
Services Page 1 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

Services
Microsoft® Windows NT® supports an application type known as a service. A Win32-based
service conforms to the interface rules of the Service Control Manager (SCM). It can be started
automatically at system boot, by a user through the Services control panel applet, or by a Win32-
based application that uses the service functions included in the Microsoft® Win32® application
programming interface (API). Services can execute even when no user is logged on to the system.

Windows NT also supports a driver service, which conforms to the device driver protocols for
Windows NT. It is similar to the Win32-based service, but it does not interact with the SCM. For
simplicity, the term service refers to a Win32-based service in this overview.

Note Windows 95 and Windows 98 support a subset of the functionality provided by the
Windows NT SCM. For more information, see Windows 95 Service Control Manager.

About Services
The Service Control Manager (SCM) maintains a database of installed services and driver
services, and provides a unified and secure means of controlling them. The database includes
information on how each service or driver service should be started. It also enables system
administrators to customize security requirements for each service and thereby control access to
the service.

Three types of programs use the functions provided by the SCM:

This overview discusses the following topics:

Service Control Manager
Service Programs
Service Configuration Programs
Service Control Programs
Service Security
Interactive Services

Type Description

Service Programs A program that provides executable code for one or more services. Service
programs use functions that connect to the SCM and send status information
to the SCM.

Service
Configuration
Program

A program that queries or modifies the services database. Service
configuration programs use functions that open the database, install or delete
services in the database, and query or modify the configuration and security
parameters for installed services. Service configuration programs manage
both services and driver services.

Service Control
Program

A program that starts and controls services and driver services. Service
control programs use functions that send requests to the SCM, which carries
out the request.

Services Page 2 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

Debugging a Service

Service Control Manager

The service control manager (SCM) is started by Windows NT at system boot. It is a remote
procedure call (RPC) server, so that service configuration and service control programs can
manipulate services on remote machines.

The Win32 API includes a set of functions that provide an interface for the following tasks
performed by the SCM:

Maintaining the database of installed services.
Starting services and driver services either upon system startup or upon demand.
Enumerating installed services and driver services.
Maintaining status information for running services and driver services.
Transmitting control requests to running services.
Locking and unlocking the service database.
The following sections describe the SCM in more detail.
Database of Installed Services
Automatically Starting Services
Starting Services on Demand
Service Record List
SCM Handles

Database of Installed Services

The SCM maintains a database of installed services in the registry. The database is used by the
SCM and programs that add, modify, or configure services. The following is the registry key for
this database.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services

This key contains a subkey for each installed service and driver service. The name of the subkey is
the name of the service, as specified by the CreateService function when the service was installed
by a service configuration program.

An initial copy of the database is created during setup of Windows NT, which contains entries for
the device drivers required during system boot. The database includes the following information
about each installed service and driver service:

The service type. This indicates whether the service executes in its own process or shares a
process with other services. For driver services, this indicates whether the service is a
kernel driver or a file system driver.
The start type. This indicates whether the service or driver service is started automatically at
system startup (auto-start service) or whether the SCM starts it when requested by a service
control program (demand-start service). The start type can also indicate that the service or
driver service is disabled, in which case it cannot be started.
The error control level. This specifies the severity of the error if the service or driver service

Services Page 3 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

fails to start during system startup and determines the action that the startup program will
take.
The fully qualified path of the executable file. The filename extension is .EXE for services
and .SYS for driver services.
Optional dependency information used to determine the proper order for starting services or
driver services. For services, this information can include a list of services that the SCM
must start before it can start the specified service, the name of a load ordering group that the
service is part of, and a tag identifier that indicates the start order of the service in its load
ordering group. For driver services, this information includes a list of drivers that must be
started before the specified driver.
For services, an optional account name and password. The service program runs in the
context of this account. If no account is specified, the service executes in the context of the
LocalSystem account.
For driver services, an optional driver object name (for example, \FileSystem\Rdr or
\Driver\Xns), used by the I/O system to load the device driver. If no name is specified, the
I/O system creates a default name based on the driver service name.

Note This database is also known as the ServicesActive database or the SCM database. You must
use the functions provided by the SCM, instead of modifying the database directly.

Automatically Starting Services

During system boot, the SCM starts all auto-start services and the services on which they depend.
For example, if an auto-start service depends on a demand-start service, the demand-start service
is also started automatically. The load order is determined by the following:

1. The order of groups in the load ordering group list, ServiceGroupOrder, in the following
registry key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control
2. The order of services within a group specified in the tags order vector, GroupOrderList, in

the following registry key

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control
3. The dependencies listed for each service.

When the boot is complete, the system executes the boot verification program specified by
BootVerificationProgram value of the following registry key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control

By default, this value is not set. The system simply reports that the boot was successful after the
first user has logged on. You can supply a boot verification program that checks the system for
problems and reports the boot status to the SCM using the NotifyBootConfigStatus function.

After a successful boot, the system saves a clone of the database in the last-known-good (LKG)
configuration. The system can restore this copy of the database if changes made to the active
database cause the system reboot to fail. The following is the registry key for this database,

HKEY_LOCAL_MACHINE\SYSTEM\ControlSetXXX\Services

Services Page 4 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

where XXX is the value saved in the following registry key value:
HKEY_LOCAL_MACHINE\System\Select\LastKnownGood.

If an auto-start service with a SERVICE_ERROR_CRITICAL error control level fails to start, the
SCM reboots the machine using the LKG configuration. If the LKG configuration is already being
used, the boot fails.

Starting Services on Demand

The user can start a service with the Services control panel applet. A service control program can
start a service with the StartService function. When the service is started, the SCM performs the
following steps:

Retrieve the account information stored in the database.
Log on the service account.
Create the service in the suspended state.
Assign the logon token to the process.
Allow the process to execute.

Service Record List

As each service entry is read from the database of installed services, the SCM creates a service
record for the service. A service record includes:

Service name
Start type (auto-start or demand-start)
Service status (see the SERVICE_STATUS structure)

Type
Current state
Acceptable control codes
Exit code
Wait hint

Pointer to dependency list

The user name and password of an account are specified at the time the service is installed. The
SCM stores the user name in the registry and the password in a secure portion of the Local
Security Authority (LSA). The system administrator can create accounts with passwords that
never expire. Alternatively, the system administrator can create accounts with passwords that
expire and manage the accounts by changing the passwords periodically.

The SCM updates the service status when a service sends it status notifications using the
SetServiceStatus function. The SCM maintains the status of a driver service by querying the I/O
system, instead of receiving status notifications, as it does from a service.

A service can register additional type information by calling the SetServiceBits function. The
NetServerGetInfo and NetServerEnum functions obtain the supported service types.

Services Page 5 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

SCM Handles

The SCM supports handle types to allow access to the following objects.

The database of installed services.
A service.
The database lock.

An SCManager object represents the database of installed services. It is a container object that
holds service objects. The OpenSCManager function returns a handle to an SCManager object
on a specified computer. This handle is used when installing, deleting, opening, and enumerating
services and when locking the services database.

A service object represents an installed service. The CreateService and OpenService functions
return handles to installed services.

The OpenSCManager, CreateService, and OpenService functions can request different types of
access to SCManager and service objects. The requested access is granted or denied depending on
the access token of the calling process and the security descriptor associated with the SCManager
or service object.

The CloseServiceHandle function closes handles to SCManager and service objects. When you
no longer need these handles, be sure to close them.

A lock object is created during SCM initialization to serialize access to the database of installed
services. The SCM acquires the lock before starting a service or driver service. Service
configuration programs use the LockServiceDatabase function to acquire the lock before
reconfiguring a service and use the UnlockServiceDatabase function to release the lock.

Service Programs

A service program contains executable code for one or more services. A service created with the
type SERVICE_WIN32_OWN_PROCESS only contains the code for one service. The service
can be configured to execute in the context of a user account from either the built-in (local),
primary, or trusted domain. A service created with the type
SERVICE_WIN32_SHARE_PROCESS contains code for more than one service. The services
must all execute in the context of the LocalSystem account. For more information, see
CreateService.

The following sections describe the interface requirements of the SCM that a service program
must include. These sections do not apply to driver services.

The main Function
The ServiceMain Function
The Control Handler Function

Services Page 6 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

The main Function

Service programs are generally written as console applications. The entry point of a console
application is the main function. The main function receives arguments from the ImagePath
value from the registry key for the service.

When the SCM starts a service program, it waits for it to call the StartServiceCtrlDispatcher
function. Use the following guidelines.

A service of type SERVICE_WIN32_OWN_PROCESS should call
StartServiceCtrlDispatcher immediately, from its main thread. You can perform any
initialization after the service starts, as described in The ServiceMain Function.
If the service type is SERVICE_WIN32_SHARE_PROCESS and there is common
initialization for all services in the program, you can perform the initialization in the main
thread before calling StartServiceCtrlDispatcher, as long as it takes less than 30 seconds.
Otherwise, you must create another thread to do the common initialization, while the main
thread calls StartServiceCtrlDispatcher. You should still perform any service-specific
initialization as described in The ServiceMain Function.

The StartServiceCtrlDispatcher function takes a SERVICE_TABLE_ENTRY structure for
each service contained in the process. Each structure specifies the service name and the entry
point for the service.

If StartServiceCtrlDispatcher succeeds, the calling thread does not return until all running
services in the process have terminated. The SCM sends control requests to this thread through a
named pipe. The thread acts as a control dispatcher, performing the following tasks:

Create a new thread to call the appropriate entry point when a new service is started.
Call the appropriate Handler function to handle service control requests.

For more information, see Writing a Service Program's main Function.

The ServiceMain Function

The ServiceMain function is the entry point for a service.

When a service control program requests that a new service run, the SCM starts the service and
sends a start request to the control dispatcher. The control dispatcher creates a new thread to
execute the ServiceMain function for the service.

The ServiceMain function should perform the following tasks:

1. Call the RegisterServiceCtrlHandler function immediately to register a Handler function
to handle control requests for the service. The return value of RegisterServiceCtrlHandler
is a service status handle that will be used in calls to notify the SCM of the service status.

2. Perform initialization. If the execution time of the initialization code is expected to be very
short (less than one second), initialization can be performed directly in ServiceMain.

If the initialization time is expected to be longer than one second, call the SetServiceStatus

Services Page 7 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

function, specifying the SERVICE_START_PENDING service state in the
SERVICE_STATUS structure. As initialization continues, the service should make
additional calls to SetServiceStatus to report progress. Sending multiple SetServiceStatus
calls is useful for debugging services.

3. When initialization is complete, call SetServiceStatus, specifying the
SERVICE_RUNNING state in the SERVICE_STATUS structure.

4. Perform the service tasks, or, if there are no pending tasks, return. Any change in the state
of the service warrants a call to SetServiceStatus to report new status information.

5. If an error occurs while the service is initializing or running, the service should call
SetServiceStatus, specifying the SERVICE_STOP_PENDING state in the
SERVICE_STATUS structure, if cleanup will be lengthy. Once cleanup is complete, call
SetServiceStatus from the last thread to terminate, specifying SERVICE_STOPPED in the
SERVICE_STATUS structure. Be sure to set the dwServiceSpecificExitCode and
dwWin32ExitCode members of the SERVICE_STATUS structure to identify the error.

For more information, see Writing a ServiceMain Function.

The Control Handler Function

Each service has a control handler, the Handler function, that is invoked by the control dispatcher
when the service process receives a control request from a service control program. Therefore,
this function executes in the context of the control dispatcher.

Whenever the Handler function is invoked, the service must call the SetServiceStatus function
to report its status to the SCM. This must be done regardless of whether the status changed.

The service control program send control requests using the ControlService function. All
services must accept and process the SERVICE_CONTROL_INTERROGATE control code. You
can enable or disable acceptance of the other standard control codes by calling SetServiceStatus.
Services can also handle additional user-defined control codes.

The control handler must return within 30 seconds, or the SCM will return an error. If a service
needs to do lengthy processing when the service is executing the control handler, it should create
a secondary thread to perform the lengthy processing, then return. This prevents the service from
tying up the control dispatcher. For example, when handling the stop request for a service that will
take a long time, create another thread to handle the stop process. The control handler should
simply call SetServiceStatus with the SERVICE_STOP_PENDING message and return.

When the user shuts down the system, all control handlers receive the
SERVICE_CONTROL_SHUTDOWN control code. They are notified in the order that they
appear in the database of installed services. By default, a service has approximately 20 seconds to
perform cleanup tasks before the system shuts down. However, if the system is left in the
shutdown state (not restarted or powered down) the service continues to run. You can change the
time the system will wait for service shutdown by modifying the WaitToKillServiceTimeout
value in the following registry key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control

For more information, see Writing a Control Handler Function.

Services Page 8 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

Service Configuration Programs

Programmers and system administrators use service configuration programs to modify or query
the database of installed services. The database can also be accessed by using the registry
functions. However, you should only use the SCM configuration functions, which ensure that the
service is properly installed and configured.

The SCM configuration functions require either a handle to an SCManager object or a handle to a
service object. To obtain these handles, the service configuration program must:

1. Use the OpenSCManager function to obtain a handle to the SCM database on a specified
machine. For more information, see Opening an SCManager Database.

2. Use the OpenService or CreateService function to obtain a handle to the service object.

Service Installation, Removal, and Enumeration

A configuration program uses the CreateService function to install a new service in the SCM
database. This function specifies the name of the service and provides configuration information
that is stored in the database. For a description of the information stored in the database for each
service, see Database of Installed Services. For sample code, see Installing a Service.

A configuration program uses the DeleteService function to remove an installed service from the
database. For more information, see Deleting a Service.

To obtain the service name, call the GetServiceKeyName function. The service display name,
used in the Services control panel applet, can be obtained by calling the GetServiceDisplayName
function.

A service configuration program can use the EnumServicesStatus function to enumerate all
services and their statuses. It can also use the EnumDependentServices function to enumerate
which services are dependent on a specified service object.

