If the operation involves deregistration
in a name space that uses a persistent store, the name-
space provider would remove the relevant persistent
store information.

Legal Information Page 135 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

lpServiceAsyncInfo
This parameter is reserved for future use. It must be set to NULL.

lpdwStatusFlags
A set of bit flags that receive function status information. The following bit flag is defined:

Return Values

If the function succeeds, the return value is not SOCKET_ERROR.

If the function fails, the return value is SOCKET_ERROR. To get extended error information, call
GetLastError. GetLastError can return the following extended error value:

QuickInfo

 Windows NT: Yes
 Windows CE: Unsupported.
 Header: Declared in nspapi.h.
 Import Library: Link with wsock32.lib.

See Also

GetService, SERVICE_INFO, SERVICE_TYPE_INFO_ABS

setsockopt
The Windows Sockets setsockopt function sets a socket option.

int setsockopt (
 SOCKET s,
 int level,
 int optname,
 const char FAR * optval,
 int optlen
);

Parameters

s
[in] A descriptor identifying a socket.

level

Value Meaning

SET_SERVICE_PARTIAL_SUCCESS One or more name-space providers were
unable to successfully perform the
requested operation.

Value Meaning

ERROR_ALREADY_REGISTERED The function tried to register a service that
was already registered.

Legal Information Page 136 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

[in] The level at which the option is defined; the supported levels include SOL_SOCKET
and IPPROTO_TCP. See the Windows Sockets 2 Protocol-Specific Annex (a separate
document included with the Platform SDK) for more information on protocol-specific
levels.

optname
[in] The socket option for which the value is to be set.

optval
[in] A pointer to the buffer in which the value for the requested option is supplied.

optlen
[in] The size of the optval buffer.

Remarks

The setsockopt function sets the current value for a socket option associated with a socket of any
type, in any state. Although options can exist at multiple protocol levels, they are always present
at the uppermost "socket'' level. Options affect socket operations, such as whether expedited data
(OOB data for example) is received in the normal data stream, and whether broadcast messages
can be sent on the socket.

There are two types of socket options: Boolean options that enable or disable a feature or
behavior, and options that require an integer value or structure. To enable a Boolean option,
optval points to a nonzero integer. To disable the option optval points to an integer equal to zero.
The optlen parameter should be equal to sizeof(int) for Boolean options. For other options, optval
points to the an integer or structure that contains the desired value for the option, and optlen is the
length of the integer or structure.

The following options are supported for setsockopt. For default values of these options, see the
description. The Type identifies the type of data addressed by optval.

level = SOL_SOCKET

Value Type Meaning

SO_BROADCAST BOOL Allow transmission of broadcast
messages on the socket.

SO_DEBUG BOOL Record debugging information.

SO_DONTLINGER BOOL Do not block close waiting for unsent
data to be sent. Setting this option is
equivalent to setting SO_LINGER with
l_onoff set to zero.

SO_DONTROUTE BOOL Do not route: send directly to interface.

SO_GROUP_PRIORITY int Reserved for future use with socket
groups. Specify the relative priority to be
established for sockets that are part of a
socket group.

SO_KEEPALIVE BOOL Send keepalives

SO_LINGER struct LINGER Linger on close if unsent data is present.

SO_OOBINLINE BOOL Receive out-of-band data in the normal
data stream. (See section DECnet Out-
Of-band data for a discussion of this
topic.)

Legal Information Page 137 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

level = IPPROTO_TCP1

BSD options not supported for setsockopt are:

SO_DEBUG
Windows Sockets service providers are encouraged (but not required) to supply output
debug information if the SO_DEBUG option is set by an application. The mechanism for
generating the debug information and the form it takes are beyond the scope of this
document.

SO_GROUP_PRIORITY
Reserved for future use with socket groups. Group priority indicates the relative priority of
the specified socket relative to other sockets within the socket group. Values are non-
negative integers, with zero corresponding to the highest priority. Priority values represent a
hint to the underlying service provider about how potentially scarce resources should be
allocated. For example, whenever two or more sockets are both ready to transmit data, the
highest priority socket (lowest value for SO_GROUP_PRIORITY) should be serviced first

SO_RCVBUF int Specify the total per-socket buffer space
reserved for receives. This is unrelated to
SO_MAX_MSG_SIZE or the size of a
TCP window.

SO_REUSEADDR BOOL Allow the socket to be bound to an
address that is already in use. (See bind.)

SO_SNDBUF int Specify the total per-socket buffer space
reserved for sends. This is unrelated to
SO_MAX_MSG_SIZE or the size of a
TCP window.

PVD_CONFIG Service Provider
Dependent

This object stores the configuration
information for the service provider
associated with socket s. The exact
format of this data structure is service
provider specific.

TCP_NODELAY BOOL Disables the Nagle algorithm for send
coalescing.

1 included for backward compatibility with Windows Sockets 1.1

Value Type Meaning

SO_ACCEPTCONN BOOL Socket is listening

SO_RCVLOWAT int Receive low water mark

SO_RCVTIMEO int Receive time-out (available in
Microsoft implementation of
Windows Sockets 2)

SO_SNDLOWAT int Send low water mark

SO_SNDTIMEO int Send time-out (available in
Microsoft implementation of
Windows Sockets 2)

SO_TYPE int Type of the socket

Legal Information Page 138 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

with the remainder serviced in turn according to their relative priorities.

The WSAENOPROTOOPT error is indicated for nongroup sockets or for service providers
that do not support group sockets.

SO_KEEPALIVE
An application can request that a TCP/IP provider enable the use of "keep-alive" packets on
TCP connections by turning on the SO_KEEPALIVE socket option. A Windows Sockets
provider need not support the use of keep-alives. If it does, the precise semantics are
implementation-specific but should conform to section 4.2.3.6 of RFC 1122: Requirements
for Internet Hosts — Communication Layers. If a connection is dropped as the result of
"keep-alives" the error code WSAENETRESET is returned to any calls in progress on the
socket, and any subsequent calls will fail with WSAENOTCONN.

SO_LINGER
The SO_LINGER option controls the action taken when unsent data is queued on a socket
and a closesocket is performed. See closesocket for a description of the way in which the
SO_LINGER settings affect the semantics of closesocket. The application sets the desired
behavior by creating a LINGER structure (pointed to by the optval parameter) with these
members l_onoff and l_linger set appropriately.

SO_REUSEADDR
By default, a socket cannot be bound (see bind) to a local address that is already in use. On
occasion, however, it can be necessary to "re-use" an address in this way. Since every
connection is uniquely identified by the combination of local and remote addresses, there is
no problem with having two sockets bound to the same local address as long as the remote
addresses are different. To inform the Windows Sockets provider that a bind on a socket
should not be disallowed because the desired address is already in use by another socket,
the application should set the SO_REUSEADDR socket option for the socket before
issuing the bind. The option is interpreted only at the time of the bind. It is therefore
unnecessary and harmless to set the option on a socket that is not to be bound to an existing
address. Setting or resetting the option after the bind has no effect on this or any other
socket.

SO_RCVBUF and SO_SNDBUF
When a Windows Sockets implementation supports the SO_RCVBUF and SO_SNDBUF
options, an application can request different buffer sizes (larger or smaller). The call to
setsockopt can succeed even when the implementation did not provide the whole amount
requested. An application must call getsockopt with the same option to check the buffer
size actually provided.

PVD_CONFIG
This object stores the configuration information for the service provider associated with the
socket specified in the s parameter. The exact format of this data structure is specific to
each service provider.

TCP_NODELAY
The TCP_NODELAY option is specific to TCP/IP service providers. The Nagle algorithm
is disabled if the TCP_NODELAY option is enabled (and vice versa). The process involves
buffering send data when there is unacknowledged data already "in flight" or buffering send
data until a full-size packet can be sent. It is highly recommended that TCP/IP service
providers enable the Nagle Algorithm by default, and for the vast majority of application
protocols the Nagle Algorithm can deliver significant performance enhancements.
However, for some applications this algorithm can impede performance, and
TCP_NODELAY can be used to turn it off. These are applications where many small
messages are sent, and the time delays between the messages are maintained. Application
writers should not set TCP_NODELAY unless the impact of doing so is well-understood
and desired because setting TCP_NODELAY can have a significant negative impact on
network and application performance.

Legal Information Page 139 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Windows CE: The SO_RCVBUF option is not supported. If you attempt to use this option
setsockopt returns WSAEOPNOTSUPP.

To set the socket to secure mode, the option level parameter, level, must set to SO_SOCKET, the
option name, optname to SO_SECURE, and the option value, optval, must be a pointer to a
DWORD containing SO_SEC_SSL. These settings ensure that the Unified Secure Sockets Layer
(SSL) package be used. For example,

DWORD optval = SO_SEC_SSL;
err = setsockopt(
 Socket,
 SOL_SOCKET,
 SO_SECURE,
 &optval,
 sizeof(optval)
);.

In addition to the normal error values, the setsockopt function can return an additional error code,
namely, WSAEISCONN, to signify that the socket can not switch to secure mode once it has been
connected.

When used in the context of SSL, the WSAENOPROTOOP error code acquires additional
meaning, to indicate that the option level does not equal to SO_SOCKET.

For IrSocket implementation, Af_irda.h must be explicitly included.

The WSAENETDOWN return value is not supported for IrSockets.

IrSockets provides two settable socket options:

The IRLMP_IAS_SET socket option allows the application to set a single attribute of a single
class in the local IAS. The application specifies the class to set and the attribute and attribute type.
It is expected that the application allocate a buffer of the necessary size for the passed parameters.

The IRLMP_RAW_MODE socket option allows the application to switch between TinyTP mode
and unreliable IrLMP mode. If it is not set, IrSockets are assumed to use TinyTP. This option is
only available after issuing the socket function and before issuing any other Windows Sockets
function.

Many SO_ level socket options are not meaningful to IrSockets. Only SO_LINGER is specifically
supported.

Return Values

If no error occurs, setsockopt returns zero. Otherwise, a value of SOCKET_ERROR is returned,
and a specific error code can be retrieved by calling WSAGetLastError.

Value Type Meaning

IRLMP_IAS_SET * IAS_SET Sets IAS attributes.

IRLMP_IRLPT_MODE * int In non-zero, enables IrLPT mode for printing
to IrDA printers.

Legal Information Page 140 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Use version 1.0 and later.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

bind, getsockopt, ioctlsocket, socket, WSAAsyncSelect, WSAEventSelect

shutdown
The Windows Sockets shutdown function disables sends or receives on a socket.

int shutdown (
 SOCKET s,
 int how
);

Parameters

s

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT optval is not in a valid part of the process address space
or optlen parameter is too small.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAEINVAL level is not valid, or the information in optval is not
valid.

WSAENETRESET Connection has timed out when SO_KEEPALIVE is
set.

WSAENOPROTOOPT The option is unknown or unsupported for the specified
provider or socket (see SO_GROUP_PRIORITY
limitations).

WSAENOTCONN Connection has been reset when SO_KEEPALIVE is
set.

WSAENOTSOCK The descriptor is not a socket.

Legal Information Page 141 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

[in] A descriptor identifying a socket.
how

[in] A flag that describes what types of operation will no longer be allowed.

Remarks

The shutdown function is used on all types of sockets to disable reception, transmission, or both.

If the how parameter is SD_RECEIVE, subsequent calls to the recv function on the socket will be
disallowed. This has no effect on the lower protocol layers. For TCP sockets, if there is still data
queued on the socket waiting to be received, or data arrives subsequently, the connection is reset,
since the data cannot be delivered to the user. For UDP sockets, incoming datagrams are accepted
and queued. In no case will an ICMP error packet be generated.

If the how parameter is SD_SEND, subsequent calls to the send function are disallowed. For TCP
sockets, a FIN will be sent after all data is sent and acknowledged by the receiver.

Setting how to SD_BOTH disables both sends and receives as described above.

The shutdown function does not close the socket. Any resources attached to the socket will not
be freed until closesocket is invoked.

To assure that all data is sent and received on a connected socket before it is closed, an application
should use shutdown to close connection before calling closesocket. For example, to initiate a
graceful disconnect:

1. Call WSAAsyncSelect to register for FD_CLOSE notification.
2. Call shutdown with how=SD_SEND.
3. When FD_CLOSE received, call recv until zero returned, or SOCKET_ERROR.
4. Call closesocket.

Note The shutdown function does not block regardless of the SO_LINGER setting on the socket.

An application should not rely on being able to re-use a socket after it has been shut down. In
particular, a Windows Sockets provider is not required to support the use of connect on a socket
that has been shutdown.

Return Values

If no error occurs, shutdown returns zero. Otherwise, a value of SOCKET_ERROR is returned,
and a specific error code can be retrieved by calling WSAGetLastError.

Error Codes

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL The how parameter is not valid, or is not consistent with
the socket type. For example, SD_SEND is used with a
UNI_RECV socket type.

Legal Information Page 142 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Use version 1.0 and later.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

connect, socket

socket
The Windows Sockets socket function creates a socket that is bound to a specific service
provider.

SOCKET socket (
 int af,
 int type,
 int protocol
);

Parameters

af
[in] An address family specification.

type
[in] A type specification for the new socket.

The following are the only two type specifications supported for Windows Sockets 1.1:

In Windows Sockets 2, many new socket types will be introduced and don' need to be

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAENOTCONN The socket is not connected (connection-oriented
sockets only).

WSAENOTSOCK The descriptor is not a socket.

Type Explanation

SOCK_STREAM Provides sequenced, reliable, two-way, connection-based byte
streams with an out-of-band data transmission mechanism.
Uses TCP for the Internet address family.

SOCK_DGRAM Supports datagrams, which are connectionless, unreliable
buffers of a fixed (typically small) maximum length. Uses
UDP for the Internet address family.

Legal Information Page 143 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

specified now because an application can dynamically discover the attributes of each
available transport protocol through the WSAEnumProtocols function. Socket type
definitions will appear in WINSOCK2.H, which will be periodically updated as new socket
types, address families and protocols are defined.

protocol
[in] A particular protocol to be used with the socket that is specific to the indicated address
family.

Remarks

The socket function causes a socket descriptor and any related resources to be allocated and
bound to a specific transport service provider. Windows Sockets will utilize the first available
service provider that supports the requested combination of address family, socket type and
protocol parameters. The socket that is created will have the overlapped attribute as a default. For
Microsoft operating systems, the Microsoft-specific socket option, SO_OPENTYPE, defined in
MSWSOCK.H can affect this default. See Microsoft-specific documentation for a detailed
description of SO_OPENTYPE. Sockets without the overlapped attribute can be created by using
WSASocket. All functions that allow overlapped operation (WSASend,
WSARecv,WSASendTo, WSARecvFrom, and WSAIoctl) also support non-overlapped usage
on an overlapped socket if the values for parameters related to overlapped operation are NULL.

When selecting a protocol and its supporting service provider this procedure will only choose a
base protocol or a protocol chain, not a protocol layer by itself. Unchained protocol layers are not
considered to have partial matches on type or af either. That is, they do not lead to an error code of
WSAEAFNOSUPPORT or WSAEPROTONOSUPPORT if no suitable protocol is found.

Important The manifest constant AF_UNSPEC continues to be defined in the header file but its
use is strongly discouraged, as this can cause ambiguity in interpreting the value of the protocol
parameter.

Connection-oriented sockets such as SOCK_STREAM provide full-duplex connections, and must
be in a connected state before any data can be sent or received on it. A connection to another
socket is created with a connect call. Once connected, data can be transferred using send and recv
calls. When a session has been completed, a closesocket must be performed.

The communications protocols used to implement a reliable, connection-oriented socket ensure
that data is not lost or duplicated. If data for which the peer protocol has buffer space cannot be
successfully transmitted within a reasonable length of time, the connection is considered broken
and subsequent calls will fail with the error code set to WSAETIMEDOUT.

Connectionless, message-oriented sockets allow sending and receiving of datagrams to and from
arbitrary peers using sendto and recvfrom. If such a socket is connected to a specific peer,
datagrams can be sent to that peer using send and can be received only from this peer using recv.

Support for sockets with type RAW is not required, but service providers are encourage to support
raw sockets whenever it makes sense to do so.

Windows CE: Windows CE supports the PF_INET and AF_IRDA ARPA Internet address
formats.

To use IrSock, set the af parameter to AF_IRDA and set the protocol parameter to NULL.

Legal Information Page 144 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Windows CE supports SOCK_STREAM and SOCK_DCRAM socket types.

Return Values

If no error occurs, socket returns a descriptor referencing the new socket. Otherwise, a value of
INVALID_SOCKET is returned, and a specific error code can be retrieved by calling
WSAGetLastError.

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Use version 1.0 and later.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

accept, bind, connect, getsockname, getsockopt, ioctlsocket, listen, recv, recvfrom, select,
send, sendto, setsockopt, shutdown, WSASocket

TransmitFile
Notice This function is a Microsoft-specific extension to the Windows Sockets specification. For
more information, see Microsoft Extensions and Windows Sockets 2.

WSANOTINITIALISED A successful WSAStartup must occur before
using this function.

WSAENETDOWN The network subsystem or the associated service
provider has failed.

WSAEAFNOSUPPORT The specified address family is not supported.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in
progress, or the service provider is still processing
a callback function.

WSAEMFILE No more socket descriptors are available.

WSAENOBUFS No buffer space is available. The socket cannot be
created.

WSAEPROTONOSUPPORT The specified protocol is not supported.

WSAEPROTOTYPE The specified protocol is the wrong type for this
socket.

WSAESOCKTNOSUPPORT The specified socket type is not supported in this
address family.

Legal Information Page 145 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

The Windows Sockets TransmitFile function transmits file data over a connected socket handle.
This function uses the operating system's cache manager to retrieve the file data, and provides
high-performance file data transfer over sockets.

BOOL TransmitFile(
 SOCKET hSocket,
 HANDLE hFile,
 DWORD nNumberOfBytesToWrite,
 DWORD nNumberOfBytesPerSend,
 LPOVERLAPPED lpOverlapped,
 LPTRANSMIT_FILE_BUFFERS lpTransmitBuffers,
 DWORD dwFlags
);

Parameters

hSocket
A handle to a connected socket. The function will transmit the file data over this socket.

The socket specified by hSocket must be a connection-oriented socket.

Sockets of type SOCK_STREAM, SOCK_SEQPACKET, or SOCK_RDM are connection-
oriented sockets. The TransmitFile function does not support datagram sockets.

hFile
A handle to an open file. The function transmits this file's data. The operating system reads
the file data sequentially. You can improve caching performance by opening the handle
with the FILE_FLAG_SEQUENTIAL_SCAN.

nNumberOfBytesToWrite
The number of bytes to transmit. The function completes when it has sent this many bytes,
or if an error occurs.

Set this parameter to zero to transmit the entire file.
nNumberOfBytesPerSend

The size of each block of data sent per send operation. This specification is for use by the
sockets layer of the operating system.

Set this parameter to zero to have the sockets layer select a default send size.

This parameter is useful for message protocols that have limitations on the size of
individual send requests.

lpOverlapped
Pointer to an OVERLAPPED structure. If the socket handle has been opened as
overlapped, specify this parameter in order to achieve an overlapped (aysnchronous) I/O
operation. By default, socket handles are opened as overlapped.

You can use lpOverlapped to specify an offset within the file at which to start the file data
transfer by setting the Offset and OffsetHigh member of the OVERLAPPED structure. If
lpOverlapped is NULL, the transmission of data always starts at the current byte offset in
the file.

When lpOverlapped is not NULL, the overlapped I/O might not finish before TransmitFile
returns. In that case, the TransmitFile function returns FALSE, and GetLastError returns

Legal Information Page 146 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

ERROR_IO_PENDING. This lets the caller continue processing while the file transmission
operation completes. The operating system will set the event specified by the hEvent
member of the OVERLAPPED structure, or the socket specified by hSocket, to the
signaled state upon completion of the data transmission request.

lpTransmitBuffers
Pointer to a TRANSMIT_FILE_BUFFERS data structure that contains pointers to data to
send before and after the file data is sent. Set this parameter to NULL if you only want to
transmit the file data.

dwFlags
An attribute that has three settings:
TF_DISCONNECT

Start a transport-level disconnect after all the file data has been queued for
transmission.

TF_REUSE_SOCKET
Prepare the socket handle to be reused. When the TransmitFile request completes, the
socket handle can be passed to the AcceptEx function. It is only valid if
TF_DISCONNECT is also specified.

TF_WRITE_BEHIND
Complete the TransmitFile request immediately, without pending. If this flag is
specified and TransmitFile succeeds, then the data has been accepted by the system
but not necessarily acknowledged by the remote end. If TransmitFile returns TRUE,
there will be no completion port indication for the I/O. Do not use this setting with
the other two settings.

Return Values

If the TransmitFile function succeeds, the return value is TRUE. Otherwise, the return value is
FALSE. To get extended error information, call GetLastError. The function returns FALSE if an
overlapped I/O operation is not complete before TransmitFile returns. In that case,
GetLastError returns ERROR_IO_PENDING.

Remarks

The Windows NT Server optimizes the TransmitFile function for high performance. The
Windows NT Workstation optimizes the function for minimum memory and resource utilization.
Expect better performance results when using TransmitFile on Windows NT Server.

QuickInfo

 Windows NT: Yes
 Windows CE: Unsupported.
 Header: Declared in mswsock.h.
 Import Library: Link with mswsock.lib.

WSAAccept
The Windows Sockets WSAAccept function conditionally accepts a connection based on the
return value of a condition function, optionally creates or joins a socket group, provides QOS
flowspecs, and allows transfer of connection data.

Legal Information Page 147 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

SOCKET WSAAccept (
 SOCKET s,
 struct sockaddr FAR * addr,
 LPINT addrlen,
 LPCONDITIONPROC lpfnCondition,
 DWORD dwCallbackData
);

Parameters

s
[in] A descriptor identifying a socket that is listening for connections after a call to the
listen function.

addr
[out] An optional pointer to a buffer that receives the address of the connecting entity, as
known to the communications layer. The exact format of the addr parameter is determined
by the address family established when the socket was created.

addrlen
[in/out] An optional pointer to an integer that contains the length of the address addr.

lpfnCondition
[in] The procedure instance address of the optional, application-supplied condition function
that will make an accept/reject decision based on the caller information passed in as
parameters, and optionally create or join a socket group by assigning an appropriate value to
the result parameter g of this function.

dwCallbackData
[in] The callback data passed back to the application as the value of the dwCallbackData
parameter of the condition function. This parameter is not interpreted by Windows Sockets.

Remarks

The WSAAccept function extracts the first connection on the queue of pending connections on
socket s, and checks it against the condition function, provided the condition function is specified
(that is, not NULL). If the condition function returns CF_ACCEPT, WSAAccept creates a new
socket and performs any socket grouping as indicated by the result parameter g in the condition
function. The newly created socket has the same properties as socket s including asynchronous
events registered with WSAAsyncSelect or with WSAEventSelect, but not including the
listening socket's group ID, if any. If the condition function returns CF_REJECT, WSAAccept
rejects the connection request. The condition function runs in the same thread as this function
does, and should return as soon as possible. If the decision cannot be made immediately, the
condition function should return CF_DEFER to indicate that no decision has been made, and no
action about this connection request should be taken by the service provider. When the application
is ready to take action on the connection request, it will invoke WSAAccept again and return
either CF_ACCEPT or CF_REJECT as a return value from the condition function.

A socket in the default mode (blocking) will block until a connection is present when an
application calls WSAAccept and no connections are pendng on the queue.

A socket in the nonblocking mode (blocking) fails with the error WSAEWOULDBLOCK when
an application calls WSAAccept and no connections are pendng on the queue. After WSAAccept
succeeds and returns a new socket handle, the accepted socket cannot be used to accept any more
connections. The original socket remains open and listens for new connection requests.

Legal Information Page 148 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

The addr parameter is a result parameter that is filled in with the address of the connecting entity,
as known to the communications layer. The exact format of the addr parameter is determined by
the address family in which the communication is occurring. The addrlen is a value-result
parameter; it should initially contain the amount of space pointed to by addr. On return, it will
contain the actual length (in bytes) of the address returned. This call is used with connection-
oriented socket types such as SOCK_STREAM. If addr and/or addrlen are equal to NULL, then
no information about the remote address of the accepted socket is returned. Otherwise, these two
parameters will be filled in regardless of whether the condition function is specified or what it
returns.

A prototype of the condition function is as follows:

int CALLBACK ConditionFunc(
 IN LPWSABUF lpCallerId,
 IN LPWSABUF lpCallerData,
 IN OUT LPQOS lpSQOS,
 IN OUT LPQOS lpGQOS,
 IN LPWSABUF lpCalleeId,
 OUT LPWSABUF lpCalleeData,
 OUT GROUP FAR * g,
 IN DWORD dwCallbackData
);

The ConditionFunc is a placeholder for the application-supplied callback function. The actual
condition function must reside in a DLL or application module. It is exported in the module
definition file. Use MakeProcInstance to get a procedure-instance address for the callback
function.

The lpCallerId parameter is a value parameter that contains the address of the connecting entity.
The lpCallerData is a value parameter that contains any user data. The information in these
parameters is sent along with the connection request. If no caller identification or caller data is
available, the corresponding parameters will be NULL. Many network protocols do not support
connect-time caller data. Most conventional network protocols can be expected to support caller
ID information at connection-request time. The buf portion of the WSABUF pointed to by
lpCallerId points to a SOCKADDR. The SOCKADDR is interpreted according to its address
family (typically by casting the SOCKADDR to some type specific to the address family).

The lpSQOS parameter references the FLOWSPEC structures for socket s specified by the caller,
one for each direction, followed by any additional provider-specific parameters. The sending or
receiving flow specification values will be ignored as appropriate for any unidirectional sockets.
A NULL value for indicates that there is no caller supplied QOS and that no negotiation is
possible. A non-NULL lpSQOS pointer indicates that a QOS negotiation is to occur or that the
provider is prepared to accept the QOS request without negotiation.

The lpGQOS parameter (reserved for future use with socket groups) references the FLOWSPEC
structures for the socket group the caller is to create, one for each direction, followed by any
additional provider-specific parameters. A NULL value for lpGQOS indicates no caller-supplied
group quality of service. quality of service information can be returned if negotiation is to occur.

The lpCalleeId is a value parameter that contains the local address of the connected entity. The
buf portion of the WSABUF pointed to by lpCalleeId points to a SOCKADDR. The SOCKADDR
is interpreted according to its address family (typically by casting the SOCKADDR to some type
specific to the address family).

Legal Information Page 149 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

The lpCalleeData is a result parameter used by the condition function to supply user data back to
the connecting entity. The lpCalleeData->len initially contains the length of the buffer allocated
by the service provider and pointed to by lpCalleeData->buf. A value of zero means passing user
data back to the caller is not supported. The condition function should copy up to lpCalleeData-
>len bytes of data into lpCalleeData->buf, and then update lpCalleeData->len to indicate the
actual number of bytes transferred. If no user data is to be passed back to the caller, the condition
function should set lpCalleeData->len to zero. The format of all address and user data is specific
to the address family to which the socket belongs.

Reserved for future use with socket groups: The result parameter g is assigned within the
condition function to indicate the following actions:

1. if &g is an existing socket group ID, add s to this group, provided all the requirements set
by this group are met; or

2. if &g = SG_UNCONSTRAINED_GROUP, create an unconstrained socket group and have
s as the first member; or

3. if &g = SG_CONSTRAINED_GROUP, create a constrained socket group and have s as the
first member; or

4. if &g = zero, no group operation is performed.

For unconstrained groups, any set of sockets can be grouped together as long as they are supported
by a single service provider. A constrained socket group can consist only of connection-oriented
sockets, and requires that connections on all grouped sockets be to the same address on the same
host. For newly created socket groups, the new group ID can be retrieved by using getsockopt
with option SO_GROUP_ID, if this operation completes successfully. A socket group and its
associated ID remain valid until the last socket belonging to this socket group is closed. Socket
group IDs are unique across all processes for a given service provider.

The dwCallbackData parameter value passed to the condition function is the value passed as the
dwCallbackData parameter in the original WSAAccept call. This value is interpreted only by the
Windows Socket version 2 client. This allows a client to pass some context information from the
WSAAccept call site through to the condition function. This also provides the condition function
with any additional information required to determine whether to accept the connection or not. A
typical usage is to pass a (suitably cast) pointer to a data structure containing references to
application-defined objects with which this socket is associated.

Return Values

If no error occurs, WSAAccept returns a value of type SOCKET that is a descriptor for the
accepted socket. Otherwise, a value of INVALID_SOCKET is returned, and a specific error code
can be retrieved by calling WSAGetLastError.

The integer referred to by addrlen initially contains the amount of space pointed to by addr. On
return it will contain the actual length in bytes of the address returned.

Error Codes

Legal Information Page 150 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

accept, bind, connect, getsockopt, listen, select, socket, WSAAsyncSelect, WSAConnect

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAECONNREFUSED The connection request was forcefully rejected as
indicated in the return value of the condition function
(CF_REJECT).

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The addrlen parameter is too small or the addr or
lpfnCondition are not part of the user address space.

WSAEINTR A blocking Windows Sockets 1.1 call was canceled
through WSACancelBlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress.

WSAEINVAL listen was not invoked prior to WSAAccept, parameter
g specified in the condition function is not a valid value,
the source address of the incoming connection request is
not consistent with that of the constrained group the
parameter g is referring to, the return value of the
condition function is not a valid one, or any case where
the specified socket is in an invalid state.

WSAEMFILE The queue is nonempty upon entry to WSAAccept and
there are no socket descriptors available.

WSAENOBUFS No buffer space is available.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP The referenced socket is not a type that supports
connection-oriented service.

WSATRY_AGAIN The acceptance of the connection request was deferred
as indicated in the return value of the condition function
(CF_DEFER).

WSAEWOULDBLOCK The socket is marked as nonblocking and no
connections are present to be accepted.

WSAEACCES The connection request that was offered has timed out
or been withdrawn.

Legal Information Page 151 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

WSAAddressToString
The Windows Sockets WSAAddressToString function converts all components of a
SOCKADDR structure into a human-readable string representation of the address.

This is intended to be used mainly for display purposes. If the caller wants the translation to be
done by a particular provider, it should supply the corresponding WSAPROTOCOL_INFO
structure in the lpProtocolInfo parameter.

INT WSAAddressToString(
 LPSOCKADDR lpsaAddress,
 DWORD dwAddressLength,
 LPWSAPROTOCOL_INFO lpProtocolInfo,
 OUT LPTSTR lpszAddressString,
 IN OUT LPDWORD lpdwAddressStringLength
);

Parameters

lpsaAddress
[in] A pointer to the SOCKADDR structure to translate into a string.

dwAddressLength
[in] The length of the address in SOCKADDR,which may vary in size with different
protocols.

lpProtocolInfo
[in] (Optional) The WSAPROTOCOL_INFO structure for a particular provider. If this is
NULL, the call is routed to the provider of the first protocol supporting the address family
indicated in lpsaAddress.

lpszAddressString
[in] A buffer that receives the human-readable address string.

lpdwAddressStringLength
[in/out] On input, the length of the AddressString buffer. On output, returns the length of
the string actually copied into the buffer. If the supplied buffer is not large enough, the
function fails with a specific error of WSAEFAULT and this parameter is updated with the
required size in bytes.

Return Values

If no error occurs, WSAAddressToString returns a value of zero. Otherwise, the value
SOCKET_ERROR is returned, and a specific error number can be retrieved by calling
WSAGetLastError.

Error Codes

WSAEFAULT The specified lpcsAddress, lpProtocolInfo,
lpszAddressString are not all in the address space
of the process, or the lpszAddressString buffer is
too small. Pass in a larger buffer.

Legal Information Page 152 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

WSAAsyncGetHostByAddr
The Windows Sockets WSAAsyncGetHostByAddr function asynchronously retrieves host
information that corresponds to an address.

HANDLE WSAAsyncGetHostByAddr (
 HWND hWnd,
 unsigned int wMsg,
 const char FAR * addr,
 int len,
 int type,
 char FAR * buf,
 int buflen
);

Parameters

hWnd
[in] The handle of the window that will receive a message when the asynchronous request
completes.

wMsg
[in] The message to be received when the asynchronous request completes.

addr
[in] A pointer to the network address for the host. Host addresses are stored in network byte
order.

len
[in] The length of the address.

type
[in] The type of the address.

buf
[out] A pointer to the data area to receive the HOSTENT data. The data area must be larger
than the size of a HOSTENT structure because the supplied data area is used by Windows

WSAEINVAL The specified address is not a valid socket address,
or there was no transport provider supporting its
indicated address family.

WSANOTINITIALIZED The Winsock 2 DLL has not been initialized. The
application must first call WSAStartup before
calling any Windows Sockets functions.

WSA NOT ENOUGH MEMORY There was insufficient memory to perform the
operation.

Legal Information Page 153 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Sockets to contain a HOSTENT structure and all of the data referenced by members of the
HOSTENT structure. A buffer of MAXGETHOSTSTRUCT bytes is recommended.

buflen
[in] The size of data area for the buf parameter.

Remarks

The WSAAsyncGetHostByAddr function is an asynchronous version of gethostbyaddr. It is
used to retrieve the host name and address information that corresponds to a network address.
Windows Sockets initiates the operation and returns to the caller immediately, passing back an
opaque, asynchronous task handle that the application can use to identify the operation. When the
operation is completed, the results (if any) are copied into the buffer provided by the caller and a
message is sent to the application's window.

When the asynchronous operation has completed, the application window indcated by the hWnd
parameter receives message in the wMsg parameter. The wParam parameter contains the
asynchronous task handle as returned by the original function call. The high 16 bits of lParam
contain any error code. The error code can be any error as defined in WINSOCK2.H. An error
code of zero indicates successful completion of the asynchronous operation.

On successful completion, the buffer supplied to the original function call contains a HOSTENT
structure. To access the members of this structure, the original buffer address is cast to a
HOSTENT structure pointer and accessed as appropriate.

If the error code is WSAENOBUFS, the size of the buffer specified by buflen in the original call
was too small to contain all the resulting information. In this case, the low 16 bits of lParam
contain the size of buffer required to supply all the requisite information. If the application
decides that the partial data is inadequate, it can reissue the WSAAsyncGetHostByAddr function
call with a buffer large enough to receive all the desired information (that is, no smaller than the
low 16 bits of lParam).

The buffer supplied to this function is used by Windows Sockets to construct a structure together
with the contents of data areas referenced by members of the same HOSTENT structure. To
avoid the WSAENOBUFS error, the application should provide a buffer of at least
MAXGETHOSTSTRUCT bytes (as defined in WINSOCK2.H).

The error code and buffer length should be extracted from the lParam using the macros
WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in WINSOCK2.H as:

#define WSAGETASYNCERROR(lParam) HIWORD(lParam)
#define WSAGETASYNCBUFLEN(lParam) LOWORD(lParam)

The use of these macros will maximize the portability of the source code for the application.

Return Values

The return value specifies whether or not the asynchronous operation was successfully initiated. It
does not imply success or failure of the operation itself.

If no error occurs, WSAAsyncGetHostByAddr returns a nonzero value of type HANDLE that is
the asynchronous task handle (not to be confused with a Windows HTASK) for the request. This
value can be used in two ways. It can be used to cancel the operation using

Legal Information Page 154 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

WSACancelAsyncRequest, or it can be used to match up asynchronous operations and
completion messages by examining the wParam message parameter.

If the asynchronous operation could not be initiated, WSAAsyncGetHostByAddr returns a zero
value, and a specific error number can be retrieved by calling WSAGetLastError.

Error Codes

The following error codes can be set when an application window receives a message. As
described above, they can be extracted from the lParam in the reply message using the
WSAGETASYNCERROR macro.

The following errors can occur at the time of the function call, and indicate that the asynchronous
operation could not be initiated.

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

gethostbyaddr, HOSTENT, WSACancelAsyncRequest

WSAENETDOWN The network subsystem has failed.

WSAENOBUFS Insufficient buffer space is available.

WSAEFAULT addr or buf is not in a valid part of the process address
space.

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or SERVERFAIL.

WSANO_RECOVERY Nonrecoverable errors, FORMERR, REFUSED,
NOTIMP.

WSANO_DATA Valid name, no data record of requested type.

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAEWOULDBLOCK The asynchronous operation cannot be scheduled at this
time due to resource or other constraints within the
Windows Sockets implementation.

Legal Information Page 155 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

WSAAsyncGetHostByName
The Windows Sockets WSAAsyncGetHostByName function asynchronously retrieves host
information corresponding to a host name.

HANDLE WSAAsyncGetHostByName (
 HWND hWnd,
 unsigned int wMsg,
 const char FAR * name,
 char FAR * buf,
 int buflen
);

Parameters

hWnd
[in] The handle of the window that will receive a message when the asynchronous request
completes.

wMsg
[in] The message to be received when the asynchronous request completes.

name
[in] A pointer to the null-terminated name of the host.

buf
[out] A pointer to the data area to receive the HOSTENT data. The data area must be larger
than the size of a HOSTENT structure because the supplied data area is used by Windows
Sockets to contain a HOSTENT structure and all of the data referenced by members of the
HOSTENT structure. A buffer of MAXGETHOSTSTRUCT bytes is recommended.

buflen
[in] The size of data area for the buf parameter.

Remarks

The WSAAsyncGetHostByName function is an asynchronous version of gethostbyname, and is
used to retrieve host name and address information corresponding to a host name. Windows
Sockets initiates the operation and returns to the caller immediately, passing back an opaque
"asynchronous task handle" that whichthe application can use to identify the operation. When the
operation is completed, the results (if any) are copied into the buffer provided by the caller and a
message is sent to the application's window.

When the asynchronous operation has completed, the application window indcated by the hWnd
parameter receives message in the wMsg parameter. The wParam parameter contains the
asynchronous task handle as returned by the original function call. The high 16 bits of lParam
contain any error code. The error code can be any error as defined in WINSOCK2.H. An error
code of zero indicates successful completion of the asynchronous operation.

On successful completion, the buffer supplied to the original function call contains a HOSTENT
structure. To access the elements of this structure, the original buffer address should be cast to a
HOSTENT structure pointer and accessed as appropriate.

If the error code is WSAENOBUFS, the size of the buffer specified by buflen in the original call
was too small to contain all the resulting information. In this case, the low 16 bits of lParam

Legal Information Page 156 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

contain the size of buffer required to supply all the requisite information. If the application
decides that the partial data is inadequate, it can reissue the WSAAsyncGetHostByAddr function
call with a buffer large enough to receive all the desired information (that is, no smaller than the
low 16 bits of lParam).

The buffer supplied to this function is used by Windows Sockets to construct a HOSTENT
structure together with the contents of data areas referenced by members of the same HOSTENT
structure. To avoid the WSAENOBUFS error, the application should provide a buffer of at least
MAXGETHOSTSTRUCT bytes (as defined in WINSOCK2.H).

The error code and buffer length should be extracted from the lParam using the macros
WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in WINSOCK2.H as:

#define WSAGETASYNCERROR(lParam) HIWORD(lParam)
#define WSAGETASYNCBUFLEN(lParam) LOWORD(lParam)

The use of these macros will maximize the portability of the source code for the application.

WSAAsyncGetHostByName is guaranteed to resolve the string returned by a successful call to
gethostname.