Service Configuration

To modify the configuration information for a service object, a configuration program uses the
ChangeServiceConfig or ChangeServiceConfig2 function. For an example, see Changing a
Service Configuration.

To retrieve the configuration information for a service object, the configuration program uses the
QueryServiceConfig or QueryServiceConfig2 function. For an example, see Querying a
Service's Configuration.

To modify the security descriptor for either an SCManager object or a service object, a
configuration program uses the SetServiceObjectSecurity function. To retrieve a copy of the
security descriptor, the configuration program uses the QueryServiceObjectSecurity function.

Services Page 9 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

Before you reconfigure a service object, you should use the LockServiceDatabase function. This
function tries to acquire a lock on the database and, if successful, prevents the SCM from starting
a service while the database is being reconfigured. Failure to acquire a lock does not prevent a
configuration program from successfully reconfiguring a service object. To release the lock on the
database when the reconfiguration is complete, use the UnlockServiceDatabase function. To
determine whether the database is locked, use the QueryServiceLockStatus function.

Configuring a Service Using SC

The Platform SDK contains a command-line utility, SC.EXE, that can be used to query or modify
the database of installed services. Its commands correspond to the functions provided by the
SCM. The syntax is:

sc ServerName [command] ServiceName

ServerName
Optional server name. Use the form \\ServerName.

Command
query
config
qc
delete
create
GetDisplayName
GetKeyName
EnumDepend

ServiceName
The name of the service, as specified when it was installed.

Service Control Programs

A service control program performs the following actions:

Starts a service or driver service, if the start type is SERVICE_DEMAND_START.
Sends control requests to a running service.
Queries the current status of a running service.

These actions require an open handle to the service object. To obtain the handle, the service
control program must:

1. Use the OpenSCManager function to obtain a handle to the SCM database on a specified
machine.

2. Use the OpenService or CreateService function to obtain a handle to the service object.

Service Startup

Services Page 10 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

To start a service or driver service, the service control program uses the StartService function.
The StartService function fails if the database is locked. If this occurs, the service control
program should wait a few seconds and call StartService again. It can check the current lock
status of the database by calling the QueryServiceLockStatus function.

If the service control program is starting a service, it can use the StartService function to specify
an array of arguments to be passed to the service's ServiceMain function. The StartService
function returns after a new thread has been created to execute the ServiceMain function. The
service control program can retrieve the status of the newly started service in a
SERVICE_STATUS structure by calling the QueryServiceStatus function. During
initialization, the dwCurrentState member should be SERVICE_START_PENDING. The
dwWaitHint member is a time interval, in milliseconds, that indicates how long the service
control program should wait before calling QueryServiceStatus again. When the initialization is
complete, the service changes dwCurrentState to SERVICE_RUNNING.

If the program is starting a driver service, StartService returns after the device driver has
completed its initialization.

For more information, see Starting a Service.

Service Control Requests

To send control requests to a running service, a service control program uses the ControlService
function. This function specifies a control value that is passed to the Handler function of the
specified service. This control value can be a user-defined code, or it can be one of the standard
codes that enable the calling program to perform the following actions:

Stop a service (SERVICE_CONTROL_STOP).
Pause a service (SERVICE_CONTROL_PAUSE).
Resume executing a paused service (SERVICE_CONTROL_CONTINUE).
Retrieve updated status information from a service
(SERVICE_CONTROL_INTERROGATE).

For more information, see Sending Control Requests to a Service.

Each service specifies the control values that it will accept and process. To determine which of the
standard control values are accepted by a service, use the QueryServiceStatus function or specify
the SERVICE_CONTROL_INTERROGATE control value in a call to the ControlService
function. The dwControlsAccepted member of the SERVICE_STATUS structure returned by
these functions indicates whether the service can be stopped, paused, or resumed. All services
accept the SERVICE_CONTROL_INTERROGATE control value.

Note The QueryServiceStatus function reports the most recent status for a specified service, but
does not get an updated status from the service itself. Using the
SERVICE_CONTROL_INTERROGATE control value in a call to ControlService ensures that
the status information returned is current.

Services Page 11 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

Controlling a Service Using SC

The Platform SDK contains a command-line utility, SC.EXE, that can be used to control a
service. Its commands correspond to the functions provided by the SCM. The syntax is:

sc ServerName [command] ServiceName

ServerName
Optional server name. Use the form \\ServerName.

Command
start
pause
interrogate
continue
stop
control

ServiceName
The name of the service, as specified when it was installed.

Service Security

When a process uses the OpenSCManager function to open a handle to a database of installed
services, it can request different types of access. The system performs a security check before
granting the requested access. All processes are permitted the following access to the database:

SC_MANAGER_CONNECT
SC_MANAGER_ENUMERATE_SERVICE
SC_MANAGER_QUERY_LOCK_STATUS

This enables any process to open a handle to the SCManager object that it can use in calls to the
OpenService, EnumServicesStatus, and QueryServiceLockStatus functions. Only processes
with Administrator privileges are able to open handles to the SCManager object that can be used
by the CreateService and LockServiceDatabase functions.

When a process uses the OpenService function, the system performs an access check. The type of
access permitted to different users depends on the SECURITY_DESCRIPTOR structure
associated with the service object. The SCM creates a service object's security descriptor when the
service is installed by the CreateService function. You can use the QueryServiceObjectSecurity
and SetServiceObjectSecurity functions to query and set the security descriptor of a service
object. The default security descriptor of a service object permits the following access:

All users have SERVICE_QUERY_CONFIG, SERVICE_QUERY_STATUS,
SERVICE_ENUMERATE_DEPENDENTS, SERVICE_INTERROGATE, and
SERVICE_USER_DEFINED_CONTROL access.
Members of the Power Users group and the LocalSystem account have SERVICE_START,
SERVICE_PAUSE_CONTINUE, and SERVICE_STOP access, plus the access rights
granted to all users.
Members of the Administrators and System Operators groups have
SERVICE_ALL_ACCESS access.

Services Page 12 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

Service User Accounts

Each service executes in the security context of a user account. The user name and password of an
account are specified by the CreateService function at the time the service is installed. The user
name and password can be changed by using the ChangeServiceConfig function. You can use
the QueryServiceConfig function to get the user name (but not the password) associated with a
service object.

When starting a service, the SCM logs on to the account associated with the service. If the log on
is successful, the system produces an access token and attaches it to the new service process. This
token identifies the service process in all subsequent interactions with securable objects (objects
that have a security descriptor associated with them). For example, if the service tries to open a
handle to a pipe, the system compares the service's access token to the pipe's security descriptor
before granting access.

The SCM does not maintain the passwords of service user accounts. If a password is expired, the
logon fails and the service fails to start. The system administrator who assigns accounts to
services can create accounts with passwords that never expire. The administrator can also manage
accounts with passwords that expire by using a service configuration program to periodically
change the passwords.

If a service needs to recognize another service before sharing its information, the second service
can either use the same account as the first service, or it can run in an account belonging to an
alias that is recognized by the first service. Services that need to run in a distributed manner across
the network should run in domain-wide accounts.

The LocalSystem Account

The LocalSystem account is a predefined local account used by system processes. The name of
the account is .\System. This account does not have a password. If you specify the LocalSystem
account in a call to the CreateService function, any password information you supply is ignored.

A service that runs in the context of the LocalSystem account inherits the security context of the
SCM. It is not associated with any logged-on user account and does not have credentials (domain
name, user name, and password) to be used for verification. This has several implications:

The service cannot open the registry key HKEY_CURRENT_USER.
The service can open the registry key HKEY_LOCAL_MACHINE\SECURITY.
The service has limited access to network resources, such as shares and pipes, because it
has no credentials and must connect using a null session. The following registry key
contains the NullSessionPipes and NullSessionShares values, which are used to specify
the pipes and shares to which null sessions may connect:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\
LanmanServer\Parameters

Alternatively, you could add the REG_DWORD value RestrictNullSessAccess to the key
and set it to 0 to allow all null sessions to access all pipes and shares created on that
machine.

Services Page 13 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

The service cannot share objects (pipes, file mapping, synchronization, and so on) with
other applications, unless it creates them using either a DACL which allows a user or group
of users access to the object or a NULL DACL, which allows everyone access to the object.
Note that specifying a NULL DACL is not the same as specifying NULL. If you specify
NULL in the lpSecurityDescriptor member of the SECURITY_ATTRIBUTES structure,
access to the object is granted only to processes with the same security context as the
process that created the object. For information on specifying a NULL DACL in the
security descriptor field, see Allowing Access Using the Low-Level Functions.
If the service opens a command window and runs a batch file, the user could hit CTRL+C
to terminate the batch file and gain access to a command window with LocalSystem
permissions.

Interactive Services

An interactive service is a service that can interact with the input desktop. Other desktops do not
receive user input. For more information, see Window Stations and Desktops.

An interactive service must run in the context of the LocalSystem account and be configured to
run interactively. Services are configured to run interactively when the dwServiceType parameter
in a CreateService call is set to include the SERVICE_INTERACTIVE_PROCESS flag.
However, the following registry key contains a value, NoInteractiveServices, that controls the
effect of the SERVICE_INTERACTIVE_PROCESS flag:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Windows

The NoInteractiveServices value defaults to 0, which means that services marked with the
SERVICE_INTERACTIVE_PROCESS flag will be allowed to run interactively. When the
NoInteractiveServices value is set to a nonzero value, no service started thereafter, regardless of
whether it has been configured with SERVICE_INTERACTIVE_PROCESS, will be allowed to
run interactively.

Note It is possible to display a message box from a service, even if it is not running in the
LocalSystem account or not configured to run interactively. Simply call the MessageBox function
using the MB_SERVICE_NOTIFICATION flag. Do not call MessageBox during service
initialization or from the Handler routine, unless you call it from a separate thread, so that you
return to the SCM in a timely manner.

It is also possible to interact with the desktop from a non-interactive service by modifying the
DACLs on the interface window station and desktop or by impersonating the logged-on user and
opening the interactive window station and desktop directly. For more information, see Interacting
with the User by a Win32 Service.

Debugging a Service

You can use the following methods to debug your service.

Use your debugger to debug the service while it is running. First, obtain the process

Services Page 14 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

identifier (PID) of the service process. This information is available from the PView
application. After you have obtained the PID, attach to the running process. For syntax
information, see the documentation included with your debugger.
Call the DebugBreak function to invoke the debugger for just-in-time debugging.
Specify a debugger to use when starting a program. To do so, create a key called Image File
Execution Options in the following registry location:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion

Create a subkey with the same name as your service (for example, MYSERV.EXE). To this
subkey, add a value of type REG_SZ, named Debugger. Use the full path to the debugger
as the string value. In the Services control panel applet, select your service, click Startup
and check Allow Service to Interact with Desktop.

Note To debug the initialization code of an auto-start service, you will have to temporarily install
and run the service as a demand-start service.

Using Services
Writing a service program's main function
Writing a ServiceMain function
Writing a control handler function
Opening an SCManager database
Installing a service
Deleting a service
Changing a service configuration
Querying a service's configuration
Starting a service
Sending control requests to a service

Writing a Service Program's main Function

The main function of a service program calls the StartServiceCtrlDispatcher function to connect
to the SCM and start the control dispatcher thread. The dispatcher thread loops, waiting for
incoming control requests for the services specified in the dispatch table. This thread does not
return until there is an error or all of the services in the process have terminated. When all services
in a process have terminated, the SCM sends a control request to the dispatcher thread telling it to
shut down. The thread can then return from the StartServiceCtrlDispatcher call and the process
can terminate.

The following example is a service process that supports only one service. It takes two
parameters: a string that can contain one formatted output character and a numeric value to be
used as the formatted character. The SvcDebugOut function prints informational messages and
errors to the debugger.

SERVICE_STATUS MyServiceStatus;
SERVICE_STATUS_HANDLE MyServiceStatusHandle;

Services Page 15 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

VOID MyServiceStart (DWORD argc, LPTSTR *argv);
VOID MyServiceCtrlHandler (DWORD opcode);
DWORD MyServiceInitialization (DWORD argc, LPTSTR *argv,
 DWORD *specificError);

VOID _CRTAPI1 main()
{
 SERVICE_TABLE_ENTRY DispatchTable[] =
 {
 { TEXT("MyService"), MyServiceStart },
 { NULL, NULL }
 };

 if (!StartServiceCtrlDispatcher(DispatchTable))
 {
 SvcDebugOut(" [MY_SERVICE] StartServiceCtrlDispatcher error =
 %d\n", GetLastError());
 }
}

VOID SvcDebugOut(LPSTR String, DWORD Status)
{
 CHAR Buffer[1024];
 if (strlen(String) < 1000)
 {
 sprintf(Buffer, String, Status);
 OutputDebugStringA(Buffer);
 }
}

If your service program supports multiple services, the implementation of the main function will
differ slightly. The names of the additional services should be added to the dispatch table so they
can be monitored by the dispatcher thread.

Writing a ServiceMain Function

The MyServiceStart function in the following example is the entry point for the service.
MyServiceStart has access to the command-line arguments, in the way that the main function of
a console application does. The first parameter contains the number of arguments being passed to
the service. There will always be at least one argument. The second parameter is a pointer to an
array of string pointers. The first item in the array always points to the service name.

The MyServiceStart function first fills in the SERVICE_STATUS structure including the
control codes that it accepts. Although this service accepts SERVICE_CONTROL_PAUSE and
SERVICE_CONTROL_CONTINUE, it does nothing significant when told to pause. The flags
SERVICE_ACCEPT_PAUSE_CONTINUE was included for illustration purposes only; if
pausing does not add value to your service, do not support it.

The MyServiceStart function then calls the RegisterServiceCtrlHandler function to register
MyService as the service's Handler function and begin initialization. The following sample
initialization function, MyServiceInitialization, is included for illustration purposes; it does
not perform any initialization tasks such as creating additional threads. If your service's
initialization performs tasks that are expected to take longer than one second, your code must call
the SetServiceStatus function periodically to send out wait hints and check points indicating that
progress is being made.