Return Values

The return value specifies whether or not the asynchronous operation was successfully initiated. It
does not imply success or failure of the operation itself.

If no error occurs, WSAAsyncGetHostByName returns a nonzero value of type HANDLE that is
the asynchronous task handle (not to be confused with a Windows HTASK) for the request. This
value can be used in two ways. It can be used to cancel the operation using
WSACancelAsyncRequest, or it can be used to match up asynchronous operations and
completion messages by examining the wParam message parameter.

If the asynchronous operation could not be initiated, WSAAsyncGetHostByName returns a zero
value, and a specific error number can be retrieved by calling WSAGetLastError.

Error Codes

The following error codes can be set when an application window receives a message. As
described above, they can be extracted from the lParam in the reply message using the
WSAGETASYNCERROR macro.

WSAENETDOWN The network subsystem has failed.

WSAENOBUFS Insufficient buffer space is available.

WSAEFAULT The name or buf parameter is not in a valid part of the
process address space.

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or SERVERFAIL.

WSANO_RECOVERY Nonrecoverable errors, FORMERR, REFUSED,
NOTIMP.

WSANO_DATA Valid name, no data record of requested type.

Legal Information Page 157 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

The following errors can occur at the time of the function call, and indicate that the asynchronous
operation could not be initiated.

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

gethostbyname, HOSTENT, WSACancelAsyncRequest

WSAAsyncGetProtoByName
The Windows Sockets WSAAsyncGetProtoByName function gets protocol information
corresponding to a protocol name asynchronously.

HANDLE WSAAsyncGetProtoByName (
 HWND hWnd,
 unsigned int wMsg,
 const char FAR * name,
 char FAR * buf,
 int buflen
);

Parameters

hWnd
[in] The handle of the window that will receive a message when the asynchronous request
completes.

wMsg
[in] The message to be received when the asynchronous request completes.

name
[in] A pointer to the null-terminated protocol name to be resolved.

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAEWOULDBLOCK The asynchronous operation cannot be scheduled at this
time due to resource or other constraints within the
Windows Sockets implementation.

Legal Information Page 158 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

buf
[out] A pointer to the data area to receive the PROTOENT data. The data area must be
larger than the size of a PROTOENT structure because the data area is used by Windows
Sockets to contain a PROTOENT structure and all of the data that is referenced by
members of the PROTOENT structure. A buffer of MAXGETHOSTSTRUCT bytes is
recommended.

buflen
[out] The size of data area for the buf parameter.

Remarks

The WSAAsyncGetProtoByName function is an asynchronous version of getprotobyname. It is
used to retrieve the protocol name and number from the Windows Sockets database corresponding
to given protocol name. Windows Sockets initiates the operation and returns to the caller
immediately, passing back an opaque, asynchronous task handle that the application can use to
identify the operation. When the operation is completed, the results (if any) are copied into the
buffer provided by the caller and a message is sent to the application's window.

When the asynchronous operation has completed, the application window indcated by the hWnd
parameter receives message in the wMsg parameter. The wParam parameter contains the
asynchronous task handle as returned by the original function call. The high 16 bits of lParam
contain any error code. The error code can be any error as defined in WINSOCK2.H. An error
code of zero indicates successful completion of the asynchronous operation.

On successful completion, the buffer supplied to the original function call contains a
PROTOENT structure. To access the members of this structure, the original buffer address
should be cast to a PROTOENT structure pointer and accessed as appropriate.

If the error code is WSAENOBUFS, the size of the buffer specified by buflen in the original call
was too small to contain all the resulting information. In this case, the low 16 bits of lParam
contain the size of buffer required to supply all the requisite information. If the application
decides that the partial data is inadequate, it can reissue the WSAAsyncGetHostByAddr function
call with a buffer large enough to receive all the desired information (that is, no smaller than the
low 16 bits of lParam).

The buffer supplied to this function is used by Windows Sockets to construct a PROTOENT
structure together with the contents of data areas referenced by members of the same
PROTOENT structure. To avoid the WSAENOBUFS error noted above, the application should
provide a buffer of at least MAXGETHOSTSTRUCT bytes (as defined in WINSOCK2.H).

The error code and buffer length should be extracted from the lParam using the macros
WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in WINSOCK2.H as:

#define WSAGETASYNCERROR(lParam) HIWORD(lParam)
#define WSAGETASYNCBUFLEN(lParam) LOWORD(lParam)

The use of these macros will maximize the portability of the source code for the application.

Return Values

The return value specifies whether or not the asynchronous operation was successfully initiated. It
does not imply success or failure of the operation itself.

Legal Information Page 159 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

If no error occurs, WSAAsyncGetProtoByName returns a nonzero value of type HANDLE that
is the asynchronous task handle for the request (not to be confused with a Windows HTASK).
This value can be used in two ways. It can be used to cancel the operation using
WSACancelAsyncRequest, or it can be used to match up asynchronous operations and
completion messages, by examining the wParam message parameter.

If the asynchronous operation could not be initiated, WSAAsyncGetProtoByName returns a zero
value, and a specific error number can be retrieved by calling WSAGetLastError.

Error Codes

The following error codes can be set when an application window receives a message. As
described above, they can be extracted from the lParam in the reply message using the
WSAGETASYNCERROR macro.

The following errors can occur at the time of the function call, and indicate that the asynchronous
operation could not be initiated.

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

WSAENETDOWN The network subsystem has failed.

WSAENOBUFS Insufficient buffer space is available.

WSAEFAULT The name or buf parameter is not in a valid part of the
process address space.

WSAHOST_NOT_FOUND Authoritative Answer Protocol not found.

WSATRY_AGAIN Non-Authoritative Protocol not found, or server failure.

WSANO_RECOVERY Nonrecoverable errors, the protocols database is not
accessible.

WSANO_DATA Valid name, no data record of requested type.

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAEWOULDBLOCK The asynchronous operation cannot be scheduled at this
time due to resource or other constraints within the
Windows Sockets implementation.

Legal Information Page 160 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

getprotobyname, WSACancelAsyncRequest

WSAAsyncGetProtoByNumber
The Windows Sockets WSAAsyncGetProtoByNumber function asynchronously retrieves
protocol information corresponding to a protocol number.

HANDLE WSAAsyncGetProtoByNumber (
 HWND hWnd,
 unsigned int wMsg,
 int number,
 char FAR * buf,
 int buflen
);

Parameters

hWnd
[in] The handle of the window that will receive a message when the asynchronous request
completes.

wMsg
[in] The message to be received when the asynchronous request completes.

number
[in] The protocol number to be resolved, in host byte order.

buf
[out] A pointer to the data area to receive the PROTOENT data. The data area must be
larger than the size of a PROTOENT structure because the data area is used by Windows
Sockets to contain a PROTOENT structure and all of the data that is referenced by
members of the PROTOENT structure. A buffer of MAXGETHOSTSTRUCT bytes is
recommended.

buflen
[in] The size of data area for the buf parameter.

Remarks

The WSAAsyncGetProtoByNumber function is an asynchronous version of
getprotobynumber, and is used to retrieve the protocol name and number corresponding to a
protocol number. Windows Sockets initiates the operation and returns to the caller immediately,
passing back an opaque, asynchronous task handle that the application can use to identify the
operation. When the operation is completed, the results (if any) are copied into the buffer
provided by the caller and a message is sent to the application's window.

When the asynchronous operation has completed, the application window indcated by the hWnd
parameter receives message in the wMsg parameter. The wParam parameter contains the
asynchronous task handle as returned by the original function call. The high 16 bits of lParam
contain any error code. The error code can be any error as defined in WINSOCK2.H. An error
code of zero indicates successful completion of the asynchronous operation.

On successful completion, the buffer supplied to the original function call contains a

Legal Information Page 161 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

PROTOENT structure. To access the members of this structure, the original buffer address is
cast to a PROTOENT structure pointer and accessed as appropriate.

If the error code is WSAENOBUFS, the size of the buffer specified by buflen in the original call
was too small to contain all the resulting information. In this case, the low 16 bits of lParam
contain the size of buffer required to supply all the requisite information. If the application
decides that the partial data is inadequate, it can reissue the WSAAsyncGetHostByAddr function
call with a buffer large enough to receive all the desired information (that is, no smaller than the
low 16 bits of lParam).

The buffer supplied to this function is used by Windows Sockets to construct a PROTOENT
structure together with the contents of data areas referenced by members of the same
PROTOENT structure. To avoid the WSAENOBUFS error noted above, the application should
provide a buffer of at least MAXGETHOSTSTRUCT bytes (as defined in WINSOCK2.H).

The error code and buffer length should be extracted from the lParam using the macros
WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in WINSOCK2.H as:

#define WSAGETASYNCERROR(lParam) HIWORD(lParam)
#define WSAGETASYNCBUFLEN(lParam) LOWORD(lParam)

The use of these macros will maximize the portability of the source code for the application.

Return Values

The return value specifies whether or not the asynchronous operation was successfully initiated. It
does not imply success or failure of the operation itself.

If no error occurs, WSAAsyncGetProtoByNumber returns a nonzero value of type HANDLE
that is the asynchronous task handle for the request (not to be confused with a Windows HTASK).
This value can be used in two ways. It can be used to cancel the operation using
WSACancelAsyncRequest, or it can be used to match up asynchronous operations and
completion messages, by examining the wParam message parameter.

If the asynchronous operation could not be initiated, WSAAsyncGetProtoByNumber returns a
zero value, and a specific error number can be retrieved by calling WSAGetLastError.

Error Codes

The following error codes can be set when an application window receives a message. As
described above, they can be extracted from the lParam in the reply message using the
WSAGETASYNCERROR macro.

WSAENETDOWN The network subsystem has failed.

WSAENOBUFS Insufficient buffer space is available.

WSAEFAULT The buf paramater is not in a valid part of the process
address space.

WSAHOST_NOT_FOUND Authoritative Answer Protocol not found.

WSATRY_AGAIN Non-Authoritative Protocol not found, or server failure.

Legal Information Page 162 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

The following errors can occur at the time of the function call, and indicate that the asynchronous
operation could not be initiated.

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

getprotobynumber, WSACancelAsyncRequest

WSAAsyncGetServByName
The Windows Sockets WSAAsyncGetServByName function asynchronously retrieves service
information corresponding to a service name and port.

HANDLE WSAAsyncGetServByName (
 HWND hWnd,
 unsigned int wMsg,
 const char FAR * name,
 const char FAR * proto,
 char FAR * buf,
 int buflen
);

Parameters

hWnd
[in] The handle of the window that should receive a message when the asynchronous
request completes.

WSANO_RECOVERY Nonrecoverable errors, the protocols database is not
accessible.

WSANO_DATA Valid name, no data record of requested type.

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAEWOULDBLOCK The asynchronous operation cannot be scheduled at this
time due to resource or other constraints within the
Windows Sockets implementation.

Legal Information Page 163 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

wMsg
[in] The message to be received when the asynchronous request completes.

name
[in] A pointer to a null-terminated service name.

proto
[in] A pointer to a protocol name. This can be NULL, in which case
WSAAsyncGetServByName will search for the first service entry for which s_name or
one of the s_aliases matches the given name. Otherwise, WSAAsyncGetServByName
matches both name and proto.

buf
[out] A pointer to the data area to receive the SERVENT data. The data area must be larger
than the size of a SERVENT structure because the data area supplied is used by Windows
Sockets to contain a SERVENT structure and all of the data that is referenced by members
of the SERVENT structure. A buffer of MAXGETHOSTSTRUCT bytes is recommended.

buflen
[in] The size of data area for the buf parameter.

Remarks

The WSAAsyncGetServByName function is an asynchronous version of getservbyname and is
used to retrieve service information corresponding to a service name. Windows Sockets initiates
the operation and returns to the caller immediately, passing back an opaque, asynchronous task
handle that the application can use to identify the operation. When the operation is completed, the
results (if any) are copied into the buffer provided by the caller and a message is sent to the
application's window.

When the asynchronous operation has completed, the application window indcated by the hWnd
parameter receives message in the wMsg parameter. The wParam parameter contains the
asynchronous task handle as returned by the original function call. The high 16 bits of lParam
contain any error code. The error code can be any error as defined in WINSOCK2.H. An error
code of zero indicates successful completion of the asynchronous operation.

On successful completion, the buffer supplied to the original function call contains a SERVENT
structure. To access the members of this structure, the original buffer address should be cast to a
SERVENT structure pointer and accessed as appropriate.

If the error code is WSAENOBUFS, the size of the buffer specified by buflen in the original call
was too small to contain all the resulting information. In this case, the low 16 bits of lParam
contain the size of buffer required to supply all the requisite information. If the application
decides that the partial data is inadequate, it can reissue the WSAAsyncGetHostByAddr function
call with a buffer large enough to receive all the desired information (that is, no smaller than the
low 16 bits of lParam).

The buffer supplied to this function is used by Windows Sockets to construct a SERVENT
structure together with the contents of data areas referenced by members of the same SERVENT
structure. To avoid the WSAENOBUFS error, the application should provide a buffer of at least
MAXGETHOSTSTRUCT bytes (as defined in WINSOCK2.H).

The error code and buffer length should be extracted from the lParam using the macros
WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in WINSOCK2.H as:

#define WSAGETASYNCERROR(lParam) HIWORD(lParam)
#define WSAGETASYNCBUFLEN(lParam) LOWORD(lParam)

Legal Information Page 164 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

The use of these macros will maximize the portability of the source code for the application.

Return Values

The return value specifies whether or not the asynchronous operation was successfully initiated. It
does not imply success or failure of the operation itself.

If no error occurs, WSAAsyncGetServByName returns a nonzero value of type HANDLE that is
the asynchronous task handle for the request (not to be confused with a Windows HTASK). This
value can be used in two ways. It can be used to cancel the operation using
WSACancelAsyncRequest, or it can be used to match up asynchronous operations and
completion messages, by examining the wParam message parameter.

If the asynchronous operation could not be initiated, WSAAsyncServByName returns a zero
value, and a specific error number can be retrieved by calling WSAGetLastError.

Error Codes

The following error codes can be set when an application window receives a message. As
described above, they can be extracted from the lParam in the reply message using the
WSAGETASYNCERROR macro.

The following errors can occur at the time of the function call, and indicate that the asynchronous
operation could not be initiated.

QuickInfo

 Windows NT: Yes

WSAENETDOWN The network subsystem has failed.

WSAENOBUFS Insufficient buffer space is available.

WSAEFAULT buf is not in a valid part of the process address space.

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Service not found, or server failure.

WSANO_RECOVERY Nonrecoverable errors, the services database is not
accessible.

WSANO_DATA Valid name, no data record of requested type.

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAEWOULDBLOCK The asynchronous operation cannot be scheduled at this
time due to resource or other constraints within the
Windows Sockets implementation.

Legal Information Page 165 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

getservbyname, WSACancelAsyncRequest

WSAAsyncGetServByPort
The Windows Sockets WSAAsyncGetServByPort function gets service information
corresponding to a port and protocol asynchronously.

HANDLE WSAAsyncGetServByPort (
 HWND hWnd,
 unsigned int wMsg,
 int port,
 const char FAR * proto,
 char FAR * buf,
 int buflen
);

Parameters

hWnd
[in] The handle of the window that should receive a message when the asynchronous
request completes.

wMsg
[in] The message to be received when the asynchronous request completes.

port
[in] The port for the service, in network byte order.

proto
[in] A pointer to a protocol name. This can be NULL, in which case
WSAAsyncGetServByPort will search for the first service entry for which s_port match
the given port. Otherwise, WSAAsyncGetServByPort matches both port and proto.

buf
[out] pointer to the data area to receive the SERVENT data. The data area must be larger
than the size of a SERVENT structure because the data area supplied is used by Windows
Sockets to contain a SERVENT structure and all of the data that is referenced by members
of the SERVENT structure. A buffer of MAXGETHOSTSTRUCT bytes is recommended.

buflen
[in] The size of data area for the buf parameter.

Remarks

The WSAAsyncGetServByPort function is an asynchronous version of getservbyport, and is
used to retrieve service information corresponding to a port number. Windows Sockets initiates
the operation and returns to the caller immediately, passing back an opaque, asynchronous task
handle that the application can use to identify the operation. When the operation is completed, the

Legal Information Page 166 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

results (if any) are copied into the buffer provided by the caller and a message is sent to the
application's window.

When the asynchronous operation has completed, the application window indcated by the hWnd
parameter receives message in the wMsg parameter. The wParam parameter contains the
asynchronous task handle as returned by the original function call. The high 16 bits of lParam
contain any error code. The error code can be any error as defined in WINSOCK2.H. An error
code of zero indicates successful completion of the asynchronous operation.

On successful completion, the buffer supplied to the original function call contains a SERVENT
structure. To access the members of this structure, the original buffer address should be cast to a
SERVENT structure pointer and accessed as appropriate.

If the error code is WSAENOBUFS, the size of the buffer specified by buflen in the original call
was too small to contain all the resulting information. In this case, the low 16 bits of lParam
contain the size of buffer required to supply all the requisite information. If the application
decides that the partial data is inadequate, it can reissue the WSAAsyncGetHostByAddr function
call with a buffer large enough to receive all the desired information (that is, no smaller than the
low 16 bits of lParam).

The buffer supplied to this function is used by Windows Sockets to construct a SERVENT
structure together with the contents of data areas referenced by members of the same SERVENT
structure. To avoid the WSAENOBUFS error, the application should provide a buffer of at least
MAXGETHOSTSTRUCT bytes (as defined in WINSOCK2.H).

The error code and buffer length should be extracted from the lParam using the macros
WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in WINSOCK2.H as:

#define WSAGETASYNCERROR(lParam) HIWORD(lParam)
#define WSAGETASYNCBUFLEN(lParam) LOWORD(lParam)

The use of these macros will maximize the portability of the source code for the application.

Return Values

The return value specifies whether or not the asynchronous operation was successfully initiated. It
does not imply success or failure of the operation itself.

If no error occurs, WSAAsyncGetServByPort returns a nonzero value of type HANDLE that is
the asynchronous task handle for the request (not to be confused with a Windows HTASK). This
value can be used in two ways. It can be used to cancel the operation using
WSACancelAsyncRequest, or it can be used to match up asynchronous operations and
completion messages, by examining the wParam message parameter.

If the asynchronous operation could not be initiated, WSAAsyncGetServByPort returns a zero
value, and a specific error number can be retrieved by calling WSAGetLastError.

Error Codes

The following error codes can be set when an application window receives a message. As
described above, they can be extracted from the lParam in the reply message using the
WSAGETASYNCERROR macro.

Legal Information Page 167 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

The following errors can occur at the time of the function call, and indicate that the asynchronous
operation could not be initiated.

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

getservbyport, WSACancelAsyncRequest

WSAAsyncSelect
The Windows Sockets WSAAsyncSelect function requests Windows message-based notification
of network events for a socket.

int WSAAsyncSelect (
 SOCKET s,
 HWND hWnd,
 unsigned int wMsg,
 long lEvent
);

WSAENETDOWN The network subsystem has failed.

WSAENOBUFS Insufficient buffer space is available.

WSAEFAULT proto or buf is not in a valid part of the process address
space.

WSAHOST_NOT_FOUND Authoritative Answer Port not found.

WSATRY_AGAIN Non-Authoritative Port not found, or server failure.

WSANO_RECOVERY Nonrecoverable errors, the services database is not
accessible.

WSANO_DATA Valid name, no data record of requested type.

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAEWOULDBLOCK The asynchronous operation cannot be scheduled at this
time due to resource or other constraints within the
Windows Sockets implementation.

Legal Information Page 168 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Parameters

s
[in] A descriptor identifying the socket for which event notification is required.

hWnd
[in] A handle identifying the window that will receive a message when a network event
occurs.

wMsg
[in] The message to be received when a network event occurs.

lEvent
[in] A bitmask that specifies a combination of network events in which the application is
interested.

Remarks

The WSAAsyncSelect function is used to request that WS2_32.DLL should send a message to
the window hWnd whenever it detects any of the network events specified by the lEvent
parameter. The message that should be sent is specified by the wMsg parameter. The socket for
which notification is required is identified by the s parameter.

The WSAAsyncSelect function automatically sets socket s to nonblocking mode, regardless of
the value of lEvent. See the ioctlsocket functions for information on how to set the nonblocking
socket back to blocking mode.

The lEvent parameter is constructed by using the bitwise OR operator with any of the values
specified in the following list.

Issuing a WSAAsyncSelect for a socket cancels any previous WSAAsyncSelect or
WSAEventSelect for the same socket. For example, to receive notification for both reading and

Value Meaning

FD_READ Want to receive notification of readiness for reading

FD_WRITE Want to receive notification of readiness for writing

FD_OOB Want to receive notification of the arrival of out-of-band data

FD_ACCEPT Want to receive notification of incoming connections

FD_CONNECT Want to receive notification of completed connection or
multi-point join operation

FD_CLOSE Want to receive notification of socket closure

FD_QOS Want to receive notification of socket Quality of Service
(QOS) changes

FD_GROUP_QOS Want to receive notification of socket group Quality of
Service (QOS) changes (reserved for future use with socket
groups)

FD_ROUTING
_INTERFACE_CHANGE

Want to receive notification of routing interface changes for
the specified destination(s)

FD_ADDRESS_LIST
_CHANGE

Want to receive notification of local address list changes for
the socket's protocol family

Legal Information Page 169 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

writing, the application must call WSAAsyncSelect with both FD_READ and FD_WRITE, as
follows:

rc = WSAAsyncSelect(s, hWnd, wMsg, FD_READ|FD_WRITE);

It is not possible to specify different messages for different events. The following code will not
work; the second call will cancel the effects of the first, and only FD_WRITE events will be
reported with message wMsg2:

rc = WSAAsyncSelect(s, hWnd, wMsg1, FD_READ);
rc = WSAAsyncSelect(s, hWnd, wMsg2, FD_WRITE);

To cancel all notification indicating that Windows Sockets should send no further messages
related to network events on the socket, lEvent is set to zero.

rc = WSAAsyncSelect(s, hWnd, 0, 0);

Although WSAAsyncSelect immediately disables event message posting for the socket in this
instance, it is possible that messages could be waiting in the application's message queue.
Therefore, the application must be prepared to receive network event messages even after
cancellation. Closing a socket with closesocket also cancels WSAAsyncSelect message sending,
but the same caveat about messages in the queue still applies.

The socket created by the accept function has the same properties as the listening socket used to
accept it. Consequently, WSAAsyncSelect events set for the listening socket also apply to the
accepted socket. For example, if a listening socket has WSAAsyncSelect events FD_ACCEPT,
FD_READ, and FD_WRITE, then any socket accepted on that listening socket will also have
FD_ACCEPT, FD_READ, and FD_WRITE events with the same wMsg value used for messages.
If a different wMsg or events are desired, the application should call WSAAsyncSelect, passing
the accepted socket and the desired new information.

When one of the nominated network events occurs on the specified socket s, the application's
window hWnd receives message wMsg. The wParam parameter identifies the socket on which a
network event has occurred. The low word of lParam specifies the network event that has
occurred. The high word of lParam contains any error code. The error code be any error as
defined in WINSOCK2.H.

Note Upon receipt of an event notification message, the WSAGetLastError function cannot be
used to check the error value because the error value returned can differ from the value in the high
word of lParam.

The error and event codes can be extracted from the lParam using the macros
WSAGETSELECTERROR and WSAGETSELECTEVENT, defined in WINSOCK2.H as:

#define WSAGETSELECTERROR(lParam) HIWORD(lParam)
#define WSAGETSELECTEVENT(lParam) LOWORD(lParam)

The use of these macros will maximize the portability of the source code for the application.

The possible network event codes that can be returned are as follows:

Legal Information Page 170 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Although WSAAsyncSelect can be called with interest in multiple events, the application
window will receive a single message for each network event.

As in the case of the select function, WSAAsyncSelect will frequently be used to determine when
a data transfer operation (send or recv) can be issued with the expectation of immediate success.
Nevertheless, a robust application must be prepared for the possibility that it can receive a
message and issue a Windows Sockets 2 call that returns WSAEWOULDBLOCK immediately.
For example, the following sequence of events is possible:

1. data arrives on socket s; Windows Sockets 2 posts WSAAsyncSelect message
2. application processes some other message
3. while processing, application issues an ioctlsocket(s, FIONREAD...) and notices that there

is data ready to be read
4. application issues a recv(s,...) to read the data
5. application loops to process next message, eventually reaching the WSAAsyncSelect

message indicating that data is ready to read
6. application issues recv(s,...), which fails with the error WSAEWOULDBLOCK.

Other sequences are possible.

The WS2_32.DLL will not continually flood an application with messages for a particular
network event. Having successfully posted notification of a particular event to an application
window, no further message(s) for that network event will be posted to the application window
until the application makes the function call that implicitly re-enables notification of that network
event.

Value Meaning

FD_READ Socket s ready for reading

FD_WRITE Socket s ready for writing

FD_OOB Out-of-band data ready for reading on socket s

FD_ACCEPT Socket s ready for accepting a new incoming connection

FD_CONNECT Connection or multi-point join operation initiated on socket s
completed

FD_CLOSE Connection identified by socket s has been closed

FD_QOS Quality of Service associated with socket s has changed

FD_GROUP_QOS Quality of Service associated with the socket group to which s
belongs has changed (reserved for future use with socket
groups)

FD_ROUTING
_INTERFACE_CHANGE

Local interface that should be used to send to the specified
destination has changed

FD_ADDRESS_LIST
_CHANGE

The list of addresses of the socket's protocol family to which
the application client can bind has changed

Legal Information Page 171 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Any call to the re-enabling routine, even one that fails, results in re-enabling of message posting
for the relevant event.

For FD_READ, FD_OOB, and FD_ACCEPT events, message posting is "level-triggered." This
means that if the re-enabling routine is called and the relevant condition is still met after the call, a
WSAAsyncSelect message is posted to the application. This allows an application to be event-
driven and not be concerned with the amount of data that arrives at any one time. Consider the
following sequence:

1. Network transport stack receives 100 bytes of data on socket s and causes Windows
Sockets 2 to post an FD_READ message.

2. The application issues recv(s, buffptr, 50, 0) to read 50 bytes.
3. Another FD_READ message is posted since there is still data to be read.

With these semantics, an application need not read all available data in response to an FD_READ
message—a single recv in response to each FD_READ message is appropriate. If an application
issues multiple recv calls in response to a single FD_READ, it can receive multiple FD_READ
messages. Such an application can need to disable FD_READ messages before starting the recv
calls by calling WSAAsyncSelect with the FD_READ event not set.

The FD_QOS and FD_GROUP_QOS events are considered "edge triggered." A message will be
posted exactly once when a quality of service change occurs. Further messages will not be
forthcoming until either the provider detects a further change in quality of service or the
application renegotiates the quality of service for the socket.

The FD_ROUTING_INTERFACE_CHANGE message is posted when the local interface that
should be used to reach the destination specified in WSAIoctl with
SIO_ROUTING_INTERFACE_CHANGE changes after such IOCTL has been issued.

The FD_ADDRESS_LIST_CHANGE message is posted when the list of addresses to which the
application can bind changes after WSAIoctl with SIO_ADDRESS_LIST_CHANGE has been

Event Re-enabling function

FD_READ recv, recvfrom, WSARecv, or WSARecvFrom

FD_WRITE send, sendto, WSASend, or WSASendTo

FD_OOB recv, recvfrom, WSARecv, or WSARecvFrom

FD_ACCEPT accept or WSAAccept unless the error code is
WSATRY_AGAIN indicating that the condition function
returned CF_DEFER

FD_CONNECT NONE

FD_CLOSE NONE

FD_QOS WSAIoctl with command SIO_GET_QOS

FD_GROUP_QOS WSAIoctl with command SIO_GET_GROUP_QOS
(reserved for future use with socket groups)

FD_ROUTING
_INTERFACE_CHANGE

WSAIoctl with command
SIO_ROUTING_INTERFACE_CHANGE

FD_ADDRESS_LIST
_CHANGE

WSAIoctl with command SIO_ADDRESS_LIST_CHANGE

Legal Information Page 172 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

issued.

If any event has already happened when the application calls WSAAsyncSelect or when the re-
enabling function is called, then a message is posted as appropriate. For example, consider the
following sequence:

1. an application calls listen,
2. a connect request is received but not yet accepted,
3. the application calls WSAAsyncSelect specifying that it wants to receive FD_ACCEPT

messages for the socket. Due to the persistence of events, Windows Sockets 2 posts an
FD_ACCEPT message immediately.

The FD_WRITE event is handled slightly differently. An FD_WRITE message is posted when a
socket is first connected with connect/WSAConnect (after FD_CONNECT, if also registered) or
accepted with accept/WSAAccept, and then after a send operation fails with
WSAEWOULDBLOCK and buffer space becomes available. Therefore, an application can
assume that sends are possible starting from the first FD_WRITE message and lasting until a send
returns WSAEWOULDBLOCK. After such a failure the application will be notified that sends are
again possible with an FD_WRITE message.

The FD_OOB event is used only when a socket is configured to receive out-of-band data
separately. (See section DECnet Out-Of-band data for a discussion of this topic.) If the socket is
configured to receive out-of-band data in-line, the out-of-band (expedited) data is treated as
normal data and the application should register an interest in, and will receive, FD_READ events,
not FD_OOB events. An application can set or inspect the way in which out-of-band data is to be
handled by using setsockopt or getsockopt for the SO_OOBINLINE option.

The error code in an FD_CLOSE message indicates whether the socket close was graceful or
abortive. If the error code is zero, then the close was graceful; if the error code is
WSAECONNRESET, then the socket's virtual circuit was reset. This only applies to connection-
oriented sockets such as SOCK_STREAM.

The FD_CLOSE message is posted when a close indication is received for the virtual circuit
corresponding to the socket. In TCP terms, this means that the FD_CLOSE is posted when the
connection goes into the TIME WAIT or CLOSE WAIT states. This results from the remote end
performing a shutdown on the send side or a closesocket. FD_CLOSE should only be posted
after all data is read from a socket, but an application should check for remaining data upon
receipt of FD_CLOSE to avoid any possibility of losing data.

Please note your application will receive ONLY an FD_CLOSE message to indicate closure of a
virtual circuit, and only when all the received data has been read if this is a graceful close. It will
not receive an FD_READ message to indicate this condition.

The FD_QOS or FD_GROUP_QOS message is posted when any field in the flow specification
associated with socket s or the socket group that s belongs to has changed, respectively.
Applications should use WSAIoctl with command SIO_GET_QOS or SIO_GET_GROUP_QOS
to get the current QOS for socket s or for the socket group s belongs to, respectively.

The FD_ROUTING_INTERFACE_CHANGE and FD_ADDRESS_LIST_CHANGE events are
considered "edge triggered" as well. A message will be posted exactly once when a change occurs
after the application has request the notification by issuing WSAIoctl with
SIO_ROUTING_INTERFACE_CHANGE or SIO_ADDRESS_LIST_CHANGE
correspondingly. Further messages will not be forthcoming until the application reissues the

Legal Information Page 173 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

IOCTL AND another change is detected since the IOCTL has been issued.

Here is a summary of events and conditions for each asynchronous notification message:

FD_READ:
1. when WSAAsyncSelect called, if there is data currently available to receive,
2. when data arrives, if FD_READ not already posted,
3. after recv or recvfrom called (with or without MSG_PEEK), if data is still available

to receive.

Note when setsockopt SO_OOBINLINE is enabled, "data" includes both normal data
and out-of-band (OOB) data in the instances noted above.

FD_WRITE:
1. when WSAAsyncSelect called, if a send or sendto is possible
2. after connect or accept called, when connection established
3. after send or sendto fail with WSAEWOULDBLOCK, when send or sendto are

likely to succeed,
4. after bind on a connectionless socket. FD_WRITE may or may not occur at this time

(implementation-dependent). In any case, a connectionless socket is always writeable
immediately after a bind operation.

FD_OOB: Only valid when setsockopt SO_OOBINLINE is disabled (default).
1. when WSAAsyncSelect called, if there is OOB data currently available to receive

with the MSG_OOB flag,
2. when OOB data arrives, if FD_OOB not already posted,
3. after recv or recvfrom called with or without MSG_OOB flag, if OOB data is still

available to receive.
FD_ACCEPT:

1. when WSAAsyncSelect called, if there is currently a connection request available to
accept,

2. when a connection request arrives, if FD_ACCEPT not already posted,
3. after accept called, if there is another connection request available to accept.

FD_CONNECT:
1. when WSAAsyncSelect called, if there is currently a connection established,
2. after connect called, when connection is established (even when connect succeeds

immediately, as is typical with a datagram socket),
3. after calling WSAJoinLeaf, when join operation completes,
4. after connect, WSAConnect, or WSAJoinLeaf was called with a nonblocking,

connection-oriented socket. The initial operation returned with a specific error of
WSAEWOULDBLOCK, but the network operation went ahead. Whether the
operation eventually succeeds or not, when the outcome has been determined,
FD_CONNECT happens. The client should check the error code to determine
whether the outcome was successful or failed.

FD_CLOSE: Only valid on connection-oriented sockets (for example, SOCK_STREAM)
1. when WSAAsyncSelect called, if socket connection has been closed,
2. after remote system initiated graceful close, when no data currently available to

receive (note: if data has been received and is waiting to be read when the remote
system initiates a graceful close, the FD_CLOSE is not delivered until all pending
data has been read),

3. after local system initiates graceful close with shutdown and remote system has
responded with "End of Data" notification (for example, TCP FIN), when no data
currently available to receive,

4. when remote system terminates connection (for example, sent TCP RST), and
lParam will contain WSAECONNRESET error value.

Legal Information Page 174 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Note FD_CLOSE is not posted after closesocket is called.
FD_QOS:

1. when WSAAsyncSelect called, if the quality of service associated with the socket
has been changed,

2. after WSAIoctl with SIO_GET_QOS called, when the quality of service is changed.
FD_GROUP_QOS (Reserved for future use with socket groups):

1. when WSAAsyncSelect called, if the group quality of service associated with the
socket has been changed,

2. after WSAIoctl with SIO_GET_GROUP_QOS called, when the group quality of
service is changed.

FD_ROUTING_INTERFACE_CHANGE:
1. after WSAIoctl with SIO_ROUTING_INTERFACE_CHANGE called, when the

local interface that should be used to reach the destination specified in the IOCTL
changes.

FD_ADDRESS_LIST_CHANGE
1. after WSAIoctl with SIO_ADDRESS_LIST_CHANGE called, when the list of local

addresses to which the application can bind changes.

Return Values

If the WSAAsyncSelect function succeeds, the return value is zero provided the application's
declaration of interest in the network event set was successful. Otherwise, the value
SOCKET_ERROR is returned, and a specific error number can be retrieved by calling
WSAGetLastError.

Error Codes

Additional error codes can be set when an application window receives a message. This error code
is extracted from the lParam in the reply message using the WSAGETSELECTERROR macro.
Possible error codes for each network event are:

Event: FD_CONNECT

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL Indicates that one of the specified parameters was
invalid such as the window handle not referring to an
existing window, or the specified socket is in an invalid
state.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAENOTSOCK The descriptor is not a socket.

Legal Information Page 175 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Event: FD_CLOSE

Event: FD_READ

Event: FD_WRITE

Event: FD_OOB

Event: FD_ACCEPT

Event: FD_QOS

Event: FD_GROUP_QOS

Event: FD_ADDRESS_LIST_CHANGE

Event: FD_ROUTING_INTERFACE_CHANGE

Error Code Meaning

WSAEAFNOSUPPORT Addresses in the specified family cannot be used with
this socket.

WSAECONNREFUSED The attempt to connect was forcefully rejected.

WSAENETUNREACH The network cannot be reached from this host at this
time.

WSAEFAULT The namelen parameter is incorrect.

WSAEINVAL The socket is already bound to an address.

WSAEISCONN The socket is already connected.

WSAEMFILE No more file descriptors are available.

WSAENOBUFS No buffer space is available. The socket cannot be
connected.

WSAENOTCONN The socket is not connected.

WSAETIMEDOUT Attempt to connect timed out without establishing a
connection.

Error Code Meaning

WSAENETDOWN The network subsystem has failed.

WSAECONNRESET The connection was reset by the remote side.

WSAECONNABORTED The connection was terminated due to a time-out or
other failure.

Error Code Meaning

WSAENETDOWN The network subsystem has failed.

Legal Information Page 176 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

select, WSAEventSelect

WSACancelAsyncRequest
The Windows Sockets WSACancelAsyncRequest function cancels an incomplete asynchronous
operation.

int WSACancelAsyncRequest (
 HANDLE hAsyncTaskHandle
);

Parameters

hAsyncTaskHandle
[in] The handle that specifies the asynchronous operation to be canceled.

Remarks

The WSACancelAsyncRequest function is used to cancel an asynchronous operation that was
initiated by one of the WSAAsyncGetXByY functions such as WSAAsyncGetHostByName. The
operation to be canceled is identified by the hAsyncTaskHandle parameter, which should be set to
the asynchronous task handle as returned by the initiating WSAAsyncGetXByY function.

An attempt to cancel an existing asynchronous WSAAsyncGetXByY operation can fail with an
error code of WSAEALREADY for two reasons. First, the original operation has already
completed and the application has dealt with the resultant message. Second, the original operation
has already completed but the resultant message is still waiting in the application window queue.

Return Values

The value returned by WSACancelAsyncRequest is zero if the operation was successfully
canceled. Otherwise, the value SOCKET_ERROR is returned, and a specific error number can be
retrieved by calling WSAGetLastError.

Error Code Meaning

WSAENETUNREACH The specified destination is no longer reachable

WSAENETDOWN The network subsystem has failed.

Legal Information Page 177 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Error Codes

Note It is unclear whether the application can usefully distinguish between WSAEINVAL and
WSAEALREADY, since in both cases the error indicates that there is no asynchronous operation
in progress with the indicated handle. [Trivial exception: zero is always an invalid asynchronous
task handle.] The Windows Sockets specification does not prescribe how a conformant Windows
Sockets provider should distinguish between the two cases. For maximum portability, a Windows
Sockets application should treat the two errors as equivalent.

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

WSAAsyncGetHostByAddr, WSAAsyncGetHostByName, WSAAsyncGetProtoByName,
WSAAsyncGetProtoByNumber, WSAAsyncGetServByName, WSAAsyncGetServByPort

WSACancelBlockingCall
This function has been removed in compliance with the Windows Sockets 2 specification,
revision 2.2.0.

The function is not exported directly by the WS2_32.DLL, and Windows Sockets 2 applications
should not use this function. Windows Sockets 1.1 applications that call this function are still
supported through the WINSOCK.DLL and WSOCK32.DLL.

Blocking hooks are generally used to keep a single-threaded GUI application responsive during
calls to blocking functions. Instead of using blocking hooks, an applications should use a separate
thread (separate from the main GUI thread) for network activity.

QuickInfo

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL Indicates that the specified asynchronous task handle
was invalid

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAEALREADY The asynchronous routine being canceled has already
completed.

Legal Information Page 178 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

WSACleanup
The Windows Sockets WSACleanup function terminates use of the WS2_32.DLL.

int WSACleanup (void);

Remarks

An application or DLL is required to perform a successful WSAStartup call before it can use
Windows Sockets services. When it has completed the use of Windows Sockets, the application
or DLL must call WSACleanup to deregister itself from a Windows Sockets implementation and
allow the implementation to free any resources allocated on behalf of the application or DLL. Any
pending blocking or asynchronous calls issued by any thread in this process are canceled without
posting any notification messages or without signaling any event objects. Any pending overlapped
send and receive operations (WSASend/WSASendTo/WSARecv/WSARecvFrom with an
overlapped socket) issued by any thread in this process are also canceled without setting the event
object or invoking the completion routine, if specified. In this case, the pending overlapped
operations fail with the error status WSA_OPERATION_ABORTED.

Sockets that were open when WSACleanup was called are reset and automatically deallocated as
if closesocket were called; sockets that have been closed with closesocket but that still have
pending data to be sent can be affected—the pending data can be lost if the WS2_32.DLL is
unloaded from memory as the application exits. To insure that all pending data is sent, an
application should use shutdown to close the connection, then wait until the close completes
before calling closesocket and WSACleanup. All resources and internal state, such as queued un-
posted messages, must be deallocated so as to be available to the next user.

There must be a call to WSACleanup for every successful call to WSAStartup made by a task.
Only the final WSACleanup for that task does the actual cleanup; the preceding calls simply
decrement an internal reference count in the WS2_32.DLL.

Return Values

The return value is zero if the operation was successful. Otherwise, the value SOCKET_ERROR
is returned, and a specific error number can be retrieved by calling WSAGetLastError.

Attempting to call WSACleanup from within a blocking hook and then failing to check the return
code is a common programming error in Windows Socket 1.1 applications. If an application needs
to quit while a blocking call is outstanding, the application must first cancel the blocking call with
WSACancelBlockingCall then issue the WSACleanup call once control has been returned to the
application.

Legal Information Page 179 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

In a multithreaded environment, WSACleanup terminates Windows Sockets operations for all
threads.

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Use version 1.0 and later.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

closesocket, shutdown, WSAStartup

WSACloseEvent
The Windows Sockets WSACloseEvent function closes an open event object handle.

BOOL WSACloseEvent(
 WSAEVENT hEvent
);

Parameters

hEvent
[in] An object handle identifying the open event.

Remarks

The handle to the event object is closed so that further references to this handle will fail with the
error WSA_INVALID_HANDLE.

Return Values

If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

Legal Information Page 180 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

WSAGetLastError.

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

WSACreateEvent, WSAEnumNetworkEvents, WSAEventSelect,
WSAGetOverlappedResult, WSARecv, WSARecvFrom, WSAResetEvent, WSASend,
WSASendTo, WSASetEvent, WSAWaitForMultipleEvents

WSAConnect
The Windows Sockets WSAConnect function establishes a connection to another socket
application, exchanges connect data, and specifies needed quality of service based on the supplied
FLOWSPEC structure.

int WSAConnect (
 SOCKET s,
 const struct sockaddr FAR * name,
 int namelen,
 LPWSABUF lpCallerData,
 LPWSABUF lpCalleeData,
 LPQOS lpSQOS,
 LPQOS lpGQOS
);

Parameters

s
[in] A descriptor identifying an unconnected socket.

name
[in] The name of the socket in the other application to which to connect.

namelen

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSA_INVALID_HANDLE The hEvent is not a valid event object handle.

Legal Information Page 181 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

[in] The length of the name.
lpCallerData

[in] A pointer to the user data that is to be transferred to the other socket during connection
establishment.

lpCalleeData
[out] A pointer to the user data that is to be transferred back from the other socket during
connection establishment.

lpSQOS
[in] A pointer to the FLOWSPEC structures for socket s, one for each direction.

lpGQOS
[in] Reserved for future use with socket groups. A pointer to the FLOWSPEC structures
for the socket group (if applicable).

Remarks

The WSAConnect function is used to create a connection to the specified destination, and to
perform a number of other ancillary operations that occur at connect time. If the socket, s, is
unbound, unique values are assigned to the local association by the system, and the socket is
marked as bound.

For connection-oriented sockets (for example, type SOCK_STREAM), an active connection is
initiated to the foreign host using name (an address in the name space of the socket; for a detailed
description, please see bind). When this call completes successfully, the socket is ready to
send/receive data. If the address field of the name structure is all zeroes, WSAConnect will return
the error WSAEADDRNOTAVAIL. Any attempt to reconnect an active connection will fail with
the error code WSAEISCONN.

For connection-oriented, nonblocking sockets, it is often not possible to complete the connection
immediately. In such cases, this function returns the error WSAEWOULDBLOCK. However, the
operation proceeds. When the success or failure outcome becomes known, it may be reported in
one of several ways depending on how the client registers for notification. If the client uses select,
success is reported in the writefds set and failure is reported in the exceptfds set. If the client uses
WSAAsyncSelect or WSAEventSelect, the notification is announced with FD_CONNECT and
the error code associated with the FD_CONNECT indicates either success or a specific reason for
failure.

For a connectionless socket (for example, type SOCK_DGRAM), the operation erformed by
WSAConnect is merely to establish a default destination address so that the socket can be used
on subsequent connection-oriented send and receive operations (send, WSASend, recv, and
WSARecv). Any datagrams received from an address other than the destination address specified
will be discarded. If the address field of the name structure is all zeroes, the socket will be
disconnected. Then, the default remote address will be indeterminate, so send/WSASend and
recv/WSARecv calls will return the error code WSAENOTCONN. However,
sendto/WSASendTo and recvfrom/WSARecvFrom can still be used. The default destination
can be changed by simply calling WSAConnect again, even if the socket is already "connected".
Any datagrams queued for receipt are discarded if name is different from the previous
WSAConnect.

For connectionless sockets, name can indicate any valid address, including a broadcast address.
However, to connect to a broadcast address, a socket must have setsockopt SO_BROADCAST
enabled. Otherwise, WSAConnect will fail with the error code WSAEACCES.

On connectionless sockets, exchange of user-to-user data is not possible and the corresponding

Legal Information Page 182 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

parameters will be silently ignored.

The application is responsible for allocating any memory space pointed to directly or indirectly by
any of the parameters it specifies.

The lpCallerData is a value parameter that contains any user data that is to be sent along with the
connection request. If lpCallerData is NULL, no user data will be passed to the peer. The
lpCalleeData is a result parameter that will contain any user data passed back from the other
socket as part of the connection establishment in a WSABUF structure. The member
lpCalleeData->len initially contains the length of the buffer allocated by the application and
pointed to by lpCalleeData->buf. lpCalleeData->len will be set to zero if no user data has been
passed back. The lpCalleeData information will be valid when the connection operation is
complete. For blocking sockets, the connection operation completes when the WSAConnect
function returns. For nonblocking sockets, completion will be after the FD_CONNECT
notification has occurred. If lpCalleeData is NULL, no user data will be passed back. The exact
format of the user data is specific to the address family to which the socket belongs.

At connect time, an application can use the lpSQOS and lpGQOS parameters to override any
previous quality of service specification made for the socket through WSAIoctl with either the
SIO_SET_QOS or SIO_SET_GROUP_QOS opcodes.

lpSQOS specifies the FLOWSPEC structures for socket s, one for each direction, followed by
any additional provider-specific parameters. If either the associated transport provider in general
or the specific type of socket in particular cannot honor the quality of service request, an error will
be returned as indicated below. The sending or receiving flow specification values will be
ignored, respectively, for any unidirectional sockets. If no provider-specific parameters are
supplied, the buf and len fields of lpSQOS->ProviderSpecific should be set to NULL and zero,
respectively. A NULL value for lpSQOS indicates no application supplied quaility of service.

Reserved for future use with socket groups, lpGQOS specifies the FLOWSPEC structures for the
socket group (if applicable), one for each direction, followed by any additional provider-specific
parameters. If no provider-specific parameters are supplied, the buf and len fields of lpGQOS-
>ProviderSpecific should be set to NULL and zero, respectively. A NULL value for lpGQOS
indicates no application-supplied group quality of service. This parameter will be ignored if s is
not the creator of the socket group.

When connected sockets become closed for whatever reason, they should be discarded and
recreated. It is safest to assume that when things go awry for any reason on a connected socket,
the application must discard and recreate the needed sockets in order to return to a stable point.

Return Values

If no error occurs, WSAConnect returns zero. Otherwise, it returns SOCKET_ERROR, and a
specific error code can be retrieved by calling WSAGetLastError. On a blocking socket, the
return value indicates success or failure of the connection attempt.

With a nonblocking socket, the connection attempt can not be completed immediately. In this
case, WSAConnect will return SOCKET_ERROR, and WSAGetLastError will return
WSAEWOULDBLOCK. In this case, the application can:

1. Use select to determine the completion of the connection request by checking if the socket
is writeable.

2. If your application is using WSAAsyncSelect to indicate interest in connection events, then

Legal Information Page 183 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

your application will receive an FD_CONNECT notification when the connect operation is
complete(successful or not).

3. If your application is using WSAEventSelect to indicate interest in connection events, then
the associated event object will be signaled when the connect operation is complete
(successful or not).

For a nonblocking socket, until the connection attempt completes all subsequent calls to
WSAConnect on the same socket will fail with the error code WSAEALREADY.

If the return error code indicates the connection attempt failed (that is, WSAECONNREFUSED,
WSAENETUNREACH, WSAETIMEDOUT) the application can call WSAConnect again for the
same socket.

Error Codes

WSANOTINITIALISED A successful WSAStartup must occur before
using this function.

WSAENETDOWN The network subsystem has failed.

WSAEADDRINUSE The local address of the socket is already in use and
the socket was not marked to allow address reuse
with SO_REUSEADDR. This error usually occurs
during the execution of bind, but could be delayed
until this function if the bind function operates on
a partially wild-card address (involving
ADDR_ANY) and if a specific address needs to be
"committed" at the time of this function.

WSAEINTR The (blocking) Windows Socket 1.1 call was
canceled through WSACancelBlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in
progress, or the service provider is still processing
a callback function.

WSAEALREADY A nonblocking connect/WSAConnect call is in
progress on the specified socket.

WSAEADDRNOTAVAIL The remote address is not a valid address (such as
ADDR_ANY).

WSAEAFNOSUPPORT Addresses in the specified family cannot be used
with this socket.

WSAECONNREFUSED The attempt to connect was rejected.

WSAEFAULT The name or the namelen parameter is not a valid
part of the user address space, the namelen
parameter is too small, the buffer length for
lpCalleeData, lpSQOS, and lpGQOS are too small,
or the buffer length for lpCallerData is too large.

WSAEINVAL The parameter s is a listening socket, or the
destination address specified is not consistent with
that of the constrained group the socket belongs to.

WSAEISCONN The socket is already connected (connection-
oriented sockets only).

Legal Information Page 184 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

accept, bind, connect, getsockname, getsockopt, select, socket, WSAAsyncSelect,
WSAEventSelect

WSACreateEvent
The Windows Sockets connect function creates a new event object.

WSAEVENT WSACreateEvent(void);

Remarks

The WSACreateEvent function is used to create an event object created that is manual reset with
an initial state of nonsignaled. Windows Sockets 2 event objects are system objects in Win32
environments. Therefore, if a Win32 application desires auto reset events, it can call the native
WSACreateEvent Win32 function directly. The scope of an event object is limited to the process
in which it is created.

Return Values

If no error occurs, WSACreateEvent returns the handle of the event object. Otherwise, the return

WSAENETUNREACH The network cannot be reached from this host at
this time.

WSAENOBUFS No buffer space is available. The socket cannot be
connected.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP The FLOWSPEC structures specified in lpSQOS
and lpGQOS cannot be satisfied.

WSAEPROTONOSUPPORT The lpCallerData argument is not supported by the
service provider.

WSAETIMEDOUT Attempt to connect timed out without establishing
a connection.

WSAEWOULDBLOCK The socket is marked as nonblocking and the
connection cannot be completed immediately.

WSAEACCES Attempt to connect datagram socket to broadcast
address failed because setsockopt
SO_BROADCAST is not enabled.

Legal Information Page 185 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

value is WSA_INVALID_EVENT. To get extended error information, call WSAGetLastError.

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

WSACloseEvent, WSAEnumNetworkEvents, WSAEventSelect, WSAGetOverlappedResult,
WSARecv, WSARecvFrom, WSAResetEvent, WSASend, WSASendTo, WSASetEvent,
WSAWaitForMultipleEvents

WSADuplicateSocket
The Windows Sockets WSADuplicateSocket function returns a WSAPROTOCOL_INFO
structure that can be used to create a new socket descriptor for a shared socket.

int WSADuplicateSocket (
 SOCKET s,
 DWORD dwProcessId,
 LPWSAPROTOCOL_INFO lpProtocolInfo
);

Parameters

s
[in] A descriptor identifying the local socket.

dwProcessId
[in] The process ID of the target process in which the duplicated socket will be used.

lpProtocolInfo
[out] A pointer to a buffer allocated by the client that is large enough to contain a
WSAPROTOCOL_INFO structure. The service provider copies the protocol info
structure contents to this buffer.

WSANOTINITIALISED A successful WSAStartup must occur before
using this function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in
progress, or the service provider is still
processing a callback function.

WSA_NOT_ENOUGH_MEMORY Not enough free memory available to create the
event object.

Legal Information Page 186 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Remarks

The WSADuplicateSocket function is used to enable socket sharing between processes. A source
process calls WSADuplicateSocket to obtain a special WSAPROTOCOL_INFO structure. It
uses some interprocess communications (IPC) mechanism to pass the contents of this structure to
a target process, which in turn uses it in a call to WSASocket to obtain a descriptor for the
duplicated socket. The special WSAPROTOCOL_INFO structure can only be used once by the
target process.

Sockets can be shared among threads in a given process without using the WSADuplicateSocket
function because a socket descriptor is valid in all threads of a process

One possible scenario for establishing and handing off a shared socket is illustrated below:

The descriptors that reference a shared socket can be used independently for I/O. However, the
Windows Sockets interface does not implement any type of access control so it is up to the
processes involved to coordinate their operations on a shared socket. Shared sockets are typically
used to have one process that is responsible for creating sockets and establishing connections, and
other processes that are responsible for information exchange.

All of the state information associated with a socket is held in common across all the descriptors
because the socket descriptors are duplicated and not the actual socket. For example, a setsockopt
operation performed using one descriptor is subsequently visible using a getsockopt from any or
all descriptors. A process can call closesocket on a duplicated socket and the descriptor will
become deallocated. The underlying socket, however, will remain open until closesocket is called
by the last remaining descriptor.

Notification on shared sockets is subject to the usual constraints of WSAAsyncSelect and
WSAEventSelect. Issuing either of these calls using any of the shared descriptors cancels any
previous event registration for the socket, regardless of which descriptor was used to make that

Source Process IPC Destination Process

1) WSASocket, WSAConnect

2) Request target process ID ⇒
3) Receive process ID request
and respond

4) Receive process ID ⇐
5) Call WSADuplicateSocket to get a special
WSAPROTOCOL_INFO structure

6) Send WSAPROTOCOL_INFO structure
to target

⇒ 7) Receive
WSAPROTOCOL_INFO
structure

8) Call WSASocket to create
shared socket descriptor.

10) closesocket 9)Use shared socket for data
exchange

Legal Information Page 187 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

registration. Thus, for example, a shared socket cannot deliver FD_READ events to process A and
FD_WRITE events to process B. For situations when such tight coordination is required,
developers would be advised to use threads instead of separate processes.

Return Values

If no error occurs, WSADuplicateSocket returns zero. Otherwise, a value of SOCKET_ERROR
is returned, and a specific error code can be retrieved by calling WSAGetLastError.

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

WSASocket

WSAEnumNameSpaceProviders
The Windows Sockets WSAEnumNameSpaceProviders function retrieves information about
available name spaces.

INT WSAAPI WSAEnumNameSpaceProviders (
 IN OUT LPDWORD lpdwBufferLength,
 OUT LPWSANAMESPACE_INFO lpnspBuffer
);

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL Indicates that one of the specified parameters was
invalid.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAEMFILE No more socket descriptors are available.

WSAENOBUFS No buffer space is available. The socket cannot be
created.

WSAENOTSOCK The descriptor is not a socket.

WSAEFAULT The lpProtocolInfo argument is not a valid part of the
user address space.

Legal Information Page 188 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Parameters

lpdwBufferLength
[in/out] On input, the number of bytes contained in the buffer pointed to by lpnspBuffer. On
output (if the function fails, and the error is WSAEFAULT), the minimum number of bytes
to pass for the lpnspBuffer to retrieve all the requested information. The passed-in buffer
must be sufficient to hold all of the name space information.

lpnspBuffer
[out] A buffer that is filled with WSANAMESPACE_INFO structures. The returned
structures are located consecutively at the head of the buffer. Variable sized information
referenced by pointers in the structures point to locations within the buffer located between
the end of the fixed sized structures and the end of the buffer. The number of structures
filled in is the return value of WSAEnumNameSpaceProviders.

Return Values

The WSAEnumNameSpaceProviders function returns the number of
WSANAMESPACE_INFO structures copied into lpnspBuffer. Otherwise, the value
SOCKET_ERROR is returned, and a specific error number can be retrieved by calling
WSAGetLastError.

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

WSAEnumNetworkEvents
The Windows Sockets WSAEnumNetworkEvents function discovers occurrences of network
events for the indicated socket, clear internal network event records, and reset event objects
(optional).

WSAEFAULT the buffer length was too small to receive all the
relevant WSANAMESPACE_INFO structures and
associated information. Pass in a buffer at least as
large as the value returned in lpdwBufferLength.

WSANOTINITIALIZED The WS2_32.DLL has not been initialized. The
application must first call WSAStartup before
calling any Windows Sockets functions.

WSA NOT ENOUGH MEMORY There was insufficient memory to perform the
operation.

Legal Information Page 189 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

int WSAEnumNetworkEvents (
 SOCKET s,
 WSAEVENT hEventObject,
 LPWSANETWORKEVENTS lpNetworkEvents
);

Parameters

s
[in] A descriptor identifying the socket.

hEventObject
[in] An optional handle identifying an associated event object to be reset.

lpNetworkEvents
[out] A pointer to a WSANETWORKEVENTS structure that is filled with a record of
network events that occurred and any associated error codes.

Remarks

The WSAEnumNetworkEvents function is used to discover which network events have
occurred for the indicated socket since the last invocation of this function. It is intended for use in
conjunction with WSAEventSelect, which associates an event object with one or more network
events. The recording of network events commences when WSAEventSelect is called with a
nonzero lNetworkEvents parameter and remains in effect until another call is made to
WSAEventSelect with the lNetworkEvents parameter set to zero, or until a call is made to
WSAAsyncSelect.

WSAEnumNetworkEvents only reports network activity and errors nominated through
WSAEventSelect. See the descriptions of select and WSAAsyncSelect to find out how those
functions report network activity and errors.

The socket's internal record of network events is copied to the structure referenced by
lpNetworkEvents, whereafter the internal network events record is cleared. If the hEventObject
parameter is not null, the indicated event object is also reset. The Windows Sockets provider
guarantees that the operations of copying the network event record, clearing it and resetting any
associated event object are automatic, such that the next occurrence of a nominated network event
will cause the event object to become set. In the case of this function returning
SOCKET_ERROR, the associated event object is not reset and the record of network events is not
cleared.

The lNetworkEvents member of the WSANETWORKEVENTS structure indicates which of the
FD_XXX network events have occurred. The iErrorCode array is used to contain any associated
error codes with the array index corresponding to the position of event bits in lNetworkEvents.
Identifiers such as FD_READ_BIT and FD_WRITE_BIT can be used to index the iErrorCode
array. Note that only those elements of the iErrorCode array are set that correspond to the bits set
in lNetworkEvents field. Other fields are not modified (this is important for backwards
compatibility with the applications that are not aware of new
FD_ROUTING_INTERFACE_CHANGE and FD_ADDRESS_LIST_CHANGE events).

The following error codes can be returned along with the corresponding network event:

Event: FD_CONNECT

Legal Information Page 190 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Event: FD_CLOSE

Event: FD_READ

Event: FD_WRITE

Event: FD_OOB

Event: FD_ACCEPT

Event: FD_QOS

Event: FD_GROUP_QOS

Event: FD_ADDRESS_LIST_CHANGE

Event: FD_ROUTING_INTERFACE_CHANGE

Return Values

The return value is zero if the operation was successful. Otherwise, the value SOCKET_ERROR
is returned, and a specific error number can be retrieved by calling WSAGetLastError.

Error Code Meaning

WSAEAFNOSUPPORT Addresses in the specified family cannot be used with
this socket.

WSAECONNREFUSED The attempt to connect was forcefully rejected.

WSAENETUNREACH The network cannot be reached from this host at this
time.

WSAENOBUFS No buffer space is available. The socket cannot be
connected.

WSAETIMEDOUT Attempt to connect timed out without establishing a
connection

Error Code Meaning

WSAENETDOWN The network subsystem has failed.

WSAECONNRESET The connection was reset by the remote side.

WSAECONNABORTED The connection was terminated due to a time-out or
other failure.

Error Code Meaning

WSAENETDOWN The network subsystem has failed.

Error Code Meaning

WSAENETUNREACH The specified destination is no longer reachable

WSAENETDOWN The network subsystem has failed.

Legal Information Page 191 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

WSAEventSelect

WSAEnumProtocols
The Windows Sockets WSAEnumProtocols function retrieves information about available
transport protocols.

int WSAEnumProtocols (
 LPINT lpiProtocols,
 LPWSAPROTOCOL_INFO lpProtocolBuffer,
 ILPDWORD lpdwBufferLength
);

Parameters

lpiProtocols
[in] A NULL-terminated array of iProtocol values. This parameter is optional; if
lpiProtocols is NULL, information on all available protocols is returned. Otherwise,
information is retrieved only for those protocols listed in the array.

lpProtocolBuffer
[out] A buffer that is filled with WSAPROTOCOL_INFO structures.

lpdwBufferLength

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL Indicates that one of the specified parameters was
invalid.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAENOTSOCK The descriptor is not a socket.

WSAEFAULT The lpNetworkEvents argument is not a valid part of the
user address space.

Legal Information Page 192 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

[in/out] On input, the count of bytes in the lpProtocolBuffer buffer passed to
WSAEnumProtocols. On output, the minimum buffer size that can be passed to
WSAEnumProtocols to retrieve all the requested information. This routine has no ability
to enumerate over multiple calls; the passed-in buffer must be large enough to hold all
entries in order for the routine to succeed. This reduces the complexity of the API and
should not pose a problem because the number of protocols loaded on a machine is
typically small.

Remarks

The WSAEnumProtocols function is used to discover information about the collection of
transport protocols and protocol chains installed on the local machine. Since layered protocols are
only usable by applications when installed in protocol chains, information on layered protocols is
not included in lpProtocolBuffer. The lpiProtocols parameter can be used as a filter to constrain
the amount of information provided. Often, lpiProtocols will be supplied as a NULL pointer that
will cause the function to return information on all available transport protocols and protocol
chains.

A WSAPROTOCOL_INFO structure is provided in the buffer pointed to by lpProtocolBuffer
for each requested protocol. If the supplied buffer is not large enough (as indicated by the input
value of lpdwBufferLength), the value pointed to by lpdwBufferLength will be updated to indicate
the required buffer size. The application should then obtain a large enough buffer and call this
WSAEnumProtocols again.

The order in which the WSAPROTOCOL_INFO structures appear in the buffer coincides with
the order in which the protocol entries were registered by the service provider using the
WS2_32.DLL, or with any subsequent re-ordering that can have occurred through the Windows
Sockets applet or DLL supplied for establishing default TCP/IP providers.

Return Values

If no error occurs, WSAEnumProtocols returns the number of protocols to be reported.
Otherwise, a value of SOCKET_ERROR is returned and a specific error code can be retrieved by
calling WSAGetLastError.

Error Codes

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress.

WSAEINVAL Indicates that one of the specified parameters was
invalid.

WSAENOBUFS The buffer length was too small to receive all the
relevant WSAPROTOCOL_INFO structures and
associated information. Pass in a buffer at least as large
as the value returned in lpdwBufferLength.

WSAEFAULT One or more of the lpiProtocols, lpProtocolBuffer, or
lpdwBufferLength arguments are not a valid part of the
user address space.

Legal Information Page 193 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

WSAEventSelect
The Windows Sockets WSAEventSelect function specifies an event object to be associated with
the supplied set of FD_XXX network events.

int WSAEventSelect (
 SOCKET s,
 WSAEVENT hEventObject,
 long lNetworkEvents
);

Parameters

s
[in] A descriptor identifying the socket.

hEventObject
[in] A handle identifying the event object to be associated with the supplied set of FD_XXX
network events.

lNetworkEvents
[in] A bitmask that specifies the combination of FD_XXX network events in which the
application has interest.

Remarks

The WSAEventSelect function is used to specify an event object, hEventObject, to be associated
with the selected FD_XXX network events, lNetworkEvents. The socket for which an event object
is specified is identified by the s parameter. The event object is set when any of the nominated
network events occur.

The WSAEventSelect function operates very similarly to WSAAsyncSelect, the difference being
in the actions taken when a nominated network event occurs. The WSAAsyncSelect function
causes an application-specified Windows message to be posted. The WSAEventSelect sets the
associated event object and records the occurrence of this event in an internal network event
record. An application can use WSAWaitForMultipleEvents to wait or poll on the event object,
and use WSAEnumNetworkEvents to retrieve the contents of the internal network event record
and thus determine which of the nominated network events have occurred.

WSAEventSelect is the only function that causes network activity and errors to be recorded and
retrievable through WSAEnumNetworkEvents. See the descriptions of select and
WSAAsyncSelect to find out how those functions report network activity and errors.

Legal Information Page 194 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

The WSAEventSelect function automatically sets socket s to nonblocking mode, regardless of the
value of lNetworkEvents. See ioctlsocket/WSAIoctl about how to set the socket back to blocking
mode.

The lNetworkEvents parameter is constructed by or'ing any of the values specified in the
following list.

Issuing a WSAEventSelect for a socket cancels any previous WSAAsyncSelect or
WSAEventSelect for the same socket and clears the internal network event record. For example,
to associate an event object with both reading and writing network events, the application must
call WSAEventSelect with both FD_READ and FD_WRITE, as follows:

rc = WSAEventSelect(s, hEventObject, FD_READ|FD_WRITE);

It is not possible to specify different event objects for different network events. The following
code will not work; the second call will cancel the effects of the first, and only FD_WRITE
network event will be associated with hEventObject2:

rc = WSAEventSelect(s, hEventObject1, FD_READ);
rc = WSAEventSelect(s, hEventObject2, FD_WRITE); //bad

To cancel the association and selection of network events on a socket, lNetworkEvents should be
set to zero, in which case the hEventObject parameter will be ignored.

rc = WSAEventSelect(s, hEventObject, 0);

Closing a socket with closesocket also cancels the association and selection of network events

Value Meaning

FD_READ Want to receive notification of readiness for reading

FD_WRITE Want to receive notification of readiness for writing

FD_OOB Want to receive notification of the arrival of out-of-band
data

FD_ACCEPT Want to receive notification of incoming connections

FD_CONNECT Want to receive notification of completed connection or
multipoint "join" operation

FD_CLOSE Want to receive notification of socket closure

FD_QOS Want to receive notification of socket Quality of Service
(QOS) changes

FD_GROUP_QOS Reserved for future use with socket groups. Want to receive
notification of socket group Quality of Service (QOS)
changes

FD_ROUTING
_INTERFACE_CHANGE

Want to receive notification of routing interface changes for
the specified destination

FD_ADDRESS_LIST
_CHANGE

Want to receive notification of local address list changes for
the address family of the socket

Legal Information Page 195 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

specified in WSAEventSelect for the socket. The application, however, still must call
WSACloseEvent to explicitly close the event object and free any resources.

The socket created when the accept function is called has the same properties as the listening
socket used to accept it. Any WSAEventSelect association and network events selection set for
the listening socket apply to the accepted socket. For example, if a listening socket has
WSAEventSelect association of hEventOject with FD_ACCEPT, FD_READ, and FD_WRITE,
then any socket accepted on that listening socket will also have FD_ACCEPT, FD_READ, and
FD_WRITE network events associated with the same hEventObject. If a different hEventObject or
network events are desired, the application should call WSAEventSelect, passing the accepted
socket and the desired new information.

Return Values

The return value is zero if the application's specification of the network events and the associated
event object was successful. Otherwise, the value SOCKET_ERROR is returned, and a specific
error number can be retrieved by calling WSAGetLastError.

As in the case of the select and WSAAsyncSelect functions, WSAEventSelect will frequently be
used to determine when a data transfer operation (send or recv) can be issued with the
expectation of immediate success. Nevertheless, a robust application must be prepared for the
possibility that the event object is set and it issues a Windows Sockets call that returns
WSAEWOULDBLOCK immediately. For example, the following sequence of operations is
possible:

1. Data arrives on socket s; Windows Sockets sets the WSAEventSelect event object.
2. The application does some other processing.
3. While processing, application issues an ioctlsocket(s, FIONREAD...) and notices that there

is data ready to be read.
4. The application issues a recv(s,...) to read the data.
5. The application eventually waits on event object specified in WSAEventSelect, which

returns immediately indicating that data is ready to read.
6. The application issues recv(s,...), which fails with the error WSAEWOULDBLOCK.

Having successfully recorded the occurrence of the network event (by setting the corresponding
bit in the internal network event record) and signaled the associated event object, no further
actions are taken for that network event until the application makes the function call that
implicitly re-enables the setting of that network event and signaling of the associated event object.

Network Event Re-enabling function

FD_READ recv, recvfrom, WSARecv, or WSARecvFrom

FD_WRITE send, sendto, WSASend, or WSASendTo

FD_OOB recv, recvfrom, WSARecv, or WSARecvFrom

FD_ACCEPT accept or WSAAccept unless the error code returned is
WSATRY_AGAIN indicating that the condition function
returned CF_DEFER

FD_CONNECT NONE

FD_CLOSE NONE

FD_QOS WSAIoctl with command SIO_GET_QOS

Legal Information Page 196 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Any call to the re-enabling routine, even one that fails, results in re-enabling of recording and
signaling for the relevant network event and event object.

For FD_READ, FD_OOB, and FD_ACCEPT network events, network event recording and event
object signaling are "level-triggered." This means that if the re-enabling routine is called and the
relevant network condition is still valid after the call, the network event is recorded and the
associated event object is set. This allows an application to be event-driven and not be concerned
with the amount of data that arrives at any one time. Consider the following sequence:

1. Transport provider receives 100 bytes of data on socket s and causes WS2_32.DLL to
record the FD_READ network event and set the associated event object.

2. The application issues recv(s, buffptr, 50, 0) to read 50 bytes.
3. The transport provider causes WS2_32.DLL to record the FD_READ network event and

sets the associated event object again since there is still data to be read.

With these semantics, an application need not read all available data in response to an FD_READ
network event—a single recv in response to each FD_READ network event is appropriate.

The FD_QOS and FD_GROUP_QOS events are considered edge triggered. A message will be
posted exactly once when a quality of service change occurs. Further messages will not be
forthcoming until either the provider detects a further change in quality of service or the
application renegotiates the quality of service for the socket.

The FD_ROUTING_INTERFACE_CHANGE and FD_ADDRESS_LIST_CHANGE events are
considered "edge triggered" as well. A message will be posted exactly once when a change occurs
AFTER the application has request the notification by issuing WSAIoctl with
SIO_ROUTING_INTERFACE_CHANGE or SIO_ADDRESS_LIST_CHANGE
correspondingly. Further messages will not be forthcoming until the application reissues the
IOCTL AND another change is detected since the IOCTL has been issued.

If a network event has already happened when the application calls WSAEventSelect or when the
re-enabling function is called, then a network event is recorded and the associated event object is
set as appropriate. For example, consider the following sequence:

1. an application calls listen,
2. a connect request is received but not yet accepted,
3. the application calls WSAEventSelect specifying that it is interested in the FD_ACCEPT

network event for the socket. Due to the persistence of network events, Windows Sockets
records the FD_ACCEPT network event and sets the associated event object immediately.

The FD_WRITE network event is handled slightly differently. An FD_WRITE network event is
recorded when a socket is first connected with connect/WSAConnect or accepted with
accept/WSAAccept, and then after a send fails with WSAEWOULDBLOCK and buffer space
becomes available. Therefore, an application can assume that sends are possible starting from the
first FD_WRITE network event setting and lasting until a send returns WSAEWOULDBLOCK.

FD_GROUP_QOS Reserved for future use with socket groups. WSAIoctl with
command SIO_GET_GROUP_QOS

FD_ROUTING
_INTERFACE_CHANGE

WSAIoctl with command
SIO_ROUTING_INTERFACE_CHANGE

FD_ADDRESS_LIST
_CHANGE

WSAIoctl with command SIO_ADDRESS_LIST_CHANGE

Legal Information Page 197 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

After such a failure the application will find out that sends are again possible when an
FD_WRITE network event is recorded and the associated event object is set.

The FD_OOB network event is used only when a socket is configured to receive out-of-band data
separately. If the socket is configured to receive out-of-band data in-line, the out-of-band
(expedited) data is treated as normal data and the application should register an interest in, and
will get, FD_READ network event, not FD_OOB network event. An application can set or inspect
the way in which out-of-band data is to be handled by using setsockopt or getsockopt for the
SO_OOBINLINE option.

The error code in an FD_CLOSE network event indicates whether the socket close was graceful
or abortive. If the error code is zero, then the close was graceful; if the error code is
WSAECONNRESET, then the socket's virtual circuit was reset. This only applies to connection-
oriented sockets such as SOCK_STREAM.

The FD_CLOSE network event is recorded when a close indication is received for the virtual
circuit corresponding to the socket. In TCP terms, this means that the FD_CLOSE is recorded
when the connection goes into the TIME WAIT or CLOSE WAIT states. This results from the
remote end performing a shutdown on the send side or a closesocket. FD_CLOSE should only be
posted after all data is read from a socket, but an application should check for remaining data
upon receipt of FD_CLOSE to avoid any possibility of losing data.

Please note Windows Sockets will record ONLY an FD_CLOSE network event to indicate
closure of a virtual circuit. It will not record an FD_READ network event to indicate this
condition.

The FD_QOS or FD_GROUP_QOS network event is recorded when any field in the flow
specification associated with socket s or the socket group that s belongs to has changed,
respectively. Applications should use WSAIoctl with command SIO_GET_QOS or
SIO_GET_GROUP_QOS to get the current QOS for socket s or for the socket group s belongs to,
respectively.

The FD_ROUTING_INTERFACE_CHANGE nework event is recorded when the local interface
that should be used to reach the destination specified in WSAIoctl with
SIO_ROUTING_INTERFACE_CHANGE changes after such IOCTL has been issued.

The FD_ADDRESS_LIST_CHANGE network event is recorded when the list of addresses of
protocol family for the socket to which the application can bind changes after WSAIoctl with
SIO_ADDRESS_LIST_CHANGE has been issued.

Error Codes

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL Indicates that one of the specified parameters was
invalid, or the specified socket is in an invalid state.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAENOTSOCK The descriptor is not a socket.

Legal Information Page 198 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

WSAAsyncSelect, WSACloseEvent, WSACreateEvent, WSAEnumNetworkEvents,
WSAWaitForMultipleEvents

WSAGetLastError
The Windows Sockets WSAGetLastError function gets the error status for the last operation
that failed.

int WSAGetLastError (void);

Remarks

The WSAGetLastError function returns the last network error that occurred. When a particular
Windows Sockets function indicates that an error has occurred, this function should be called to
retrieve the appropriate error code. This error code can be different from the error code obtained
from getsockopt SO_ERROR, which is socket-specific since WSAGetLastError is for all
thread-specific sockets.

A successful function call, or a call to WSAGetLastError, does not reset the error code. To reset
the error code, use the WSASetLastError function call with iError set to zero. A getsockopt
SO_ERROR also resets the error code to zero.

The WSAGetLastError function should not be used to check for an error value on receipt of an
asynchronous message. In this case, the error value is passed in the lParam field of the message,
and this can differ from the value returned by WSAGetLastError.

Return Values

The return value indicates the error code for this thread's last Windows Sockets operation that
failed.

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Use version 1.0 and later.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

Legal Information Page 199 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

See Also

getsockopt, WSASetLastError

WSAGetOverlappedResult
The Windows Sockets WSAGetOverlappedResult function returns the results of an overlapped
operation on the specified socket.

BOOL WSAGetOverlappedResult (
 SOCKET s,
 LPWSAOVERLAPPED lpOverlapped,
 LPDWORD lpcbTransfer,
 BOOL fWait,
 LPDWORD lpdwFlags
);

Parameters

s
[in] A descriptor identifying the socket. This is the same socket that was specified when the
overlapped operation was started by a call to WSARecv, WSARecvFrom, WSASend,
WSASendTo, or WSAIoctl.

lpOverlapped
[in] A pointer to a WSAOVERLAPPED structure that was specified when the overlapped
operation was started.

pcbTransfer
[out] A pointer to a 32-bit variable that receives the number of bytes that were actually
transferred by a send or receive operation, or by WSAIoctl.

fWait
[in] A flag that specifies whether the function should wait for the pending overlapped
operation to complete. If TRUE, the function does not return until the operation has been
completed. If FALSE and the operation is still pending, the function returns FALSE and the
WSAGetLastError function returns WSA_IO_INCOMPLETE. The fWait parameter may
be set to TRUE only if the overlapped operation selected the event-based completion
notification.

lpdwFlags
[out] A pointer to a 32-bit variable that will receive one or more flags that supplement the
completion status. If the overlapped operation was initiated through WSARecv or
WSARecvFrom, this parameter will contain the results value for lpFlags parameter.

Remarks

The WSAGetOverlappedResult function reports results of last overlapped operation for the
specified socket. The WSAOverlappedResult function is passed the socket descriptor and the
WSAOVERLAPPED structure that were specified when the overlapped function was called. A
pending operation is indicated when the function that started the operation returns FALSE and the
WSAGetLastError function returns WSA_IO_PENDING. When an I/O operation such as
WSARecv is pending, the function that started the operation resets the hEvent member of the

Legal Information Page 200 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

WSAOVERLAPPED structure to the nonsignaled state. Then when the pending operation has
completed, the system sets the event object to the signaled state.

If the fWait parameter is TRUE, WSAGetOverlappedResult determines whether the pending
operation has been completed by waiting for the event object to be in the signaled state.A client
may set fWait parameter to TRUE only if it selected event-based completion notification when the
IO operation was requested. If another form of notification was selected, the usage of the hEvent
parameter of the WSAOVERLAPPED structure is different, and setting fWait to TRUE causes
unpredictable results.

Return Values

If WSAGetOverlappedResult succeeds, the return value is TRUE. This means that the
overlapped operation has completed successfully and that the value pointed to by lpcbTransfer
has been updated. If WSAGetOverlappedResult returns FALSE, this means that either the
overlapped operation has not completed, the overlapped operation completed but with errors, or
the overlapped operation's completion status could not be determined due to errors in one or more
parameters to WSAGetOverlappedResult. On failure, the value pointed to by lpcbTransfer will
not be updated. Use WSAGetLastError to determine the cause of the failure (either of
WSAGetOverlappedResult or of the associated overlapped operation).