Services Page 16 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

When initialization has completed successfully, the example calls SetServiceStatus with a status
of SERVICE_RUNNING and the service continues with its work. If an error has occurred in
initialization, MyServiceStart reports SERVICE_STOPPED with the SetServiceStatus function
and returns.

Because this sample service does not complete any real tasks, MyServiceStart simply returns
control to the caller. However, your service should use this thread to complete whatever tasks it
was designed to do. If a service does not need a thread to do its work (such as a service that only
processes RPC requests), its ServiceMain function should return control to the caller. It is
important for the function to return, rather than call the ExitThread function, because returning
allows for cleanup of the memory allocated for the arguments.

To output debugging information, MyServiceStart calls SvcDebugOut. The source code for
SvcDebugOut is given in Writing a Service Program's main Function.

void MyServiceStart (DWORD argc, LPTSTR *argv)
{
 DWORD status;
 DWORD specificError;

 MyServiceStatus.dwServiceType = SERVICE_WIN32;
 MyServiceStatus.dwCurrentState = SERVICE_START_PENDING;
 MyServiceStatus.dwControlsAccepted = SERVICE_ACCEPT_STOP |
 SERVICE_ACCEPT_PAUSE_CONTINUE;
 MyServiceStatus.dwWin32ExitCode = 0;
 MyServiceStatus.dwServiceSpecificExitCode = 0;
 MyServiceStatus.dwCheckPoint = 0;
 MyServiceStatus.dwWaitHint = 0;

 MyServiceStatusHandle = RegisterServiceCtrlHandler(
 TEXT("MyService"),
 MyServiceCtrlHandler);

 if (MyServiceStatusHandle == (SERVICE_STATUS_HANDLE)0)
 {
 SvcDebugOut(" [MY_SERVICE] RegisterServiceCtrlHandler
 failed %d\n", GetLastError());
 return;
 }

 // Initialization code goes here.
 status = MyServiceInitialization(argc,argv, &specificError);

 // Handle error condition
 if (status != NO_ERROR)
 {
 MyServiceStatus.dwCurrentState = SERVICE_STOPPED;
 MyServiceStatus.dwCheckPoint = 0;
 MyServiceStatus.dwWaitHint = 0;
 MyServiceStatus.dwWin32ExitCode = status;
 MyServiceStatus.dwServiceSpecificExitCode = specificError;

 SetServiceStatus (MyServiceStatusHandle, &MyServiceStatus);
 return;
 }

 // Initialization complete - report running status.
 MyServiceStatus.dwCurrentState = SERVICE_RUNNING;
 MyServiceStatus.dwCheckPoint = 0;
 MyServiceStatus.dwWaitHint = 0;

 if (!SetServiceStatus (MyServiceStatusHandle, &MyServiceStatus))
 {

Services Page 17 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

 status = GetLastError();
 SvcDebugOut(" [MY_SERVICE] SetServiceStatus error
 %ld\n",status);
 }

 // This is where the service does its work.
 SvcDebugOut(" [MY_SERVICE] Returning the Main Thread \n",0);

 return;
}

// Stub initialization function.
DWORD MyServiceInitialization(DWORD argc, LPTSTR *argv,
 DWORD *specificError)
{
 argv;
 argc;
 specificError;
 return(0);
}

Writing a Control Handler Function

The MyServiceCtrlHandler function in the following example is the Handler function. When
this function is called by the dispatcher thread, it handles the control code passed in the Opcode
parameter and then calls the SetServiceStatus function to update the service's status. Every time a
Handler function receives a control code, it is appropriate to return status with a call to
SetServiceStatus regardless of whether the service acts on the control.

When the pause control is received, MyServiceCtrlHandler simply sets the dwCurrentState field
in the SERVICE_STATUS structure to SERVICE_PAUSED. Likewise, when the continue
control is received, the state is set to SERVICE_RUNNING. Therefore, MyServiceCtrlHandler
is not a good example of how to handle the pause and continue controls. Because
MyServiceCtrlHandler is a template for a Handler function, code for the pause and continue
controls is included for completeness. A service that supports either the pause or continue control
should handle these controls in a way that makes sense. Many services support neither the pause
or continue control. If the service indicates that it does not support pause or continue with the
dwControlsAccepted parameter, then the SCM will not send pause or continue controls to the
service's Handler function.

To output debugging information, MyServiceCtrlHandler calls SvcDebugOut. The source code
for SvcDebugOut is listed in Writing a Service Program's main Function.

VOID MyServiceCtrlHandler (DWORD Opcode)
{
 DWORD status;

 switch(Opcode)
 {
 case SERVICE_CONTROL_PAUSE:
 // Do whatever it takes to pause here.
 MyServiceStatus.dwCurrentState = SERVICE_PAUSED;
 break;

 case SERVICE_CONTROL_CONTINUE:
 // Do whatever it takes to continue here.
 MyServiceStatus.dwCurrentState = SERVICE_RUNNING;
 break;

Services Page 18 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

 case SERVICE_CONTROL_STOP:
 // Do whatever it takes to stop here.
 MyServiceStatus.dwWin32ExitCode = 0;
 MyServiceStatus.dwCurrentState = SERVICE_STOPPED_PENDING;
 MyServiceStatus.dwCheckPoint = 0;
 MyServiceStatus.dwWaitHint = 0;

 if (!SetServiceStatus (MyServiceStatusHandle,
 &MyServiceStatus))
 {
 status = GetLastError();
 SvcDebugOut(" [MY_SERVICE] SetServiceStatus error
 %ld\n",status);
 }

 SvcDebugOut(" [MY_SERVICE] Leaving MyService \n",0);
 return;

 case SERVICE_CONTROL_INTERROGATE:
 // Fall through to send current status.
 break;

 default:
 SvcDebugOut(" [MY_SERVICE] Unrecognized opcode %ld\n",
 Opcode);
 }

 // Send current status.
 if (!SetServiceStatus (MyServiceStatusHandle, &MyServiceStatus))
 {
 status = GetLastError();
 SvcDebugOut(" [MY_SERVICE] SetServiceStatus error
 %ld\n",status);
 }
 return;
}

Opening an SCManager Database

Many operations require an open handle to an SCManager object. The following example
demonstrates how to obtain the handle.

Different operations on the SCM database require different levels of access, and you should only
request the minimum access required. If SC_MANAGER_ALL_ACCESS is requested, the
OpenSCManager function fails if the calling process does not have administrator privileges. The
following example shows how to request full access to the ServicesActive database on the local
machine.

// Open a handle to the SC Manager database.

schSCManager = OpenSCManager(
 NULL, // local machine
 NULL, // ServicesActive database
 SC_MANAGER_ALL_ACCESS); // full access rights

if (schSCManager == NULL)
 MyErrorExit("OpenSCManager");

Services Page 19 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

Installing a Service

A service configuration program uses the CreateService function to install a service in a SCM
database. The application-defined schSCManager handle must have
SC_MANAGER_CREATE_SERVICE access to the SCManager object. The following example
shows how to install a service.

VOID CreateSampleService()
{
 LPCTSTR lpszBinaryPathName =
 TEXT("%SystemRoot%\\system\\testserv.exe");

 schService = CreateService(
 schSCManager, // SCManager database
 TEXT("Sample_Srv"), // name of service
 lpszDisplayName, // service name to display
 SERVICE_ALL_ACCESS, // desired access
 SERVICE_WIN32_OWN_PROCESS, // service type
 SERVICE_DEMAND_START, // start type
 SERVICE_ERROR_NORMAL, // error control type
 lpszBinaryPathName, // service's binary
 NULL, // no load ordering group
 NULL, // no tag identifier
 NULL, // no dependencies
 NULL, // LocalSystem account
 NULL); // no password

 if (schService == NULL)
 MyErrorExit("CreateService");
 else
 printf("CreateService SUCCESS\n");

 CloseServiceHandle(schService);
}

Deleting a Service

In the following example, a service configuration program uses the OpenService function to get a
handle with DELETE access to an installed service object. The program then uses the service
object handle in the DeleteService function to remove the service from the SCM database.

VOID DeleteSampleService()
{
 schService = OpenService(
 schSCManager, // SCManager database
 TEXT("Sample_Srv"), // name of service
 DELETE); // only need DELETE access

 if (schService == NULL)
 MyErrorExit("OpenService");

 if (! DeleteService(schService))
 MyErrorExit("DeleteService");
 else
 printf("DeleteService SUCCESS\n");

Services Page 20 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

 CloseServiceHandle(schService);
}

Changing a Service Configuration

In the following example, a service configuration program uses the ChangeServiceConfig
function to change the configuration parameters of an installed service. The program first tries to
lock the database, to prevent the SCM from starting a service while it is being reconfigured. If it
successfully locks the database, the program opens a handle to the service object, modifies its
configuration, unlocks the database, and then closes the service object handle. If the program does
not successfully in lock the database, it uses the QueryServiceLockStatus function to retrieve
information about the lock.

VOID ReconfigureSampleService(BOOL fDisable)
{
 SC_LOCK sclLock;
 LPQUERY_SERVICE_LOCK_STATUS lpqslsBuf;
 DWORD dwBytesNeeded, dwStartType;

 // Need to acquire database lock before reconfiguring.

 sclLock = LockServiceDatabase(schSCManager);

 // If the database cannot be locked, report the details.

 if (sclLock == NULL)
 {
 // Exit if the database is not locked by another process.

 if (GetLastError() != ERROR_SERVICE_DATABASE_LOCKED)
 MyErrorExit("LockServiceDatabase");

 // Allocate a buffer to get details about the lock.

 lpqslsBuf = (LPQUERY_SERVICE_LOCK_STATUS) LocalAlloc(
 LPTR, sizeof(QUERY_SERVICE_LOCK_STATUS)+256);
 if (lpqslsBuf == NULL)
 MyErrorExit("LocalAlloc");

 // Get and print the lock status information.

 if (!QueryServiceLockStatus(
 schSCManager,
 lpqslsBuf,
 sizeof(QUERY_SERVICE_LOCK_STATUS)+256,
 &dwBytesNeeded))
 MyErrorExit("QueryServiceLockStatus");

 if (lpqslsBuf->fIsLocked)
 printf("Locked by: %s, duration: %d seconds\n",
 lpqslsBuf->lpLockOwner,
 lpqslsBuf->dwLockDuration);
 else
 printf("No longer locked\n");

 LocalFree(lpqslsBuf);
 MyErrorExit("Could not lock database");
 }

 // The database is locked, so it is safe to make changes.

Services Page 21 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

 // Open a handle to the service.

 schService = OpenService(
 schSCManager, // SCManager database
 TEXT("Sample_Srv"), // name of service
 SERVICE_CHANGE_CONFIG); // need CHANGE access
 if (schService == NULL)
 MyErrorExit("OpenService");

 dwStartType = (fDisable) ? SERVICE_DISABLED :
 SERVICE_DEMAND_START;

 if (! ChangeServiceConfig(
 schService, // handle of service
 SERVICE_NO_CHANGE, // service type: no change
 dwStartType, // change service start type
 SERVICE_NO_CHANGE, // error control: no change
 NULL, // binary path: no change
 NULL, // load order group: no change
 NULL, // tag ID: no change
 NULL, // dependencies: no change
 NULL, // account name: no change
 NULL)) // password: no change
 {
 MyErrorExit("ChangeServiceConfig");
 }
 else
 printf("ChangeServiceConfig SUCCESS\n");

 // Release the database lock.

 UnlockServiceDatabase(sclLock);

 // Close the handle to the service.

 CloseServiceHandle(schService);
}

Querying a Service's Configuration

In the following example, a service configuration program uses the OpenService function to get a
handle with SERVICE_QUERY_CONFIG access to an installed service object. Then the program
uses the service object handle in the QueryServiceConfig function to retrieve the current
configuration of the service.

VOID GetSampleServiceConfig()
{
 LPQUERY_SERVICE_CONFIG lpqscBuf;
 DWORD dwBytesNeeded;

 // Open a handle to the service.

 schService = OpenService(
 schSCManager, // SCManager database
 TEXT("Sample_Srv"), // name of service
 SERVICE_QUERY_CONFIG); // need QUERY access
 if (schService == NULL)
 MyErrorExit("OpenService");

 // Allocate a buffer for the information configuration.

 lpqscBuf = (LPQUERY_SERVICE_CONFIG) LocalAlloc(

Services Page 22 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

 LPTR, 4096);
 if (lpqscBuf == NULL)
 MyErrorExit("LocalAlloc");

 // Get and print the information configuration.

 if (! QueryServiceConfig(
 schService,
 lpqscBuf,
 4096,
 &dwBytesNeeded))
 {
 MyErrorExit("QueryServiceConfig");
 }

 printf("\nSample_Srv configuration: \n");
 printf(" Type: 0x%x\n", lpqscBuf->dwServiceType);
 printf(" Start Type: 0x%x\n", lpqscBuf->dwStartType);
 printf(" Err Control: 0x%x\n", lpqscBuf->dwErrorControl);
 printf(" Binary path: %s\n", lpqscBuf->lpBinaryPathName);

 if (lpqscBuf->lpLoadOrderGroup != NULL)
 printf(" Load order group: %s\n",
 lpqscBuf->lpLoadOrderGroup);
 if (lpqscBuf->dwTagId != 0)
 printf(" Tag ID: %d\n", lpqscBuf->dwTagId);
 if (lpqscBuf->lpDependencies != NULL)
 printf(" Dependencies: %s\n", lpqscBuf->lpDependencies);
 if (lpqscBuf->lpServiceStartName != NULL)
 printf(" Start Name: %s\n",
 lpqscBuf->lpServiceStartName);

 LocalFree(lpqscBuf);
}

Starting a Service

To start a service, the following example opens a handle to an installed database and then
specifies the handle in a call to the StartService function. It can be used to start either a service or
a driver service, but this example assumes that a service is being started. After starting the service,
the program uses the members of the SERVICE_STATUS structure returned by the
QueryServiceStatus function to track the progress of the service.

VOID StartSampleService()
{
 SERVICE_STATUS ssStatus;
 DWORD dwOldCheckPoint;

 schService = OpenService(
 schSCManager, // SCM database
 TEXT("Sample_Srv"), // service name
 SERVICE_ALL_ACCESS);

 if (schService == NULL)
 MyErrorExit("OpenService");

 if (!StartService(
 schService, // handle to service
 0, // number of arguments
 NULL)) // no arguments
 {
 MyErrorExit("StartService");

Services Page 23 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

 }
 else
 printf("Service start pending\n");

 // Check the status until the service is no longer start pending.

 if (!QueryServiceStatus(
 schService, // handle to service
 &ssStatus)) // address of status information
 MyErrorExit("QueryServiceStatus");

 while (ssStatus.dwCurrentState == SERVICE_START_PENDING)
 {
 // Save the current checkpoint.

 dwOldCheckPoint = ssStatus.dwCheckPoint;

 // Wait for the specified interval.

 Sleep(ssStatus.dwWaitHint);

 // Check the status again.

 if (!QueryServiceStatus(
 schService, // handle to service
 &ssStatus)) // address of status information
 break;

 // Break if the checkpoint has not been incremented.

 if (dwOldCheckPoint >= ssStatus.dwCheckPoint)
 break;
 }

 if (ssStatus.dwCurrentState == SERVICE_RUNNING)
 printf("StartService SUCCESS\n");
 else
 {
 printf(" Current State: %d\n",
 ssStatus.dwCurrentState);
 printf(" Exit Code: %d\n", ssStatus.dwWin32ExitCode);
 printf(" Service Specific Exit Code: %d\n",
 ssStatus.dwServiceSpecificExitCode);
 printf(" Check Point: %d\n", ssStatus.dwCheckPoint);
 printf(" Wait Hint: %d\n", ssStatus.dwWaitHint);
 }

 CloseServiceHandle(schService);
}

Sending Control Requests to a Service

The following example uses the ControlService function to send a control value to a running
service. Different control values require different levels of access to the service object. For
example, a service object handle must have SERVICE_STOP access to send the
SERVICE_CONTROL_STOP code. When ControlService returns, a SERVICE_STATUS
structure contains the latest status information for the service.

VOID ControlSampleService(DWORD fdwControl)
{
 SERVICE_STATUS ssStatus;
 DWORD fdwAccess;

Services Page 24 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

 // The required service object access depends on the control.

 switch (fdwControl)
 {
 case SERVICE_CONTROL_STOP:
 fdwAccess = SERVICE_STOP;
 break;

 case SERVICE_CONTROL_PAUSE:
 case SERVICE_CONTROL_CONTINUE:
 fdwAccess = SERVICE_PAUSE_CONTINUE;
 break;

 case SERVICE_CONTROL_INTERROGATE:
 fdwAccess = SERVICE_INTERROGATE;
 break;

 default:
 fdwAccess = SERVICE_INTERROGATE;
 }

 // Open a handle to the service.

 schService = OpenService(
 schSCManager, // SCManager database
 TEXT("Sample_Srv"), // name of service
 fdwAccess); // specify access
 if (schService == NULL)
 MyErrorExit("OpenService");

 // Send a control value to the service.

 if (! ControlService(
 schService, // handle of service
 fdwControl, // control value to send
 &ssStatus)) // address of status info
 {
 MyErrorExit("ControlService");
 }

 // Print the service status.

 printf(" Service Type: 0x%x\n", ssStatus.dwServiceType);
 printf(" Current State: 0x%x\n", ssStatus.dwCurrentState);
 printf(" Controls Accepted: 0x%x\n",
 ssStatus.dwControlsAccepted);
 printf(" Exit Code: %d\n", ssStatus.dwWin32ExitCode);
 printf(" Service Specific Exit Code: %d\n",
 ssStatus.dwServiceSpecificExitCode);
 printf(" Check Point: %d\n", ssStatus.dwCheckPoint);
 printf(" Wait Hint: %d\n", ssStatus.dwWaitHint);

 return;
}

Service Reference
The following elements are used with services.

Service Functions
Service Structures

Services Page 25 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

Service Functions

The following functions are used by services and by programs that control or configure services.

ChangeServiceConfig
The ChangeServiceConfig function changes the configuration parameters of a service.

ChangeServiceConfig

ChangeServiceConfig2

CloseServiceHandle

ControlService

CreateService

DeleteService

EnumDependentServices

EnumServicesStatus

GetServiceDisplayName

GetServiceKeyName

Handler

LockServiceDatabase

NotifyBootConfigStatus

OpenSCManager

OpenService

QueryServiceConfig

QueryServiceConfig2

QueryServiceLockStatus

QueryServiceObjectSecurity

QueryServiceStatus

RegisterServiceCtrlHandler

ServiceMain

SetServiceBits

SetServiceObjectSecurity

SetServiceStatus

StartService

StartServiceCtrlDispatcher

UnlockServiceDatabase

Services Page 26 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

BOOL ChangeServiceConfig(
 SC_HANDLE hService // handle to service
 DWORD dwServiceType, // type of service
 DWORD dwStartType, // when to start service
 DWORD dwErrorControl, // severity if service fails to start
 LPCTSTR lpBinaryPathName, // pointer to service binary file name
 LPCTSTR lpLoadOrderGroup, // pointer to load ordering group name
 LPDWORD lpdwTagId, // pointer to variable to get tag identifier
 LPCTSTR lpDependencies, // pointer to array of dependency names
 LPCTSTR lpServiceStartName,
 // pointer to account name of service
 LPCTSTR lpPassword, // pointer to password for service account
 LPCTSTR lpDisplayName // pointer to display name
);

Parameters

hService
Handle to the service. This handle is returned by the OpenService or CreateService
function and must have SERVICE_CHANGE_CONFIG access.

dwServiceType
A set of bit flags that specify the type of service. Specify SERVICE_NO_CHANGE if you
are not changing the existing service type; otherwise, specify one of the following flags to
indicate the service type.

If you specify either SERVICE_WIN32_OWN_PROCESS or
SERVICE_WIN32_SHARE_PROCESS, you can also specify the following flag.

dwStartType
Specifies when to start the service. Specify SERVICE_NO_CHANGE if you are not
changing the existing start type; otherwise, specify one of the following flags to indicate the
start type.

Value Meaning

SERVICE_WIN32_OWN_PROCESS Specifies a Win32-based service that
runs in its own process.

SERVICE_WIN32_SHARE_PROCESS Specifies a Win32-based service that
shares a process with other services.

SERVICE_KERNEL_DRIVER Specifies a driver service.

SERVICE_FILE_SYSTEM_DRIVER Specifies a file system driver service.

Value Meaning

SERVICE_INTERACTIVE_PROCESS Enables a Win32-based service process to
interact with the desktop.

Value Meaning

SERVICE_BOOT_START Specifies a device driver started by the system
loader. This value is valid only for driver
services.

SERVICE_SYSTEM_START Specifies a device driver started by the
IoInitSystem function. This value is valid only
for driver services.

Services Page 27 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

dwErrorControl
Specifies the severity of the error if this service fails to start during startup, and determines
the action taken by the startup program if failure occurs. Specify SERVICE_NO_CHANGE
if you are not changing the existing error control; otherwise, specify one of the following
flags to indicate the error control.

lpBinaryPathName
Pointer to a null-terminated string that contains the fully qualified path to the service binary
file. Specify NULL if you are not changing the existing path. If the path contains a space, it
must be quoted so that it is correctly interpreted. For example, "d:\\my
share\\myservice.exe" should be specified as "\"d:\\my share\\myservice.exe\"".

lpLoadOrderGroup
Pointer to a null-terminated string that names the load ordering group of which this service
is a member. Specify NULL if you are not changing the existing group. Specify an empty
string if the service does not belong to a group.

lpdwTagId
Pointer to a DWORD variable that receives a tag value that is unique in the group specified
in the lpLoadOrderGroup parameter. Specify NULL if you are not changing the existing
tag.

You can use a tag for ordering service startup within a load ordering group by specifying a
tag order vector in the GroupOrderList value of the following registry key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control

Tags are only evaluated for driver services that have SERVICE_BOOT_START or

SERVICE_AUTO_START Specifies a service to be started automatically
by the service control manager during system
startup.

SERVICE_DEMAND_START Specifies a service to be started by the service
control manager when a process calls the
StartService function.

SERVICE_DISABLED Specifies a service that can no longer be started.

Value Meaning

SERVICE_ERROR_IGNORE The startup program logs the error but continues
the startup operation.

SERVICE_ERROR_NORMAL The startup program logs the error and puts up a
message box pop-up but continues the startup
operation.

SERVICE_ERROR_SEVERE The startup program logs the error. If the last-
known-good configuration is being started, the
startup operation continues. Otherwise, the
system is restarted with the last-known-good
configuration.

SERVICE_ERROR_CRITICAL The startup program logs the error, if possible.
If the last-known-good configuration is being
started, the startup operation fails. Otherwise,
the system is restarted with the last-known good
configuration.

Services Page 28 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

SERVICE_SYSTEM_START start types.
lpDependencies

Pointer to a double null-terminated array of null-separated names of services or load
ordering groups that the system must start before this service can be started. (Dependency
on a group means that this service can run if at least one member of the group is running
after an attempt to start all members of the group.) Specify NULL if you are not changing
the existing dependencies. Specify an empty string if the service has no dependencies.

You must prefix group names with SC_GROUP_IDENTIFIER so that they can be
distinguished from a service name, because services and service groups share the same
name space.

lpServiceStartName
Pointer to a null-terminated string that names the service. Specify NULL if you are not
changing the existing name. If the service type is SERVICE_WIN32_OWN_PROCESS,
use an account name in the form DomainName\UserName. The service process will be
logged on as this user. If the account belongs to the built-in domain, you can
specify .\UserName. If the service type is SERVICE_WIN32_SHARE_PROCESS you
must specify the LocalSystem account.

If the service type is SERVICE_KERNEL_DRIVER or
SERVICE_FILE_SYSTEM_DRIVER, the name is the driver object name that the system
uses to load the device driver. Specify NULL if the driver is to use a default object name
created by the I/O system.

lpPassword
Pointer to a null-terminated string that contains the password to the account name specified
by the lpServiceStartName parameter. Specify NULL if you are not changing the password.
Specify an empty string if the service has no password.

Passwords are ignored for driver services.
lpDisplayName

Pointer to a null-terminated string that is to be used by applications to identify the service
for its users. This string has a maximum length of 256 characters. The name is case-
preserved in the service control manager. Display name comparisons are always case-
insensitive.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Errors

The following error codes may be set by the service control manager. Other error codes may be set
by the registry functions that are called by the service control manager.

Services Page 29 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

Remarks

The ChangeServiceConfig function changes the configuration information for the specified
service in the service control manager database. You can obtain the current configuration
information by using the QueryServiceConfig function.

If the configuration is changed for a service that is running, with the exception of lpDisplayName,
the changes do not take effect until the service is stopped.

The startup program uses load ordering groups to load groups of services in a specified order with
respect to the other groups in the list. The list of load ordering groups is contained in the
ServiceGroupOrder value of the following registry key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Import Library: Use advapi32.lib.
 Unicode: Implemented as Unicode and ANSI versions on Windows NT.

See Also

Value Meaning

ERROR_ACCESS_DENIED

The specified handle was not opened with SERVICE_CHANGE_CONFIG
access.

ERROR_CIRCULAR_DEPENDENCY

A circular service dependency was specified.

ERROR_DUP_NAME

The display name already exists in the service controller manager database, either
as a service name or as another display name.

ERROR_INVALID_HANDLE

The specified handle is invalid.

ERROR_INVALID_PARAMETER

A parameter that was specified is invalid.

ERROR_INVALID_SERVICE_ACCOUNT

The account name does not exist, or a service is specified to share the same
binary file as an already installed service but with an account name that is not the
same as the installed service.

ERROR_SERVICE_MARKED_FOR_DELETE

The service has been marked for deletion.

Services Page 30 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

Services Overview, Service Functions, CreateService, OpenService, QueryServiceConfig,
StartService

ChangeServiceConfig2
[This is preliminary documentation and subject to change.]

The ChangeServiceConfig2 function changes the optional configuration parameters of a service.

BOOL ChangeServiceConfig2(
 SC_HANDLE hService,
 DWORD dwInfoLevel,
 LPVOID lpInfo
);

Parameters

hService
Handle to the service. This handle is returned by the OpenService or CreateService
function and must have the SERVICE_CHANGE_CONFIG access right.

If one of the specified service controller actions is SC_ACTION_RESTART, hService must
have the SERVICE_START access right.

dwInfoLevel
Specifies the configuration information to change. This parameter can be one of the
following values.

lpInfo
Pointer to the new value to be set for the configuration information. The format of this data
depends on the value of the dwInfoLevel parameter. If this value is NULL, the information
remains unchanged.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks

Value Meaning

SERVICE_CONFIG_DESCRIPTION The lpInfo parameter is a pointer to a
SERVICE_DESCRIPTION structure.

SERVICE_CONFIG_FAILURE_ACTIONS The lpInfo parameter is a pointer to a
SERVICE_FAILURE_ACTIONS
structure.

Services Page 31 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

The ChangeServiceConfig2 function changes the optional configuration information for the
specified service in the service control manager database. You can obtain the current optional
configuration information by using the QueryServiceConfig2 function.

You cannot set the SERVICE_CONFIG_FAILURE_ACTIONS value for a service that shares the
service control manager's process. This includes all services whose executable image is
"services.exe".

You can change and query additional configuration information using the ChangeServiceConfig
and QueryServiceConfig functions, respectively.

QuickInfo

 Windows NT: Requires version 5.0 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Import Library: Use advapi32.lib.
 Unicode: Implemented as Unicode and ANSI versions on Windows NT.