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

WSAAccept, WSAConnect, WSACreateEvent, WSAIoctl, WSARecv, WSARecvFrom,
WSASend, WSASendTo, WSAWaitForMultipleEvents

WSANOTINITIALISED A successful WSAStartup must occur before
using this function.

WSAENETDOWN The network subsystem has failed.

WSAENOTSOCK The descriptor is not a socket.

WSA_INVALID_HANDLE The hEvent field of the WSAOVERLAPPED
structure does not contain a valid event object
handle.

WSA_INVALID_PARAMETER One of the parameters is unacceptable.

WSA_IO_INCOMPLETE The fWait parameter is FALSE and the I/O
operation has not yet completed.

WSAEFAULT One or more of the lpOverlapped, lpcbTransfer, or
lpdwFlags arguments are not a valid part of the
user address space.

Legal Information Page 201 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

WSAGetQOSByName
The Windows Sockets WSAGetQOSByName function initializes a QUALITYOFSERVICE
structure based on a named template, or it supplies a buffer to retrieve an enumeration of the
available template names.

BOOL WSAGetQOSByName(
 SOCKET s,
 LPWSABUF lpQOSName,
 LPQOS lpQOS
);

Parameters

s
[in] A descriptor identifying a socket.

lpQOSName
[in out] A pointer to a specific quality of service template.

lpQOS
[out] A pointer to the QUALITYOFSERVICE structure to be filled.

Remarks

The WSAGetQOSByName function is used by applications to initialize a
QUALITYOFSERVICE structure to a set of known values appropriate for a particular service
class or media type. These values are stored in a template that is referenced by a well-known
name. The client may retrieve these values by setting the buf parameter of the WSABUF indicated
by lpQOSName, which points to a string of non-zero length specifying a template name. In this
case, the usage of lpQOSName is IN only, and results are returned through lpQOS.

Alternatively, the client may use this function to retrieve an enumeration of available template
names. The client may do this by setting the buf parameter of the WSABUF indicated by
lpQOSName to a zero-length null-terminated string. In this case the buffer indicated by buf is
over-written with a sequence of as many null-terminated template names that are available up to
the number of bytes available in buf as indicated by the len parameter of the WSABUF indicated
by lpQOSName. The list of names itself is terminated by a zero-length name. When the
WSAGetQOSByName function is used to retrieve template names, the lpQOS parameter is
ignored.

Return Values

If WSAGetQOSByName succeeds, the return value is TRUE. If the function fails, the return
value is FALSE. To get extended error information, call WSAGetLastError.

Error Codes

Legal Information Page 202 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

getsockopt, WSAAccept, WSAConnect

WSAGetServiceClassInfo
The Windows Sockets WSAGetServiceClassInfo function retrieves all of the class information
(schema) pertaining to a specified service class from a specified name space provider.

INT WSAGetServiceClassInfo(
 LPGUID lpProviderId,
 LPGUID lpServiceClassId,
 LPDWORD lpdwBufferLength,
 LPWSASERVICECLASSINFO lpServiceClassInfo
);

Parameters

lpProviderId
[in] A pointer to a GUID that identifies a specific name space provider

lpServiceClassId
[in] A pointer to a GUID identifying the service class in question

lpdwBufferLength
[in/out] On input, the number of bytes contained in the buffer pointed to by
lpServiceClassInfos. On output, if the function fails and the error is WSAEFAULT, then it
contains the minimum number of bytes to pass for the lpServiceClassInfo to retrieve the
record.

lpServiceClasslnfo
[out] A pointer to the service class information from the indicated name space provider for
the specified service class.

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAENOTSOCK The descriptor is not a socket.

WSAEFAULT The lpQOSName or lpQOS parameter are not a valid part
of the user address space, or the buffer length for lpQOS is
too small.

WSAENVAL The specified quality of service template name is invalid.

Legal Information Page 203 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Remarks

The WSAGetServiceClassInfo function retrieves service class information but the service class
information retrieved from a particular name space provider might not be the complete set of class
information that was supplied when the service class was installed. Individual name space
providers are only required to retain service class information that is applicable to the name
spaces that they support. See section Service Class Data Structures for more information.

Return Values

The return value is zero if the WSAGetServiceClassInfo was successful. Otherwise, the value
SOCKET_ERROR is returned, and a specific error number can be retrieved by calling
WSAGetLastError.

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

WSAGetServiceClassNameByClassId The
Windows Sockets
WSAGetServiceClassNameByClassId
function returns the name of the service
associated with the given type. This name is

WSAEACCESS The calling routine does not have sufficient
privileges to access the information.

WSAEFAULT The buffer referenced by lpServiceClassInfo is
too small. Pass in a larger buffer.

WSAEINVAL the specified service class ID or name space
provider ID is invalid.

WSANOTINITIALIZED The WS2_32.DLL has not been initialized. The
application must first call WSAStartup before
calling any Windows Sockets functions.

WSATYPE NOT FOUND The specified class was not found.

WSA NOT ENOUGH MEMORY There was insufficient memory to perform the
operation.

Legal Information Page 204 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

the generic service name, like FTP or SNA,
and not the name of a specific instance of that
service.
INT WSAGetServiceClassNameByClassId(
 LPGUID lpServiceClassId,
 LPTSTR lpszServiceClassName,
 LPDWORD lpdwBufferLength
);

Parameters

lpServiceClassId
[in] A pointer to the GUID for the service class.

lpszServiceClassName
[out] A pointer to the service name.

lpdwBufferLength
[in/out] On input, the length of the buffer returned by lpszServiceClassName. On output, the
length of the service name copied into lpszServiceClassName.

Return Values

The WSAGetServiceClassNameByClassId function returns a value of zero if successful.
Otherwise, the value SOCKET_ERROR is returned, and a specific error number can be retrieved
by calling WSAGetLastError.

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

WSAEFAULT The specified buffer referenced by
lpszServiceClassName is too small. Pass in a
larger buffer.

WSA_INVALID_PARAMETER The lpServiceClassId parameter specified is
invalid.

WSANOTINITIALIZED The WS2_32.DLL has not been initialized. The
application must first call WSAStartup before
calling any Windows Sockets functions.

WSA NOT ENOUGH MEMORY There was insufficient memory to perform the
operation.

Legal Information Page 205 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

WSAHtonl
The Windows Sockets WSAHtonl function converts a u_long from host byte order to network
byte order.

int WSAHtonl (
 SOCKET s,
 u_long hostlong,
 u_long FAR * lpnetlong
);

Parameters

s
[in] A descriptor identifying a socket.

hostlong
[in] A 32-bit number in host byte order.

lpnetlong
[out] A pointer to a 32-bit number in network byte order.

Remarks

The WSAHtonl function takes a 32-bit number in host byte order and returns a 32-bit number
pointed to by the lpnetlong parameter in the network byte order associated with socket s.

Return Values

If no error occurs, WSAHtonl returns zero. Otherwise, a value of SOCKET_ERROR is returned,
and a specific error code can be retrieved by calling WSAGetLastError.

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAENOTSOCK The descriptor is not a socket.

WSAEFAULT The lpnetlong parameter is not completely contained in
a valid part of the user address space.

Legal Information Page 206 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

htonl, htons, ntohl, ntohs, WSANtohl, WSAHtons, WSANtohs

WSAHtons
The Windows Sockets WSAHtons function converts a u_short from host byte order to network
byte order.

int WSAHtons (
 SOCKET s,
 u_short hostshort,
 u_short FAR * lpnetshort
);

Parameters

s
[in] A descriptor identifying a socket.

hostshort
[in] A 16-bit number in host byte order.

lpnetshort
[out] A pointer to a 16-bit number in network byte order.

Remarks

The WSAHtons function takes a 16-bit number in host byte order and returns a 16-bit number
pointed to by the lpnetshort parameter in the network byte order associated with socket s.

Return Values

If no error occurs, WSAHtons returns zero. Otherwise, a value of SOCKET_ERROR is returned,
and a specific error code can be retrieved by calling WSAGetLastError.

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAENOTSOCK The descriptor is not a socket.

WSAEFAULT The lpnetshort parameter is not completely contained in
a valid part of the user address space.

Legal Information Page 207 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

 Import Library: Link with ws2_32.lib.

See Also

htonl, htons, ntohl, ntohs, WSAHtonl, WSANtohl, WSANtohs

WSAInstallServiceClass
The Windows Sockets WSAInstallServiceClass function registers a service class schema within
a name space. This schema includes the class name, class ID, and any name-space-specific
information that is common to all instances of the service, such as the SAP ID or object ID.

INT WSAInstallServiceClass(
 LPWSASERVICECLASSINFO lpServiceClassInfo
);

Parameters

lpServiceClasslnfo
[in] The service class to name-space-specific type-mapping information. Multiple mappings
can be handled at one time.

See section Service Class Data Structures for a description of pertinent data structures.

Return Values

The return value is zero if the operation was successful. Otherwise, the value SOCKET_ERROR
is returned, and a specific error number can be retrieved by calling WSAGetLastError.

Error Codes

QuickInfo

WSAEACCES The calling function does not have sufficient
privileges to install the Service.

WSAEALREADY Service class information has already been
registered for this service class ID. To modify
service class info, first use
WSARemoveServiceClass, and then re-install with
updated class info data.

WSAEINVAL The service class information was invalid or
improperly structured.

WSANOTINITIALIZED The WS2_32.DLL has not been initialized. The
application must first call WSAStartup before
calling any Windows Sockets functions.

WSA NOT ENOUGH MEMORY There was insufficient memory to perform the
operation.

Legal Information Page 208 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

WSAIoctl
The Windows Sockets WSAIoctl function controls the mode of a socket.

int WSAIoctl (
 SOCKET s,
 DWORD dwIoControlCode,
 LPVOID lpvInBuffer,
 DWORD cbInBuffer,
 LPVOID lpvOUTBuffer,
 DWORD cbOUTBuffer,
 LPDWORD lpcbBytesReturned,
 LPWSAOVERLAPPED lpOverlapped,
 LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionROUTINE
);

Parameters

s
[in] A descriptor identifying a socket.

dwIoControlCode
[in] The control code of operation to perform.

lpvInBuffer
[in] A pointer to the input buffer.

cbInBuffer
[in] A number indicating the size of the input buffer.

lpvOutBuffer
[out] A pointer to the output buffer.

cbOutBuffer
[in] A number indicating the size of the output buffer.

lpcbBytesReturned
[out] A pointer to actual number of bytes of output.

lpOverlapped
[in] A pointer to a WSAOVERLAPPED structure (ignored for non-overlapped sockets).

lpCompletionRoutine
[in] A pointer to the completion routine called when the operation has been completed
(ignored for non-overlapped sockets).

Remarks

The WSAIoctl function is used to set or retrieve operating parameters associated with the socket,
the transport protocol, or the communications subsystem.

If both lpOverlapped and lpCompletionRoutine are NULL, the socket in this function will be

Legal Information Page 209 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

treated as a non-overlapped socket. For a non-overlapped socket, lpOverlapped and
lpCompletionRoutine parameters are ignored, which cause the function to behave like the standard
ioctlsocket function except that WSAIoctl can block if socket s is in the blocking mode. If socket
s is in the nonblocking mode, this function can return WSAEWOULDBLOCK when the specified
operation cannot be finished immediately. In this case, the application may change the socket to
the blocking mode and reissue the request or wait for the corresponding network event (such as
FD_ROUTING_INTERFACE_CHANGE or FD_ADDRESS_LIST_CHANGE in case of
SIO_ROUTING_INTERFACE_CHANGE or SIO_ADDRESS_LIST_CHANGE) using Windows
message (using WSAAsyncSelect) or event (using WSAEventSelect) based notification
mechanism

For overlapped sockets, operations that cannot be completed immediately will be initiated, and
completion will be indicated at a later time. The final completion status is retrieved through
WSAGetOverlappedResult. The lpcbBytesReturned parameter is ignored.

Any ioctl may block indefinitely, depending on the service provider's implementation. If the
application cannot tolerate blocking in a WSAIoctl call, overlapped I/O would be advised for
ioctls that are especially likely to block including:

SIO_FINDROUTE
SIO_FLUSH
SIO_GET_QOS
SIO_GET_GROUP_QOS
SIO_SET_QOS
SIO_SET_GROUP_QOS
SIO_ROUTING_INTERFACE_CHANGE
SIO_ADDRESS_LIST_CHANGE

Some protocol-specific ioctls may also be especially likely to block. Check the relevant protocol-
specific annex for any available information.

It is possible to adopt an encoding scheme that preserves the currently defined ioctlsocket
opcodes while providing a convenient way to partition the opcode identifier space in as much as
the dwIoControlCode parameter is now a 32-bit entity. The dwIoControlCode parameter is
architected to allow for protocol and vendor independence when adding new control codes while
retaining backward compatibility with the Windows Sockets 1.1 and Unix control codes. The
dwIoControlCode parameter has the following form:

I is set if the input buffer is valid for the code, as with IOC_IN.

O is set if the output buffer is valid for the code, as with IOC_OUT. Codes with both input and
output parameters set both I and O.

V is set if there are no parameters for the code, as with IOC_VOID.

T is a two-bit quantity that defines the type of ioctl. The following values are defined:

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1

1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

I O V T Vendor/Address Family Code

Legal Information Page 210 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

0 – The ioctl is a standard Unix ioctl code, as with FIONREAD and FIONBIO.

1 – The ioctl is a generic Windows Sockets 2 ioctl code. New ioctl codes defined for Windows
Sockets 2 will have T == 1.

2 – The ioctl applies only to a specific address family.

3 – The ioctl applies only to a specific vendor's provider. This type allows companies to be
assigned a vendor number that appears in the Vendor/Address family field. Then, the vendor can
define new ioctls specific to that vendor without having to register the ioctl with a clearinghouse,
thereby providing vendor flexibility and privacy.

Vendor/Address family – An 11-bit quantity that defines the vendor who owns the code (if T ==
3) or that contains the address family to which the code applies (if T == 2). If this is a Unix ioctl
code (T == 0) then this field has the same value as the code on Unix. If this is a generic Windows
Sockets 2 ioctl (T == 1) then this field can be used as an extension of the "code" field to provide
additional code values.

Code – The 16-bit quantity that contains the specific ioctl code for the operation.

The following Unix ioctl codes (commands) are supported:

FIONBIO
Enable or disable nonblocking mode on socket s. lpvInBuffer points at an unsigned long,
which is nonzero if nonblocking mode is to be enabled and zero if it is to be disabled. When
a socket is created, it operates in blocking mode (that is, nonblocking mode is disabled).
This is consistent with BSD sockets.

The WSAAsyncSelect or WSAEventSelect routine automatically sets a socket to
nonblocking mode. If WSAAsyncSelect or WSAEventSelect has been issued on a socket,
then any attempt to use WSAIoctl to set the socket back to blocking mode will fail with
WSAEINVAL. To set the socket back to blocking mode, an application must first disable
WSAAsyncSelect by calling WSAAsyncSelect with the lEvent parameter equal to zero, or
disable WSAEventSelect by calling WSAEventSelect with the lNetworkEvents parameter
equal to zero.

FIONREAD
Determine the amount of data that can be read atomically from socket s. lpvOutBuffer
points at an unsigned long in which WSAIoctl stores the result. If s is stream oriented (for
example, type SOCK_STREAM), FIONREAD returns the total amount of data that can be
read in a single receive operation; this is normally the same as the total amount of data
queued on the socket (since data stream is byte-oriented, this is not guaranteed). If s is
message oriented (for example, type SOCK_DGRAM), FIONREAD returns the size of the
first datagram (message) queued on the socket.

SIOCATMARK
Determine whether or not all out-of-band data has been read. This applies only to a socket
of stream-style (for example, type SOCK_STREAM) that has been configured for in-line
reception of any out-of-band data (SO_OOBINLINE). If no out-of-band data is waiting to
be read, the operation returns TRUE. Otherwise, it returns FALSE, and the next receive
operation performed on the socket will retrieve some or all of the data preceding the
"mark"; the application should use the SIOCATMARK operation to determine whether any
remains. If there is any normal data preceding the "urgent" (out of band) data, it will be

Legal Information Page 211 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

received in order. (Note that receive operations will never mix out-of-band and normal data
in the same call.) lpvOutBuffer points at a BOOL in which WSAIoctl stores the result.

The following Windows Sockets 2 commands are supported:

SIO_ASSOCIATE_HANDLE (opcode setting: I, T==1)
Associate this socket with the specified handle of a companion interface. The input buffer
contains the integer value corresponding to the manifest constant for the companion
interface (for example, TH_NETDEV and TH_TAPI.), followed by a value that is a handle
of the specified companion interface, along with any other required information. Refer to
the appropriate section in the Windows Sockets 2 Protocol-Specific Annex (a separate
document) for details specific to a particular companion interface. The total size is reflected
in the input buffer length. No output buffer is required. The WSAENOPROTOOPT error
code is indicated for service providers that do not support this ioctl. The handle associated
by this ioctl can be retrieved using SIO_TRANSLATE_HANDLE.

A companion interface might be used, for example, if a particular provider provides (1) a
great deal of additional controls over the behavior of a socket and (2) the controls are
provider-specific enough that they do not map to existing Windows Socket functions or
ones likely to be defined in the future. It is recommend that the Component Object Model
(COM) be used instead of this ioctl to discover and track other interfaces that might be
supported by a socket. This ioctl is present for (reverse) compatibility with systems where
COM is not available or cannot be used for some other reason.

SIO_ENABLE_CIRCULAR_QUEUEING (opcode setting: V, T==1)
Indicates to the underlying message-oriented service provider that a newly arrived message
should never be dropped because of a buffer queue overflow. Instead, the oldest message in
the queue should be eliminated in order to accommodate the newly arrived message. No
input and output buffers are required. Note that this ioctl is only valid for sockets associated
with unreliable, message-oriented protocols. The WSAENOPROTOOPT error code is
indicated for service providers that do not support this ioctl.

SIO_FIND_ROUTE (opcode setting: O, T==1)
When issued, this ioctl requests that the route to the remote address specified as a
SOCKADDR in the input buffer be discovered. If the address already exists in the local
cache, its entry is invalidated. In the case of Novell's IPX, this call initiates an IPX
GetLocalTarget (GLT), which queries the network for the given remote address.

SIO_FLUSH (opcode setting: V, T==1)
Discards current contents of the sending queue associated with this socket. No input and
output buffers are required. The WSAENOPROTOOPT error code is indicated for service
providers that do not support this ioctl.

SIO_GET_BROADCAST_ADDRESS (opcode setting: O, T==1)
This ioctl fills the output buffer with a SOCKADDR structure containing a suitable
broadcast address for use with sendto/WSASendTo.

SIO_GET_EXTENSION_FUNCTION_POINTER (opcode setting: O, I, T==1)
Retrieve a pointer to the specified extension function supported by the associated service
provider. The input buffer contains a globally unique identifier (GUID) whose value
identifies the extension function in question. The pointer to the desired function is returned
in the output buffer. Extension function identifiers are established by service provider
vendors and should be included in vendor documentation that describes extension function
capabilities and semantics.

SIO_GET_QOS (opcode setting: O, T==1)
Reserved for future use with sockets. Retrieve the QUALITYOFSERVICE structure
associated with the socket. The input buffer is optional. Some protocols (for example,
RSVP) allow the input buffer to be used to qualify a quality of service request. The

Legal Information Page 212 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QUALITYOFSERVICE structure will be copied into the output buffer. The output buffer
must be sized large enough to be able to contain the full QUALITYOFSERVICE
structure. The WSAENOPROTOOPT error code is indicated for service providers that do
not support quality of service.

SIO_GET_GROUP_QOS (opcode setting: O, I, T==1)
Retrieve the QUALITYOFSERVICE structure associated with the socket group to which
this socket belongs. The input buffer is optional. Some protocols (for example, RSVP)
allow the input buffer to be used to qualify a quality of service request. The
QUALITYOFSERVICE structure will be copied into the output buffer. If this socket does
not belong to an appropriate socket group, the SendingFlowspec and ReceivingFlowspec
fields of the returned QUALITYOFSERVICE structure are set to NULL. The
WSAENOPROTOOPT error code is indicated for service providers that do not support
quality of service.

SIO_MULTIPOINT_LOOPBACK (opcode setting: I, T==1)
Controls whether data sent in a multipoint session will also be received by the same socket
on the local host. A value of TRUE causes loopback reception to occur while a value of
FALSE prohibits this. By default, loopback is enabled.

SIO_MULTICAST_SCOPE (opcode setting: I, T==1)
Specifies the scope over which multicast transmissions will occur. Scope is defined as the
number of routed network segments to be covered. A scope of zero would indicate that the
multicast transmission would not be placed "on the wire" but could be disseminated across
sockets within the local host. A scope value of one (the default) indicates that the
transmission will be placed on the wire, but will not cross any routers. Higher scope values
determine the number of routers that can be crossed. Note that this corresponds to the time-
to-live (TTL) parameter in IP multicasting. By default, scope is 1.

SIO_SET_QOS (opcode setting: I, T==1)
Associate the supplied QUALITYOFSERVICE structure with the socket. No output
buffer is required, the QUALITYOFSERVICE structure will be obtained from the input
buffer. The WSAENOPROTOOPT error code is indicated for service providers that do not
support quality of service.

SIO_SET_GROUP_QOS(opcode setting: I, T==1)
Reserved for future use with sockets. Establish the supplied QUALITYOFSERVICE
structure with the socket group to which this socket belongs. No output buffer is required,
the QUALITYOFSERVICE structure will be obtained from the input buffer. The
WSAENOPROTOOPT error code is indicated for service providers that do not support
quality of service, or if the socket descriptor specified is not the creator of the associated
socket group.

SIO_TRANSLATE_HANDLE (opcode setting: I, O, T==1)
To obtain a corresponding handle for socket s that is valid in the context of a companion
interface (for example, TH_NETDEV and TH_TAPI). A manifest constant identifying the
companion interface along with any other needed parameters are specified in the input
buffer. The corresponding handle will be available in the output buffer upon completion of
this function. Refer to the appropriate section in Windows Sockets 2 Protocol-Specific
Annex for details specific to a particular companion interface. The WSAENOPROTOOPT
error code is indicated for service providers that do not support this ioctl for the specified
companion interface.This ioctl retrieves the handle associated using
SIO_TRANSLATE_HANDLE.

It is recommend that the Component Object Model (COM) be used instead of this ioctl to
discover and track other interfaces that might be supported by a socket. This ioctl is present
for (reverse) compatibility with systems where COM is not available or cannot be used for
some other reason.

SIO_ROUTING_INTERFACE_QUERY (opcode setting: I, O, T==1)

Legal Information Page 213 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

To obtain the address of the local interface (represented as SOCKADDR structure) which
should be used to send to the remote address specified in the input buffer (as
SOCKADDR). Remote multicast addresses may be submitted in the input buffer to get the
address of the preferred interface for multicast transmission. In any case, the interface
address returned may be used by the application in a subsequent bind() request.

Note that routes are subject to change. Therefore, applications cannot rely on the
information returned by SIO_ROUTING_INTERFACE_QUERY to be persistent.
Applications may register for routing change notifications via the
SIO_ROUTING_INTERFACE_CHANGE IOCTL which provides for notification via
either overlapped IO or FD_ROUTING_INTERFACE_CHANGE event. The following
sequence of actions can be used to guarantee that the application always has current routing
interface information for a given destination:

issue SIO_ROUTING_INTERFACE_CHANGE IOCTL
issue SIO_ROUTING_INTERFACE_QUERY IOCTL
whenever SIO_ROUTING_INTERFACE_CHANGE IOCTL notifies the application
of routing change (either via overlapped IO or by signaling
FD_ROUTING_INTERFACE_CHANGE event), the whole sequence of actions
should be repeated.

If output buffer is not large enough to contain the interface address, SOCKET_ERROR is
returned as the result of this IOCTL and WSAGetLastError returns WSAEFAULT. The
required size of the output buffer will be returned in lpcbBytesReturned in this case. Note
the WSAEFAULT error code is also returned if the lpvInBuffer, lpvOutBuffer or
lpcbBytesReturned parameter is not totally contained in a valid part of the user address
space.

If the destination address specified in the input buffer cannot be reached via any of the
available interfaces, SOCKET_ERROR is returned as the result of this IOCTL and
WSAGetLastError returns WSAENETUNREACH or even WSAENETDOWN if all of
the network connectivity is lost.

SIO_ROUTING_INTERFACE_CHANGE (opcode setting: I, T==1)
To receive notification of the interface change that should be used to reach the remote
address in the input buffer (specified as a SOCKADDR structure). No output information
will be provided upon completion of this IOCTL; the completion merely indicates that
routing interface for a given destination has changed and should be queried again via
SIO_ROUTING_INTERFACE_QUERY.

It is assumed (although not required) that the application uses overlapped IO to be notified
of routing interface change via completion of SIO_ROUTING_INTERFACE_CHANGE
request. Alternatively, if the SIO_ROUTING_INTERFACE_CHANGE IOCTL is issued on
non-blocking socket and without overlapped parameters (lpOverlapped /
CompletionRoutine are set NULL), it will complete immediately with error
WSAEWOULDBLOCK, and the application can then wait for routing change events via
call to WSAEventSelect or WSAAsyncSelect with
FD_ROUTING_INTERFACE_CHANGE bit set in the network event bitmask

It is recognized that routing information remains stable in most cases so that requiring the
application to keep multiple outstanding IOCTLs to get notifications about all destinations
that it is interested in as well as having service provider to keep track of all them will
unnecessarily tie significant system resources. This situation can be avoided by extending
the meaning of the input parameters and relaxing the service provider requirements as
follows:

Legal Information Page 214 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

The application can specify a protocol family specific wildcard address (same as one
used in bind call when requesting to bind to any available address) to request
notifications of any routing changes. This allows the application to keep only one
outstanding SIO_ROUTING_INTERFACE_CHANGE for all the
sockets/destinations it has and then use SIO_ROUTING_INTERFACE_QUERY to
get the actual routing information
Service provider has the option to ignore the information supplied by the application
in the input buffer of the SIO_ROUTING_INTERFACE_CHANGE (as though the
application specified a wildcard address) and complete the
SIO_ROUTING_INTERFACE_CHANGE IOCTL or signal
FD_ROUTING_INTERFACE_CHANGE event in the event of any routing
information change (not just the route to the destination specified in the input buffer).

SIO_ADDRESS_LIST_QUERY (opcode setting: I, O, T==1)
To obtain a list of local transport addresses of socket's protocol family to which the
application can bind. The list returned in the output buffer using the following format:

typedef struct _SOCKET_ADDRESS_LIST {
 INT iAddressCount;
 SOCKET_ADDRESS Address[1];
} SOCKET_ADDRESS_LIST, FAR * LPSOCKET_ADDRESS_LIST;
Members:
 iAddressCount - number of address structures in the list;
 Address - array of protocol family specific address structures.

Note that in Win32 Plug-n-Play environments addresses can be added/removed
dynamically. Therefore, applications cannot rely on the information returned by
SIO_ADDRESS_LIST_QUERY to be persistent. Applications may register for address
change notifications via the SIO_ADDRESS_LIST_CHANGE IOCTL which provides for
notification via either overlapped IO or FD_ADDRESS_LIST_CHANGE event. The
following sequence of actions can be used to guarantee that the application always has
current address list information:• issue SIO_ADDRESS_LIST_CHANGE IOCTL

issue SIO_ADDRESS_LIST_QUERY IOCTL
whenever SIO_ADDRESS_LIST_CHANGE IOCTL notifies the application of
address list change (either via overlapped IO or by signaling
FD_ADDRESS_LIST_CHANGE event), the whole sequence of actions should be
repeated.

If output buffer is not large enough to contain the address list, SOCKET_ERROR is
returned as the result of this IOCTL and WSAGetLastError returns WSAEFAULT. The
required size of the output buffer will be returned in lpcbBytesReturned in this case. Note
the WSAEFAULT error code is also returned if the lpvInBuffer, lpvOutBuffer or
lpcbBytesReturned parameter is not totally contained in a valid part of the user address
space.

SIO_ADDRESS_LIST_CHANGE (opcode setting: T==1)
To receive notification of changes in the list of local transport addresses of socket's protocol
family to which the application can bind. No output information will be provided upon
completion of this IOCTL; the completion merely indicates that list of available local
address has changed and should be queried again via SIO_ADDRESS_LIST_QUERY.

It is assumed (although not required) that the application uses overlapped IO to be notified
of change via completion of SIO_ADDRESS_LIST_CHANGE request. Alternatively, if the
SIO_ADDRESS_LIST_CHANGE IOCTL is issued on non-blocking socket AND without
overlapped parameters (lpOverlapped / lpCompletionRoutine are set to NULL), it will
complete immediately with error WSAEWOULDBLOCK. The application can then wait

Legal Information Page 215 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

for address list change events via call to WSAEventSelect or WSAAsyncSelect with
FD_ADDRESS_LIST_CHANGE bit set in the network event bitmask.

If an overlapped operation completes immediately, WSAIoctl returns a value of zero and the
lpcbBytesReturned parameter is updated with the number of bytes in the output buffer. If the
overlapped operation is successfully initiated and will complete later, this function returns
SOCKET_ERROR and indicates error code WSA_IO_PENDING. In this case,
lpcbBytesReturned is not updated. When the overlapped operation completes the amount of data
in the output buffer is indicated either through the cbTransferred parameter in the completion
routine (if specified), or through the lpcbTransfer parameter in WSAGetOverlappedResult.

When called with an overlapped socket, the lpOverlapped parameter must be valid for the
duration of the overlapped operation. The lpOverlapped parameter contains the address of a
WSAOVERLAPPED structure.

If the lpCompletionRoutine parameter is NULL, the hEvent field of lpOverlapped is signaled
when the overlapped operation completes if it contains a valid event object handle. An application
can use WSAWaitForMultipleEvents or WSAGetOverlappedResult to wait or poll on the
event object.

If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the
application to pass context information to the completion routine. A caller that passes a non-
NULL lpCompletionRoutine and later calls WSAGetOverlappedResult for the same overlapped
IO request may not set the fWait parameter for that invocation of WSAGetOverlappedResult to
TRUE. In this case the usage of the hEvent field is undefined, and attempting to wait on the
hEvent field would produce unpredictable results.

The prototype of the completion routine is as follows:

void CALLBACK CompletionRoutine(
 IN DWORD dwError,
 IN DWORD cbTransferred,
 IN LPWSAOVERLAPPED lpOverlapped,
 IN DWORD dwFlags
);

This CompletionRoutine is a placeholder for an application-defined or library-defined function.
The dwError parameter specifies the completion status for the overlapped operation as indicated
by lpOverlapped. The cbTransferred parameter specifies the number of bytes returned. Currently,
there are no flag values defined and dwFlags will be zero. The CompletionRoutine function does
not return a value.

Returning from this function allows invocation of another pending completion routine for this
socket. The completion routines can be called in any order, not necessarily in the same order the
overlapped operations are completed.

Windows CE: For secure sockets, the lpcbBytesReturned parameter is a pointer to a DWORD
receiving the number of bytes returned in output buffer. Also, the last two parameters, namely,
lpOverlapped and lpCompletionRoutine, must be NULL.

In addition to the ioctlsocket control codes (FIONBIO, SIOCATMARK, FIONREAD), the
dwIoControlCode parameter may also assume the following SSL-specific control flags:

Legal Information Page 216 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Value Meaning

SO_SSL_GET_CAPABILITIES Retrieves a set of flags describing the WinSock securit
capabilities. The output buffer must be a pointer to a D
field. At present, only the SO_CAP_CLIENT flag is de

SO_SSL_GET_FLAGS Retrieves s-channel specific flags associated with a par
socket. The output buffer must be a pointer to a DWOR
See SO_SSL_SET_FLAGS for details on valid flags.

SO_SSL_SET_FLAGS Sets the sockets' current s-channel-specific flag values.
buffer must be a pointer to a DWORD bit field. Curren
SSL_FLAG_DEFER_HANDSHAKE flag is defined to
application to send and receive plain text data before sw
cipher text. It is required for setting up communication
proxy servers.

Normally the WinSock security provider performs the
handshake in the WinSock connect API. However, if th
set, the handshake is deferred until the application issu
SO_SSL_PERFORM_HANDSHAKE control code. A
handshaking, this flag is reset.

SO_SSL_GET_PROTOCOLS Retrieves a list of protocols that the provider currently
this socket. The output buffer must be a pointer to a
SSLPROTOCOLS structure as described below:

typedef struct _SSLPROTOCOL {
 DWORD dwProtocol;
 DWORD dwVersion;
 DWORD dwFlags;
} SSLPROTOCOL, *LPSSLPROTOCOL;
typedef struct _SSLPROTOCOLS {
 DWORD dwCount;
 SSLPROTOCOL ProtocolList[1];
} SSLPROTOCOLS, FAR *LPSSLPROTOCOLS;

Valid protocols include SSL_PROTOCOL_SSL2,
SSL_PROTOCOL_SSL3, and SSL_PROTOCOL_PCT

SO_SSL_SET_PROTOCOLS Specifies a list of protocols the provider is to support o
socket. The input buffer must be a pointer to SSLPROT
structure described above.

SO_SSL_SET_VALIDATE_CERT_HOOK Sets the pointer to the socket's certificate validation ho
to specify the callback function invoked by the WinSoc
provider when a set of credentials is received from the
party. The input buffer must be a pointer to the
SSLVALIDEATECERTHOOK structure, described be

typedef struct {
 SSLVALIDATECERTFUNC HookFunc;
 LPVOID pvArg;
} SSLVALIDATEPROTOCOLCERTHOOK, *PSSLVALIDATE

where HookFunc is a pointer to the certificate validatio
function (see "Certificate Validation Callback" below).
pointer to application specific data and may be used by
application for any purpose.

Legal Information Page 217 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Certificate Validation Callback

The WinSock security provider invokes the certificate validation callback when the remote party
receives a certificate for server authentication. All the client applications must implement the
callback function to ensure that the certificate should meet the following minimum requirements:

The certificate has not expired;
The identity contained within the certificate matches that of the remote party.

The certificate validation callback function is of the following type:

typedef int (CALLBACK *SSLVALIDATECERTFUNC){
 DWORD dwType, // in
 LPVOID pvArg, // in
 DWORD dwChainLen, // in
 LPBLOB pCertChain, // in
 DWORD dwFlags // in
};

The parameters are defined in the following table.

The application-defined callback function will typically return one of the following error codes:

SO_SSL_PERFORM_HANDSHAKE Initiates the secure handshake sequence on a connected
where the SSL_FLAG_DEFER_HANDSHAKE flag h
prior to the connection. Data buffers are not required, b
SSL_FLAG_DEFER_HANDSHAKE flag will be rese

Parameters Meaning

dwType Specifies the type of data pointed to be pCertChain. This must be
SSL_CERT_X59 to specify that pCertChain be a pointer to an X509 style
certificate.

PvArg An application-defined context passed into the
SSLVALIDATECERTHOOK structure.

DwChainLen The number of certificates pointed to by pCertChain. In Windows CE this
will always be one.

PCertChain Pointer to the remote party's certificate.

DwFlags To be designed to indicate that the certificate issuer list has been checked
with the list of known certificate authorities and that the certificate is either
trusted or not. This is required since not all the certificate chain is passed to
the application.

Value Meaning

SSL_ERR_OKAY The remote party's certificate is acceptable.

SSL_ERR_BAD_DATA The certificate is improperly formatted.

SSL_ERR_BAD_SIG The signature check fails.

SSL_ERR_CERT_EXPIRED The certificate has expired.

SSL_ERR_CERT_REVOKED The certificate has been revoked by its issuer.

Legal Information Page 218 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Compatibility

The ioctl codes with T == 0 are a subset of the ioctl codes used in Berkeley sockets. In particular,
there is no command that is equivalent to FIOASYNC.

Return Values

Upon successful completion, the WSAIoctl returns zero. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code can be retrieved by calling
WSAGetLastError.

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

getsockopt, ioctlsocket, setsockopt, socket, WSASocket

SSL_ERR_CERT_UNKNOWN The issuer of the certificate is not recognized or some
unspecified issue arose in the processing of the
certificate, rendering it unacceptable.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The lpvInBuffer, lpvOutBuffer lpcbBytesReturned,
lpOverlapped, or lpCompletionRoutine argument is not
totally contained in a valid part of the user address
space, or the cbInBuffer or cbOutBuffer argument is too
small.

WSAEINVAL dwIoControlCode is not a valid command, or a supplied
input parameter is not acceptable, or the command is not
applicable to the type of socket supplied.

WSAEINPROGRESS The function is invoked when a callback is in progress.

WSAENOTSOCK The descriptor s is not a socket.

WSAEOPNOTSUPP The specified ioctl command cannot be realized. (For
examle, the FLOWSPEC structures specified in
SIO_SET_QOS or SIO_SET_GROUP_QOS cannot be
satisfied.)

WSA_IO_PENDING An overlapped operation was successfully initiated and
completion will be indicated at a later time.

WSAEWOULDBLOCK The socket is marked as nonblocking and the requested
operation would block.

Legal Information Page 219 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

WSAIsBlocking
This function has been removed in compliance with the Windows Sockets 2 specification,
revision 2.2.0.

The function is not exported directly by the WS2_32.DLL, and Windows Sockets 2 applications
should not use this function. Windows Sockets 1.1 applications that call this function are still
supported through the WINSOCK.DLL and WSOCK32.DLL.

Blocking hooks are generally used to keep a single-threaded GUI application responsive during
calls to blocking functions. Instead of using blocking hooks, an applications should use a separate
thread (separate from the main GUI thread) for network activity.

WSAJoinLeaf
The Windows Sockets WSAJoinLeaf function joins a leaf node into a multipoint session,
exchanges connect data, and specifies needed quality of service based on the supplied
FLOWSPEC structures.

SOCKET WSAJoinLeaf (
 SOCKET s,
 const struct sockaddr FAR * name,
 int namelen,
 LPWSABUF lpCallerData,
 LPWSABUF lpCalleeData,
 LPQOS lpSQOS,
 LPQOS lpGQOS,
 DWORD dwFlags
);

Parameters

s
[in] A descriptor identifying a multipoint socket.

name
[in] The name of the peer to which the socket is to be joined.

namelen
[in] The length of the name.

lpCallerData
[in] A pointer to the user data that is to be transferred to the peer during multipoint session
establishment.

lpCalleeData
[out] A pointer to the user data that is to be transferred back from the peer during multipoint
session establishment.

lpSQOS
[in] A pointer to the FLOWSPEC structures for socket s, one for each direction.

lpGQOS

Legal Information Page 220 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

[in] Reserved for future use with socket groups. A pointer to the FLOWSPEC structures
for the socket group (if applicable).

dwFlags
[in] Flags to indicate that the socket is acting as a sender, receiver, or both.

Remarks

The WSAJoinLeaf function is used to join a leaf node to a multipoint session, and to perform a
number of other ancillary operations that occur at session join time as well. If the socket, s, is
unbound, unique values are assigned to the local association by the system, and the socket is
marked as bound.