See Also

Services Overview, Service Functions, ChangeServiceConfig, CreateService, OpenService,
QueryServiceConfig, QueryServiceConfig2, SERVICE_DESCRIPTION,
SERVICE_FAILURE_ACTIONS

CloseServiceHandle
The CloseServiceHandle function closes the following types of handles:

a handle to a service control manager object as returned by the OpenSCManager function
a handle to a service object as returned by either the OpenService or CreateService
function

BOOL CloseServiceHandle(
 SC_HANDLE hSCObject // handle to service or service control
 // manager database
);

Parameters

hSCObject
Handle to the service control manager object or the service object to close.

Return Values

If the function succeeds, the return value is nonzero.

Services Page 32 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Errors

The following error code can be set by the service control manager. Other error codes can be set
by registry functions that are called by the service control manager.

Remarks

The CloseServiceHandle function does not destroy the service control manager object referred to
by the handle. A service control manager object cannot be destroyed. A service object can be
destroyed by calling the DeleteService function.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Import Library: Use advapi32.lib.

See Also

Services Overview, Service Functions, CreateService, DeleteService, OpenSCManager,
OpenService

ControlService
The ControlService function sends a control code to a Win32-based service.

BOOL ControlService(
 SC_HANDLE hService, // handle to service
 DWORD dwControl, // control code
 LPSERVICE_STATUS lpServiceStatus
 // pointer to service status structure
);

Parameters

hService
Handle to the service. This handle is returned by the OpenService or CreateService
function. The access required for this handle depends on the dwControl code requested.

dwControl
Specifies the requested control code. This value can be one of the standard control codes in

Value Meaning

ERROR_INVALID_HANDLE The specified handle is invalid.

Services Page 33 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

the following table:

This value can also be a user-defined control code, as described in the following table:

lpServiceStatus
Pointer to a SERVICE_STATUS structure to receive the latest service status information.
The information returned reflects the most recent status that the service reported to the
service control manager.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Errors

The following error codes can be set by the service control manager. Other error codes can be set
by the registry functions that are called by the service control manager.

Value Meaning

SERVICE_CONTROL_STOP Requests the service to stop. The hService
handle must have SERVICE_STOP access.

SERVICE_CONTROL_PAUSE Requests the service to pause. The hService
handle must have
SERVICE_PAUSE_CONTINUE access.

SERVICE_CONTROL_
CONTINUE

Requests the paused service to resume. The
hService handle must have
SERVICE_PAUSE_CONTINUE access.

SERVICE_CONTROL_
INTERROGATE

Requests the service to update immediately its
current status information to the service control
manager. The hService handle must have
SERVICE_INTERROGATE access.

SERVICE_CONTROL_
SHUTDOWN

The ControlService function fails if this
control code is specified.

Value Meaning

Range 128 to 255. The service defines the action associated with the control
code. The hService handle must have
SERVICE_USER_DEFINED_CONTROL access.

Value Meaning

ERROR_ACCESS_DENIED

The specified handle was not opened with the necessary access.

ERROR_DEPENDENT_SERVICES_RUNNING

The service cannot be stopped because other running services are dependent on it.

ERROR_INVALID_SERVICE_CONTROL

The requested control code is not valid, or it is unacceptable to the service.

Services Page 34 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

Remarks

The ControlService function asks the service control manager to send the requested control code
to the service. The service control manager sends the code if the service accepts the control and if
the service is in a state in which a control can be sent to it. You cannot stop and start a service
unless the security descriptor allows you to. The default security descriptor allows LocalSystem,
Administrators, and Power Users to stop and start services. To change the security descriptor of a
service, use SetServiceObjectSecurity.

The QueryServiceStatus or function returns a SERVICE_STATUS structure whose
dwCurrentState and dwControlsAccepted members indicate the current state and controls
accepted by a running service. All running services accept the
SERVICE_CONTROL_INTERROGATE control code by default. Each service specifies the other
control codes that it accepts when it calls the SetServiceStatus function to report its status. A
service should always accept these codes when it is running, no matter what it is doing.

The following table shows the action of the service control manager in each of the possible
service states:

QuickInfo

ERROR_SERVICE_CANNOT_ACCEPT_CTRL

The requested control code cannot be sent to the service because the state of the
service is SERVICE_STOPPED, SERVICE_START_PENDING, or
SERVICE_STOP_PENDING.

ERROR_SERVICE_NOT_ACTIVE

The service has not been started.

ERROR_SERVICE_REQUEST_TIMEOUT

The service did not respond to the start request in a timely fashion.

Service state Stop Other controls

STOPPED (c) (c)

STOP_PENDING (b) (b)

START_PENDING (a) (b)

RUNNING (a) (a)

CONTINUE_PENDING (a) (a)

PAUSE_PENDING (a) (a)

PAUSED (a) (a)

(a) If the service accepts this control code, send the request to the service; otherwise,
ControlService returns zero and GetLastError returns
ERROR_INVALID_SERVICE_CONTROL.

(b) The service is not in a state in which a control can be sent to it, so ControlService
returns zero and GetLastError returns
ERROR_SERVICE_CANNOT_ACCEPT_CTRL.

(c) The service is not active, so ControlService returns zero and GetLastError returns
ERROR_SERVICE_NOT_ACTIVE.

Services Page 35 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Import Library: Use advapi32.lib.

See Also

Services Overview, Service Functions, CreateService, OpenService, QueryServiceStatus,
SetServiceObjectSecurity, SetServiceStatus, SERVICE_STATUS

CreateService
The CreateService function creates a service object and adds it to the specified service control
manager database.

SC_HANDLE CreateService(
 SC_HANDLE hSCManager, // handle to service control manager
 // database
 LPCTSTR lpServiceName, // pointer to name of service to start
 LPCTSTR lpDisplayName, // pointer to display name
 DWORD dwDesiredAccess, // type of access to service
 DWORD dwServiceType, // type of service
 DWORD dwStartType, // when to start service
 DWORD dwErrorControl, // severity if service fails to start
 LPCTSTR lpBinaryPathName, // pointer to name of binary file
 LPCTSTR lpLoadOrderGroup, // pointer to name of load ordering
 // group
 LPDWORD lpdwTagId, // pointer to variable to get tag identifier
 LPCTSTR lpDependencies, // pointer to array of dependency names
 LPCTSTR lpServiceStartName,
 // pointer to account name of service
 LPCTSTR lpPassword // pointer to password for service account
);

Parameters

hSCManager
Handle to the service control manager database. This handle is returned by the
OpenSCManager function and must have SC_MANAGER_CREATE_SERVICE access.

lpServiceName
Pointer to a null-terminated string that names the service to install. The maximum string
length is 256 characters. The service control manager database preserves the case of the
characters, but service name comparisons are always case insensitive. Forward-slash (/) and
back-slash (\) are invalid service name characters.

lpDisplayName
Pointer to a null-terminated string that is to be used by user interface programs to identify
the service. This string has a maximum length of 256 characters. The name is case-
preserved in the service control manager. display name comparisons are always case-
insensitive.

dwDesiredAccess

Services Page 36 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

Specifies the access to the service. Before granting the requested access, the system checks
the access token of the calling process.

The STANDARD_RIGHTS_REQUIRED constant enables the following service object
access types:

You can specify any or all of the following service object access types:

Standard rights Description

DELETE Enables calling of the DeleteService function to
delete the service.

READ_CONTROL Enables calling of the
QueryServiceObjectSecurity function to query
the security descriptor of the service object.

WRITE_DAC|WRITE_OWNER Enables calling of the
SetServiceObjectSecurity function to modify
the security descriptor of the service object.

Access Description

SERVICE_ALL_ACCESS Includes
STANDARD_RIGHTS_REQUIRED
in addition to all of the access types
listed in this table.

SERVICE_CHANGE_CONFIG Enables calling of the
ChangeServiceConfig function to
change the service configuration.

SERVICE_ENUMERATE_DEPENDENTS Enables calling of the
EnumDependentServices function
to enumerate all the services
dependent on the service.

SERVICE_INTERROGATE Enables calling of the
ControlService function to ask the
service to report its status
immediately.

SERVICE_PAUSE_CONTINUE Enables calling of the
ControlService function to pause or
continue the service.

SERVICE_QUERY_CONFIG Enables calling of the
QueryServiceConfig function to
query the service configuration.

SERVICE_QUERY_STATUS Enables calling of the
QueryServiceStatus function to ask
the service control manager about the
status of the service.

SERVICE_START Enables calling of the StartService
function to start the service.

SERVICE_STOP Enables calling of the
ControlService function to stop the
service.

Services Page 37 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

You can specify any of the following generic access types:

dwServiceType
A set of bit flags that specify the type of service. You must specify one of the following
service types.

If you specify either SERVICE_WIN32_OWN_PROCESS or
SERVICE_WIN32_SHARE_PROCESS, you can also specify the following flag.

dwStartType
Specifies when to start the service. You must specify one of the following start types.

SERVICE_USER_DEFINED_CONTROL Enables calling of the
ControlService function to specify a
user-defined control code.

Generic access Service access

GENERIC_READ Combines the following access types:
STANDARD_RIGHTS_READ,
SERVICE_QUERY_CONFIG,
SERVICE_QUERY_STATUS, and
SERVICE_ENUMERATE_DEPENDENTS.

GENERIC_WRITE Combines the following access types:
STANDARD_RIGHTS_WRITE and
SERVICE_CHANGE_CONFIG.

GENERIC_EXECUTE Combines the following access types:
STANDARD_RIGHTS_EXECUTE, SERVICE_START,
SERVICE_STOP, SERVICE_PAUSE_CONTINUE,
SERVICE_INTERROGATE, and
SERVICE_USER_DEFINED_CONTROL.

Value Meaning

SERVICE_WIN32_OWN_PROCESS Specifies a Win32-based service that
runs in its own process.

SERVICE_WIN32_SHARE_PROCESS Specifies a Win32-based service that
shares a process with other services.

SERVICE_KERNEL_DRIVER Specifies a driver service.

SERVICE_FILE_SYSTEM_DRIVER Specifies a file system driver service.

Value Meaning

SERVICE_INTERACTIVE_PROCESS Enables a Win32-based service process
to interact with the desktop.

Value Meaning

SERVICE_BOOT_START Specifies a device driver started by the system
loader. This value is valid only for driver
services.

SERVICE_SYSTEM_START Specifies a device driver started by the
IoInitSystem function. This value is valid only
for driver services.

Services Page 38 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

dwErrorControl
Specifies the severity of the error if this service fails to start during startup, and determines
the action taken by the startup program if failure occurs. You must specify one of the
following error control flags.

lpBinaryPathName
Pointer to a null-terminated string that contains the fully qualified path to the service binary
file. If the path contains a space, it must be quoted so that it is correctly interpreted. For
example, "d:\\my share\\myservice.exe" should be specified as "\"d:\\my
share\\myservice.exe\"".

lpLoadOrderGroup
Pointer to a null-terminated string that names the load ordering group of which this service
is a member. Specify NULL or an empty string if the service does not belong to a group.

lpdwTagId
Pointer to a DWORD variable that receives a tag value that is unique in the group specified
in the lpLoadOrderGroup parameter. Specify NULL if you are not changing the existing
tag.

You can use a tag for ordering service startup within a load ordering group by specifying a
tag order vector in the GroupOrderList value of the following registry key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control

Tags are only evaluated for driver services that have SERVICE_BOOT_START or
SERVICE_SYSTEM_START start types.

lpDependencies

SERVICE_AUTO_START Specifies a service to be started automatically
by the service control manager during system
startup.

SERVICE_DEMAND_START Specifies a service to be started by the service
control manager when a process calls the
StartService function.

SERVICE_DISABLED Specifies a service that can no longer be started.

Value Meaning

SERVICE_ERROR_IGNORE The startup program logs the error but continues
the startup operation.

SERVICE_ERROR_NORMAL The startup program logs the error and puts up a
message box pop-up but continues the startup
operation.

SERVICE_ERROR_SEVERE The startup program logs the error. If the last-
known-good configuration is being started, the
startup operation continues. Otherwise, the
system is restarted with the last-known-good
configuration.

SERVICE_ERROR_CRITICAL The startup program logs the error, if possible.
If the last-known-good configuration is being
started, the startup operation fails. Otherwise,
the system is restarted with the last-known good
configuration.

Services Page 39 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

Pointer to a double null-terminated array of null-separated names of services or load
ordering groups that the system must start before this service. Specify NULL or an empty
string if the service has no dependencies. Dependency on a group means that this service
can run if at least one member of the group is running after an attempt to start all members
of the group.

You must prefix group names with SC_GROUP_IDENTIFIER so that they can be
distinguished from a service name, because services and service groups share the same
name space.

lpServiceStartName
Pointer to a null-terminated string that names the service. If the service type is
SERVICE_WIN32_OWN_PROCESS, use an account name in the form
DomainName\UserName. The service process will be logged on as this user. If the account
belongs to the built-in domain, you can specify .\UserName. If the service type is
SERVICE_WIN32_SHARE_PROCESS you must specify the LocalSystem account. If you
specify NULL, CreateService uses the LocalSystem account.

If the service type is SERVICE_KERNEL_DRIVER or
SERVICE_FILE_SYSTEM_DRIVER, the name is the driver object name that the system
uses to load the device driver. Specify NULL if the driver is to use a default object name
created by the I/O system.

lpPassword
Pointer to a null-terminated string that contains the password to the account name specified
by the lpServiceStartName parameter. If the pointer is NULL or if it points to an empty
string, the service has no password. Passwords are ignored for driver services. If
lpServiceStartName is LocalSystem, the password must be NULL.

Return Values

If the function succeeds, the return value is a handle to the service.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Errors

The following error codes can be set by the service control manager. Other error codes can be set
by the registry functions that are called by the service control manager.

Value Meaning

ERROR_ACCESS_DENIED The handle to the specified service
control manager database does not have
SC_MANAGER_CREATE_SERVICE
access.

ERROR_CIRCULAR_DEPENDENCY A circular service dependency was
specified.