The WSAJoinLeaf function has the same parameters and semantics as WSAConnect except that
it returns a socket descriptor (as in WSAAccept), and it has an additional dwFlags parameter.
Only multipoint sockets created using WSASocket with appropriate multipoint flags set can be
used for input parameter s in this function. The returned socket descriptor will not be useable until
after the join operation completes. For example, if the socket is in nonblocking mode after a
corresponding FD_CONNECT indication has been received from WSAAsyncSelect or
WSAEventSelect on the original socket s, except that closesocket may be invoked on this new
socket descriptor to cancel a pending join operation. A root application in a multipoint session
may call WSAJoinLeaf one or more times in order to add a number of leaf nodes, however at
most one multipoint connection request may be outstanding at a time. Refer to Multipoint and
Multicast Semantics for additional information.

For nonblocking sockets it is often not possible to complete the connection immediately. In such a
case, this function returns an as-yet unusable socket descriptor and the operation proceeds. There
is no error code such as WSAEWOULDBLOCK in this case, since the function has effectively
returned a "successful start" indication. When the final outcome success or failure becomes
known, it may be reported through WSAAsyncSelect or WSAEventSelect depending on how the
client registers for notification on the original socket s. In either case, the notification is
announced with FD_CONNECT and the error code associated with the FD_CONNECT indicates
either success or a specific reason for failure. The select function cannot be used to detect
completion notification for WSAJoinLeaf.

The socket descriptor returned by WSAJoinLeaf is different depending on whether the input
socket descriptor, s, is a c_root or a c_leaf. When used with a c_root socket, the name parameter
designates a particular leaf node to be added and the returned socket descriptor is a c_leaf socket
corresponding to the newly added leaf node. The newly created socket has the same properties as
s including asynchronous events registered with WSAAsyncSelect or with WSAEventSelect, but
not including the c_root socket's group ID, if any. It is not intended to be used for exchange of
multipoint data, but rather is used to receive network event indications (for example, FD_CLOSE)
for the connection that exists to the particular c_leaf. Some multipoint implementations can also
allow this socket to be used for "side chats" between the root and an individual leaf node. An
FD_CLOSE indication will be received for this socket if the corresponding leaf node calls
closesocket to drop out of the multipoint session. Symmetrically, invoking closesocket on the
c_leaf socket returned from WSAJoinLeaf will cause the socket in the corresponding leaf node to
get FD_CLOSE notification.

When WSAJoinLeaf is invoked with a c_leaf socket, the name parameter contains the address of
the root application (for a rooted control scheme) or an existing multipoint session (nonrooted
control scheme), and the returned socket descriptor is the same as the input socket descriptor. In
other words, a new socket descriptor is not allocated. In a rooted control scheme, the root
application would put its c_root socket in the listening mode by calling listen. The standard

Legal Information Page 221 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

FD_ACCEPT notification will be delivered when the leaf node requests to join itself to the
multipoint session. The root application uses the usual accept/WSAAccept functions to admit the
new leaf node. The value returned from either accept or WSAAccept is also a c_leaf socket
descriptor just like those returned from WSAJoinLeaf. To accommodate multipoint schemes that
allow both root-initiated and leaf-initiated joins, it is acceptable for a c_root socket that is already
in listening mode to be used as an input to WSAJoinLeaf.

The application is responsible for allocating any memory space pointed to directly or indirectly by
any of the parameters it specifies.

The lpCallerData is a value parameter that contains any user data that is to be sent along with the
multipoint session join request. If lpCallerData is NULL, no user data will be passed to the peer.
The lpCalleeData is a result parameter that will contain any user data passed back from the peer
as part of the multipoint session establishment. The lpCalleeData->len initially contains the
length of the buffer allocated by the application and pointed to by lpCalleeData->buf.
lpCalleeData->len will be set to zero if no user data has been passed back. The lpCalleeData
information will be valid when the multipoint join operation is complete. For blocking sockets,
this will be when the WSAJoinLeaf function returns. For nonblocking sockets, this will be after
the join operation has completed. For example, this could occur after FD_CONNECT notification
on the original socket s). If lpCalleeData is NULL, no user data will be passed back. The exact
format of the user data is specific to the address family to which the socket belongs.

At multipoint session establishment time, an application can use the lpSQOS and/or lpGQOS
parameters to override any previous quality of service specification made for the socket through
WSAIoctl with either the SIO_SET_QOS or SIO_SET_GROUP_QOS opcodes.

The lpSQOS parameter specifies the FLOWSPEC structures for socket s, one for each direction,
followed by any additional provider-specific parameters. If either the associated transport provider
in general or the specific type of socket in particular cannot honor the quality of service request,
an error will be returned as indicated below. The sending or receiving flow specification values
will be ignored, respectively, for any unidirectional sockets. If no provider-specific parameters are
supplied, the buf and len fields of lpSQOS->ProviderSpecific should be set to NULL and zero,
respectively. A NULL value for lpSQOS indicates no application supplied quality of service.

Reserved for future socket groups. The lpGQOS parameter specifies the FLOWSPEC structures
for the socket group (if applicable), one for each direction, followed by any additional provider-
specific parameters. If no provider-specific parameters are supplied, the buf and len fields of
lpGQOS->ProviderSpecific should be set to NULL and zero, respectively. A NULL value for
lpGQOS indicates no application-supplied group quality of service. This parameter will be
ignored if s is not the creator of the socket group.

The dwFlags parameter is used to indicate whether the socket will be acting only as a sender
(JL_SENDER_ONLY), only as a receiver (JL_RECEIVER_ONLY), or both (JL_BOTH).

When connected sockets break (that is, become closed for whatever reason), they should be
discarded and recreated. It is safest to assume that when things go awry for any reason on a
connected socket, the application must discard and recreate the needed sockets in order to return
to a stable point.

Return Values

If no error occurs, WSAJoinLeaf returns a value of type SOCKET that is a descriptor for the
newly created multipoint socket. Otherwise, a value of INVALID_SOCKET is returned, and a

Legal Information Page 222 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

specific error code can be retrieved by calling WSAGetLastError.

On a blocking socket, the return value indicates success or failure of the join operation.

With a nonblocking socket, successful initiation of a join operation is indicated by a return of a
valid socket descriptor. Subsequently, an FD_CONNECT indication will be given on the original
socket s when the join operation completes, either successfully or otherwise. The application must
use either WSAAsyncSelect or WSAEventSelect with interest registered for the FD_CONNECT
event in order to determine when the join operation has completed and checks the associated error
code to determine the success or failure of the operation. The select function cannot be used to
determine when the join operation completes.

Also, until the multipoint session join attempt completes all subsequent calls to WSAJoinLeaf on
the same socket will fail with the error code WSAEALREADY. After the WSAJoinLeaf
operation completes successfully, a subsequent attempt will usually fail with the error code
WSAEISCONN. An exception to the WSAEISCONN rule occurs for a c_root socket that allows
root-initiated joins. In such a case, another join may be initiated after a prior WSAJoinLeaf
operation completes.

If the return error code indicates the multipoint session join attempt failed (that is,
WSAECONNREFUSED, WSAENETUNREACH, WSAETIMEDOUT) the application can call
WSAJoinLeaf again for the same socket.

Error Codes

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEADDRINUSE The socket's local address is already in use and the
socket was not marked to allow address reuse with
SO_REUSEADDR. This error usually occurs at the
time of bind, but could be delayed until this function if
the bind was to a partially wild-card address (involving
ADDR_ANY) and if a specific address needs to be
"committed" at the time of this function.

WSAEINTR A blockingWindows Socket 1.1 call was canceled
through WSACancelBlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAEALREADY A nonblocking WSAJoinLeaf call is in progress on the
specified socket.

WSAEADDRNOTAVAIL The remote address is not a valid address (such as
ADDR_ANY).

WSAEAFNOSUPPORT Addresses in the specified family cannot be used with
this socket.

WSAECONNREFUSED The attempt to join was forcefully rejected.

Legal Information Page 223 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

accept, bind, select, WSAAccept, WSAAsyncSelect, WSAEventSelect, WSASocket

WSALookupServiceBegin
The Windows Sockets WSALookupServiceBegin function initiates a client query that is
constrained by the information contained within a WSAQUERYSET structure.
WSALookupServiceBegin only returns a handle, which should be used by subsequent calls to
WSALookupServiceNext to get the actual results.

INT WSALookupServiceBegin (
 LPWSAQUERYSET lpqsRestrictions,
 DWORD dwControlFlags,
 LPHANDLE lphLookup
);

Parameters

lpqsRestrictions
[in] A pointer to the search criteria. See below for details.

WSAEFAULT The name or the namelen parameter is not a valid part of
the user address space, the namelen parameter is too
small, the buffer length for lpCalleeData, lpSQOS, and
lpGQOS are too small, or the buffer length for
lpCallerData is too large.

WSAEISCONN The socket is already member of the multipoint session.

WSAENETUNREACH The network cannot be reached from this host at this
time.

WSAENOBUFS No buffer space is available. The socket cannot be
joined.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP The FLOWSPEC structures specified in lpSQOS and
lpGQOS cannot be satisfied.

WSAEPROTONOSUPPORT The lpCallerData augment is not supported by the
service provider.

WSAETIMEDOUT Attempt to join timed out without establishing a
multipoint session.

Legal Information Page 224 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

dwControlFlags
[in] A flag that controls the depth of the search.

lphLookup
[out] A handle to be used when calling WSALookupServiceNext in order to start
retrieving the results set.

Remarks

If LUP_CONTAINERS is specified in a call, all other restriction values should be avoided. If any
are supplied, it is up to the name service provider to decide if it can support this restriction over
the containers. If it cannot, it should return an error.

Some name service providers can have other means of finding containers. For example, containers
might all be of some well-known type, or of a set of well-known types, and therefore a query
restriction can be created for finding them. No matter what other means the name service provider
has for locating containers, LUP_CONTAINERS and LUP_NOCONTAINERS take precedence.
Hence, if a query restriction is given that includes containers, specifying LUP_NOCONTAINERS

LUP_DEEP Query deep as opposed to just the first level.

LUP_CONTAINERS Return containers only

LUP_NOCONTAINERS Do not return any containers

LUP_FLUSHCACHE If the provider has been caching information,
ignore the cache and go query the name space
itself.

LUP_FLUSHPREVIOUS Used as a value for the dwControlFlags
argument in WSALookupServiceNext. Setting
this flag instructs the provider to discard the last
result set, which was too large for the supplied
buffer, and move on to the next result set.

LUP_NEAREST If possible, return results in the order of
distance. The measure of distance is provider
specific.

LUP_RES_SERVICE This indicates whether prime response is in the
remote or local part of CSADDR_INFO
structure. The other part needs to be "usable" in
either case.

LUP_RETURN_ALIASES Any available alias information is to be returned
in successive calls to
WSALookupServiceNext, and each alias
returned will have the RESULT_IS_ALIAS flag
set.

LUP_RETURN_NAME Retrieve the nameas lpszServiceInstanceName.

LUP_RETURN_TYPE Retrieve the type as lpServiceClassId.

LUP_RETURN_VERSION Retrieve the version as lpVersion.

LUP_RETURN_COMMENT Retrieve the comment as lpszComment.

LUP_RETURN_ADDR Retrieve the addresses as lpcsaBuffer.

LUP_RETURN_BLOB Retrieve the private data as lpBlob.

LUP_RETURN_ALL Retrieve all of the information

Legal Information Page 225 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

will prevent the container items from being returned. Similarly, no matter the query restriction, if
LUP_CONTAINERS is given, only containers should be returned. If a name space does not
support containers, and LUP_CONTAINERS is specified, it should simply return
WSANO_DATA.

The preferred method of obtaining the containers within another container, is the call:

dwStatus = WSALookupServiceBegin(
 lpqsRestrictions,
 LUP_CONTAINERS,
 lphLookup);

This call is followed by the requisite number of WSALookupServiceNext calls. This will return
all containers contained immediately within the starting context; that is, it is not a deep query.
With this, one can map the address space structure by walking the hierarchy, perhaps enumerating
the content of selected containers. Subsequent uses of WSALookupServiceBegin use the
containers returned from a previous call.

As mentioned above, a WSAQUERYSET structure is used as an input parameter to
WSALookupBegin in order to qualify the query. The following table indicates how the
WSAQUERYSET is used to construct a query. When a field is marked as (Optional) a NULL
pointer can be supplied, indicating that the field will not be used as a search criteria. See section
Query-Related Data Structures for additional information.

WSAQUERYSET Field Name Query Interpretation

dwSize Must be set to sizeof(WSAQUERYSET). This is a
versioning mechanism.

DwOutputflags Ignored for queries.

LpszServiceInstanceName (Optional) Referenced string contains service
name. The semantics for wildcarding within the
string are not defined, but can be supported by
certain name space providers.

LpServiceClassId (Required) The GUID corresponding to the service
class.

LpVersion (Optional) References desired version number and
provides version comparison semantics (that is,
version must match exactly, or version must be not
less than the value supplied).

LpszComment Ignored for queries.

DwNameSpace1 Identifier of a single name space in which to
constrain the search, or NS_ALL to include all
name spaces.

LpNSProviderId (Optional) References the GUID of a specific name
space provider, and limits the query to this provider
only.

LpszContext (Optional) Specifies the starting point of the query
in a hierarchical name space.

DwNumberOfProtocols Size of the protocol constraint array, can be zero.

Legal Information Page 226 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Important In most instances, applications interested in only a particular transport protocol should
constrain their query by address family and protocol rather than by name space. This would allow
an application that needs to locate a TCP/IP service, for example, to have its query processed by
all available name spaces such as the local hosts file, DNS, and NIS.

Return Values

The return value is zero if the operation was successful. Otherwise, the value SOCKET_ERROR
is returned, and a specific error number can be retrieved by calling WSAGetLastError.

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

WSALookupServiceEnd, WSALookupServiceNext

LpafpProtocols (Optional) References an array of
AFPROTOCOLS structure. Only services that
utilize these protocols will be returned.

LpszQueryString (Optional) Some namespaces (such as whois++)
support enriched SQL like queries that are
contained in a simple text string. This parameter is
used to specify that string.

DwNumberOfCsAddrs Ignored for queries.

LpcsaBuffer Ignored for queries.

LpBlob (Optional) This is a pointer to a provider-specific
entity.

1 See the Important note below

WSAEINVAL One ormore parameters were missing or invalid for
this provider.

WSANO_DATA The name was found in the database but no data
matching the given restrictions was located.

WSANOTINITIALIZED The WS2_32.DLL has not been initialized. The
application must first call WSAStartup before
calling any Windows Sockets functions.

WSASERVICE_NOT_FOUND No such service is known. The service cannot be
found in the specified name space.

WSA NOT ENOUGH MEMORY There was insufficient memory to perform the
operation.

Legal Information Page 227 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

WSALookupServiceEnd
The Windows Sockets WSALookupServiceEnd function is called to free the handle after
previous calls to WSALookupServiceBegin and WSALookupServiceNext.

If you call WSALookupServiceEnd from another thread while an existing
WSALookupServiceNext is blocked, the end call will have the same effect as a cancel and will
cause the WSALookupServiceNext call to return immediately.

INT WSALookupServiceEnd (
 HANDLE hLookup
);

Parameters

hLookup
[in] A handle previously obtained by calling WSALookupServiceBegin.

Return Values

The return value is zero if the operation was successful. Otherwise, the value SOCKET_ERROR
is returned, and a specific error number can be retrieved by calling WSAGetLastError.

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

WSALookupServiceBegin, WSALookupServiceNext

WSA_INVALID_HANDLE The handle is not valid

WSANOTINITIALIZED The WS2_32.DLL has not been initialized. The
application must first call WSAStartup before
calling any Windows Socketsfunctions.

WSA NOT ENOUGH MEMORY There was insufficient memory to perform the
operation.

Legal Information Page 228 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

WSALookupServiceNext
The Windows Sockets WSALookupServiceNext function is called after obtaining a handle from
a previous call to WSALookupServiceBegin in order to retrieve the requested service
information.

The provider will pass back a WSAQUERYSET structure in the lpqsResults buffer. The client
should continue to call this function until it returns WSA_E_NOMORE, indicating that all of
WSAQUERYSET has been returned.

INT WSALookupServiceNext (
 HANDLE hLookup,
 DWORD dwControlFlags,
 LPDWORD lpdwBufferLength,
 LPWSAQUERYSET lpqsResults
);

Parameters

hLookup
[in] A handle returned from the previous call to WSALookupServiceBegin.

dwControlFlags
[in] Flags to control the next operation. Currently only LUP_FLUSHPREVIOUS is defined
as a means to cope with a result set which is too large. If an application does not wish to (or
cannot) supply a large enough buffer, setting LUP_FLUSHPREVIOUS instructs the
provider to discard the last result set - which was too large - and move on to the next set for
this call.

lpdwBufferLength
[in/out] On input, the number of bytes contained in the buffer pointed to by lpqsResults. On
output, if the function fails and the error is WSAEFAULT, then it contains the minimum
number of bytes to pass for the lpqsResults to retrieve the record.

lpqsResults
[out] A pointer to a block of memory, which will contain one result set in a
WSAQUERYSET structure on return.

Remarks

The dwControlFlags specified in this function and the ones specified at the time of
WSALookupServiceBegin are treated as "restrictions" for the purpose of combination. The
restrictions are combined between the ones at WSALookupServiceBegin time and the ones at
WSALookupServiceNext time. Therefore the flags at WSALookupServiceNext can never
increase the amount of data returned beyond what was requested at WSALookupServiceBegin,
although it is NOT an error to specify more or fewer flags. The flags specified at a given
WSALookupServiceNext apply only to that call.

The dwControlFlags LUP_FLUSHPREVIOUS and LUP_RES_SERVICE are exceptions to the
"combined restrictions" rule (because they are "behavior" flags instead of "restriction" flags). If
either of these flags are used in WSALookupServiceNext they have their defined effect
regardless of the setting of the same flags at WSALookupServiceBegin.

For example, if LUP_RETURN_VERSION is specified at WSALookupServiceBegin the service

Legal Information Page 229 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

provider retrieves records including the "version". If LUP_RETURN_VERSION is NOT
specified at WSALookupServiceNext, the returned information does not include the "version",
even though it was available. No error is generated.

Also for example, if LUP_RETURN_BLOB is NOT specified at WSALookupServiceBegin but
is specified at WSALookupServiceNext, the returned information does not include the private
data. No error is generated.

Query Results

The following table describes how the query results are represented in the WSAQUERYSET
structure.

WSAQUERYSET Field Name Result Interpretation

dwSize Will be set to sizeof(WSAQUERYSET). This is
used as a versioning mechanism.

DwOuputFlags RESULT_IS_ALIAS flag indicates this is an alias
result.

LpszServiceInstanceName Referenced string contains service name.

LpServiceClassId The GUID corresponding to the service class.

LpVersion References version number of the particular service
instance.

LpszComment Optional comment string supplied by service
instance.

DwNameSpace Name space in which the service instance was
found.

LpNSProviderId Identifies the specific name space provider that
supplied this query result.

LpszContext Specifies the context point in a hierarchical name
space at which the service is located.

DwNumberOfProtocols Undefined for results.

LpafpProtocols Undefined for results, all needed protocol
information is in the CSADDR_INFO structures.

LpszQueryString When dwControlFlags includes
LUP_RETURN_QUERY_STRING, this field
returns the unparsed remainder of the
lpszServiceInstanceName specified in the original
query. For example, in a name space that identifies
services by hierarchical names that specify a host
name and a file path within that host, the address
returned might be the host address and the
unparsed remainder might be the file path. If the
lpszServiceInstanceName is fully parsed and
LUP_RETURN_QUERY_STRING is used, this
field is NULL or points to a zero-length string.

DwNumberOfCsAddrs Indicates the number of elements in the array of
CSADDR_INFO structures.

Legal Information Page 230 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Return Values

The return value is zero if the operation was successful. Otherwise, the value SOCKET_ERROR
is returned, and a specific error number can be retrieved by calling WSAGetLastError.

Error Codes

LpcsaBuffer A pointer to an array of CSADDR_INFO
structures, with one complete transport address
contained within each element.

LpBlob (Optional) This is a pointer to a provider-specific
entity.

WSA_E_NO_MORE There is no more data available. In Windows
Sockets version 2, conflicting error codes are
defined for WSAENOMORE (10102) and
WSA_E_NO_MORE (10110). The error code
WSAENOMORE will be removed in a future
version and only WSA_E_NO_MORE will
remain. For Windows Sockets version 2, however,
applications should check for both
WSAENOMORE and WSA_E_NO_MORE for
the widest possible compatibility with Name
Space Providers that use either one.

WSA_E_CANCELLED A call to WSALookupServiceEnd was made
while this call was still processing. The call has
been canceled. The data in the lpqsResults buffer
is undefined. In Windows Sockets version 2,
conflicting error codes are defined for
WSAECANCELLED (10103) and
WSA_E_CANCELLED (10111). The error code
WSAECANCELLED will be removed in a future
version and only WSA_E_CANCELLED will
remain. For Windows Sockets version 2, however,
applications should check for both
WSAECANCELLED and
WSA_E_CANCELLED for the widest possible
compatibility with Name Space Providers that use
either one.

WSAEFAULT The lpqsResults buffer was too small to contain a
WSAQUERYSET set.

WSAEINVAL One or more required parameters were invalid or
missing.

WSA_INVALID_HANDLE The specified Lookup handle is invalid.

WSANOTINITIALIZED The WS2_32.DLL has not been initialized. The
application must first call WSAStartup before
calling any Windows Sockets functions.

WSANO_DATA The name was ound in the database, but no data
matching the given restrictions was located.

Legal Information Page 231 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

WSALookupServiceBegin, WSALookupServiceEnd

WSANtohl
The Windows Sockets WSANtohl function converts a u_long from network byte order to host
byte order.

int WSANtohl (
 SOCKET s,
 u_long netlong,
 u_long FAR * lphostlong
);

Parameters

s
[in] A descriptor identifying a socket.

netlong
[in] A 32-bit number in network byte order.

lphostlong
[out] A pointer to a 32-bit number in host byte order.

Remarks

The WSANtohl function takes a 32-bit number in the network byte order associated with socket s
and returns a 32-bit number pointed to by the lphostlong parameter in host byte order.

Return Values

If no error occurs, WSANtohl returns zero. Otherwise, a value of SOCKET_ERROR is returned,
and a specific error code can be retrieved by calling WSAGetLastError.

Error Codes

WSASERVICE_NOT_FOUND No such service is known. The service cannot be
found in the specified name space.

WSA NOT ENOUGH MEMORY There was insufficient memory to perform the
operation.

Legal Information Page 232 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

htonl, htons, ntohl, ntohs, WSAHtonl, WSAHtons, WSANtohs

WSANtohs
The Windows Sockets WSANtohs function converts a u_short from network byte order to host
byte order.

int WSANtohs (
 SOCKET s,
 u_short netshort,
 u_short FAR * lphostshort
);

Parameters

s
[in] A descriptor identifying a socket.

netshort
[in] A 16-bit number in network byte order.

lphostshort
[out] A pointer to a 16-bit number in host byte order.

Remarks

The WSANtohs function takes a 16-bit number in the network byte order associated with socket s
and returns a 16-bit number pointed to by the lphostshort parameter in host byte order.

Return Values

If no error occurs, WSANtohs returns zero. Otherwise, a value of SOCKET_ERROR is returned,

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAENOTSOCK The descriptor is not a socket.

WSAEFAULT The lphostlong parameter is not completely contained in
a valid part of the user address space.

Legal Information Page 233 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

and a specific error code can be retrieved by calling WSAGetLastError.

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

htonl, htons, ntohl, ntohs, WSAHtonl, WSANtohl, WSAHtons

WSAProviderConfigChange
The WSAProviderConfigChange function notifies the application when the provider
configuration is changed.

int WSAAPI
WSAProviderConfigChange(
 LPHANDLE lpNotificationHandle,
 LPWSAOVERLAPPED lpOverlapped,
 LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine
);

Parameters

lpNotificationHandle
(in/out) A pointer to notification handle; if the notification handle is set to NULL (the
handle value not the pointer itself), this function returns notification handle in the location
pointed by lpNotificationHandle.

lpOverlapped
(in) A pointer to a WSAOVERLAPPED structure.

lpCompletionRoutine
(in) A pointer to the completion routine called when the provider change notification is
received.

Remarks

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAENOTSOCK The descriptor is not a socket.

WSAEFAULT The lphostshort parameter is not completely contained
in a valid part of the user address space.

Legal Information Page 234 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

The WSAProviderConfigChange function notifies the application of provider (both transport
and name space) installation or removal in Win32 operating environments that support such
configuration change without requiring a restart. When called for the first time
(lpNotificationHandle parameter points to NULL handle), this function completes immediately
and returns notification handle in the location pointed by lpNotificationHandle that can be used in
subsequent calls to receive notifications of provider installation and removal. The second and any
subsequent calls only complete when provider information changes since the time the call was
made It is expected (but not required) that that application uses overlapped I/O on second and
subsequent calls to WSAProviderConfigChange, in which case the call will return immediately
and application will be notified of provider configuration changes using the completion
mechanism chosen through specified overlapped completion parameters.

Notification handle returned by WSAProviderConfigChange is like any regular operating
system handle that should be closed (when no longer needed) using Win32 CloseHandle call.

The following sequence of actions can be used to guarantee that application always has current
protocol configuration information:

call WSAProviderConfigChange
call WSAEnumProtocols and/or WSAEnumNameSpaceProviders
whenever WSAProviderConfigChange notifies application of provider configuration
change (via blocking or overlapped IO), the whole sequence of actions should be repeated

Return Values

If no error occurs the WSAProviderConfigChange returns 0. Otherwise, a value of
SOCKET_ERROR is returned and a specific error code may be retrieved by calling
WSAGetLastError. The error code WSA_IO_PENDING indicates that the overlapped operation
has been successfully initiated and that completion (and thus change event) will be indicated at a
later time

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws_32.lib.

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSA_NOT_ENOUGH
_MEMORY

Not enough free memory available to complete the
operation.

WSA_INVALID_HANDLE Value pointed by lpNotificationHandle parameter is not
a valid notification handle.

WSAEOPNOTSUPP Current operating system environment does not support
provider installation or removal without restart.

Legal Information Page 235 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

See Also

WSAEnumProtocols, WSAEnumNameSpaceProviders

WSARecv
The Windows Sockets WSARecv function receives data from a connected socket.

int WSARecv (
 SOCKET s,
 LPWSABUF lpBuffers,
 DWORD dwBufferCount,
 LPDWORD lpNumberOfBytesRecvd,
 LPDWORD lpFlags,
 LPWSAOVERLAPPED lpOverlapped,
 LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionROUTINE
);

Parameters

s
[in] A descriptor identifying a connected socket.

lpBuffers
[in/out] A pointer to an array of WSABUF structures. Each WSABUF structure contains a
pointer to a buffer and the length of the buffer.

dwBufferCount
[in] The number of WSABUF structures in the lpBuffers array.

lpNumberOfBytesRecvd
[out] A pointer to the number of bytes received by this call if the receive operation
completes immediately.

lpFlags
[in/out] A pointer to flags.

lpOverlapped
[in] A pointer to a WSAOVERLAPPED structure (ignored for nonoverlapped sockets).

lpCompletionRoutine
[in] A pointer to the completion routine called when the receive operation has been
completed (ignored for nonoverlapped sockets).

Remarks

The WSARecv function provides functionality over and above the standard recv function in three
important areas:

1. It can be used in conjunction with overlapped sockets to perform overlapped receive
operations.

2. It allows multiple receive buffers to be specified making it applicable to the scatter/gather
type of I/O.

3. The lpFlags parameter is both an input and an output parameter, allowing applications to
sense the output state of the MSG_PARTIAL flag bit. However, the MSG_PARTIAL flag

Legal Information Page 236 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

bit is not supported by all protocols.

The WSARecv function is used on connected sockets or bound connectionless sockets specified
by the s parameter and is used to read incoming data.The socket's local address must be known.
For server applications, this is usually done explicitly through bind or implicitly through accept
or WSAAccept. Explicit binding is discouraged for client applications. For client applications the
socket can become bound implicitly to a local address through connect, WSAConnect, sendto,
WSASendTo, or WSAJoinLeaf.

For connected, connectionless sockets, this function restricts the addresses from which received
messages are accepted. The function only returns messages from the remote address specified in
the connection. Messages from other addresses are (silently) discarded.

For overlapped sockets, WSARecv is used to post one or more buffers into which incoming data
will be placed as it becomes available, after which the application-specified completion indication
(invocation of the completion routine or setting of an event object) occurs. If the operation does
not complete immediately, the final completion status is retrieved through the completion routine
or WSAGetOverlappedResult.

If both lpOverlapped and lpCompletionRoutine are NULL, the socket in this function will be
treated as a nonoverlapped socket.

For nonoverlapped sockets, the blocking semantics are identical to that of the standard recv
function and the lpOverlapped and lpCompletionRoutine parameters are ignored. Any data that
has already been received and buffered by the transport will be copied into the supplied user
buffers. In the case of a blocking socket with no data currently having been received and buffered
by the transport, the call will block until data is received. Windows Socket 2 does not define any
standard blocking timeout mechanism for this function. For protocols acting as byte-stream
protocols the stack tries to return as much data as possible subject to the supplied buffer space and
amount of received data available. However, receipt of a single byte is sufficient to unblock the
caller. There is no guarantee that more than a single byte will be returned. For protocols acting as
message-oriented, a full message is required to unblock the caller.

Whether or not a protocol is acting as byte-stream is determined by the setting of
XP1_MESSAGE_ORIENTED and XP1_PSEUDO_STREAM in its WSAPROTOCOL_INFO
structure and the setting of the MSG_PARTIAL flag passed in to this function (for protocols that
support it). The relevant combinations are summarized in the following table (an asterisk (*)
indicates that the setting of this bit does not matter in this case).

The supplied buffers are filled in the order in which they appear in the array pointed to by
lpBuffers, and the buffers are packed so that no holes are created.

The array of WSABUF structures pointed to by the lpBuffers parameter is transient. If this
operation completes in an overlapped manner, it is the service provider's responsibility to capture

XP1_MESSAGE
_ORIENTED

XP1_PSEUDO
_STREAM

MSG_PARTIAL Acts as

not set * * byte-stream

* set * byte-stream

set not set set byte-stream

set not set not set message-oriented

Legal Information Page 237 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

these WSABUF structures before returning from this call. This enables applications to build
stack-based WSABUF arrays.

For byte stream-style sockets (for example, type SOCK_STREAM), incoming data is placed into
the buffers until the buffers are filled, the connection is closed, or the internally buffered data is
exhausted. Regardless of whether or not the incoming data fills all the buffers, the completion
indication occurs for overlapped sockets.

For message-oriented sockets (for example, type SOCK_DGRAM), an incoming message is
placed into the supplied buffers up to the total size of the buffers supplied, and the completion
indication occurs for overlapped sockets. If the message is larger than the buffers supplied, the
buffers are filled with the first part of the message. If the MSG_PARTIAL feature is supported by
the underlying service provider, the MSG_PARTIAL flag is set in lpFlags and subsequent receive
operations will retrieve the rest of the message. If MSG_PARTIAL is not supported but the
protocol is reliable, WSARecv generates the error WSAEMSGSIZE and a subsequent receive
operation with a larger buffer can be used to retrieve the entire message. Otherwise, (that is, the
protocol is unreliable and does not support MSG_PARTIAL), the excess data is lost, and
WSARecv generates the error WSAEMSGSIZE.

For connection-oriented sockets, WSARecv can indicate the graceful termination of the virtual
circuit in one of two ways that depend on whether the socket is a byte stream or message oriented.
For byte streams, zero bytes having been read (as indicated by zero return value to indicate
success, and lpNumberOfBytesRecvd value of zero) indicates graceful closure and that no more
bytes will ever be read. For message-oriented sockets, where a zero byte message is often
allowable, a failure with an error code of WSAEDISCON is used to indicate graceful closure. In
any case a return error code of WSAECONNRESET indicates an abortive close has occurred.

The lpFlags parameter can be used to influence the behavior of the function invocation beyond
the options specified for the associated socket. That is, the semantics of this function are
determined by the socket options and the lpFlags parameter. The latter is constructed by or-ing
any of the following values:

For message-oriented sockets, the MSG_PARTIAL bit is set in the lpFlags parameter if a partial
message is received. If a complete message is received, MSG_PARTIAL is cleared in lpFlags. In

Value Meaning

MSG_PEEK Peek at the incoming data. The data is copied into the buffer but is
not removed from the input queue. This flag is valid only for
nonoverlapped sockets.

MSG_OOB Process out-of-band data. (See section DECnet Out-Of-band data
for a discussion of this topic.)

MSG_PARTIAL This flag is for message-oriented sockets only. On output,
indicates that the data supplied is a portion of the message
transmitted by the sender. Remaining portions of the message will
be supplied in subsequent receive operations. A subsequent
receive operation with MSG_PARTIAL flag cleared indicates end
of sender's message.

As an input parameter, this flag indicates that the receive
operation should complete even if only part of a message has been
received by the service provider.

Legal Information Page 238 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

the case of delayed completion, the value pointed to by lpFlags is not updated. When completion
has been indicated, the application should call WSAGetOverlappedResult and examine the flags
indicated by the lpdwFlags parameter.

Overlapped socket I/O

If an overlapped operation completes immediately, WSARecv returns a value of zero and the
lpNumberOfBytesRecvd parameter is updated with the number of bytes received and the flag bits
indicated by the lpFlags parameter are also updated. If the overlapped operation is successfully
initiated and will complete later, WSARecv returns SOCKET_ERROR and indicates error code
WSA_IO_PENDING. In this case, lpNumberOfBytesRecvd and lpFlags are not updated. When
the overlapped operation completes, the amount of data transferred is indicated either through the
cbTransferred parameter in the completion routine (if specified), or through the lpcbTransfer
parameter in WSAGetOverlappedResult. Flag values are obtained by examining the lpdwFlags
parameter of WSAGetOverlappedResult.

The WSARecv function can be called from within the completion routine of a previous
WSARecv, WSARecvFrom, WSASend or WSASendTo function. For a given socket, I/O
completion routines will not be nested. For a given socket, I/O completion routines will not be
nested. This permits time-sensitive data transmissions to occur entirely within a preemptive
context.

The lpOverlapped parameter must be valid for the duration of the overlapped operation. If
multiple I/O operations are simultaneously outstanding, each must reference a separate
WSAOVERLAPPED structure.

If the lpCompletionRoutine parameter is NULL, the hEvent field of lpOverlapped is signaled
when the overlapped operation completes if it contains a valid event object handle. An application
can use WSAWaitForMultipleEvents or WSAGetOverlappedResult to wait or poll on the
event object.

If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the
application to pass context information to the completion routine. A caller that passes a non-
NULL lpCompletionRoutine and later calls WSAGetOverlappedResult for the same overlapped
IO request may not set the fWait parameter for that invocation of WSAGetOverlappedResult to
TRUE. In this case the usage of the hEvent field is undefined, and attempting to wait on the
hEvent field would produce unpredictable results.

The completion routine follows the same rules as stipulated for Win32 file I/O completion
routines. The completion routine will not be invoked until the thread is in an alertable wait state
such as can occur when the function WSAWaitForMultipleEvents with the fAlertable parameter
set to TRUE is invoked.

The transport providers allow an application to invoke send and receive operations from within
the context of the socket I/O completion routine, and guarantee that, for a given socket, I/O
completion routines will not be nested. This permits time-sensitive data transmissions to occur
entirely within a preemptive context.

The prototype of the completion routine is as follows:

void CALLBACK CompletionROUTINE(
 IN DWORD dwError,
 IN DWORD cbTransferred,

Legal Information Page 239 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

 IN LPWSAOVERLAPPED lpOverlapped,
 IN DWORD dwFlags
);

CompletionRoutine is a placeholder for an application-defined or library-defined function name.
The dwError specifies the completion status for the overlapped operation as indicated by
lpOverlapped. The cbTransferred parameter specifies the number of bytes received. The dwFlags
parameter contains information that would have appeared in lpFlags if the receive operation had
completed immediately. This function does not return a value.

Returning from this function allows invocation of another pending completion routine for this
socket. When using WSAWaitForMultipleEvents, all waiting completion routines are called
before the alertable thread's wait is satisfied with a return code of WSA_IO_COMPLETION. The
completion routines can be called in any order, not necessarily in the same order the overlapped
operations are completed. However, the posted buffers are guaranteed to be filled in the same
order they are supplied.

Return Values

If no error occurs and the receive operation has completed immediately, WSARecv returns zero.
In this case, the completion routine will have already been scheduled to be called once the calling
thread is in the alertable state. Otherwise, a value of SOCKET_ERROR is returned, and a specific
error code can be retrieved by calling WSAGetLastError. The error code WSA_IO_PENDING
indicates that the overlapped operation has been successfully initiated and that completion will be
indicated at a later time. Any other error code indicates that the overlapped operation was not
successfully initiated and no completion indication will occur.

Error Codes

WSANOTINITIALISED A successful WSAStartup must occur before
using this function.

WSAENETDOWN The network subsystem has failed.

WSAENOTCONN The socket is not connected.

WSAEINTR The (blocking) call was canceled through
WSACancelBlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in
progress, or the service provider is still processing
a callback function.

WSAENETRESET The connection has been broken due to "keep-
alive" activity detecting a failure while the
operation was in progress.

WSAENOTSOCK The descriptor is not a socket.

WSAEFAULT The lpBuffers parameter is not completely
contained in a valid part of the user address space.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not
stream-style such as type SOCK_STREAM, out-of-
band data is not supported in the communication
domain associated with this socket, or the socket is
unidirectional and supports only send operations.

Legal Information Page 240 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

WSACloseEvent, WSACreateEvent, WSAGetOverlappedResult, WSASocket,
WSAWaitForMultipleEvents

WSARecvDisconnect
The Windows Sockets WSARecvDisconnect function terminates reception on a socket, and
retrieves the disconnect data if the socket is connection oriented.

int WSARecvDisconnect (
 SOCKET s,
 LPWSABUF lpInboundDisconnectData
);

WSAESHUTDOWN The socket has been shut down; it is not possible to
call WSARecv on a socket after shutdown has
been invoked with how set to SD_RECEIVE or
SD_BOTH.

WSAEWOULDBLOCK Overlapped sockets: There are too many
outstanding overlapped I/O requests.
Nonoverlapped sockets: The socket is marked as
nonblocking and the receive operation cannot be
completed immediately.

WSAEMSGSIZE The message was too large to fit into the specified
buffer and (for unreliable protocols only) any
trailing portion of the message that did not fit into
the buffer has been discarded.

WSAEINVAL The socket has not been bound (for example, with
bind).

WSAECONNABORTED The virtual circuit was terminated due to a time-out
or other failure.

WSAECONNRESET The virtual circuit was reset by the remote side.

WSAEDISCON Socket s is message oriented and the virtual circuit
was gracefully closed by the remote side.

WSA_IO_PENDING An overlapped operation was successfully initiated
and completion will be indicated at a later time.

WSA_OPERATION_ABORTED The overlapped operation has been canceled due to
the closure of the socket.

Legal Information Page 241 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Parameters

s
[in] A descriptor identifying a socket.

lpInboundDisconnectData
[out] A pointer to the incoming disconnect data.

Remarks

The WSARecvDisconnect function is used on connection-oriented sockets to disable reception
and retrieve any incoming disconnect data from the remote party.This is equivalent to a shutdown
(SD_RECV), except that WSASendDisconnect also allows receipt of disconnect data (in
protocols that support it).