ERROR_DUP_NAME The display name already exists in the
service control manager database either as
a service name or as another display
name.

Services Page 40 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

Remarks

The CreateService function creates a service object and installs it in the service control manager
database by creating a key with the same name as the service under the following registry key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services

Information specified for this function is saved as values under this key. Setup programs and the
service itself can create subkeys under this key for any service specific information.

The returned handle is only valid for the process that called CreateService. It can be closed by
calling the CloseServiceHandle function.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Import Library: Use advapi32.lib.
 Unicode: Implemented as Unicode and ANSI versions on Windows NT.

See Also

Services Overview, Service Functions, ChangeServiceConfig, CloseServiceHandle,
ControlService, DeleteService, EnumDependentServices, OpenSCManager,
QueryServiceConfig, QueryServiceObjectSecurity, QueryServiceStatus,
SetServiceObjectSecurity, StartService

DeleteService
The DeleteService function marks the specified service for deletion from the service control
manager database.

BOOL DeleteService(
 SC_HANDLE hService // handle to service
);

ERROR_INVALID_HANDLE The handle to the specified service
control manager database is invalid.

ERROR_INVALID_NAME The specified service name is invalid.

ERROR_INVALID_PARAMETER A parameter that was specified is invalid.

ERROR_INVALID_SERVICE_ACCOUNT The user account name specified in the
lpServiceStartName parameter does not
exist.

ERROR_SERVICE_EXISTS The specified service already exists in
this database.

Services Page 41 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

Parameters

hService
Handle to the service. This handle is returned by the OpenService or CreateService
function, and it must have DELETE access.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Errors

The following error codes may be set by the service control manager. Others may be set by the
registry functions that are called by the service control manager.

Remarks

The DeleteService function marks a service for deletion from the service control manager
database. The database entry is not removed until all open handles to the service have been closed
by calls to the CloseServiceHandle function, and the service is not running. A running service is
stopped by a call to the ControlService function with the SERVICE_CONTROL_STOP control
code. If the service cannot be stopped, the database entry is removed when the system is restarted.

The service control manager deletes the service by deleting the service key and its subkeys from
the registry.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Import Library: Use advapi32.lib.

See Also

Services Overview, Service Functions, CloseServiceHandle, ControlService, CreateService,
OpenService

Value Meaning

ERROR_ACCESS_DENIED The specified handle was not opened
with DELETE access.

ERROR_INVALID_HANDLE The specified handle is invalid.

ERROR_SERVICE_MARKED_FOR_DELETE The specified service has already been
marked for deletion.

Services Page 42 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

EnumDependentServices
The EnumDependentServices function provides the name and status of each service that
depends on the specified service; that is, the specified service must be running before the
dependent services can run.

BOOL EnumDependentServices(
 SC_HANDLE hService, // handle to service
 DWORD dwServiceState, // state of services to enumerate
 LPENUM_SERVICE_STATUS lpServices,
 // pointer to service status buffer
 DWORD cbBufSize, // size of service status buffer
 LPDWORD pcbBytesNeeded, // pointer to variable for bytes needed
 LPDWORD lpServicesReturned
 // pointer to variable for number returned
);

Parameters

hService
Handle to the service. This handle is returned by the OpenService or CreateService
function, and it must have SERVICE_ENUMERATE_DEPENDENTS access.

dwServiceState
Specifies the services to enumerate based on their running state. It must be one or both of
the following values:

lpServices
Pointer to an array of ENUM_SERVICE_STATUS structures in which name and service
status information for each dependent service in the database is returned. The buffer must
be large enough to hold the structures, plus the strings to which their members point.

The order of the services in this array is the reverse of the start order of the services. In
other words, the first service in the array is the one that would be started last, and the last
service in the array is the one that would be started first.

cbBufSize
Specifies the size, in bytes, of the buffer pointed to by the lpServices parameter.

pcbBytesNeeded
Pointer to a variable that receives the number of bytes needed to store the array of service
entries. The variable only receives this value if the buffer pointed to by lpServices is too
small, indicated by function failure and the ERROR_MORE_DATA error; otherwise, the

Value Meaning

SERVICE_ACTIVE Enumerates services that are in the following states:
SERVICE_START_PENDING,
SERVICE_STOP_PENDING, SERVICE_RUNNING,
SERVICE_CONTINUE_PENDING,
SERVICE_PAUSE_PENDING, and SERVICE_PAUSED.

SERVICE_INACTIVE Enumerates services that are in the SERVICE_STOPPED
state.

SERVICE_STATE_ALL Combines the following states: SERVICE_ACTIVE and
SERVICE_INACTIVE.

Services Page 43 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

contents of pcbBytesNeeded are undefined.
lpServicesReturned

Pointer to a variable that receives the number of service entries returned.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Errors

The following error codes may be set by the service control manager. Other error codes may be set
by the registry functions that are called by the service control manager.

Remarks

The returned services entries are ordered in the reverse order of the start order, with group order
taken into account. If you need to stop the dependent services, you can use the order of entries
written to the lpServices buffer to stop the dependent services in the proper order.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Import Library: Use advapi32.lib.
 Unicode: Implemented as Unicode and ANSI versions on Windows NT.

See Also

Services Overview, Service Functions, CreateService, ENUM_SERVICE_STATUS,
EnumServicesStatus, OpenService

Value Meaning

ERROR_ACCESS_DENIED

The specified handle was not opened with
SERVICE_ENUMERATE_DEPENDENTS access.

ERROR_INVALID_HANDLE

The specified handle is invalid.

ERROR_INVALID_PARAMETER

A parameter that was specified is invalid.

ERROR_MORE_DATA

The buffer pointed to by lpServices is not large enough. The function sets the
variable pointed to by lpServicesReturned to the actual number of service entries
stored into the buffer. The function sets the variable pointed to by pcbBytesNeeded
to the number of bytes required to store all of the service entries.

Services Page 44 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

EnumServicesStatus
The EnumServicesStatus function enumerates services in the specified service control manager
database. The name and status of each service are provided.

BOOL EnumServicesStatus(
 SC_HANDLE hSCManager, // handle to service control manager database
 DWORD dwServiceType, // type of services to enumerate
 DWORD dwServiceState, // state of services to enumerate
 LPENUM_SERVICE_STATUS lpServices,
 // pointer to service status buffer
 DWORD cbBufSize, // size of service status buffer
 LPDWORD pcbBytesNeeded, // pointer to variable for bytes needed
 LPDWORD lpServicesReturned,
 // pointer to variable for number returned
 LPDWORD lpResumeHandle // pointer to variable for next entry
);

Parameters

hSCManager
Handle to the service control manager database. The OpenSCManager function returns
this handle, which must have SC_MANAGER_ENUMERATE_SERVICE access.

dwServiceType
Specifies the type of services to enumerate. It must be one or both of the following values:

dwServiceState
Specifies the services to enumerate based on their running state. It must be one or both of
the following values:

lpServices

Value Meaning

SERVICE_WIN32 Enumerates services of type
SERVICE_WIN32_OWN_PROCESS and
SERVICE_WIN32_SHARE_PROCESS.

SERVICE_DRIVER Enumerates services of type
SERVICE_KERNEL_DRIVER and
SERVICE_FILE_SYSTEM_DRIVER.

Value Meaning

SERVICE_ACTIVE Enumerates services that are in the following states:
SERVICE_START_PENDING,
SERVICE_STOP_PENDING, SERVICE_RUNNING,
SERVICE_CONTINUE_PENDING,
SERVICE_PAUSE_PENDING, and SERVICE_PAUSED.

SERVICE_INACTIVE Enumerates services that are in the SERVICE_STOPPED
state.

SERVICE_STATE_ALL Combines the following states: SERVICE_ACTIVE and
SERVICE_INACTIVE.

Services Page 45 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

Pointer to an array of ENUM_SERVICE_STATUS structures in which the name and
service status information for each service in the database is returned. The buffer must be
large enough to hold the structures, plus the strings to which their members point.

cbBufSize
Specifies the size, in bytes, of the buffer pointed to by the lpServices parameter.

pcbBytesNeeded
Pointer to a variable that receives the number of bytes needed to return the remaining
service entries.

lpServicesReturned
Pointer to a variable that receives the number of service entries returned.

lpResumeHandle
Pointer to a DWORD variable that is used for both input and output. On input, this value
specifies the starting point of enumeration. You must set this value to zero the first time this
function is called. On output, this value is zero if the function succeeds. However, if the
function returns zero and the GetLastError function returns ERROR_MORE_DATA, this
value is used to indicate the next service entry to be read when the function is called to
retrieve the additional data.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Errors

The following error codes can be set by the service control manager. Other error codes can be set
by the registry functions that are called by the service control manager.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.

Value Meaning

ERROR_ACCESS_DENIED

The specified handle was not opened with
SC_MANAGER_ENUMERATE_SERVICE access.

ERROR_INVALID_HANDLE

The specified handle is invalid.

ERROR_INVALID_PARAMETER

A parameter that was specified is invalid.

ERROR_MORE_DATA

There are more service entries than would fit into the lpServices buffer. The actual
number of service entries written to lpServices is returned in the lpServicesReturned
parameter. The number of bytes required to get the remaining entries is returned in
the pcbBytesNeeded parameter. The remaining services can be enumerated by
additional calls to EnumServicesStatus with the lpResumeHandle parameter
indicating the next service to read.

Services Page 46 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Import Library: Use advapi32.lib.
 Unicode: Implemented as Unicode and ANSI versions on Windows NT.

See Also

Services Overview, Service Functions, EnumDependentServices,
ENUM_SERVICE_STATUS, OpenSCManager

GetServiceDisplayName
The GetServiceDisplayName function obtains the display name that is associated with a
particular service.

BOOL GetServiceDisplayName(
 SC_HANDLE hSCManager, // handle to a service control manager
 // database
 LPCTSTR lpServiceName, // the service name
 LPTSTR lpDisplayName, // buffer to receive the service's display
 // name
 LPDWORD lpcchBuffer // size of display name buffer and display
 // name
);

Parameters

hSCManager
Handle to a service control manager database, as returned by the OpenSCManager
function.

lpServiceName
Pointer to a null-terminated service name string. This name is the same as the service's
registry key name.

lpDisplayName
Pointer to a buffer into which the function stores the service's display name as a null-
terminated string. If the function fails, this buffer will contain an empty string.

lpcchBuffer
Pointer to a DWORD that contains the size, in characters, of the buffer pointed to by
lpDisplayName. When the function returns, this DWORD contains the size, in characters,
of the service's display name, excluding the NULL terminator.

If the buffer pointed to by lpDisplayName is too small to contain the display name, the
function stores no data into it. When the function returns, the DWORD pointed to by
lpcchBuffer contains the size in characters of the service's display name, excluding the
NULL terminator.

Return Values

If the functions succeeds, the return value is nonzero.

Services Page 47 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks

There are two names for a service: the service name and the display name. The service name is the
name of the service's key in the registry. The display name is a user-friendly name that appears in
the Services control panel application, and is used with the NET START command. To map the
service name to the display name, use the GetServiceDisplayName function. To map the display
name to the service name, use the GetServiceKeyName function.

QuickInfo

 Windows NT: Requires version 3.5 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Import Library: Use advapi32.lib.
 Unicode: Implemented as Unicode and ANSI versions on Windows NT.

See Also

Services Overview, Service Functions, GetServiceKeyName, OpenSCManager

GetServiceKeyName
The GetServiceKeyName function obtains the service name that is associated with a particular
service's display name.

BOOL GetServiceKeyName(
 SC_HANDLE hSCManager, // handle to a service control manager
 // database
 LPCTSTR lpDisplayName, // the service's display name
 LPTSTR lpServiceName, // buffer to receive the service name
 LPDWORD lpcchBuffer // size of service name buffer and service
 // name
);

Parameters

hSCManager
Handle to a computer's service control manager database, as returned by OpenSCManager.

lpDisplayName
Pointer to a null-terminated service display name string.

lpServiceName
Pointer to a buffer into which the function stores the service name as a null-terminated
string. If the function fails, this buffer will contain an empty string.

lpcchBuffer
Pointer to a DWORD that contains the size in characters of the buffer pointed to by the

Services Page 48 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

lpServiceName parameter. When the function returns, this DWORD contains the size, in
characters, of the service name, excluding the NULL terminator.

If the buffer pointed to by lpServiceName is too small to contain the service name, the
function stores no data in it. When the function returns, the DWORD pointed to by
lpcchBuffer contains the size, in characters, of the service name, excluding the NULL
terminator.

Return Values

If the functions succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks

There are two names for a service: the service name and the display name. The service name is the
name of the service's key in the registry. The display name is a user-friendly name that appears in
the Services control panel application, and is used with the NET START command. To map the
service name to the display name, use the GetServiceDisplayName function. To map the display
name to the service name, use the GetServiceKeyName function.

QuickInfo

 Windows NT: Requires version 3.5 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Import Library: Use advapi32.lib.
 Unicode: Implemented as Unicode and ANSI versions on Windows NT.

See Also

Services Overview, Service Functions, GetServiceDisplayName, OpenSCManager

Handler
A Handler function is an application-defined function used with the
RegisterServiceCtrlHandler function. A service program uses it as the control handler function
of a particular Win32-based service. The LPHANDLER_FUNCTION type defines a pointer to
this function. Handler is a placeholder for the application-defined name.

VOID WINAPI Handler(
 DWORD fdwControl // requested control code
);

Parameters

Services Page 49 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

fdwControl
Specifies the requested control code. This value can be one of the standard control codes in
the following table:

This value can also be a user-defined control code, as described in the following table:

Return Values

This function does not return a value.

Remarks

When a Win32-based service is started, its ServiceMain function should immediately call the
RegisterServiceCtrlHandler function to specify a Handler function to process control requests.

The control dispatcher in the main thread of a Win32-based service process invokes the control
handler function for the specified service whenever it receives a control request from the service
control manager. After processing the control request, the control handler must call the
SetServiceStatus function to report its current status to the service control manager.

The SERVICE_CONTROL_SHUTDOWN control should only be processed by services that
must absolutely clean up during shutdown, because there is an extremely limited time (about 20
seconds) available for service shutdown. After this time expires, system shutdown proceeds
regardless of whether service shutdown is complete. If the service needs to take more time to shut
down, it should send out STOP_PENDING status messages, along with a wait hint, so that the
service controller knows how long to wait before reporting to the system that service shutdown is
complete. For example, the EventLog service needs to clear a dirty bit in the files that it
maintains, and the server service needs to shut down so that network connections aren't made
when the system is in the shutdown state.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.

Value Meaning

SERVICE_CONTROL_STOP Requests the service to stop.

SERVICE_CONTROL_PAUSE Requests the service to pause.

SERVICE_CONTROL_
CONTINUE

Requests the paused service to resume.

SERVICE_CONTROL_
INTERROGATE

Requests the service to update immediately its
current status information to the service control
manager.

SERVICE_CONTROL_
SHUTDOWN

Requests the service to perform cleanup tasks,
because the system is shutting down.

Value Meaning

Range 128 to 255. The service defines the action associated with the control
code. The hService handle must have
SERVICE_USER_DEFINED_CONTROL access.

Services Page 50 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Import Library: User-defined.

See Also

Services Overview, Service Functions, RegisterServiceCtrlHandler, ServiceMain,
SetServiceStatus

LockServiceDatabase
The LockServiceDatabase function locks the specified service control manager database.

SC_LOCK LockServiceDatabase(
 SC_HANDLE hSCManager // handle of service control manager
 // database
);

Parameters

hSCManager
Handle to the service control manager database. The OpenSCManager function returns
this handle, which must have SC_MANAGER_LOCK access.

Return Values

If the function succeeds, the return value is a lock to the specified service control manager
database.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Errors

The following error code can be set by the service control manager. Other error codes can be set
by registry functions that are called by the service control manager.

Remarks

The LockServiceDatabase function tries to request ownership of the service control manager
database lock. Only one process at a time can own a lock at any given time.

Value Meaning

ERROR_ACCESS_DENIED The specified handle was not opened
with SC_MANAGER_LOCK access.

ERROR_INVALID_HANDLE The specified handle is invalid.

ERROR_SERVICE_DATABASE_LOCKED The database is locked.

Services Page 51 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

A lock is a protocol used by setup and configuration programs and the service control manager to
serialize access to the service tree in the registry. The only time the service control manager
requests ownership of the lock is when it is starting a service. Setup and configuration programs
are expected to acquire ownership of a lock before using the ChangeServiceConfig or
SetServiceObjectSecurity function to reconfigure a service. They should also acquire ownership
of a lock before using the registry functions to reconfigure a service. The lock prevents the service
control manager from starting a service while it is being reconfigured.

A call to the StartService function to start a service in a locked database fails. No other service
control manager functions are affected by a lock.

The lock is held until the SC_LOCK handle is specified in a subsequent call to the
UnlockServiceDatabase function. If a process that owns a lock terminates, the service control
manager automatically cleans up and releases ownership of the lock.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Import Library: Use advapi32.lib.

See Also

Services Overview, Service Functions, ChangeServiceConfig, OpenSCManager,
QueryServiceLockStatus, SetServiceObjectSecurity, StartService, UnlockServiceDatabase

NotifyBootConfigStatus
The NotifyBootConfigStatus function reports the boot status to the service control manager. It is
used by boot verification programs. This function can be called only by a process running in the
LocalSystem or Administrator's account.

BOOL NotifyBootConfigStatus(
 BOOL BootAcceptable // indicates acceptability of boot
 // configuration
);

Parameters

BootAcceptable
Specifies whether the configuration used when booting the system is acceptable. If the
value is TRUE, the system saves the configuration as the last-known good configuration. If
the value is FALSE, the system immediately reboots, using the previously saved last-known
good configuration.

Return Values

Services Page 52 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

If the BootAcceptable parameter is FALSE, the function does not return.

If the last-known good configuration was successfully saved, the return value is nonzero.

If an error occurs, the return value is zero. To get extended error information, call GetLastError.

Errors

The following error codes may be set by the service control manager. Other error codes may be set
by the registry functions that are called by the service control manager to set parameters in the
configuration registry.

Remarks

Saving the configuration of a running system with this function is an acceptable method for
saving the last-known good configuration. If the boot configuration is unacceptable, use this
function to reboot the system using the existing last-known good configuration.

QuickInfo

 Windows NT: Requires version 3.5 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Import Library: Use advapi32.lib.

See Also

Services Overview, Service Functions

OpenSCManager
The OpenSCManager function establishes a connection to the service control manager on the
specified computer and opens the specified service control manager database.

SC_HANDLE OpenSCManager(
 LPCTSTR lpMachineName, // pointer to machine name string
 LPCTSTR lpDatabaseName, // pointer to database name string
 DWORD dwDesiredAccess // type of access

Value Meaning

ERROR_ACCESS_DENIED The user does not have permission to perform this
operation.

A hard-coded DACL associated with the service control
manager object determines who can perform a
NotifyBootConfigStatus operation. Only the system and
members of the Adminstrators group can do so.

Services Page 53 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

);

Parameters

lpMachineName
Pointer to a null-terminated string that names the target computer. If the pointer is NULL or
points to an empty string, the function connects to the service control manager on the local
computer.

lpDatabaseName
Pointer to a null-terminated string that names the service control manager database to open.
This parameter should be set to SERVICES_ACTIVE_DATABASE. If it is NULL, the
SERVICES_ACTIVE_DATABASE database is opened by default.

dwDesiredAccess
Specifies the access to the service control manager. Before granting the requested access,
the system checks the access token of the calling process against the discretionary access-
control list of the security descriptor associated with the service control manager. The
SC_MANAGER_CONNECT access type is implicitly specified by calling this function. In
addition, any or all of the following service control manager object access types can be
specified:

The dwDesiredAccess parameter can specify any or all of the following generic access
types:

Type Description

SC_MANAGER_ALL_ACCESS

Includes STANDARD_RIGHTS_REQUIRED, in addition to all of the
access types listed in this table.

SC_MANAGER_CONNECT

Enables connecting to the service control manager.

SC_MANAGER_CREATE_SERVICE

Enables calling of the CreateService function to create a service object and
add it to the database.

SC_MANAGER_ENUMERATE_SERVICE

Enables calling of the EnumServicesStatus function to list the services that
are in the database.

SC_MANAGER_LOCK

Enables calling of the LockServiceDatabase function to acquire a lock on
the database.

SC_MANAGER_QUERY_LOCK_STATUS

Enables calling of the QueryServiceLockStatus function to retrieve the
lock status information for the database.

Generic access Service manager access

GENERIC_READ Combines the following access types:
STANDARD_RIGHTS_READ,
SC_MANAGER_ENUMERATE_SERVICE, and
SC_MANAGER_QUERY_LOCK_STATUS.

Services Page 54 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

Return Values

If the function succeeds, the return value is a handle to the specified service control manager
database.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Errors

The following error codes can be set by the SCM. Other error codes can be set by the registry
functions that are called by the SCM.

Remarks

When a process uses the OpenSCManager function to open a handle to a service control
manager database, the system performs a security check before granting the requested access. All
processes are permitted SC_MANAGER_CONNECT,
SC_MANAGER_ENUMERATE_SERVICE, and SC_MANAGER_QUERY_LOCK_STATUS
access to all service control manager databases. This enables any process to open a service control
manager database handle that it can use in the OpenService, EnumServicesStatus, and
QueryServiceLockStatus functions. Only processes with Administrator privileges are able to
open a database handle used by the CreateService and LockServiceDatabase functions.

The returned handle is only valid for the process that called the OpenSCManager function. It can
be closed by calling the CloseServiceHandle function.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Import Library: Use advapi32.lib.
 Unicode: Implemented as Unicode and ANSI versions on Windows NT.

See Also

GENERIC_WRITE Combines the following access types:
STANDARD_RIGHTS_WRITE and
SC_MANAGER_CREATE_SERVICE.

GENERIC_EXECUTE Combines the following access types:
STANDARD_RIGHTS_EXECUTE,
SC_MANAGER_CONNECT, and
SC_MANAGER_LOCK.

Error code Meaning

ERROR_ACCESS_DENIED The requested access was denied.

ERROR_DATABASE_DOES_NOT_EXIST The specified database does not exist.

ERROR_INVALID_PARAMETER A specified parameter is invalid.

Services Page 55 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

Services Overview, Service Functions, CloseServiceHandle, CreateService,
EnumServicesStatus, LockServiceDatabase, OpenService, QueryServiceLockStatus

OpenService
The OpenService function opens a handle to an existing service.

SC_HANDLE OpenService(
 SC_HANDLE hSCManager, // handle to service control manager
 // database
 LPCTSTR lpServiceName, // pointer to name of service to start
 DWORD dwDesiredAccess // type of access to service
);

Parameters

hSCManager
Handle to the service control manager database. The OpenSCManager function returns
this handle.

lpServiceName
Pointer to a null-terminated string that names the service to open. The maximum string
length is 256 characters. The service control manager database preserves the case of the
characters, but service name comparisons are always case insensitive. Forward-slash (/) and
backslash (\) are invalid service name characters.

dwDesiredAccess
Specifies the access to the service. Before granting the requested access, the system checks
the access token of the calling process against the discretionary access-control list of the
security descriptor associated with the service object.

The STANDARD_RIGHTS_REQUIRED constant enables the following service object
access types:

You can specify any or all of the following service object access types:

Standard rights Description

DELETE Enables calling of the DeleteService function to
delete the service.

READ_CONTROL Enables calling of the
QueryServiceObjectSecurity function to query
the security descriptor of the service object.

WRITE_DAC|WRITE_OWNER Enables calling of the
SetServiceObjectSecurity function to modify
the security descriptor of the service object.

Services Page 56 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

You can specify any of the following generic access types:

Access Description

SERVICE_ALL_ACCESS Includes
STANDARD_RIGHTS_REQUIRED
in addition to all of the access types
listed in this table.

SERVICE_CHANGE_CONFIG Enables calling of the
ChangeServiceConfig function to
change the service configuration.

SERVICE_ENUMERATE_DEPENDENTS Enables calling of the
EnumDependentServices function
to enumerate all the services
dependent on the service.

SERVICE_INTERROGATE Enables calling of the
ControlService function to ask the
service to report its status
immediately.

SERVICE_PAUSE_CONTINUE Enables calling of the
ControlService function to pause or
continue the service.

SERVICE_QUERY_CONFIG Enables calling of the
QueryServiceConfig function to
query the service configuration.

SERVICE_QUERY_STATUS Enables calling of the
QueryServiceStatus function to ask
the service control manager about the
status of the service.

SERVICE_START Enables calling of the StartService
function to start the service.

SERVICE_STOP Enables calling of the
ControlService function to stop the
service.

SERVICE_USER_DEFINED_CONTROL Enables calling of the
ControlService function to specify a
user-defined control code.

Generic access Service access

GENERIC_READ Combines the following access types:
STANDARD_RIGHTS_READ,
SERVICE_QUERY_CONFIG,
SERVICE_QUERY_STATUS, and
SERVICE_ENUMERATE_DEPENDENTS.

GENERIC_WRITE Combines the following access types:
STANDARD_RIGHTS_WRITE and
SERVICE_CHANGE_CONFIG.

Services Page 57 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

Return Values

If the function succeeds, the return value is a handle to the service.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Errors

The following error codes can be set by the service control manager. Others can be set by the
registry functions that are called by the service control manager.

Remarks

The returned handle is only valid for the process that called OpenService. It can be closed by
calling the CloseServiceHandle function.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Import Library: Use advapi32.lib.
 Unicode: Implemented as Unicode and ANSI versions on Windows NT.

See Also

Services Overview, Service Functions, ChangeServiceConfig, ControlService, CreateService,
DeleteService, EnumDependentServices, OpenSCManager, QueryServiceConfig,
QueryServiceObjectSecurity, QueryServiceStatus, SetServiceObjectSecurity, StartService

QueryServiceConfig

GENERIC_EXECUTE Combines the following access types:
STANDARD_RIGHTS_EXECUTE, SERVICE_START,
SERVICE_STOP, SERVICE_PAUSE_CONTINUE,
SERVICE_INTERROGATE, and
SERVICE_USER_DEFINED_CONTROL.

Error code Meaning

ERROR_ACCESS_DENIED The specified service control manager
database handle does not have access to the
service.

ERROR_INVALID_HANDLE The specified handle is invalid.

ERROR_INVALID_NAME The specified service name is invalid.

ERROR_SERVICE_DOES_NOT_EXIST The specified service does not exist.

Services Page 58 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

The QueryServiceConfig function retrieves the configuration parameters of the specified service.

BOOL QueryServiceConfig(
 SC_HANDLE hService, // handle of service
 LPQUERY_SERVICE_CONFIG lpServiceConfig,
 // address of service config. structure
 DWORD cbBufSize, // size of service configuration buffer
 LPDWORD pcbBytesNeeded // address of variable for bytes needed
);

Parameters

hService
Handle to the service. This handle is returned by the OpenService or CreateService
function, and it must have SERVICE_QUERY_CONFIG access.

lpServiceConfig
Pointer to a buffer that receives the QUERY_SERVICE_CONFIG structure in which the
service configuration information is returned, plus the strings to which its members point.

cbBufSize
Specifies the size, in bytes, of the buffer pointed to by the lpServiceConfig parameter.

pcbBytesNeeded
Pointer to a variable that receives the number of bytes needed to return all the configuration
information if the function fails.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Errors

The following error codes can be set by the service control manager. Others can be set by the
registry functions that are called by the service control manager.

Remarks

The QueryServiceConfig function returns the service configuration information kept in the
registry for a particular service. This configuration information is first set by a service control

Value Meaning

ERROR_ACCESS_DENIED The specified handle was not opened with
SERVICE_QUERY_CONFIG access.