After this function has been successfully issued, subsequent receives on the socket will be
disallowed. Calling WSARecvDisconnect has no effect on the lower protocol layers. For TCP
sockets, if there is still data queued on the socket waiting to be received, or data arrives
subsequently, the connection is reset, since the data cannot be delivered to the user. For UDP,
incoming datagrams are accepted and queued. In no case will an ICMP error packet be generated.

To successfully receive incoming disconnect data, an application must use other mechanisms to
determine that the circuit has been closed. For example, an application needs to receive an
FD_CLOSE notification, to receive a zero return value, or to receive a WSAEDISCON or
WSAECONNRESET error code from recv/WSARecv.

The WSARecvDisconnect function does not close the socket, and resources attached to the
socket will not be freed until closesocket is invoked.

The WSARecvDisconnect function does not block regardless of the SO_LINGER setting on the
socket.

An application should not rely on being able to re-use a socket after it has been disconnected
using WSARecvDisconnect. In particular, a Windows Sockets provider is not required to support
the use of connect/WSAConnect on such a socket.

Return Values

If no error occurs, WSARecvDisconnect returns zero. Otherwise, a value of SOCKET_ERROR
is returned, and a specific error code can be retrieved by calling WSAGetLastError.

Error Codes

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The buffer referenced by the parameter
lpInboundDisconnectData is too small.

WSAENOPROTOOPT The disconnect data is not supported by the indicated
protocol family.

Legal Information Page 242 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

connect, socket

WSARecvEx
Notice This function is a Microsoft-specific extension to the Windows Sockets specification. For
more information, see Microsoft Extensions and Windows Sockets 2.

The Windows Sockets WSARecvEx function is identical to the recv function, except the flags
parameter is an in-out parameter. When a partial message is received while using datagram
protocol, the MSG_PARTIAL bit is set in the flags parameter on return from the function.

int PASCAL FAR WSARecvEx (
 SOCKET s,
 char FAR * buf,
 int len,
 int *flags
);

Parameters

s
[in] A descriptor identifying a connected socket.

buf
[out] A buffer for the incoming data.

len
[in] The length of buf.

flags
[in/out] An indicator specifying whether the message is fully or partially received for
datagram sockets.

Remarks

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAENOTCONN The socket is not connected (connection-oriented
sockets only).

WSAENOTSOCK The descriptor is not a socket.

Legal Information Page 243 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

The WSARecvEx function that is part of the Microsoft implementation of Windows Sockets 2 is
similar to the more common recv function except that the flags parameter is an in-out parameter,
not just an in parameter. The additional out parameter is used to indicate whether a partial or
complete message was received when a message-oriented protocol is being used.

The WSARecvEx and recv function identically for stream oriented protocols.

Making the flags parameter an in and out parameter accomodates two common situations in
which a partial message will be received: when the application's data buffer size is smaller than
the message size and the message coincidentally arrives in two pieces; and when the message is
rather large and must arrive in several pieces. The MSG_PARTIAL bit is set in the flags
parameter on return from WSARecvEx when a partial message was received. If a complete
message was received, MSG_PARTIAL is not set in flags.

The Windows Sockets recv function is different than WSARecvEx in that the recv function
always receives a single message for each call for message-oriented transport protocols. The recv
function does not have a means to indicate to the application that the data received is only a
partial message. An application must build its own protocol for checking whether a message is
partial or complete by checking for the error code WSAEMSGSIZE after each call to recv. When
the application buffer is smaller than the data being sent, as much of the message as will fit is
copied into the user's buffer and recv returns with the error code WSAEMSGSIZE. A subsequent
call to recv will get the next part of the message.

Applications written for message-oriented transport protocols should be coded for this possibility
if message sizing is not guaranteed by the application's data transfer protocol. An application can
use recv and manage the protocol itself. Alternatively, an applications can use WSARecvEx and
check the for the MSG_PARTIAL bit is set in the flags parameter.

The WSARecvEx function provide the developer with a more effective way of checking whether
a message received is partial or complete when a very large message arrives a little at a time. For
example, if an application sends a 1-megabyte message, the transport protocol must break up the
message in order to send it over the physical network. It is theoretically possible for the transport
protocol on the receiving side to buffer all the data in the message, but this would be quite
expensive in terms of resources. Instead, WSARecvEx can be used, minimizing overhead and
eliminating the need for an application-based protocol.

Return Values

If no error occurs, WSARecvEx returns the number of bytes received. If the connection has been
closed, it returns zero. Additionally, if a partial message was received, the MSG_PARTIAL bit is
set in the flags parameter. If a complete message was received, MSG_PARTIAL is not set in
flags.

Otherwise, a value of SOCKET_ERROR is returned, and a specific error code can be retrieved by
calling WSAGetLastError.

Important For a stream oriented transport protocol, MSG_PARTIAL is never set on return from
WSARecvEx. This function behaves identically to the Windows Sockets recv function for stream
transport protocols.

Error Codes

Legal Information Page 244 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows CE: Unsupported.
 Header: Declared in mswsock.h.
 Import Library: Link with mswsock.lib.

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The buf parameter is not completely contained in a valid
part of the user address space.

WSAENOTCONN The socket is not connected.

WSAEINTR The (blocking) call was canceled through
WSACancelBlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAENETRESET The connection has been broken due to the remote host
resetting.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not stream-
style such as type SOCK_STREAM, out-of-band data is
not supported in the communication domain associated
with this socket, or the socket is unidirectional and
supports only send operations.

WSAESHUTDOWN The socket has been shut down; it is not possible to use
WSARecvEx on a socket after shutdown has been
invoked with how set to SD_RECEIVE or SD_BOTH.

WSAEWOULDBLOCK The socket is marked as nonblocking and the receive
operation would block.

WSAEINVAL The socket has not been bound with bind, or an
unknown flag was specified, or MSG_OOB was
specified for a socket with SO_OOBINLINE enabled or
(for byte stream sockets only) len was zero or negative.

WSAECONNABORTED The virtual circuit was terminated due to a time-out or
other failure. The application should close the socket as
it is no longer usable.

WSAETIMEDOUT The connection has been dropped because of a network
failure or because the peer system failed to respond.

WSAECONNRESET The virtual circuit was reset by the remote side
executing a "hard" or "abortive" close. The application
should close the socket as it is no longer usable. On a
UDP datagram socket this error would indicate that a
previous send operation resulted in an ICMP "Port
Unreachable" message.

Legal Information Page 245 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

See Also

recvfrom, select, send, socket, WSAAsyncSelect

WSARecvFrom
The Windows Sockets WSARecvFrom function receives a datagram and stores the source
address.

int WSARecvFrom (
 SOCKET s,
 LPWSABUF lpBuffers,
 DWORD dwBufferCount,
 LPDWORD lpNumberOfBytesRecvd,
 LPDWORD lpFlags,
 struct sockaddr FAR * lpFrom,
 LPINT lpFromlen,
 LPWSAOVERLAPPED lpOverlapped,
 LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionROUTINE
);

Parameters

s
[in] A descriptor identifying a socket

lpBuffers
[in/out] A pointer to an array of WSABUF structures. Each WSABUF structure contains a
pointer to a buffer and the length of the buffer.

dwBufferCount
[in] The number of WSABUF structures in the lpBuffers array.

lpNumberOfBytesRecvd
[out] A pointer to the number of bytes received by this call if the receive operation
completes immediately.

lpFlags
[in/out] A pointer to flags.

lpFrom
[out] An optional pointer to a buffer that will hold the source address upon the completion
of the overlapped operation.

lpFromlen
[in/out] A pointer to the size of the from buffer, required only if lpFrom is specified.

lpOverlapped
[in] A pointer to a WSAOVERLAPPED structure (ignored for nonoverlapped sockets).

lpCompletionRoutine
[in] A pointer to the completion routine called when the receive operation has been
completed (ignored for nonoverlapped sockets).

Remarks

The WSARecvFrom function provides functionality over and above the standard recvfrom
function in three important areas:

Legal Information Page 246 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

1. It can be used in conjunction with overlapped sockets to perform overlapped receive
operations.

2. It allows multiple receive buffers to be specified making it applicable to the scatter/gather
type of I/O.

3. The lpFlags parameter is both an input and an output parameter, allowing applications to
sense the output state of the MSG_PARTIAL flag bit. Note however, that the
MSG_PARTIAL flag bit is not supported by all protocols.

The WSARecvFrom functions is used primarily on a connectionless socket specified by s. The
socket's local address must be known. For server applications, this is usually done explicitly
through bind. Explicit binding is discouraged for client applications. For client applications using
this function the socket can become bound implicitly to a local address through sendto,
WSASendTo, or WSAJoinLeaf.

For overlapped sockets, this function is used to post one or more buffers into which incoming data
will be placed as it becomes available on a (possibly connected) socket, after which the
application-specified completion indication (invocation of the completion routine or setting of an
event object) occurs. If the operation does not complete immediately, the final completion status
is retrieved through the completion routine or WSAGetOverlappedResult. Also, the values
indicated by lpFrom and lpFromlen are not updated until completion is itself indicated.
Applications must not use or disturb these values until they have been updated, therefore the
application must not use automatic (that is, stack-based) variables for these parameters.

If both lpOverlapped and lpCompletionRoutine are NULL, the socket in this function will be
treated as a nonoverlapped socket.

For nonoverlapped sockets, the blocking semantics are identical to that of the standard WSARecv
function and the lpOverlapped and lpCompletionRoutine parameters are ignored. Any data that
has already been received and buffered by the transport will be copied into the supplied user
buffers. For the case of a blocking socket with no data currently having been received and
buffered by the transport, the call will block until data is received.

The supplied buffers are filled in the order in which they appear in the array indicated by
lpBuffers, and the buffers are packed so that no holes are created.

The array of WSABUF structures pointed to by the lpBuffers parameter is transient. If this
operation completes in an overlapped manner, it is the service provider's responsibility to capture
these WSABUF structures before returning from this call. This enables applications to build
stack-based WSABUF arrays.

For connectionless socket types, the address from which the data originated is copied to the buffer
indicated by lpFrom. The value pointed to by lpFromlen is initialized to the size of this buffer,
and is modified on completion to indicate the actual size of the address stored there. As noted
previously for overlapped sockets, the lpFrom and lpFromlen parameters are not updated until
after the overlapped I/O has completed. The memory pointed to by these parameters must,
therefore, remain available to the service provider and cannot be allocated on the application's
stack frame. The lpFrom and lpFromlen parameters are ignored for connection-oriented sockets.

For byte stream-style sockets (for example, type SOCK_STREAM), incoming data is placed into
the buffers until the buffers are filled, until the connection is closed, or until the internally
buffered data is exhausted. Regardless of whether or not the incoming data fills all the buffers, the
completion indication occurs for overlapped sockets. For message-oriented sockets, an incoming

Legal Information Page 247 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

message is placed into the supplied buffers up to the total size of the buffers supplied, and the
completion indication occurs for overlapped sockets. If the message is larger than the buffers
supplied, the buffers are filled with the first part of the message. If the MSG_PARTIAL feature is
supported by the underlying service provider, the MSG_PARTIAL flag is set in lpFlags and
subsequent receive operation(s) will retrieve the rest of the message. If MSG_PARTIAL is not
supported but the protocol is reliable, WSARecvFrom generates the error WSAEMSGSIZE and a
subsequent receive operation with a larger buffer can be used to retrieve the entire message.
Otherwise, (that is, the protocol is unreliable and does not support MSG_PARTIAL), the excess
data is lost, and WSARecvFrom generates the error WSAEMSGSIZE.

The lpFlags parameter can be used to influence the behavior of the function invocation beyond
the options specified for the associated socket. That is, the semantics of this function are
determined by the socket options and the lpFlags parameter. The latter is constructed by or-ing
any of the following values:

For message-oriented sockets, the MSG_PARTIAL bit is set in the lpFlags parameter if a partial
message is received. If a complete message is received, MSG_PARTIAL is cleared in lpFlags. In
the case of delayed completion, the value pointed to by lpFlags is not updated. When completion
has been indicated the application should call WSAGetOverlappedResult and examine the flags
pointed to by the lpdwFlags parameter.

Overlapped socket I/O

If an overlapped operation completes immediately, WSARecvFrom returns a value of zero and
the lpNumberOfBytesRecvd parameter is updated with the number of bytes received and the flag
bits pointed by the lpFlags parameter are also updated. If the overlapped operation is successfully
initiated and will complete later, WSARecvFrom returns SOCKET_ERROR and indicates error
code WSA_IO_PENDING. In this case, lpNumberOfBytesRecvd and lpFlags is not updated.
When the overlapped operation completes the amount of data transferred is indicated either
through the cbTransferred parameter in the completion routine (if specified), or through the
lpcbTransfer parameter in WSAGetOverlappedResult. Flag values are obtained either through
the dwFlags parameter of the completion routine, or by examining the lpdwFlags parameter of
WSAGetOverlappedResult.

Value Meaning

MSG_PEEK Peek at the incoming data. The data is copied into the buffer but is
not removed from the input queue. This flag is valid only for
nonoverlapped sockets.

MSG_OOB Process out-of-band data. (See section DECnet Out-Of-band data
for a discussion of this topic.)

MSG_PARTIAL This flag is for message-oriented sockets only. On output,
indicates that the data supplied is a portion of the message
transmitted by the sender. Remaining portions of the message will
be supplied in subsequent receive operations. A subsequent
receive operation with MSG_PARTIAL flag cleared indicates end
of sender's message.

As an input parameter indicates that the receive operation should
complete even if only part of a message has been received by the
service provider.

Legal Information Page 248 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

The WSARecvFrom function can be called from within the completion routine of a previous
WSARecv, WSARecvFrom, WSASend or WSASendTo function. For a given socket, I/O
completion routines will not be nested. This permits time-sensitive data transmissions to occur
entirely within a preemptive context.

The lpOverlapped parameter must be valid for the duration of the overlapped operation. If
multiple I/O operations are simultaneously outstanding, each must reference a separate
WSAOVERLAPPED structure.

If the lpCompletionRoutine parameter is NULL, the hEvent field of lpOverlapped is signaled
when the overlapped operation completes if it contains a valid event object handle. An application
can use WSAWaitForMultipleEvents or WSAGetOverlappedResult to wait or poll on the
event object.

If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the
application to pass context information to the completion routine. A caller that passes a non-
NULL lpCompletionRoutine and later calls WSAGetOverlappedResult for the same overlapped
IO request may not set the fWait parameter for that invocation of WSAGetOverlappedResult to
TRUE. In this case the usage of the hEvent field is undefined, and attempting to wait on the
hEvent field would produce unpredictable results.

The completion routine follows the same rules as stipulated for Win32 file I/O completion
routines. The completion routine will not be invoked until the thread is in an alertable wait state
such as can occur when the function WSAWaitForMultipleEvents with the fAlertable parameter
set to TRUE is invoked.

The transport providers allow an application to invoke send and receive operations from within
the context of the socket I/O completion routine, and guarantee that, for a given socket, I/O
completion routines will not be nested. This permits time-sensitive data transmissions to occur
entirely within a preemptive context.

The prototype of the completion routine is as follows:

void CALLBACK CompletionROUTINE(
 IN DWORD dwError,
 IN DWORD cbTransferred,
 IN LPWSAOVERLAPPED lpOverlapped,
 IN DWORD dwFlags
);

The CompletionRoutine is a placeholder for an application-defined or library-defined function
name. The dwError specifies the completion status for the overlapped operation as indicated by
lpOverlapped. The cbTransferred specifies the number of bytes received. The dwFlags parameter
contains information that would have appeared in lpFlags if the receive operation had completed
immediately. This function does not return a value.

Returning from this function allows invocation of another pending completion routine for this
socket. When using WSAWaitForMultipleEvents, all waiting completion routines are called
before the alertable thread's wait is satisfied with a return code of WSA_IO_COMPLETION. The
completion routines can be called in any order, not necessarily in the same order the overlapped
operations are completed. However, the posted buffers are guaranteed to be filled in the same
order they are supplied.

Legal Information Page 249 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Return Values

If no error occurs and the receive operation has completed immediately, WSARecvFrom returns
zero. In this case, the completion routine will have already been scheduled to be called once the
calling thread is in the alertable state. Otherwise, a value of SOCKET_ERROR is returned, and a
specific error code can be retrieved by calling WSAGetLastError. The error code
WSA_IO_PENDING indicates that the overlapped operation has been successfully initiated and
that completion will be indicated at a later time. Any other error code indicates that the
overlapped operation was not successfully initiated and no completion indication will occur.

Error Codes

WSANOTINITIALISED A successful WSAStartup must occur before
using this function.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The lpBuffers, lpFlags, lpFrom,
lpNumberOfBytesRecvd, lpFromlen, lpOverlapped,
or lpCompletionRoutine argument is not totally
contained in a valid part of the user address space:
the lpFrom buffer was too small to accommodate
the peer address.

WSAEINTR A blocking Windows Socket 1.1 call was canceled
through WSACancelBlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in
progress, or the service provider is still processing
a callback function.

WSAEINVAL The socket has not been bound (with bind, for
example).

WSAEISCONN The socket is connected. This function is not
permitted with a connected socket, whether the
socket is connection-oriented or connectionless.

WSAENETRESET The connection has been broken due to "keep-
alive" activity detecting a failure while the
operation was in progress.

WSAENOTCONN The socket is not connected (connection-oriented
sockets only).

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not
stream-style such as type SOCK_STREAM, out-of-
band data is not supported in the communication
domain associated with this socket, or the socket is
unidirectional and supports only send operations.

WSAESHUTDOWN The socket has been shut down; it is not possible to
WSARecvFrom on a socket after shutdown has
been invoked with how set to SD_RECEIVE or
SD_BOTH.

Legal Information Page 250 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

WSACloseEvent, WSACreateEvent, WSAGetOverlappedResult, WSASocket,
WSAWaitForMultipleEvents

WSARemoveServiceClass
The Windows Sockets WSARemoveServiceClass function permanently unregisters service class
schema.

INT WSARemoveServiceClass(
 LPGUID lpServiceClassId
);

Parameters

lpServiceClassId

WSAEWOULDBLOCK Overlapped sockets: There are too many
outstanding overlapped I/O requests.
Nonoverlapped sockets: The socket is marked as
nonblocking and the receive operation cannot be
completed immediately.

WSAEMSGSIZE The message was too large to fit into the specified
buffer and (for unreliable protocols only) any
trailing portion of the message that did not fit into
the buffer has been discarded.

WSAECONNRESET The virtual circuit was reset by the remote side
executing a "hard" or "abortive" close. The
application should close the socket as it is no
longer useable. On a UDP datagram socket this
error would indicate that a previous send operation
resulted in an ICMP "Port Unreachable" message.

WSAEDISCON Socket s is message oriented and the virtual circuit
was gracefully closed by the remote side.

WSA_IO_PENDING An overlapped operation was successfully initiated
and completion will be indicated at a later time.

WSA_OPERATION_ABORTED The overlapped operation has been canceled due to
the closure of the socket.

Legal Information Page 251 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

[in] A pointer to the GUID for the service class you want to remove.

Return Values

The return value is zero if the operation was successful. Otherwise, the value SOCKET_ERROR
is returned, and a specific error number can be retrieved by calling WSAGetLastError.

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

WSAResetEvent
The Windows Sockets WSAResetEvent function resets the state of the specified event object to
nonsignaled.

BOOL WSAResetEvent(
 WSAEVENT hEvent
);

Parameters

hEvent
[in] A handle that identifies an open event object handle.

Remarks

The WSAResetEvent function is used to set the state of the event object to nonsignaled.

Return Values

WSATYPE_NOT_FOUND The specified class was not found.

WSAEACCES The calling routine does not have sufficient
privileges to remove the Service.

WSANOTINITIALIZED The WS2_32.DLL has not been initialized. The
application must first call WSAStartup before
calling any Windows Sockets functions.

WSAEINVAL The specified GUID was not valid.

WSA NOT ENOUGH MEMORY There was insufficient memory to perform the
operation

Legal Information Page 252 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

If the WSAResetEvent function succeeds, the return value is TRUE. If the function fails, the
return value is FALSE. To get extended error information, call WSAGetLastError.

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

WSACloseEvent, WSACreateEvent, WSASetEvent

WSASend
The Windows Sockets WSASend function sends data on a connected socket.

int WSASend (
 SOCKET s,
 LPWSABUF lpBuffers,
 DWORD dwBufferCount,
 LPDWORD lpNumberOfBytesSent,
 DWORD dwFlags,
 LPWSAOVERLAPPED lpOverlapped,
 LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionROUTINE
);

Parameters

s
[in] A descriptor identifying a connected socket.

lpBuffers
[in] A pointer to an array of WSABUF structures. Each WSABUF structure contains a
pointer to a buffer and the length of the buffer. This array must remain valid for the duration
of the send operation.

dwBufferCount

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSA_INVALID_HANDLE The hEvent parameter is not a valid event object handle.

Legal Information Page 253 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

[in] The number of WSABUF structures in the lpBuffers array.
lpNumberOfBytesSent

[out] A pointer to the number of bytes sent by this call if the I/O operation completes
immediately.

dwFlags
[in] A flag that specifies the way in which the call is made.

lpOverlapped
[in] A pointer to a WSAOVERLAPPED structure (ignored for nonoverlapped sockets).

lpCompletionRoutine
[in] A pointer to the completion routine called when the send operation has been completed
(ignored for nonoverlapped sockets).

Remarks

The WSASend function provides functionality over and above the standard send function in two
important areas:

1. It can be used in conjunction with overlapped sockets to perform overlapped send
operations.

2. It allows multiple send buffers to be specified making it applicable to the scatter/gather type
of I/O.

The WSASend function is used to write outgoing data from one or more buffers on a connection-
oriented socket specified by s. It can also be used, however, on connectionless sockets that have a
stipulated default peer address established through the connect or WSAConnect function.

For overlapped sockets (created using WSASocket with flag WSA_FLAG_OVERLAPPED)
sending information uses overlapped I/O, unless both lpOverlapped and lpCompletionRoutine are
NULL. In that case, the socket is treated as a nonoverlapped socket. A completion indication will
occur, invoking of the completion routine or setting of an event object, when the supplied buffer
(s) have been consumed by the transport. If the operation does not complete immediately, the final
completion status is retrieved through the completion routine or WSAGetOverlappedResult.

If both lpOverlapped and lpCompletionRoutine are NULL, the socket in this function will be
treated as a non-overlapped socket.

For nonoverlapped sockets, the last two parameters (lpOverlapped, lpCompletionRoutine) are
ignored and WSASend adopts the same blocking semantics as send. Data is copied from the
supplied buffer(s) into the transport's buffer. If the socket is nonblocking and stream oriented, and
there is not sufficient space in the transport's buffer, WSASend will return with only part of the
application's buffers having been consumed. Given the same buffer situation and a blocking
socket, WSASend will block until all of the application's buffer contents have been consumed.

The array of WSABUF structures pointed to by the lpBuffers parameter is transient. If this
operation is completed in an overlapped manner, it is the service provider's responsibility to
capture these WSABUF structures before returning from this call. This enables applications to
build stack-based WSABUF arrays.

For message-oriented sockets, care must be taken not to exceed the maximum message size of the
underlying provider, which can be obtained by getting the value of socket option
SO_MAX_MSG_SIZE. If the data is too long to pass atomically through the underlying protocol
the error WSAEMSGSIZE is returned, and no data is transmitted.

Legal Information Page 254 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Note Tthe successful completion of a WSASend does not indicate that the data was successfully
delivered.

The dwFlags paramter can be used to influence the behavior of the function invocation beyond
the options specified for the associated socket. That is, the semantics of this function are
determined by the socket options and the dwFlags parameter. The latter is constructed by or-ing
any of the following values:

Overlapped socket I/O

If an overlapped operation completes immediately, WSASend returns a value of zero and the
lpNumberOfBytesSent parameter is updated with the number of bytes sent. If the overlapped
operation is successfully initiated and will complete later, WSASend returns SOCKET_ERROR
and indicates error code WSA_IO_PENDING. In this case, lpNumberOfBytesSent is not updated.
When the overlapped operation completes the amount of data transferred is indicated either
through the cbTransferred parameter in the completion routine (if specified), or through the
lpcbTransfer parameter in WSAGetOverlappedResult.

The WSASend function can be called from within the completion routine of a previous
WSARecv, WSARecvFrom, WSASend or WSASendTo function. This permits time-sensitive
data transmissions to occur entirely within a preemptive context.

The lpOverlapped parameter must be valid for the duration of the overlapped operation. If
multiple I/O operations are simultaneously outstanding, each must reference a separate
WSAOVERLAPPED structure.

If the lpCompletionRoutine parameter is NULL, the hEvent field of lpOverlapped is signaled
when the overlapped operation completes if it contains a valid event object handle. An application
can use WSAWaitForMultipleEvents or WSAGetOverlappedResult to wait or poll on the
event object.

If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the
application to pass context information to the completion routine. A caller that passes a non-
NULL lpCompletionRoutine and later calls WSAGetOverlappedResult for the same overlapped
IO request may not set the fWait parameter for that invocation of WSAGetOverlappedResult to
TRUE. In this case the usage of the hEvent field is undefined, and attempting to wait on the
hEvent field would produce unpredictable results.

The completion routine follows the same rules as stipulated for Win32 file I/O completion

Value Meaning

MSG_DONTROUTE Specifies that the data should not be subject to routing. A
Windows Sockets service provider can choose to ignore this
flag.

MSG_OOB Send out-of-band data on a stream-style socket such as
SOCK_STREAM only. (See section DECnet Out-Of-band data
for a discussion of this topic.)

MSG_PARTIAL Specifies that lpBuffers only contains a partial message. Note
that the error code WSAEOPNOTSUPP will be returned by
transports that do not support partial message transmissions.

Legal Information Page 255 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

routines. The completion routine will not be invoked until the thread is in an alertable wait state
such as can occur when the function WSAWaitForMultipleEvents with the fAlertable parameter
set to TRUE is invoked.

The transport providers allow an application to invoke send and receive operations from within
the context of the socket I/O completion routine, and guarantee that, for a given socket, I/O
completion routines will not be nested. This permits time-sensitive data transmissions to occur
entirely within a preemptive context.

The prototype of the completion routine is as follows:

void CALLBACK CompletionROUTINE(
 IN DWORD dwError,
 IN DWORD cbTransferred,
 IN LPWSAOVERLAPPED lpOverlapped,
 IN DWORD dwFlags
);

The CompletionRoutine function is a placeholder for an application-defined or library-defined
function name. dwError specifies the completion status for the overlapped operation as indicated
by lpOverlapped. cbTransferred specifies the number of bytes sent. Currently there are no flag
values defined and dwFlags will be zero. This function does not return a value.

Returning from this function allows invocation of another pending completion routine for this
socket. All waiting completion routines are called before the alertable thread's wait is satisfied
with a return code of WSA_IO_COMPLETION. The completion routines can be called in any
order, not necessarily in the same order the overlapped operations are completed. However, the
posted buffers are guaranteed to be sent in the same order they are supplied.

Return Values

If no error occurs and the send operation has completed immediately, WSASend returns zero. In
this case, the completion routine will have already been scheduled to be called once the calling
thread is in the alertable state. Otherwise, a value of SOCKET_ERROR is returned, and a specific
error code can be retrieved by calling WSAGetLastError. The error code WSA_IO_PENDING
indicates that the overlapped operation has been successfully initiated and that completion will be
indicated at a later time. Any other error code indicates that the overlapped operation was not
successfully initiated and no completion indication will occur.

Error Codes

WSANOTINITIALISED A successful WSAStartup must occur before
using this function.

WSAENETDOWN The network subsystem has failed.

WSAEACCES The requested address is a broadcast address, but
the appropriate flag was not set.

WSAEINTR A blocking Windows Socket 1.1 call was canceled
through WSACancelBlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in
progress, or the service provider is still processing
a callback function.

Legal Information Page 256 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

WSAEFAULT The lpBuffers, lpNumberOfBytesSent,
lpOverlapped, lpCompletionRoutine argument is
not totally contained in a valid part of the user
address space.

WSAENETRESET The connection has been broken due to "keep-
alive" activity detecting a failure while the
operation was in progress.

WSAENOBUFS The Windows Sockets provider reports a buffer
deadlock.

WSAENOTCONN The socket is not connected.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not
stream-style such as type SOCK_STREAM, out-of-
band data is not supported in the communication
domain associated with this socket,
MSG_PARTIAL is not supported, or the socket is
unidirectional and supports only receive operations.

WSAESHUTDOWN The socket has been shut down; it is not possible to
WSASend on a socket after shutdown has been
invoked with how set to SD_SEND or SD_BOTH.

WSAEWOULDBLOCK Overlapped sockets: There are too many
outstanding overlapped I/O requests.
Nonoverlapped sockets: The socket is marked as
nonblocking and the send operation cannot be
completed immediately.

WSAEMSGSIZE The socket is message oriented, and the message is
larger than the maximum supported by the
underlying transport.

WSAEINVAL The socket has not been bound with bind, or the
socket is not created with the overlapped flag.

WSAECONNABORTED The virtual circuit was terminated due to a time-out
or other failure.

WSAECONNRESET The virtual circuit was reset by the remote side.

WSA_IO_PENDING An overlapped operation was successfully initiated
and completion will be indicated at a later time.

WSA_OPERATION_ABORTED The overlapped operation has been canceled due to
the closure of the socket, or the execution of the
SIO_FLUSH command in WSAIoctl.

Legal Information Page 257 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

WSACloseEvent, WSACreateEvent, WSAGetOverlappedResult, WSASocket,
WSAWaitForMultipleEvents

WSASendDisconnect
The Windows Sockets WSASendDisconnect function initiates termination of the connection for
the socket and sends disconnect data.

int WSASendDisconnect (
 SOCKET s,
 LPWSABUF lpOUT boundDisconnectData
);

Parameters

s
[in] A descriptor identifying a socket.

lpOutboundDisconnectData
[in] A pointer to the outgoing disconnect data.

Remarks

The WSASendDisconnect functions is used on connection-oriented sockets to disable
transmission, and to initiate termination of the connection along with the transmission of
disconnect data, if any. This is equivalent to a shutdown(SD_SEND), except that
WSASendDisconnect also allows sending disconnect data (in protocols that support it).

After this function has been successfully issued, subsequent sends are disallowed.

The lpOutboundDisconnectData parameter, if not NULL, points to a buffer containing the
outgoing disconnect data to be sent to the remote party for retrieval by using
WSARecvDisconnect.

The WSASendDisconnect function does not close the socket, and resources attached to the
socket will not be freed until closesocket is invoked.

The WSASendDisconnect function does not block regardless of the SO_LINGER setting on the
socket.

An application should not rely on being able to re-use a socket after calling
WSASendDisconnect. In particular, a Windows Sockets provider is not required to support the
use of connect/WSAConnect on such a socket.

Return Values

If no error occurs, WSASendDisconnect returns zero. Otherwise, a value of SOCKET_ERROR
is returned, and a specific error code can be retrieved by calling WSAGetLastError.

Legal Information Page 258 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

connect, socket

WSASendTo
The Windows Sockets WSASendTo function sends data to a specific destination, using
overlapped I/O where applicable.

int WSASendTo (
 SOCKET s,
 LPWSABUF lpBuffers,
 DWORD dwBufferCount,
 LPDWORD lpNumberOfBytesSent,
 DWORD dwFlags,
 const struct sockaddr FAR * lpTo,
 int iToLen,
 LPWSAOVERLAPPED lpOverlapped,
 LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionROUTINE
);

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAENOPROTOOPT The parameter lpOutboundDisconnectData is not
NULL, and the disconnect data is not supported by the
service provider.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAENOTCONN The socket is not connected (connection-oriented
sockets only).

WSAENOTSOCK The descriptor is not a socket.

WSAEFAULT The lpOutboundDisconnectData parameter is not
completely contained in a valid part of the user address
space.

Legal Information Page 259 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Parameters

s
[in] A descriptor identifying a (possibly connected) socket.

lpBuffers
[in] A pointer to an array of WSABUF structures. Each WSABUF structure contains a
pointer to a buffer and the length of the buffer. This array must remain valid for the duration
of the send operation.

dwBufferCount
[in] The number of WSABUF structures in the lpBuffers array.

lpNumberOfBytesSent
[out] A pointer to the number of bytes sent by this call if the I/O operation completes
immediately.

dwFlags
[in] An indicator specifying the way in which the call is made.

lpTo
[in] An optional pointer to the address of the target socket.

iToLen
[in] The size of the address in lpTo.

lpOverlapped
[in] A pointer to a WSAOVERLAPPED structure (ignored for nonoverlapped sockets).

lpCompletionRoutine
[in] A pointer to the completion routine called when the send operation has been completed
(ignored for nonoverlapped sockets).

Remarks

The WSASendTo function provides functionality over and above the standard sendto function in
two important areas:

1. It can be used in conjunction with overlapped sockets to perform overlapped send
operations.

2. It allows multiple send buffers to be specified making it applicable to the scatter/gather type
of I/O.

The WSASendTo function is normally used on a connectionless socket specified by s to send a
datagram contained in one or more buffers to a specific peer socket identified by the lpTo
parameter. Even if the connectionless socket has been previously connected using the connect
function to a specific address, lpTo overrides the destination address for that particular datagram
only. On a connection-oriented socket, the lpTo and iToLen parameters are ignored; in this case,
the WSASendTo is equivalent to WSASend.

For overlapped sockets (created using WSASocket with flag WSA_FLAG_OVERLAPPED)
sending data uses overlapped I/O, unless both lpOverlapped and lpCompletionRoutine are NULL
in which case the socket is treated as a nonoverlapped socket. A completion indication will occur
(invoking the completion routine or setting of an event object) when the supplied buffer(s) have
been consumed by the transport. If the operation does not complete immediately, the final
completion status is retrieved through the completion routine or WSAGetOverlappedResult.

If both lpOverlapped and lpCompletionRoutine are NULL, the socket in this function will be
treated as a non-overlapped socket.

Legal Information Page 260 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

For nonoverlapped sockets, the last two parameters (lpOverlapped, lpCompletionRoutine) are
ignored and WSASendTo adopts the same blocking semantics as send. Data is copied from the
supplied buffer(s) into the transport's buffer. If the socket is nonblocking and stream oriented, and
there is not sufficient space in the transport's buffer, WSASendTo returns with only part of the
application's buffers having been consumed. Given the same buffer situation and a blocking
socket, WSASendTo will block until all of the application's buffer contents have been consumed.

The array of WSABUF structures indicated by the lpBuffers parameter is transient. If this
operation is completed in an overlapped manner, it is the sercvice provider's responsibility to
capture these WSABUF structures before returning from this call. This enables applications to
build stack-based WSABUF arrays.

For message-oriented sockets, care must be taken not to exceed the maximum message size of the
underlying transport, which can be obtained by getting the value of socket option
SO_MAX_MSG_SIZE. If the data is too long to pass atomically through the underlying protocol
the error WSAEMSGSIZE is returned, and no data is transmitted.

The successful completion of a WSASendTo does not indicate that the data was successfully
delivered.

The dwFlags parameter can be used to influence the behavior of the function invocation beyond
the options specified for the associated socket. That is, the semantics of this function are
determined by the socket options and the dwFlags parameter. The latter is constructed by or-ing
any of the following values:

Overlapped socket I/O

If an overlapped operation completes immediately, WSASendTo returns a value of zero and the
lpNumberOfBytesSent parameter is updated with the number of bytes sent. If the overlapped
operation is successfully initiated and will complete later, WSASendTo returns
SOCKET_ERROR and indicates error code WSA_IO_PENDING. In this case,
lpNumberOfBytesSent is not updated. When the overlapped operation completes the amount of
data transferred is indicated either through the cbTransferred parameter in the completion routine
(if specified), or through the lpcbTransfer parameter in WSAGetOverlappedResult.

The WSASendTo function can be called from within the completion routine of a previous
WSARecv, WSARecvFrom, WSASend or WSASendTo function. This permits time-sensitive
data transmissions to occur entirely within a preemptive context.

The lpOverlapped parameter must be valid for the duration of the overlapped operation. If

Value Meaning

MSG_DONTROUTE Specifies that the data should not be subject to routing. A
Windows Socket service provider may choose to ignore this
flag.

MSG_OOB Send out-of-band data (stream-style socket such as
SOCK_STREAM only).

MSG_PARTIAL Specifies that lpBuffers only contains a partial message. Note
that the error code WSAEOPNOTSUPP will be returned by
transports that do not support partial message transmissions.

Legal Information Page 261 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

multiple I/O operations are simultaneously outstanding, each must reference a separate
WSAOVERLAPPED structure.

If the lpCompletionRoutine parameter is NULL, the hEvent field of lpOverlapped is signaled
when the overlapped operation completes if it contains a valid event object handle. An application
can use WSAWaitForMultipleEvents or WSAGetOverlappedResult to wait or poll on the
event object.

If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the
application to pass context information to the completion routine. A caller that passes a non-
NULL lpCompletionRoutine and later calls WSAGetOverlappedResult for the same overlapped
IO request may not set the fWait parameter for that invocation of WSAGetOverlappedResult to
TRUE. In this case the usage of the hEvent field is undefined, and attempting to wait on the
hEvent field would produce unpredictable results.

The completion routine follows the same rules as stipulated for Win32 file I/O completion
routines. The completion routine will not be invoked until the thread is in an alertable wait state
such as can occur when the function WSAWaitForMultipleEvents with the fAlertable parameter
set to TRUE is invoked.

Transport providers allow an application to invoke send and receive operations from within the
context of the socket I/O completion routine, and guarantee that, for a given socket, I/O
completion routines will not be nested. This permits time-sensitive data transmissions to occur
entirely within a preemptive context.

The prototype of the completion routine is as follows:

void CALLBACK CompletionROUTINE(
 IN DWORD dwError,
 IN DWORD cbTransferred,
 IN LPWSAOVERLAPPED lpOverlapped,
 IN DWORD dwFlags
);

The CompletionRoutine function is a placeholder for an application-defined or library-defined
function name. The dwError paramter specifies the completion status for the overlapped
operation as indicated by lpOverlapped. The cbTransferred parameter specifies the number of
bytes sent. Currently there are no flag values defined and dwFlags will be zero. This function does
not return a value.

Returning from this function allows invocation of another pending completion routine for this
socket. All waiting completion routines are called before the alertable thread's wait is satisfied
with a return code of WSA_IO_COMPLETION. The completion routines can be called in any
order, not necessarily in the same order the overlapped operations are completed. However, the
posted buffers are guaranteed to be sent in the same order they are supplied.

Return Values

If no error occurs and the send operation has completed immediately, WSASendTo returns zero.
In this case, the completion routine will have already been scheduled to be called once the calling
thread is in the alertable state. Otherwise, a value of SOCKET_ERROR is returned, and a specific
error code can be retrieved by calling WSAGetLastError. The error code WSA_IO_PENDING
indicates that the overlapped operation has been successfully initiated and that completion will be
indicated at a later time. Any other error code indicates that the overlapped operation was not

Legal Information Page 262 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

successfully initiated and no completion indication will occur.

Error Codes

WSANOTINITIALISED A successful WSAStartup must occur before
using this function.

WSAENETDOWN The network subsystem has failed.

WSAEACCES The requested address is a broadcast address, but
the appropriate flag was not set.

WSAEINTR A blocking Windows Socket 1.1 call was canceled
through WSACancelBlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in
progress, or the service provider is still processing
a callback function.

WSAEFAULT The lpBuffers, lpTo, lpOverlapped,
lpNumberOfBytesSent, or lpCompletionRoutine
parameters are not part of the user address space, or
the lpTo argument is too small.

WSAENETRESET The connection has been broken due to "keep-
alive" activity detecting a failure while the
operation was in progress.

WSAENOBUFS The Windows Sockets provider reports a buffer
deadlock.

WSAENOTCONN The socket is not connected (connection-oriented
sockets only)

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not
stream-style such as type SOCK_STREAM, out-of-
band data is not supported in the communication
domain associated with this socket,
MSG_PARTIAL is not supported, or the socket is
unidirectional and supports only receive operations.

WSAESHUTDOWN The socket has been shut down; it is not possible to
WSASendTo on a socket after shutdown has been
invoked with how set to SD_SEND or SD_BOTH.

WSAEWOULDBLOCK Overlapped sockets: There are too many
outstanding overlapped I/O requests.
Nonoverlapped sockets: The socket is marked as
nonblocking and the send operation cannot be
completed immediately.

WSAEMSGSIZE The socket is message oriented, and the message is
larger than the maximum supported by the
underlying transport.

WSAEINVAL The socket has not been bound with bind, or the
socket is not created with the overlapped flag.

WSAECONNABORTED The virtual circuit was terminated due to a time-out
or other failure.

Legal Information Page 263 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

WSACloseEvent, WSACreateEvent, WSAGetOverlappedResult, WSASocket,
WSAWaitForMultipleEvents

WSASetBlockingHook
This function has been removed in compliance with the Windows Sockets 2 specification,
revision 2.2.0.

The function is not exported directly by the WS2_32.DLL, and Windows Sockets 2 applications
should not use this function. Windows Sockets 1.1 applications that call this function are still
supported through the WINSOCK.DLL and WSOCK32.DLL.

Blocking hooks are generally used to keep a single-threaded GUI application responsive during
calls to blocking functions. Instead of using blocking hooks, an applications should use a separate
thread (separate from the main GUI thread) for network activity.

WSAIsBlocking, WSACancelBlockingCall

WSASetEvent

WSAECONNRESET The virtual circuit was reset by the remote side.

WSAEADDRNOTAVAIL The remote address is not a valid address (such as
ADDR_ANY).

WSAEAFNOSUPPORT Addresses in the specified family cannot be used
with this socket.

WSAEDESTADDRREQ A destination address is required.

WSAENETUNREACH The network cannot be reached from this host at
this time.

WSA_IO_PENDING An overlapped operation was successfully initiated
and completion will be indicated at a later time.

WSA_OPERATION_ABORTED The overlapped operation has been canceled due to
the closure of the socket, or the execution of the
SIO_FLUSH command in WSAIoctl.

Legal Information Page 264 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

The Windows Sockets WSASetEvent function sets the state of the specified event object to
signaled.

BOOL WSASetEvent(
 WSAEVENT hEvent
);

Paramters

hEvent
[in] A handle that identifies an open event object.

Remarks

The WSASetEvent function sets the state of the event object to be signaled.

Return Values

If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
WSAGetLastError.

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

WSACloseEvent, WSACreateEvent, WSAResetEvent

WSASetLastError

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSA_INVALID_HANDLE The hEvent paramter is not a valid event object handle.

Legal Information Page 265 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

The Windows Sockets WSASetLastError function sets the error code that can be retrieved
through the WSAGetLastError function.

void WSASetLastError (
 int iError
);

Parameters

iError
[in] An integer that specifies the error code to be returned by a subsequent
WSAGetLastError call.

Remarks

The WSASetLastError function allows an application to set the error code to be returned by a
subsequent WSAGetLastError call for the current thread. Note that any subsequent Windows
Sockets routine called by the application will override the error code as set by this routine.

The error code set by WSASetLastError is different from the error code reset by calling the
function getsockopt with SO_ERROR.

Return Values

None.

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

getsockopt, WSAGetLastError

WSASetService
The Windows Sockets WSASetService function registers or deregisters a service instance within
one or more name spaces. This function can be used to affect a specific name space provider, all

WSANOTINITIALISED A successful WSAStartup must occur before using this
function.

Legal Information Page 266 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

providers associated with a specific name space, or all providers across all name spaces.

INT WSASetService(
 LPWSAQUERYSET lpqsRegInfo,
 WSAESETSERVICEOP essOperation,
 DWORD dwControlFlags
);

Parameters

lpqsRegInfo
[in] A pointer to the service information for registration or deregistration.

essOperation
[in] An enumeration whose values include:
RNRSERVICE_REGISTER

Register the service. For SAP, this means sending out a periodic broadcast. This is a
NOP for the DNS name space. For persistent data stores, this means updating the
address information.

RNRSERVICE_DEREGISTER
Deregister the service. For SAP, this means stop sending out the periodic broadcast.
This is a NOP for the DNS name space. For persistent data stores this means deleting
address information.

RNRSERVICE_DELETE
Delete the service from dynamic name and persistent spaces. For services represented
by multiple CSADDR_INFO structures (using the SERVICE_MULTIPLE flag),
only the supplied address will be deleted, and this much match exactly the
corresponding CSADD_INFO structure that was supplied when the service was
registered.

dwControlFlags
[in] The meaning of dwControlFlags is dependent on the following values:

The available values for essOperation and dwControlFlags combine to give meanings as shown in
the following table:

Flag Meaning

SERVICE MULTIPLE Controls scope of operation. When clear, service addresses
are managed as a group. A register or deregister invalidates
all existing addresses before adding the given address set.
When set, the action is only performed on the given address
set. A register does not invalidate existing addresses and a
deregister only invalidates the given set of addresses.

Operation Flags Service already exists Service does not exist

RNRSERVICE
_REGISTER

none Overwrite the object.
Use only addresses
specified. Object is
REGISTERED.

Create a new object. Use
only addresses specified.
Object is REGISTERED.

RNRSERVICE
_REGISTER

SERVICE
_MULTIPLE

Update object. Add new
addresses to existing set.
Object is
REGISTERED.

Create a new object. Use
all addresses specified.
Object is REGISTERED.

Legal Information Page 267 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Remarks

SERVICE_MULTIPLE lets an application manage its addresses independently. This is useful
when the application wants to manage its protocols individually or when the service resides on
more than one machine. For instance, when a service uses more than one protocol, it may find that
one listening socket aborts but the others remain operational. In this case, the service could
deregister the aborted address without affecting the other addresses.

When using SERVICE_MULTIPLE, an application must not let stale addresses remain in the
object. This can happen if the application aborts without issuing a DEREGISTER request. When a
service registers, it should store its addresses. On its next invocation, the service should explicitly
deregister these old stale addresses before registering new addresses.

Service Properties

The following table describes how service property data is represented in a WSAQUERYSET
structure. Fields labeled as (Optional) can be supplied with a NULL pointer.

RNRSERVICE
_DEREGISTER

none Remove all addresses,
but do not remove object
from name space. Object
is DEREGISTERED.

WSASERVICE
_NOT_FOUND

RNRSERVICE
_DEREGISTER

SERVICE
_MULTIPLE

Update object. Remove
only addresses that are
specified. Only mark
object as
DEREGISTERED if no
addresses present. Do
not remove from the
name space.

WSASERVICE
_NOT_FOUND

RNRSERVICE
_DELETE

none Remove object from the
name space.

WSASERVICE
_NOT_FOUND

RNRSERVICE
_DELETE

SERVICE
_MULTIPLE

Remove only addresses
that are specified. Only
remove object from the
name space if no
addresses remain.

WSASERVICE
_NOT_FOUND

WSAQUERYSET Field Name Service Property Description

Field Name Service Property Description

dwSize Must be set to sizeof(WSAQUERYSET). This is a
versioning mechanism.

DwOutputFlags Not applicable and ignored.

LpszServiceInstanceName Referenced string contains the service instance
name.

LpServiceClassId The GUID corresponding to this service class.

lpVersion (Optional) Supplies service instance version
number.

LpszComment (Optional) An optional comment string.

Legal Information Page 268 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

As illustrated below, the combination of the dwNameSpace and lpNSProviderId parameters
determine that name space providers are affected by this function.

Return Values

The return value for WSASetService is zero if the operation was successful. Otherwise, the value
SOCKET_ERROR is returned, and a specific error number can be retrieved by calling
WSAGetLastError.

Error Codes

QuickInfo

DwNameSpace See table below.

LpNSProviderId See table below.

LpszContext (Optional) Specifies the starting point of the query
in a hierarchical name space.

DwNumberOfProtocols Ignored.

LpafpProtocols Ignored.

LpszQueryString Ignored.

DwNumberOfCsAddrs The number of elements in the array of
CSADDRO_INFO structures referenced by
lpcsaBuffer.

LpcsaBuffer A pointer to an array of CSADDRO_INFO
structures that contain the address(es) that the
service is listening on.

lpBlob (Optional) This is a pointer to a provider-specific
entity.

dwNameSpace lpNSProviderId Scope of Impact

Ignored Non-NULL The specified name space provider

a valid name space ID NULL All name space providers that
support the indicated name space

NS_ALL NULL All name space providers

WSAEACCES The calling routine does not have sufficient
privileges to install the Service.

WSAEINVAL One or more required parameters were invalid or
missing.

WSANOTINITIALIZED The WiS2_32.DLL has not been initialized. The
application must first call WSAStartup before
calling any Windows Sockets functions

WSA NOT ENOUGH MEMORY There was insufficient memory to perform the
operation.

WSASERVICE NOT FOUND No such service is known. The service cannot be
found in the specified name space.

Legal Information Page 269 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

WSASocket
The Windows Sockets WSASocket function creates a socket that is bound to a specific transport
service provider, and optionally creates and/or joins a socket group.

SOCKET WSASocket (
 int af,
 int type,
 int protocol,
 LPWSAPROTOCOL_INFO lpProtocolInfo,
 GROUP g,
 DWORD dwFlags
);

Parameters

af
[in] An address family specification.

type
[in] A type specification for the new socket.

protocol
[in] A particular protocol to be used with the socket that is specific to the indicated address
family.

lpProtocolInfo
[in] A pointer to a WSAPROTOCOL_INFO structure that defines the characteristics of
the socket to be created.

g
[in] Reserved for future use with socket groups. The identifier of the socket group.

dwFlags
[in] A flag that specifies the socket attribute.

Remarks

The WSASocket function causes a socket descriptor and any related resources to be allocated and
associated with a transport service provider. By default, the socket will not have an overlapped
attribute. If lpProtocolInfo is NULL, the WS2_32.DLL uses the first three parameters (af, type,
protocol) to determine which service provider is used by selecting the first transport provider able
to support the stipulated address family, socket type and protocol values. If the lpProtocolInfo is
not NULL, the socket will be bound to the provider associated with the indicated
WSAPROTOCOL_INFO structure. In this instance, the application can supply the manifest
constant FROM_PROTOCOL_INFO as the value for any of af, type or protocol. This indicates
that the corresponding values from the indicated WSAPROTOCOL_INFO structure
(iAddressFamily, iSocketType, iProtocol) are to be assumed. In any case, the values supplied for

Legal Information Page 270 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

af, type and protocol are supplied unmodified to the transport service provider.

When selecting a protocol and its supporting service provider based on af, type and protocol, this
procedure will only choose a base protocol or a protocol chain, not a protocol layer by itself.
Unchained protocol layers are not considered to have "partial matches" on type or af either. That
is, they do not lead to an error code of WSAEAFNOSUPPORT or WSAEPROTONOSUPPORT
if no suitable protocol is found.

Note The manifest constant AF_UNSPEC continues to be defined in the header file but its use is
strongly discouraged, as this can cause ambiguity in interpreting the value of the protocol
parameter.

Reserved for future use with socket groups. Parameter g is used to indicate the appropriate actions
on socket groups:

1. If g is an existing socket group ID, join the new socket to this group, provided all the
requirements set by this group are met; or

2. If g = SG_UNCONSTRAINED_GROUP, create an unconstrained socket group and have
the new socket be the first member; or

3. If g = SG_CONSTRAINED_GROUP, create a constrained socket group and have the new
socket be the first member; or

4. If g = zero, no group operation is performed.

For unconstrained groups, any set of sockets can be grouped together as long as they are supported
by a single service provider. A constrained socket group can consist only of connection-oriented
sockets, and requires that connections on all grouped sockets be to the same address on the same
host. For newly created socket groups, the new group ID can be retrieved by using getsockopt
with option SO_GROUP_ID, if this operation completes successfully. A socket group and its
associated ID remain valid until the last socket belonging to this socket group is closed. Socket
group IDs are unique across all processes for a given service provider.

The dwFlags parameter can be used to specify the attributes of the socket by or-ing any of the
following Flags:

Flag Meaning

WSA_FLAG_OVERLAPPED This flag causes an overlapped socket to be created.
Overlapped sockets can utilize WSASend,
WSASendTo, WSARecv, WSARecvFrom and
WSAIoctl for overlapped I/O operations, which
allows multiple these operations to be initiated and
in progress simultaneously. All functions that allow
overlapped operation (WSASend,
WSARecv,WSASendTo, WSARecvFrom,
WSAIoctl) also support non-overlapped usage on
an overlapped socket if the values for parameters
related to overlapped operation are NULL.

WSA_FLAG_MULTIPOINT_C_ROOT Indicates that the socket created will be a c_root in
a multipoint session. Only allowed if a rooted
control plane is indicated in the protocol's
WSAPROTOCOL_INFO structure. Refer to
Multipoint and Multicast Semantics for additional
information.

Legal Information Page 271 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Important For multipoint sockets, exactly one of WSA_FLAG_MULTIPOINT_C_ROOT or
WSA_FLAG_MULTIPOINT_C_LEAF must be specified, and exactly one of
WSA_FLAG_MULTIPOINT_D_ROOT or WSA_FLAG_MULTIPOINT_D_LEAF must be
specified. Refer to Multipoint and Multicast Semantics for additional information.

Connection-oriented sockets such as SOCK_STREAM provide full-duplex connections, and must
be in a connected state before any data can be sent or received on them. A connection to another
socket is created with a connect/WSAConnect call. Once connected, data can be transferred
using send/WSASend and recv/WSARecv calls. When a session has been completed, a
closesocket must be performed.

The communications protocols used to implement a reliable, connection-oriented socket ensure
that data is not lost or duplicated. If data for which the peer protocol has buffer space cannot be
successfully transmitted within a reasonable length of time, the connection is considered broken
and subsequent calls will fail with the error code set to WSAETIMEDOUT.

Connectionless, message-oriented sockets allow sending and receiving of datagrams to and from
arbitrary peers using sendto/WSASendTo and recvfrom/WSARecvFrom. If such a socket is
connected to a specific peer, datagrams can be sent to that peer using send/WSASend and can be
received from (only) this peer using recv/WSARecv.

Support for sockets with type RAW is not required, but service providers are encourages to
support raw sockets whenever it makes sense to do so.

Shared Sockets
When a special WSAPROTOCOL_INFO structure (obtained through the
WSADuplicateSocket function and used to create additional descriptors for a shared
socket) is passed as an input parameter to WSASocket, the g and dwFlags parameters are
ignored. Such a WSAPROTOCOL_INFO struct may only be used once, otherwise the
error code WSAEINVAL will result.

Return Values

WSA_FLAG_MULTIPOINT_C_LEAF Indicates that the socket created will be a c_leaf in
a multicast session. Only allowed if
XP1_SUPPORT_MULTIPOINT is indicated in the
protocol's WSAPROTOCOL_INFO structure.
Refer to Multipoint and Multicast Semantics for
additional information.

WSA_FLAG_MULTIPOINT_D_ROOT Indicates that the socket created will be a d_root in
a multipoint session. Only allowed if a rooted data
plane is indicated in the protocol's
WSAPROTOCOL_INFO structure. Refer to
Multipoint and Multicast Semantics for additional
information.

WSA_FLAG_MULTIPOINT_D_LEAF Indicates that the socket created will be a d_leaf in
a multipoint session. Only allowed if
XP1_SUPPORT_MULTIPOINT is indicated in the
protocol's WSAPROTOCOL_INFO structure.
Refer to Multipoint and Multicast Semantics for
additional information.

Legal Information Page 272 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

If no error occurs, WSASocket returns a descriptor referencing the new socket. Otherwise, a
value of INVALID_SOCKET is returned, and a specific error code can be retrieved by calling
WSAGetLastError.

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

accept, bind, connect, getsockname, getsockopt, ioctlsocket, listen, recv, recvfrom, select,
send, sendto, setsockopt, shutdown

WSANOTINITIALISED A successful WSAStartup must occur before using
this function.

WSAENETDOWN The network subsystem has failed.

WSAEAFNOSUPPORT The specified address family is not supported.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback
function.

WSAEMFILE No more socket descriptors are available.

WSAENOBUFS No buffer space is available. The socket cannot be
created.

WSAEPROTONOSUPPORT The specified protocol is not supported.

WSAEPROTOTYPE The specified protocol is the wrong type for this socket.

WSAESOCKTNOSUPPORT The specified socket type is not supported in this
address family.

WSAEINVAL The parameter g specified is not valid, or the
WSAPROTOCOL_INFO structure that
lpProtocolInfo points to is incomplete, the contents are
invalid or the WSAPROTOCOL_INFO structurehas
already been used in an earlier duplicate socket
operation.

WSAEFAULT lpProtocolInfo argument is not in a valid part of the
process address space.

WSAINVALIDPROVIDER The service provider returned a version other than 2.2.

WSAINVALIDPROCTABLE The service provider returned an invalid or incomplete
procedure table to the WSPStartup.

Legal Information Page 273 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

WSAStartup
The Windows Sockets WSAStartup function initiates use of WS2_32.DLL by a process.

int WSAStartup (
 WORD wVersionRequested,
 LPWSADATA lpWSAData
);

Parameters

wVersionRequested
[in] The highest version of Windows Sockets support that the caller can use. The high order
byte specifies the minor version (revision) number; the low-order byte specifies the major
version number.

lpWSAData
[out] A pointer to the WSADATA data structure that is to receive details of the Windows
Sockets implementation.

Remarks

The WSAStartup function must be the first Windows Sockets function called by an application
or DLL. It allows an application or DLL to specify the version of Windows Sockets required and
to retrieve details of the specific Windows Sockets implementation. The application or DLL can
only issue further Windows Sockets functions after a successfully calling WSAStartup.

In order to support future Windows Sockets implementations and applications that can have
functionality differences from current version of Windows Sockets, a negotiation takes place in
WSAStartup. The caller of WSAStartup and the WS2_32.DLL indicate to each other the
highest version that they can support, and each confirms that the other's highest version is
acceptable. Upon entry to WSAStartup, the WS2_32.DLL examines the version requested by the
application. If this version is equal to or higher than the lowest version supported by the DLL, the
call succeeds and the DLL returns in wHighVersion the highest version it supports and in
wVersion the minimum of its high version and wVersionRequested. The WS2_32.DLL then
assumes that the application will use wVersion. If the wVersion field of the WSADATA structure
is unacceptable to the caller, it should call WSACleanup and either search for another
WS2_32.DLL or fail to initialize.

It is legal and possible for an application written to this version of the specification to successfully
negotiate a higher version number than the version of this specification. In such a case, the
application is only guaranteed access to higher-version functionality that fits within the syntax
defined in this version, such as new Ioctl codes and new behavior of existing functions. New
functions, for example, may be inaccessible. To be guaranteed full access to new syntax of a
future version, the application must fully conform to that future version, such as compiling against
a new header file, linking to a new library, or other special cases.

This negotiation allows both a WS2_32.DLL and a Windows Sockets application to support a
range of Windows Sockets versions. An application can use WS2_32.DLL if there is any overlap
in the version ranges. The following chart gives examples of how WSAStartup works in
conjunction with different application and WS2_32.DLL versions:

Legal Information Page 274 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

The following code fragment demonstrates how an application that supports only version 2.2 of
Windows Sockets makes a WSAStartup call:

WORD wVersionRequested;
WSADATA wsaData;
int err;

wVersionRequested = MAKEWORD(2, 2);

err = WSAStartup(wVersionRequested, &wsaData);
if (err != 0) {
 /* Tell the user that we could not find a usable */
 /* WinSock DLL. */
 return;
}

/* Confirm that the WinSock DLL supports 2.2.*/
/* Note that if the DLL supports versions greater */
/* than 2.2 in addition to 2.2, it will still return */
/* 2.2 in wVersion since that is the version we */
/* requested. */

if (LOBYTE(wsaData.wVersion) != 2 ||
 HIBYTE(wsaData.wVersion) != 2) {
 /* Tell the user that we could not find a usable */
 /* WinSock DLL. */
 WSACleanup();
 return;
}

/* The WinSock DLL is acceptable. Proceed. */

Once an application or DLL has made a successful WSAStartup call, it can proceed to make
other Windows Sockets calls as needed. When it has finished using the services of the
WS2_32.DLL, the application or DLL must call WSACleanup in order to allow the
WS2_32.DLL to free any resources for the application.

Details of the actual Windows Sockets implementation are described in the WSADATA
structure.

An application or DLL can call WSAStartup more than once if it needs to obtain the WSAData

App
versions

DLL
Versions

wVersion
Requested

wVersion wHigh
Version

End Result

1.1 1.1 1.1 1.1 1.1 use 1.1

1.0 1.1 1.0 1.1 1.0 1.0 use 1.0

1.0 1.0 1.1 1.0 1.0 1.1 use 1.0

1.1 1.0 1.1 1.1 1.1 1.1 use 1.1

1.1 1.0 1.1 1.0 1.0 Application fails

1.0 1.1 1.0 --- --- WSAVERNOT
SUPPORTED

1.0 1.1 1.0 1.1 1.1 1.1 1.1 use 1.1

1.1 2.0 1.1 2.0 1.1 1.1 use 1.1

2.0 2.0 2.0 2.0 2.0 use 2.0

Legal Information Page 275 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

structure information more than once. On each such call the application can specify any version
number supported by the DLL.

An application must call one WSACleanup call for every successful WSAStartup call to allow
third-party DLLs to make use of a WS2_32.DLL on behalf of an application. This means, for
example, that if an application calls WSAStartup three times, it must call WSACleanup three
times. The first two calls to WSACleanup do nothing except decrement an internal counter; the
final WSACleanup call for the task does all necessary resource deallocation for the task.

Return Values

The WSAStartup function returns zero if successful. Otherwise, it returns one of the error codes
listed below.

An application cannot call WSAGetLastError to determine the error code as is normally done in
Windows Sockets is WSAStartup fails. The WS2_32.DLL will not have been loaded in the case
of a failure so the client data area where the "last error" information is stored could not be
established.

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Use version 1.0 and later.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

send, sendto, WSACleanup

WSAStringToAddress
The Windows Sockets WSAStringToAddress function converts a numeric string to a
SOCKADDR structure, suitable for passing to Windows Sockets routines that take such a

WSASYSNOTREADY Indicates that the underlying network subsystem is not
ready for network communication.

WSAVERNOTSUPPORTED The version of Windows Sockets support requested is
not provided by this particular Windows Sockets
implementation.

WSAEINPROGRESS A blocking Windows Sockets 1.1 operation is in
progress.

WSAEPROCLIM Limit on the number of tasks supported by the
Windows Sockets implementation has been reached.

WSAEFAULT The lpWSAData is not a valid pointer.

Legal Information Page 276 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

structure.

INT WSAStringToAddress(
 LPTSTR AddressString,
 INT AddressFamily,
 LPWSAPROTOCOL_INFO lpProtocolInfo,
 LPSOCKADDR lpAddress,
 LPINT lpAddressLength
);

Parameters

AddressString
[in] Points to the zero-terminated human-readable numeric string to convert.

AddressFamily
[in] The address family to which the string belongs.

lpProtocolInfo
[in] (optional) the WSAPROTOCOL_INFO structureassociated with the provider to be
used. If this is NULL, the call is routed to the provider of the first protocol supporting the
indicated AddressFamily.

Address
[out] A buffer that is filled with a single SOCKADDR.

lpAddressLength
[in/out] The length of the Address buffer. Returns the size of the resultant SOCKADDR
structure. If the supplied buffer is not large enough, the function fails with a specific error
of WSAEFAULT and this parameter is updated with the required size in bytes.

Remarks

The WSAStringToAddress function converts alpha-numeric address to SOCKADDR structures.
WSAStringToAddress is the protocol independent equivalent of the BSD inet_ntoa function.

Any missing components of the address will be defaulted to a reasonable value, if possible. For
example, a missing port number will default to zero. If the caller wants the translation to be done
by a particular provider, it should supply the corresponding WSAPROTOCOL_INFO structure
in the lpProtocolInfo parameter.

Return Values

The return value for WSAStringToAddress is zero if the operation was successful. Otherwise,
the value SOCKET_ERROR is returned, and a specific error number can be retrieved by calling
WSAGetLastError.

Error Codes

WSAEFAULT The specified Address buffer is too small. Pass in a
larger buffer.

WSAEINVAL Unable to translate the string into a SOCKADDR.

WSANOTINITIALIZED The WS2_32.DLL has not been initialized. The
application must first call WSAStartup before
calling any Windows Socket functions.

Legal Information Page 277 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

WSAUnhookBlockingHook
This function has been removed in compliance with the Windows Sockets 2 specification,
revision 2.2.0.

The function is not exported directly by the WS2_32.DLL, and Windows Sockets 2 applications
should not use this function. Windows Sockets 1.1 applications that call this function are still
supported through the WINSOCK.DLL and WSOCK32.DLL.

Blocking hooks are generally used to keep a single-threaded GUI application responsive during
calls to blocking functions. Instead of using blocking hooks, an applications should use a separate
thread (separate from the main GUI thread) for network activity.

WSAWaitForMultipleEvents
The Windows Sockets WSAWaitForMultipleEvents function returns either when one or all of
the specified event objects are in the signaled state, or when the time-out interval expires.

DWORD WSAWaitForMultipleEvents(
 DWORD cEvents,
 const WSAEVENT FAR *lphEvents,
 BOOL fWaitAll,
 DWORD dwTimeOUT,
 BOOL fAlertable
);

Parameters

cEvents
[in] An indicator specifying the number of event object handles in the array pointed to by
lphEvents. The maximum number of event object handles is
WSA_MAXIMUM_WAIT_EVENTS. One or more events must be specified.

lphEvents
[in] A pointer to an array of event object handles.

fWaitAll
[in] An indicator specifying the wait type. If TRUE, the function returns when all event

WSA NOT ENOUGH MEMORY There was insufficient memory to perform the
operation.

Legal Information Page 278 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

objects in the lphEvents array are signaled at the same time. If FALSE, the function returns
when any one of the event objects is signaled. In the latter case, the return value indicates
the event object whose state caused the function to return.

dwTimeout
[in] An indicator specifying the time-out interval, in milliseconds. The function returns if
the interval expires, even if conditions specified by the fWaitAll parameter are not satisfied.
If dwTimeout is zero, the function tests the state of the specified event objects and returns
immediately. If dwTimeout is WSA_INFINITE, the function's time-out interval never
expires.

fAlertable
[in] An indicator specifying whether the function returns when the system queues an I/O
completion routine for execution by the calling thread. If TRUE, the completion routine is
executed and the function returns. If FALSE, the completion routine is not executed when
the function returns.

Remarks

The WSAWaitForMultipleEvents function returns either when any one or when all of the
specified objects are in the signaled state, or when the time-out interval elapses. This function is
also used to perform an alertable wait by setting the parameter fAltertable to be TRUE. This
enables the function to return when the system queues an I/O completion routine to be executed
by the calling thread.

When fWaitAll is TRUE, the function's wait condition is satisfied only when the state of all
objects is signaled at the same time. The function does not modify the state of the specified
objects until all objects are simultaneously signaled.

Applications that simply need to enter an alertable wait state without waiting for any event objects
to be signalled should use the Win32 SleepEx function.

Return Values

If the WSAWaitForMultipleEvents function succeeds, the return value indicates the event
object that caused the function to return.

If the function fails, the return value is WSA_WAIT_FAILED. To get extended error information,
call WSAGetLastError.

The return value upon success is one of the following values:

Value Meaning

WSA_WAIT_EVENT_0 to
(WSA_WAIT_EVENT_0 + cEvents - 1)

If fWaitAll is TRUE, the return value indicates that
the state of all specified event objects is signaled.
If fWaitAll is FALSE, the return value minus
WSA_WAIT_EVENT_0 indicates the lphEvents
array index of the object that satisfied the wait.

WAIT_IO_COMPLETION One or more I/O completion routines are queued
for execution.

WSA_WAIT_TIMEOUT The time-out interval elapsed and the conditions
specified by the fWaitAll parameter are not
satisfied.

Legal Information Page 279 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Error Codes

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock2.h.
 Import Library: Link with ws2_32.lib.

See Also

WSACloseEvent, WSACreateEvent

AFPROTOCOLS
typedef struct _AFPROTOCOLS {
 INT iAddressFamily;
 INT iProtocol;
} AFPROTOCOLS, *PAFPROTOCOLS, *LPAFPROTOCOLS;

BLOB
A BLOB structure contains information about a block of data.

typedef struct _BLOB {
 ULONG cbSize;
 BYTE *pBlobData;
} BLOB;

Members

WSANOTINITIALISED A successful WSAStartup must occur before
using this function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in
progress, or the service provider is still processing
a callback function.

WSA_NOT_ENOUGH_MEMORY Not enough free memory available to complete the
operation.

WSA_INVALID_HANDLE One or more of the values in the lphEvents array is
not a valid event object handle.

WSA_INVALID_PARAMETER The cEvents parameter does not contain a valid
handle count.

Legal Information Page 280 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

cbSize
Specifies the size in bytes of the block of data pointed to by pBlobData

Addresses
Points to a block of data.

Remarks

The structure name BLOB comes from the acronym BLOB, which stands for "Binary Large
OBject".

Note that this structure description says nothing about the nature of the data pointed to by
pBlobData.

QuickInfo

 Windows CE: Unsupported.
 Header: Declared in wtypes.h.

See Also

SERVICE_INFO

CSADDR_INFO
The CSADDR_INFO structure contains Windows Sockets address information for a network
service or name space provider. The GetAddressByName function obtains Windows Sockets
address information using CSADDR_INFO structures.

typedef struct _CSADDR_INFO {
 SOCKET_ADDRESS LocalAddr;
 SOCKET_ADDRESS RemoteAddr;
 INT iSocketType;
 INT iProtocol;
} CSADDR_INFO;

Members

LocalAddr
Specifies a Windows Sockets local address.

In a client application, pass this address to the bind function to obtain access to a network
service.

In a network service, pass this address to the bind function so that the service is bound to
the appropriate local address.

RemoteAddr
Specifies a Windows Sockets remote address. There are several uses for this remote
address:

You can use this remote address to connect to the service via the connect function.

Legal Information Page 281 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

This is useful if an application performs send/receive operations that involve
connection-oriented protocols.
You can use this remote address with the sendto function when you are
communicating over a connectionless (datagram) protocol. If you are using a
connectionless protocol, such as UDP, sendto is typically the way you pass data to
the remote system.

iSocketType
Specifies the type of the Windows socket. The following socket types are defined in
WINSOCK.H:

iProtocol
Specifies a value to pass as the protocol parameter to the socket function to open a socket
for this service.

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in nspapi.h.

See Also

bind, connect, GetAddressByName, recv, send, sendto

FD_SET
typedef struct fd_set {
 u_int fd_count; /* how many are SET? */
 SOCKET fd_array[FD_SETSIZE]; /* an array of SOCKETs */
} fd_set;

Value Socket Type

SOCK_STREAM Stream.This is a protocol that sends data as a stream of
bytes, with no message boundaries.

SOCK_DGRAM Datagram. This is a connectionless protocol. There is no
virtual circuit setup. There are typically no reliability
guarantees. Services use recvfrom to obtain datagrams. The
listen and accept functions do not work with datagrams.

SOCK_RDM Reliably-Delivered Message. This is a protocol that
preserves message boundaries in data.

SOCK_SEQPACKET Sequenced packet stream. This is a protocol that is
essentially the same as SOCK_RDM.

Element Usage

fd_count The number of sockets that are set.

fd_array An array of the sockets in the set.

Legal Information Page 282 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

FLOWSPEC
typedef struct _flowspec {
 uint32 TokenRate; /* In Bytes/sec */
 uint32 TokenBucketSize; /* In Bytes */
 uint32 PeakBandwidth; /* In Bytes/sec */
 uint32 Latency; /* In microseconds */
 uint32 DelayVariation; /* In microseconds */
 SERVICETYPE ServiceType; /* Guaranteed, Predictive, */
 /* Best Effort, etc. */
 uint32 MaxSduSize /* In Bytes */
 uint32 MinimumPolicedSize /* In Bytes */
} FLOWSPEC, *PFLOWSPEC, FAR * LPFLOWSPEC;

typedef struc _QualityOfService {
 FLOWSPECSendingFlowspec/*The flowspec for data sending*/
 FLOWSPECReceivingFlowspec/*Theflowspec for data receiving*/
 WSABUFProviderSpecific/*Additonal Provider*/
} QOS, FAR * LPQOS;

Members

TokenRate
A token bucket model is used to specify the rate at which permission to send traffic (or
credits) accrues. In the model, the token bucket has a maximum volume
(TokenBucketSize) and continuously fills at a certain rate, (TokenRate). If the bucket
contains sufficient credit, the application can send data and reduce the available credit by
that amount. If sufficient credits are not available, the application must wait or discard the
extra traffic.

A value of -1 in the members TokenRate and TokenBucketSize indicates that no rate-
limiting is in force. The TokenRate is expressed in bytes per second.

If an application has been sending at a low rate for a period of time, it can send a large burst
of data all at once until it runs out of credit. Having done so, it must limit itself to sending
at TokenRate until its data burst is exhausted.

In video applications, the TokenRate is typically the average bit rate peak to peak. In
constant rate applications, the TokenRate is equal to the PeakBandwidth.

TokenBucketSize
Largest typical frame size in video applications, expressed in bytes. In constant rate
applications, the TokenBucketSize is chosen to accommodate small variations.

PeakBandwidth
Limits how fast packets may be sent back to back from the application, expressed in
bytes/second. Some intermediate systems can take advantage of this information resulting
in a more efficient resource allocation.

Latency
Maximum acceptable delay between transmission of a bit by the sender and its receipt by
the intended receiver or receivers, expressed in microseconds. The precise interpretation of
this number depends on the level of guarantee specified in the QOS request.

DelayVariation
Difference, in microseconds, between the maximum and minimum possible delay that a
packet will experience. This value is used by applications to determine the amount of buffer

Legal Information Page 283 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

space needed at the receiving side in order to restore the original data transmission pattern.
ServiceType

Contains the value of the level of service to negotiate for the flow. The following
ServiceTypes have been defined.
SERVICETYPE_NOTRAFFIC

In either the sending or receiving flow specification, this value indicates that there
will be no traffic in this direction. On duplex capable media, this signals underlying
software to set up unidirectional connections only.

SERVICETYPE_BESTEFFORT
The service provider takes the FLOWSPEC as a guideline and makes reasonable
efforts to maintain the level of service requested, without making any guarantees on
packet delivery.

SERVICETYPE_CONTROLLEDLOAD
Denotes that end-to-end behavior, provided to an application by a series of network
elements, tightly approximates the behavior visible to applications receiving best-
effort service "under unloaded conditions" from the same series of network elements.
Thus, applications using this service may assume that: (1) A very high percentage of
transmitted packets will be successfully delivered by the network to the receiving end
notes. (Packet loss rate will closely approximate the basic packet error rate of the
transmission medium.) and (2) Transit delay experienced by a very high percentage
of the delivered packets will not greatly exceed the minimum transit delay
experienced by any successfully delivered packet at the speed of light.

SERVICETYPE_GUARANTEED
The service provider implements a queuing algorithm which isolates the flow from
the effects of other flows as much as possible and guarantees the flow the ability to
propagate data at the TokenRate for the duration of the connection. If the sender
sends faster than the TokenRate, the network may delay or discard the excess traffic.
If the sender does not exceed the TokenRate over time, then Latency is also
guaranteed. This ServiceType is designed for applications that require a precisely
known quality of service but world not benefit from better service, such as real-time
control systems.

SERVICETYPE_NETWORK UNAVAILABLE
In either sending or receiving flow specifications, this value may be used by a service
provider to indicate a loss of service in the corresponding direction.

SERVICETYPE_GENERAL_INFORMATION
All service types are supported for this traffic flow.

SERVICETYPE_NOCHANGE
In either sending or receiving flow specifications, this level of service requests that
the quality of service in the corresponding direction is not changed.
ServiceType_NoChange can be used when requesting a QOS change in one direction
only, or when requesting a change only in the ProvderSpecific part of a QOS
specification and not in the SendingFlowspec or the ReceivingFlowspec.

SERVICETYPE_IMMEDIATE_TRAFFIC_CONROL
In either a Sending or Receiving flowspec, this may be combined using bit-wise OR
with one of the other defined ServiceType values to request the service provider to
activate traffic control coincident with provision of the FLOWSPEC.

MaxSduSize
The maximum packet size, in bytes, that is permitted or used in the traffic flow.

MinimumPolicedSize
The minimum packet size that will be given the level of service requested.

Legal Information Page 284 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

GUARANTEE
typedef enum {
 BestEffortService,
 ControlledLoadService,
 PredictiveService,
 GuaranteedService
} GUARANTEE;

Types

GuaranteedService
A service provider supporting guaranteed service implements a queuing algorithm which
isolates the flow from the effects of other flows as much as possible, and guarantees the
flow the ability to propagate data at the TokenRate for the duration of the connection. If the
sender sends faster than that rate, the network may delay or discard the excess traffic. If the
sender does not exceed TokenRate over time, then latency is also guaranteed. This service
is designed for applications which require a precisely known quality of service but would
not benefit from better service, such as real-time control systems.

PredictiveService
A service provider supporting predictive service guarantees the flow the ability to propagate
data at the TokenRate for the duration of the connection. If the sender sends faster than that
rate, the network may delay or discard the excess traffic. The delay limit is not guaranteed
(occasional packets may take longer than specified), but is generally highly reliable. This
service is designed for applications that can accommodate or adapt to some variation in
service quality, such as video service.

ControlledLoadService
With this service, end-to-end behavior provided to an application by a series of network
elements tightly approximates the behavior visible to applications receiving best-effort
service "under unloaded conditions" from the same series of network elements. Thus,
applications using this service can assume that:

1. A very high percentage of transmitted packets will be successfully delivered by the
network to the receiving end-nodes. (Packet loss rate will closely approximate the
basic packet error rate of the transmission medium).

2. Transit delay experienced by a very high percentage of the delivered packets will not
greatly exceed the minimum transit delay experienced by any successfully delivered
packet at the speed of light.

Note This definition comes from the Internet Engineering Task Force (IETF).
BestEffortService

A service provider supporting best effort service, at minimum, takes the flow spec as a
guideline and makes reasonable efforts to maintain the level of service requested, however
without making any guarantees whatsoever.

HOSTENT
Windows Sockets allocates this structure is allocated. An application should never attempt to
modify this structure or to free any of its components. Furthermore, only one copy of this structure

Legal Information Page 285 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

is allocated per thread, and so the application should copy any information that it needs before
issuing any other Windows Sockets API calls.

struct hostent {
 char FAR * h_name;
 char FAR * FAR * h_aliases;
 short h_addrtype;
 short h_length;
 char FAR * FAR * h_addr_list;
};

Members

h_name
Official name of the host (PC).If using the DNS or similar resolution system, it is the Fully
Qualified Domain Name (FQDN) that caused the server to return a reply. If using a local
"hosts" file, it is the first entry after the IP address.

h_aliases
A NULL-terminated array of alternate names.

h_addrtype
The type of address being returned.

h_length
The length, in bytes, of each address.

h_addr_list
A NULL-terminated list of addresses for the host. Addresses are returned in network byte
order. The macro h_addr is defined to be h_addr_list[0] for compatibility with older
software.

IN_ADDR
struct in_addr {
 union {
 struct { u_char s_b1,s_b2,s_b3,s_b4; } S_un_b;
 struct { u_short s_w1,s_w2; } S_un_w;
 u_long S_addr;
 } S_un;

LINGER
struct linger {
 u_short l_onoff;
 u_short l_linger;
}

Members

l_onoff
To enable SO_LINGER, the application should set l_onoff to a nonzero value, set l_linger

Legal Information Page 286 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

to zero or the desired time-out (in seconds), and call setsockopt. To enable
SO_DONTLINGER (that is, disable SO_LINGER) l_onoff should be set to zero and
setsockopt should be called. Note that enabling SO_LINGER with a nonzero time-out on a
nonblocking socket is not recommended.

Enabling SO_LINGER also disables SO_DONTLINGER, and vice versa. Note that if
SO_DONTLINGER is DISABLED (that is, SO_LINGER is ENABLED) then no time-out
value is specified. In this case, the time-out used is implementation dependent. If a previous
time-out has been established for a socket (by enabling SO_LINGER), then this time-out
value should be reinstated by the service provider.

NS_SERVICE_INFO
The NS_SERVICE_INFO structure contains information about a network service or a network
service type in the context of a specified name space, or a set of default name spaces.

typedef struct _NS_SERVICE_INFO {
 DWORD dwNameSpace;
 SERVICE_INFO ServiceInfo;
} NS_SERVICE_INFO;

Members

dwNameSpace
Specifies the name space or a set of default name spaces to which this service information
applies.

Use one of the following constant values to specify a name space:

Value Name Space

NS_DEFAULT A set of default name spaces. The set of default name
spaces typically includes all the name spaces installed
on the system. System administrators, however, can
exclude particular name spaces from the set.

NS_DNS The Domain Name System used in the Internet to
resolve the name of the host.

NS_MS

NS_NDS The NetWare 4 provider.

NS_NETBT The NetBIOS over TCP/IP layer. The operating
system registers their computer names with NetBIOS.
This name space is used to convert a computer name
to an IP address that uses this registration.

NS_NIS

NS_SAP The NetWare Service Advertising Protocol. This can
access the Netware bindery, if appropriate. NS_SAP
is a dynamic name space that enables the registration
of services.

NS_STDA

Legal Information Page 287 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

ServiceInfo
A SERVICE_INFO structure that contains information about a network service or network
service type.

QuickInfo

 Windows NT: Yes
 Windows CE: Unsupported.
 Header: Declared in nspapi.h.

See Also

SERVICE_INFO

PROTOCOL_INFO
The PROTOCOL_INFO structure contains information about a protocol.

typedef struct _PROTOCOL_INFO {
 DWORD dwServiceFlags;
 INT iAddressFamily;
 INT iMaxSockAddr;
 INT iMinSockAddr;
 INT iSocketType;
 INT iProtocol;
 DWORD dwMessageSize;
 LPTSTR lpProtocol;
} PROTOCOL_INFO;

Members

dwServiceFlags
A set of bit flags that specify the services provided by the protocol. One or more of the
following bit flags may be set:

NS_TCPIP_HOSTS Lookup value in the <systemroot>\system32
\drivers\etc\posts file.

NS_TCPIP_LOCAL Local TCP/IP name resolution mechanisms,
including comparisons against the local host name
and lookup value in the cache of host to IP address
mappings.

NS_WINS

NS_X500

Legal Information Page 288 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Value Meaning

XP_CONNECTIONLESS If this flag is set, the protocol
providesconnectionless (datagram) service. If
this flag is clear, the protocol provides
connection-oriented data transfer.

XP_GUARANTEED_DELIVERY If this flag is set, the protocol guarantees that
all data sent will reach the intended
destination. If this flag is clear, there is no
such guarantee.

XP_GUARANTEED_ORDER If this flag is set, the protocol guarantees that
data will arrive in the order in which it was
sent. Note that this characteristic does not
guarantee delivery of the data, but guarantees
only its order. If this flag is clear, the order of
data sent is not guaranteed.

XP_MESSAGE_ORIENTED If this flag is set, the protocol is message-
oriented. A message-oriented protocol honors
message boundaries. If this flag is clear, the
protocol is stream-oriented, and the concept
of message boundaries is irrelevant.

XP_PSEUDO_STREAM If this flag is set, the protocol is a message-
oriented protocol that ignores message
boundaries for all receive operations.

This optional capability is useful when you
do not want the protocol to frame messages.
An application that requires stream-oriented
characteristics can open a socket with type
SOCK_STREAM for transport protocols that
support this functionality, regardless of the
value of iSocketType.

XP_GRACEFUL_CLOSE If this flag is set, the protocol supports two-
phase close operations, also known as
"graceful" close operations. If this flag is
clear, the protocol supports only abortive
close operations.

XP_EXPEDITED_DATA If this flag is set, the protocol supports
expedited data, also known as "urgent data."

XP_CONNECT_DATA If this flag is set, the protocol supports
connect data.

XP_DISCONNECT_DATA If this flag is set, the protocol supports
disconnect data.

XP_SUPPORTS_BROADCAST If this flag is set, the protocol supports a
broadcast mechanism.

XP_SUPPORTS_MULTICAST If this flag is set, the protocol supports a
multicast mechanism.

XP_BANDWIDTH_ALLOCATION If this flag is set, the protocol supports a
mechanism for allocating a guaranteed
bandwidth to an application.

Legal Information Page 289 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

iAddressFamily
Specifies the value to pass as the af parameter when you call the socket function to open a
socket for the protocol. This address family value uniquely defines the structure of Protocol
addresses, also known as SOCKADDRs, used by the protocol.

iMaxSockAddr
Specifies the maximum length of a socket address supported by the protocol.

iMinSockAddr
Specifies the minimum length of a socket address supported by the protocol.

iSocketType
Specifies the value to pass as the type parameter when you call the socket function to open
a socket for the protocol.

Note that if XP_PSEUDO_STREAM is set in dwServiceFlags, the application can specify
SOCK_STREAM as the type parameter to socket, regardless of the value of iSocketType.

iProtocol
Specifies the value to pass as the protocol parameter when you call the socket function to
open a socket for the protocol.

dwMessageSize
Specifies the maximum message size supported by the protocol. This is the maximum size
of a message that can be sent from or received by the host. For protocols that do not support
message framing, the actual maximum size of a message that can be sent to a given address
may be less than this value.

The following special message size values are defined:

lpProtocol
Points to a zero-terminated string that supplies a name for the protocol; for example,
"SPX2."

QuickInfo

 Windows NT: Yes
 Windows: Yes
 Windows CE: Unsupported.
 Header: Declared in nspapi.h.

See Also

EnumProtocols, socket

XP_FRAGMENTATION If this flag isset, the protocol supports
message fragmentation; physical network
MTU is hidden from applications.

XP_ENCRYPTS If this flag is set, the protocol supports data
encryption.

Value Meaning

0 The protocol is stream-oriented; the concept of message size is not
relevant.

0xFFFFFFFF The protocol is message-oriented, but there is no maximum message
size.

Legal Information Page 290 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

PROTOENT
struct protoent {
 char FAR * p_name;
 char FAR * FAR * p_aliases;
 short p_proto;
};

The members of this structure are:

The returned pointer points to a structure that is allocated by the Windows Sockets library. The
application must never attempt to modify this structure or to free any of its components.
Furthermore only one copy of this structure is allocated per thread, and so the application should
copy any information which it needs before issuing any other Windows Sockets function calls.

QUALITYOFSERVICE
The Windows Sockets 2 QOS structure is defined in WINSOCK2.H and is reproduced here.

typedef struct _QualityOfService {
 FLOWSPEC SendingFlowspec; /* The flowspec for data */
 /* sending */
 FLOWSPEC ReceivingFlowspec; /* The flowspec for data */
 /* receiving */
 WSABUF ProviderSpecific; /* Additional provider- */
 /* specific parameters */
} QOS, FAR * LPQOS;

SERVENT
struct servent {
 char FAR * s_name;
 char FAR * FAR * s_aliases;
 short s_port;
 char FAR * s_proto;
};

The members of this structure are:

Element Usage

p_name Official name of the protocol.

P_aliases A NULL-terminated array of alternate names.

P_proto The protocol number, in host byte order.

Legal Information Page 291 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

SERVICE_ADDRESS
The SERVICE_ADDRESS structure contains address information for a service. The structure
can accomodate many types of interprocess communications (IPC) mechanisms and their address
forms, including remote procedure calls (RPCs), named pipes, and sockets.

typedef struct _SERVICE_ADDRESS {
 DWORD dwAddressType;
 DWORD dwAddressFlags;
 DWORD dwAddressLength;
 DWORD dwPrincipalLength;
 BYTE *lpAddress;
 BYTE *lpPrincipal;
} SERVICE_ADDRESS;

Members

dwAddressType
Specifies the address family that the socket address pointed to by lpAddress belongs to.

dwAddressFlags
A set of bit flags that specify properties of the address. The following bit flags are defined:

dwAddressLength
Specifies the size, in bytes, of the address.

dwPrincipalLength
This member is reserved for future use. It must be zero.

lpAddress
Points to a socket address of the appropriate type.

lpPrincipal
This member is reserved for future use. It must be NULL.

Element Usage

s_name Official name of the service.

s_aliases A NULL-terminated array of alternate names.

s_port The port number at which the service can be contacted. Port numbers are
returned in network byte order.

s_proto The name of the protocol to use when contacting the service.

Value Meaning

SERVICE_ADDRESS
_FLAG_RPC_CN

If this bit flag is set, the service supports
connection-oriented RPC over this transport
protocol.

SERVICE_ADDRESS
_FLAG_RPC_DG

If this bit flag is set, the service supports datagram-
oriented RPC over this transport protocol.

SERVICE_ADDRESS
_FLAG_RPC_NB

If this bit flag is set, the service supports NetBIOS
RPC over this transport protocol.

Legal Information Page 292 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

QuickInfo

 Windows NT: Yes
 Windows CE: Unsupported.
 Header: Declared in nspapi.h.

See Also

SERVICE_ADDRESSES, SERVICE_INFO

SERVICE_ADDRESSES
The SERVICE_ADDRESSES structure contains an array of SERVICE_ADDRESS data
structures.

typedef struct _SERVICE_ADDRESSES {
 DWORD dwAddressCount;
 SERVICE_ADDRESS Addresses[1];
} SERVICE_ADDRESSES;

Members

dwAddressCount
Specifies the number of SERVICE_ADDRESS structures in the Addresses array.

Addresses
An array of SERVICE_ADDRESS data structures. Each SERVICE_ADDRESS structure
contains information about a network service address.

QuickInfo

 Windows NT: Yes
 Windows CE: Unsupported.
 Header: Declared in nspapi.h.

See Also

SERVICE_ADDRESS, SERVICE_INFO

SERVICE_INFO
The SERVICE_INFO structure contains information about a network service or a network
service type.

typedef struct _SERVICE_INFO {
 LPGUID lpServiceType;
 LPTSTR lpServiceName;

Legal Information Page 293 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

 LPTSTR lpComment;
 LPTSTR lpLocale;
 DWORD dwDisplayHint;
 DWORD dwVersion;
 DWORD dwTime;
 LPTSTR lpMachineName;
 LPSERVICE_ADDRESSES lpServiceAddress;
 BLOB ServiceSpecificInfo;
} SERVICE_INFO;

Members

lpServiceType
Points to a GUID that is the type of the network service.

lpServiceName
Points to a zero-terminated string that is the name of the network service.

If you are calling the SetService function with the dwNameSpace parameter set to
NS_DEFAULT, the network service name must be a common name. A common name is
what the network service is commonly known as. An example of a common name for a
network service is "My SQL Server".

If you are calling the SetService function with the dwNameSpace parameter set to a
specific service name, the network service name can be a common name or a distinguished
name. A distinguished name distinguishes the service to a unique location with a directory
service. An example of a distinguished name for a network service is
"MS\\SYS\\NT\\DEV\\My SQL Server".

lpComment
Points to a zero-terminated string that is a comment or description for the network service.
For example, "Used for development upgrades."

lpLocale
Points to a zero-terminated string that contains locale information.

dwDisplayHint
Specifies a hint as to how to display the network service in a network browsing user
interface. This can be one of the following values:

dwVersion
Specifies version information for the network service. The high word of this value specifies

Value Meaning

RESOURCEDISPLAYTYPE_DOMAIN Display the network service as a
domain.

RESOURCEDISPLAYTYPE_FILE Display the network service as a file.

RESOURCEDISPLAYTYPE_GENERIC The method used to display the
object does not matter.

RESOURCEDISPLAYTYPE_GROUP Display the network service as a
group.

RESOURCEDISPLAYTYPE_SERVER Display the network service as a
server.

RESOURCEDISPLAYTYPE_SHARE Display the network service as a
sharepoint.

RESOURCEDISPLAYTYPE_TREE Display the network service as a tree.

Legal Information Page 294 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

a major version number. The low word of this value specifies a minor version number.
dwTime

This member is reserved for future use. It must be set to zero.
lpMachineName

Points to a zero-terminated string that is the name of the computer on which the network
service is running.

lpServiceAddress
Points to a SERVICE_ADDRESSES structure that contains an array of
SERVICE_ADDRESS structures. Each SERVICE_ADDRESS structure contains
information about a network service address.

A network service can call the getsockname function to determine the local address of the
system.

ServiceSpecificInfo
A BLOB structure that specifies service-defined information.

Note that, in general, the data pointed to by the BLOB structure's pBlobData member must
not contain any pointers. That is because only the network service knows the format of the
data; copying the data without such knowledge would lead to pointer invalidation. If the
data pointed to by pBlobData contains variable-sized elements, offsets from pBlobData
can be used to indicate the location of those elements. There is one exception to this general
rule: when pBlobData points to a SERVICE_TYPE_INFO_ABS structure. This is
possible because both the SERVICE_TYPE_INFO_ABS structure, and any
SERVICE_TYPE_VALUE_ABS structures it contains are predefined, and thus their
formats are known to the operating system.

QuickInfo

 Windows NT: Yes
 Windows CE: Unsupported.
 Header: Declared in nspapi.h.

See Also

BLOB, GetService, NS_SERVICE_INFO, SetService, SERVICE_ADDRESS,
SERVICE_ADDRESSES, SERVICE_TYPE_INFO_ABS, SERVICE_TYPE_VALUE_ABS

SERVICE_TYPE_INFO_ABS
The SERVICE_TYPE_INFO_ABS structure contains information about a network service type.
You use a SERVICE_TYPE_INFO_ABS structure to add a network service type to a name
space.

typedef struct _SERVICE_TYPE_INFO_ABS {
 LPTSTR lpTypeName;
 DWORD dwValueCount;
 SERVICE_TYPE_VALUE_ABS Values[1];
} SERVICE_TYPE_INFO_ABS

Members

Legal Information Page 295 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

lpTypeName
Points to a zero-terminated string that is the name of the network service type. This name is
the same in all name spaces, and is used by the GetTypeByName and GetNameByType
functions.

dwValueCount
Specifies the number of SERVICE_TYPE_VALUE_ABS structures in the Values
member array that follows dwValueCount.

Values[1]
An array of SERVICE_TYPE_VALUE_ABS structures.

Each of these structures contains information about a service type value that the operating
system or network service may need when an instance of this network service type is
registered with a name space.

The information in these structures may be specific to a name-space. For example, if a
network service uses the SAP name space, but does not have a GUID that contains the SAP
identifier (SAPID), it defines the SAPID in a SERVICE_TYPE_VALUE_ABS structure.

Remarks

When you use the SetService function to add a network service type to a name space, the
SERVICE_TYPE_INFO_ABS structure is passed as the ServiceSpecificInfo BLOB member of
a SERVICE_INFO structure. Although the ServiceSpecificInfo member generally should not
contain pointers, an exception is made in the case of the SERVICE_TYPE_INFO_ABS and
SERVICE_TYPE_VALUE_ABS structures.

QuickInfo

 Windows NT: Yes
 Windows CE: Unsupported.
 Header: Declared in nspapi.h.

See Also

SetService, SERVICE_INFO, SERVICE_TYPE_VALUE_ABS

SERVICE_TYPE_VALUE_ABS
The SERVICE_TYPE_VALUE_ABS structure contains information about a network-service
type value. This information may be specific to a name space.

typedef struct _SERVICE_TYPE_VALUE_ABS {
 DWORD dwNameSpace;
 DWORD dwValueType;
 DWORD dwValueSize;
 LPTSTR lpValueName;
 PVOID lpValue;
} SERVICE_TYPE_VALUE_ABS

Legal Information Page 296 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Members

dwNameSpace
Specifies the name space, or a set of default name spaces, for which the network service
type value is intended. Name-space providers will look only at values intended for their
name space.

Use one of the following constants to specify a name space:

dwValueType
Specifies the type of the value data. You can specify one of the following types:

dwValueSize
Specifies the size, in bytes, of the value data. In the case of REG_SZ and REG_MULTI_SZ
string data, the terminating characters are counted as part of the size.

lpValueName
Points to a zero-terminated string that is the name of the value. This name is specific to a
name space.

Value Name Space

NS_DEFAULT A set of default name spaces. The function queries each name
space within this set. The set of default name spaces typically
includes all the name spaces installed on the system. System
administrators, however, can exclude particular name spaces
from the set. NS_DEFAULT is the value that most
applications should use for dwNameSpace.

NS_DNS The Domain Name System used in the Internet for host name
resolution.

NS_NETBT The NetBIOS over TCP/IP layer. All Windows NT systems
register their computer names with NetBIOS. This name
space is used to convert a computer name to an IP address
that uses this registration. Note that NS_NETBT may access
a WINS server to perform the resolution.

NS_SAP The Netware Service Advertising Protocol. This may access
the Netware bindery if appropriate. NS_SAP is a dynamic
name space that allows registration of services.

NS_TCPIP_HOSTS Lookup value in the <systemroot>\system32\drivers\etc\hosts
file.

NS_TCPIP_LOCAL Local TCP/IP name resolution mechanisms, including
comparisons against the local host name and looks up host
names and IP addresses in cache of host to IP address
mappings.

Value Meaning

REG_BINARY Binary data in any form.

REG_DWORD A 32-bit number.

REG_MULTI_SZ An array of null-terminated strings, terminated by two null
characters.

REG_SZ A null-terminated string.

Legal Information Page 297 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

Several commonly used value name strings are associated with defined constants. These
name strings include the following:

lpValue
Points to the value data.

Remarks

When you use the SetService function to add a network service type to a name space, a
SERVICE_TYPE_INFO_ABS structure is passed as the ServiceSpecificInfo BLOB member of
a SERVICE_INFO structure. Although the ServiceSpecificInfo member generally should not
contain pointers, an exception is made in the case of the SERVICE_TYPE_INFO_ABS and
SERVICE_TYPE_VALUE_ABS structures.

QuickInfo

 Windows NT: Yes
 Windows CE: Unsupported.
 Header: Declared in nspapi.h.

See Also

SetService, SERVICE_INFO, SERVICE_TYPE_INFO_ABS

SOCKADDR
The SOCKADDR structure varies depending on the protocol selected. Except for the sa_family
field, SOCKADDR contents are expressed in network byte order.

struct sockaddr {
 u_short sa_family;
 char sa_data[14];
};

In Windows Sockets 2, the name parameter is not strictly interpreted as a pointer to a
SOCKADDR structure. It is presented in this manner for Windows Sockets compatibility. The
actual structure is interpreted differently in the context of different address families. The only
requirements are that the first u_short is the address family and the total size of the memory
buffer in bytes is namelen

The structure below is used with TCP/IP. Other protocols use similar structures.

Constant Name String

SERVICE_TYPE_VALUE_SAPID "SapId"

SERVICE_TYPE_VALUE_CONN "ConnectionOriented"

SERVICE_TYPE_VALUE_TCPPORT "TcpPort"

SERVICE_TYPE_VALUE_UDPPORT "UdpPort"

Legal Information Page 298 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

struct sockaddr_in {
 short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
};

SOCKET_ADDRESS
typedef struct _SOCKET_ADDRESS {
 LPSOCKADDR lpSockaddr ;
 INT iSockaddrLength ;
} SOCKET_ADDRESS, *PSOCKET_ADDRESS, FAR * LPSOCKET_ADDRESS ;

TIMEVAL
struct timeval {
 long tv_sec; /* seconds */
 long tv_usec; /* and microseconds */
};

This structure is used in the select function. It is taken from the BSD file sys/time.h.

TRANSMIT_FILE_BUFFERS
The TRANSMIT_FILE_BUFFERS structure specifies data to be transmitted before and after
file data during a TransmitFile function file transfer operation.

typedef struct _TRANSMIT_FILE_BUFFERS {
 PVOID Head;
 DWORD HeadLength;
 PVOID Tail;
 DWORD TailLength;
} TRANSMIT_FILE_BUFFERS;

Members

Head
Pointer to a buffer that contains data to be transmitted before the file data is transmitted.

HeadLength
Specifies the number of bytes of data in the buffer pointed to by the Head member that are
to be transmitted.

Tail
Pointer to a buffer that contains data to be transmitted after the file data is transmitted.

Legal Information Page 299 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

TailLength
Specifies the number of bytes of data in the buffer pointed to by the Tail member that are to
be transmitted.

QuickInfo

 Windows NT: Yes
 Windows CE: Unsupported.
 Header: Declared in winsock.h.

See Also

TransmitFile

WSABUF
typedef struct __WSABUF {
 u_longlen; // buffer length
 char FAR *buf; // pointer to buffer
} WSABUF, FAR * LPWSABUF;

Members

len
The length of the buffer.

buf
A pointer to the buffer.

WSADATA
typedef struct WSAData {
 WORD wVersion;
 WORD wHighVersion;
 char szDescription[WSADESCRIPTION_LEN+1];
 char szSystemStatus[WSASYS_STATUS_LEN+1];
 unsigned short iMaxSockets;
 unsigned short iMaxUdpDg;
 char FAR * lpVendorInfo;
} WSADATA, FAR * LPWSADATA;

The members of this structure are:

Parameters

wVersion
The version of the Windows Sockets specification that the WS2_32.DLL expects the caller
to use.

wHighVersion
The highest version of the Windows Sockets specification that this DLL can support (also

Legal Information Page 300 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

encoded as above). Normally this will be the same as wVersion.
szDescription

A null-terminated ASCII string into which the WS2_32.DLL copies a description of the
Windows Sockets implementation. The text (up to 256 characters in length) can contain any
characters except control and formatting characters: the most likely use that an application
will put this to is to display it (possibly truncated) in a status message.

szSystemStatus
A null-terminated ASCII string into which the WS2_32.DLL copies relevant status or
configuration information. The WS2_32.DLL should use this field only if the information
might be useful to the user or support staff: it should not be considered as an extension of
the szDescription field.

iMaxSockets
This field is retained for backward compatibility, but should be ignored for version 2 and
later as no single value can be appropriate for all underlying service providers.

iMaxUdpDg
This value should be ignored for version 2 and onward. It is retained for compatibility with
Windows Sockets specification 1.1, but should not be used when developing new
applications. For the actual maximum message size specific to a particular Windows
Sockets service provider and socket type, applications should use getsockopt to retrieve the
value of option SO_MAX_MSG_SIZE after a socket has been created.

lpVendorInfo
This value should be ignored for version 2 and onward. It is retained for compatibility with
Windows Sockets specification 1.1. Applications needing to access vendor-specific
configuration information should use getsockopt to retrieve the value of option
PVD_CONFIG. The definition of this value (if utilized) is beyond the scope of this
specification.

Note An application should ignore the iMaxsockets, iMaxUdpDg, and lpVendorInfo fields
in WSAData if the value in wVersion after a successful call to WSAStartup is at least 2.
This is because the architecture of Windows Sockets has been changed in version 2 to
support multiple providers, and WSAData no longer applies to a single vendor's stack. Two
new socket options are introduced to supply provider-specific information:
SO_MAX_MSG_SIZE (replaces the iMaxUdpDg element) and PVD_CONFIG (allows any
other provider-specific configuration to occur).

WSAEcomparator
typedef enum _WSAEcomparator {
 COMP_EQUAL = 0,
 COMP_NOTLESS
} WSAECOMPARATOR, *PWSAECOMPARATOR, *LPWSAECOMPARATOR;

WSANAMESPACE_INFO
The WSANAMESPACE_INFO structure contains all of the registration information for a name
space provider.

Legal Information Page 301 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

typedef struct _WSANAMESPACE_INFOW {
 GUID NSProviderId;
 DWORD dwNameSpace;
 BOOL fActive;
 DWORD dwVersion;
 LPWSTR lpszIdentifier;
} WSANAMESPACE_INFOW, *PWSANAMESPACE_INFOW, *LPWSANAMESPACE_INFOW;

Members

NSProviderId
The unique identifier for this name space provider.

dwNameSpace
Specifies the name space supported by this implementation of the provider.

fActive
If TRUE, indicates that this provider is active. If FALSE, the provider is inactive and is not
accessible for queries, even if the query specifically references this provider.

dwVersion
Name Space version identifier.

lpszIdentifier
Display string for the provider.

WSANETWORKEVENTS
typedef struct _WSANETWORKEVENTS {
 long lNetworkEvents;
 int iErrorCode[FD_MAX_EVENTS];
} WSANETWORKEVENTS, FAR * LPWSANETWORKEVENTS;

Parameters

lNetworkEvents
A value that indicates which of the FD_XXX network events have occurred.

iErrorCodes
An array that contains any associated error codes, with an array index that corresponds to
the position of event bits in lNetworkEvents. The identifiers FD_READ_BIT,
FD_WRITE_BIT and other can be used to index the iErrorCodes array.

WSAOVERLAPPED
The WSAOVERLAPPED structure provides a communication medium between the initiation of
an overlapped I/O operation and its subsequent completion. The WSAOVERLAPPED structure
is designed to be compatible with the Win32 OVERLAPPED structure:

typedef struct _WSAOVERLAPPED {
 DWORD Internal;
 DWORD InternalHigh;

Legal Information Page 302 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

 DWORD Offset;
 DWORD OffsetHigh;
 WSAEVENT hEvent;
} WSAOVERLAPPED, FAR * LPWSAOVERLAPPED;

Members

Internal
This reserved field is used internally by the entity that implements overlapped I/O. For
service providers that create sockets as installable file system (IFS) handles, this field is
used by the underlying operating system. Other service providers (non-IFS providers) are
free to use this field as necessary.

InternalHigh
Reserved field is used internally by the entity that implements overlapped I/O. For service
providers that create sockets as IFS handles, this field is used by the underlying operating
system. Non-IFS providers are free to use this field as necessary.

OffsetT
This field is reserved for service providers to use.

OffsetHigh
This field is reserved for service providers to use.

Event
If an overlapped I/O operation is issued without an I/O completion routine
(lpCompletionRoutine is NULL), then this field should either contain a valid handle to a
WSAEVENT object or be NULL. If lpCompletionRoutine is non-NULL then applications
are free to use this field as necessary.

WSAPROTOCOL_INFO
typedef struct _WSAPROTOCOL_INFOW {
 DWORD dwServiceFlags1;
 DWORD dwServiceFlags2;
 DWORD dwServiceFlags3;
 DWORD dwServiceFlags4;
 DWORD dwProviderFlags;
 GUID ProviderId;
 DWORD dwCatalogEntryId;
 WSAPROTOCOLCHAIN ProtocolChain;
 int iVersion;
 int iAddressFamily;
 int iMaxSockAddr;
 int iMinSockAddr;
 int iSocketType;
 int iProtocol;
 int iProtocolMaxOffset;
 int iNetworkByteOrder;
 int iSecurityScheme;
 DWORD dwMessageSize;
 DWORD dwProviderReserved;
 WCHAR szProtocol[WSAPROTOCOL_LEN+1];
} WSAPROTOCOL_INFOW, FAR * LPWSAPROTOCOL_INFOW;

Members

dwServiceFlags1

Legal Information Page 303 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

A bitmask describing the services provided by the protocol. The following values are
possible:
XP1_CONNECTIONLESS

The protocol provides connectionless (datagram) service. If not set, the protocol
supports connection-oriented data transfer.

XP1_GUARANTEED_DELIVERY
The protocol guarantees that all data sent will reach the intended destination.

XP1_GUARANTEED_ORDER
The protocol guarantees that data will only arrive in the order in which it was sent
and that it will not be duplicated. This characteristic does not necessarily mean that
the data will always be delivered, but that any data that is delivered is delivered in the
order in which it was sent.

XP1_MESSAGE_ORIENTED
The protocol honors message boundaries, as opposed to a stream-oriented protocol
where there is no concept of message boundaries.

XP1_PSEUDO_STREAM
This is a message oriented protocol, but message boundaries will be ignored for all
receives. This is convenient when an application does not desire message framing to
be done by the protocol.

XP1_GRACEFUL_CLOSE
The protocol supports two-phase (graceful) close. If not set, only abortive closes are
performed.

XP1_EXPEDITED_DATA
The protocol supports expedited (urgent) data.

XP1_CONNECT_DATA
The protocol supports connect data.

XP1_DISCONNECT_DATA
The protocol supports disconnect data.

XP1_INTERRUPT
This bit is reserved.

XP1_SUPPORT_BROADCAST
The protocol supports a broadcast mechanism.

XP1_SUPPORT_MULTIPOINT
The protocol supports a multipoint or multicast mechanism. Control and data plane
attributes are indicated below.

XP1_MULTIPOINT_CONTROL_PLANE
Indicates whether the control plane is rooted (value = 1) or non-rooted (value = 0).

XP1_MULTIPOINT_DATA_PLANE
Indicates whether the data plane is rooted (value = 1) or non-rooted (value = 0).

XP1_QOS_SUPPORTED
The protocol supports quality of service requests.

XP1_UNI_SEND
The protocol is unidirectional in the send direction.

XP1_UNI_RECV
the protocol is unidirectional in the recv direction.

XP1_IFS_HANDLES
The socket descriptors returned by the provider are operating system Installable File
System (IFS) handles.

XP1_PARTIAL_MESSAGE
The MSG_PARTIAL flag is supported in WSASend and WSASendTo.

Note that only one of XP1_UNI_SEND or XP1_UNI_RECV may be set. If a protocol can be
unidirectional in either direction, two WSAPROTOCOL_INFOW structures should be used.

Legal Information Page 304 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

When neither bit is set, the protocol is considered to be bi-directional.

dwServiceFlags2
Reserved for additional protocol attribute definitions.

dwServiceFlags3
Reserved for additional protocol attribute definitions.

dwServiceFlags4
Reserved for additional protocol attribute definitions.

dwProviderFlags
Provide information about how this protocol is represented in the protocol catalog. The
following flag values are possible:
PFL_MULTIPLE_PROTO_ENTRIES

Indicates that this is one of two or more entries for a single protocol (from a given
provider) which is capable of implementing multiple behaviors. An example of this is
SPX which, on the receiving side, can behave either as a message oriented or a
stream oriented protocol.

PFL_RECOMMENDED_PROTO_ENTRY
Indicates that this is the recommended or most frequently used entry for a protocol
which is capable of implementing multiple behaviors.

PFL_HIDDEN
Set by a provider to indicate to the WS2_32.DLL that this protocol should not be
returned in the result buffer generated by WSAEnumProtocols. Obviously, a
Windows Sockets 2 application should never see an entry with this bit set.

PFL_MATCHES_PROTOCOL_ZERO
Indicates that a value of zero in the protocol parameter of socket or WSASocket
matches this protocol entry.

ProviderId
A globally unique identifier assigned to the provider by the service provider vendor. This
value is useful for instances where more than one service provider is able to implement a
particular protocol. An application may use the dwProviderId value to distinguish between
providers that might otherwise be indistinguishable.

dwCatalogEntryId
A unique identifier assigned by the WS2_32.DLL for each WSAPROTOCOL_INFOW
structure.

WSAPROTOCOLCHAIN ProtocolChain;

If the length of the chain is 0, this WSAPROTOCOL_INFOW entry represents a layered
protocol which has Windows Sockets 2 SPI as both its top and bottom edges. If the length
of the chain equals 1, this entry represents a base protocol whose Catalog Entry ID is in the
dwCatalogEntryId field of the WSAPROTOCOL_INFOW structure. If the length of the
chain is larger than 1, this entry represents a protocol chain which consists of one or more
layered protocols on top of a base protocol. The corresponding Catalog Entry IDs are in the
ProtocolChain.ChainEntries array starting with the layered protocol at the top (the zero
element in the ProtocolChain.ChainEntries array) and ending with the base protocol. Refer
to the Windows Sockets 2 Service Provider Interface specification for more information on
protocol chains.

iVersion
Protocol version identifier.

iAddressFamily
The value to pass as the address family parameter to the socket/WSASocket function in
order to open a socket for this protocol. This value also uniquely defines the structure of
protocol addresses (SOCKADDRs) used by the protocol.

Legal Information Page 305 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

iMaxSockAddr
The maximum address length.

iMinSockAddr
The minimum address length.

iSocketType
The value to pass as the socket type parameter to the socket function in order to open a
socket for this protocol.

iProtocol
The value to pass as the protocol parameter to the socket function in order to open a socket
for this protocol.

iProtocolMaxOffset
The maximum value that may be added to iProtocol when supplying a value for the
protocol parameter to socket and WSASocket. Not all protocols allow a range of values.
When this is the case iProtocolMaxOffset will be zero.

iNetworkByteOrder
Currently these values are manifest constants (BIGENDIAN and LITTLEENDIAN) that
indicate either "big-endian" or "little-endian" with the values 0 and 1 respectively.

iSecurityScheme
Indicates the type of security scheme employed (if any). A value of
SECURITY_PROTOCOL_NONE is used for protocols that do not incorporate security
provisions.

dwMessageSize
The maximum message size supported by the protocol. This is the maximum size that can
be sent from any of the host's local interfaces. For protocols which do not support message
framing, the actual maximum that can be sent to a given address may be less. There is no
standard provision to determine the maximum inbound message size. The following special
values are defined:
0

The protocol is stream-oriented and hence the concept of message size is not relevant.
0x1

The maximum outbound (send) message size is dependent on the underlying network
MTU (maximum sized transmission unit) and hence cannot be known until after a
socket is bound. Applications should use getsockopt to retrieve the value of
SO_MAX_MSG_SIZE after the socket has been bound to a local address.

0xFFFFFFFF
The protocol is message-oriented, but there is no maximum limit to the size of
messages that may be transmitted.

dwProviderReserved
Reserved for use by service providers.

szProtocol
An array of characters that contains a human-readable name identifying the protocol, for
example "SPX2". The maximum number of characters allowed is WSAPROTOCOL_LEN,
which is defined to be 255.

WSAPROTOCOLCHAIN
A structure containing a counted list of Catalog Entry IDs which comprise a protocol chain. This
structure is defined as follows:

typedef struct _WSAPROTOCOLCHAIN {

Legal Information Page 306 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

 int ChainLen; /* the length of the chain, */
 /* length = 0 means layered protocol, */
 /* length = 1 means base protocol,
 /* length > 1 means protocol chain */
 DWORD ChainEntries[MAX_PROTOCOL_CHAIN];
 /* a list of dwCatalogEntryIds */
} WSAPROTOCOLCHAIN, FAR * LPWSAPROTOCOLCHAIN;

WSAQuerySet
typedef struct _WSAQuerySetW {
 DWORD dwSize;
 LPWSTR lpszServiceInstanceName;
 LPGUID lpServiceClassId;
 LPWSAVERSION lpVersion;
 LPWSTR lpszComment;
 DWORD dwNameSpace;
 LPGUID lpNSProviderId;
 LPWSTR lpszContext;
 DWORD dwNumberOfProtocols;
 LPAFPROTOCOLS lpafpProtocols;
 LPWSTR lpszQueryString;
 DWORD dwNumberOfCsAddrs;
 LPCSADDR_INFO lpcsaBuffer;
 DWORD dwOutputFlags;
 LPBLOB lpBlob;
} WSAQUERYSETW, *PWSAQUERYSETW, *LPWSAQUERYSETW;

Parameters

dwSize
Must be set to sizeof(WSAQUERYSET). This is a versioning mechanism.

dwOutputflags
Ignored for queries.

lpszServiceInstanceName
(Optional) Referenced string contains service name. The semantics for wildcarding within
the string are not defined, but can be supported by certain name space providers.

lpServiceClassId
(Required) The GUID corresponding to the service class.

lpVersion
(Optional) References desired version number and provides version comparison semantics
(that is, version must match exactly, or version must be not less than the value supplied).

lpszComment
Ignored for queries.

dwNameSpace1
Identifier of a single name space in which to constrain the search, or NS_ALL to include all
name spaces.

lpNSProviderId
(Optional) References the GUID of a specific name space provider, and limits the query to
this provider only.

lpszContext
(Optional) Specifies the starting point of the query in a hierarchical name space.

dwNumberOfProtocols
Size of the protocol constraint array, can be zero.

Legal Information Page 307 sur 307

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hh20A8.htm 09/12/2003

lpafpProtocols
(Optional) References an array of AFPROTOCOLS structure. Only services that utilize
these protocols will be returned.

lpszQueryString
(Optional) Some namespaces (such as whois++) support enriched SQL like queries that are
contained in a simple text string. This parameter is used to specify that string.

dwNumberOfCsAddrs
Ignored for queries.

lpcsaBuffer
Ignored for queries.

lpBlob
(Optional) This is a pointer to a provider-specific entity.

1 See the Important note below

Important In most instances, applications interested in only a particular transport protocol should
constrain their query by address family and protocol rather than by name space. This would allow
an application that needs to locate a TCP/IP service, for example, to have its query processed by
all available name spaces such as the local hosts file, DNS, and NIS.

WSAServiceClassInfo
typedef struct _WSAServiceClassInfoW {
 LPGUID lpServiceClassId;
 LPWSTR lpszServiceClassName;
 DWORD dwCount;
 LPWSANSCLASSINFOW lpClassInfos;
} WSASERVICECLASSINFOW, *PWSASERVICECLASSINFOW, *LPWSASERVICECLASSINFOW;

WSATHREADID
typedef struct _WSATHREADID {
 HANDLE ThreadHandle;
 DWORD Reserved;
} WSATHREADID, FAR * LPWSATHREADID;