ERROR_INSUFFICIENT_BUFFER There is more service configuration
information than would fit into the
lpServiceConfig buffer. The number of bytes
required to get all the information is returned in
the pcbBytesNeeded parameter. Nothing is
written to the lpServiceConfig buffer.

ERROR_INVALID_HANDLE The specified handle is invalid.

Services Page 59 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

program using the CreateService function. This information may have been updated by a service
configuration program using the ChangeServiceConfig function.

If the service was running when the configuration information was last changed, the information
returned by QueryServiceConfig will not reflect the current configuration of the service. Instead,
it will reflect the configuration of the service when it is next run. The DisplayName key is an
exception to this. When the DisplayName key is changed, it takes effect immediately, regardless
of whether the service is running.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Import Library: Use advapi32.lib.
 Unicode: Implemented as Unicode and ANSI versions on Windows NT.

See Also

Services Overview, Service Functions, ChangeServiceConfig, CreateService, OpenService,
QUERY_SERVICE_CONFIG, QueryServiceObjectSecurity, QueryServiceStatus

QueryServiceConfig2
[This is preliminary documentation and subject to change.]

The QueryServiceConfig2 function retrieves the optional configuration parameters of the
specified service.

BOOL QueryServiceConfig2(
 SC_HANDLE hService,
 DWORD dwInfoLevel,
 LPBYTE lpBuffer,
 DWORD cbBufSize,
 LPDWORD pcbBytesNeeded
);

Parameters

hService
Handle to the service. This handle is returned by the OpenService or CreateService
function and must have the SERVICE_CHANGE_CONFIG access right.

dwInfoLevel
Specifies the configuration information to query. This parameter can have one of the
following values.

Services Page 60 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

lpBuffer
Pointer to the structure in which the service configuration information is returned, plus the
strings to which its members point. The format of this data depends on the value of the
dwInfoLevel parameter.

cbBufSize
Specifies the size, in bytes, of the structure pointed to by the lpBuffer parameter.

pcbBytesNeeded
Pointer to a variable that receives the number of bytes needed to return the configuration
information, if the function fails.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks

The QueryServiceConfig2 function returns the optional configuration information stored in the
service control manager database for the specified service. You can change this configuration
information by using the ChangeServiceConfig2 function.

You can change and query additional configuration information using the ChangeServiceConfig
and QueryServiceConfig functions, respectively.

QuickInfo

 Windows NT: Requires version 5.0 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Import Library: Use advapi32.lib.
 Unicode: Implemented as Unicode and ANSI versions on Windows NT.

See Also

Services Overview, Service Functions, ChangeServiceConfig, ChangeServiceConfig2,
CreateService, OpenService, QueryServiceConfig, SERVICE_DESCRIPTION,
SERVICE_FAILURE_ACTIONS

Value Meaning

SERVICE_CONFIG_DESCRIPTION The lpBuffer parameter is a pointer to a
SERVICE_DESCRIPTION structure.

SERVICE_CONFIG_FAILURE_ACTIONS The lpBuffer parameter is a pointer to a
SERVICE_FAILURE_ACTIONS
structure.

Services Page 61 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

QueryServiceLockStatus
The QueryServiceLockStatus function retrieves the lock status of the specified service control
manager database.

BOOL QueryServiceLockStatus(
 SC_HANDLE hSCManager, // handle of svc. ctrl. mgr. database
 LPQUERY_SERVICE_LOCK_STATUS lpLockStatus,
 // address of lock status structure
 DWORD cbBufSize, // size of service configuration buffer
 LPDWORD pcbBytesNeeded // address of variable for bytes needed
);

Parameters

hSCManager
Handle to the service control manager database. The OpenSCManager function returns
this handle, which must have SC_MANAGER_QUERY_LOCK_STATUS access.

lpLockStatus
Pointer to a buffer that receives the QUERY_SERVICE_LOCK_STATUS structure in
which the lock status of the specified database is returned, plus the strings to which its
members point.

cbBufSize
Specifies the size, in bytes, of the buffer pointed to by the lpLockStatus parameter.

pcbBytesNeeded
Pointer to a variable that receives the number of bytes needed to return all the lock status
information, if the function fails.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Errors

The following error codes can be set by the service control manager. Other error codes can be set
by the registry functions that are called by the service control manager.

Value Meaning

ERROR_ACCESS_DENIED

The specified handle was not opened with
SC_MANAGER_QUERY_LOCK_STATUS access.

ERROR_INSUFFICIENT_BUFFER

There is more lock status information than would fit into the lpLockStatus buffer.
The number of bytes required to get all the information is returned in the
pcbBytesNeeded parameter. Nothing is written to the lpLockStatus buffer.

ERROR_INVALID_HANDLE

Services Page 62 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

Remarks

The QueryServiceLockStatus function returns a QUERY_SERVICE_LOCK_STATUS
structure that indicates whether the specified database is locked. If the database is locked, the
structure provides the account name of the user that owns the lock and the length of time that the
lock has been held.

A process calls the LockServiceDatabase function to acquire ownership of a service control
manager database lock and the UnlockServiceDatabase function to release the lock.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Import Library: Use advapi32.lib.
 Unicode: Implemented as Unicode and ANSI versions on Windows NT.

See Also

Services Overview, Service Functions, LockServiceDatabase, OpenSCManager,
QUERY_SERVICE_LOCK_STATUS, UnlockServiceDatabase

QueryServiceStatus
The QueryServiceStatus function retrieves the current status of the specified service.

BOOL QueryServiceStatus(
 SC_HANDLE hService, // handle of service
 LPSERVICE_STATUS lpServiceStatus
 // address of service status structure
);

Parameters

hService
Handle to the service. This handle is returned by the OpenService or the CreateService
function, and it must have SERVICE_QUERY_STATUS access.

lpServiceStatus
Pointer to a SERVICE_STATUS structure in which the status information is returned.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call

The specified handle is invalid.

Services Page 63 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

GetLastError.

Errors

The following error codes can be set by the service control manager. Other error codes can be set
by the registry functions that are called by the service control manager.

Remarks

The QueryServiceStatus function returns the most recent service status information reported to
the service control manager. If the service just changed its status, it may not have updated the
service control manager yet. Applications can find out the current service status by interrogating
the service directly using the ControlService function with the
SERVICE_CONTROL_INTERROGATE control code.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Import Library: Use advapi32.lib.

See Also

Services Overview, Service Functions, ControlService, CreateService, OpenService,
SERVICE_STATUS, SetServiceStatus

RegisterServiceCtrlHandler
A Win32-based service calls the RegisterServiceCtrlHandler function to register a function to
handle its service control requests.

SERVICE_STATUS_HANDLE RegisterServiceCtrlHandler(
 LPCTSTR lpServiceName, // address of name of service
 LPHANDLER_FUNCTION lpHandlerProc // address of handler function
);

Parameters

lpServiceName
Pointer to a null-terminated string that names the service run by the calling thread. This is
the service name that the service control program specified in the CreateService function

Value Meaning

ERROR_ACCESS_DENIED The specified handle was not opened with
SERVICE_QUERY_STATUS access.

ERROR_INVALID_HANDLE The specified handle is invalid.

Services Page 64 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

when creating the service.
lpHandlerProc

Pointer to the handler function to be registered. For more information, see Handler.

Return Values

If the function succeeds, the return value is a service status handle.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Errors

The following error codes can be set by the service control manager. Other error codes can be set
by the registry functions that are called by the service control manager.

Remarks

The ServiceMain function of a new service should immediately call the
RegisterServiceCtrlHandler function to register a control handler function with the control
dispatcher. This enables the control dispatcher to invoke the specified function when it receives
control requests for this service. The threads of the calling process can use the service status
handle returned by this function to identify the service in subsequent calls to the SetServiceStatus
function.

This function must be called before the first SetServiceStatus call because it returns a service
status handle for the caller to use so that no other service can inadvertently set this service status.
In addition, the control handler must be in place to field control requests by the time the service
specifies the controls it accepts through the SetServiceStatus function.

When the control handler function is invoked with a control request, it must call
SetServiceStatus to notify the service control manager of its current status, regardless of whether
the status of the service has changed.

The service status handle does not have to be closed.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Import Library: Use advapi32.lib.
 Unicode: Implemented as Unicode and ANSI versions on Windows NT.

See Also

Value Meaning

ERROR_INVALID_NAME The specified service name is invalid.

ERROR_SERVICE_DOES_NOT_EXIST The specified service does not exist.

Services Page 65 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

Services Overview, Service Functions, CreateService, Handler, ServiceMain, SetServiceStatus

ServiceMain
A ServiceMain function is a function that a service program specifies as the entry-point function
of a particular service.

The LPSERVICE_MAIN_FUNCTION type defines a pointer to this callback function.
ServiceMain is a placeholder for an application-defined function name.

VOID WINAPI ServiceMain(
 DWORD dwArgc, // number of arguments
 LPTSTR *lpszArgv // array of argument string pointers
);

Parameters

dwArgc
Specifies the number of arguments in the lpszArgv array.

lpszArgv
Pointer to an array of pointers that point to null-terminated argument strings. The first
argument in the array is the name of the service, and subsequent arguments are any strings
passed to the service by the process that called the StartService function to start the
service.

Return Values

This function does not return a value.

Remarks

A service program can start one or more services. A service process has a
SERVICE_TABLE_ENTRY structure for each service that it can start. The structure specifies
the service name and a pointer to the ServiceMain function for that service.

When the service control manager receives a request to start a service, it starts the service process
(if it is not already running). The main thread of the service process calls the
StartServiceCtrlDispatcher function with a pointer to an array of SERVICE_TABLE_ENTRY
structures. Then the service control manager sends a start request to the service control dispatcher
for this service process. The service control dispatcher creates a new thread to execute the
ServiceMain function of the service being started.

The ServiceMain function should immediately call the RegisterServiceCtrlHandler function to
specify a Handler function to handle control requests. Next, it should call the SetServiceStatus
function to send status information to the service control manager. After these calls, the function
completes the initialization tasks of the service, and waits for the service to terminate.

A ServiceMain function does not return until its services are ready to terminate.

Services Page 66 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Import Library: User-defined.

See Also

Services Overview, Service Functions, Handler, RegisterServiceCtrlHandler,
SetServiceStatus, SERVICE_TABLE_ENTRY, StartServiceCtrlDispatcher

SetServiceBits
The SetServiceBits function registers a service type with the service control manager and the
Server service. The Server service can then announce the registered service type as one it
currently supports. The NetServerGetInfo and NetServerEnum functions obtain a specified
machine's supported service types.

A service type is represented as a set of bit flags; the SetServiceBits function sets or clears
combinations of those bit flags.

BOOL SetServiceBits(
 SERVICE_STATUS_HANDLE hServiceStatus,
 // service status handle
 DWORD dwServiceBits,
 // service type bits to set or clear
 BOOL bSetBitsOn, // flag to set or clear the service type bits
 BOOL bUpdateImmediately
 // flag to announce server type immediately
);

Parameters

hServiceStatus
A handle to the information structure for a service. A service obtains the handle by calling
the RegisterServiceCtrlHandler function.

dwServiceBits
A set of bit flags that specifies a service type.

Certain bit flags (0xC00F3F7B) are reserved for use by Microsoft. The SetServiceBits
function fails with the error ERROR_INVALID_DATA if any of these bit flags are set in
dwServiceBits. The following 18 bit flags are reserved for use by Microsoft:

Services Page 67 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

Certain bit flags (0x00300084) are defined by Microsoft, but are not specifically reserved
for systems software. The following are these four bit flags:

Certain bit flags (0x3FC0C000) are not defined by Microsoft, and their use is not
coordinated by Microsoft. Developers of applications that use these bits should be aware
that other applications can also use them, thus creating a conflict. The following are these
10 bit flags:

bSetBitsOn
Specifies whether the function is to set or clear the bit flags that are set in dwServiceBit. If

Reserved Bit Flag Value

SV_TYPE_WORKSTATION 0x00000001

SV_TYPE_SERVER 0x00000002

SV_TYPE_DOMAIN_CTRL 0x00000008

SV_TYPE_DOMAIN_BAKCTRL 0x00000010

SV_TYPE_TIME_SOURCE 0x00000020

SV_TYPE_AFP 0x00000040

SV_TYPE_DOMAIN_MEMBER 0x00000100

SV_TYPE_PRINTQ_SERVER 0x00000200

SV_TYPE_DIALIN_SERVER 0x00000400

SV_TYPE_XENIX_SERVER 0x00000800

SV_TYPE_SERVER_UNIX 0x00000800

SV_TYPE_NT 0x00001000

SV_TYPE_WFW 0x00002000

SV_TYPE_POTENTIAL_BROWSER 0x00010000

SV_TYPE_BACKUP_BROWSER 0x00020000

SV_TYPE_MASTER_BROWSER 0x00040000

SV_TYPE_DOMAIN_MASTER 0x00080000

SV_TYPE_LOCAL_LIST_ONLY 0x40000000

SV_TYPE_DOMAIN_ENUM 0x80000000

Bit Flag Constant Value

SV_TYPE_SV_TYPE_SQLSERVER 0x00000004

SV_TYPE_NOVELL 0x00000080

SV_TYPE_DOMAIN_CTRL 0x00100000

SV_TYPE_DOMAIN_BAKCTRL 0x00200000

Value Value

0x00004000 0x02000000

0x00008000 0x04000000

0x00400000 0x08000000

0x00800000 0x10000000

0x01000000 0x20000000

Services Page 68 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

this value is TRUE, the bits are to be set. If this value is FALSE, the bits are to be cleared.
bUpdateImmediately

Specifies whether the Server service is to perform an immediate update, announcing the
new service type. If this value is TRUE, the update is to be performed immediately. If this
value is FALSE, the update will not be performed immediately.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

QuickInfo

 Windows NT: Requires version 3.5 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in lmserver.h.
 Import Library: Use advapi32.lib.

See Also

Services Overview, Service Functions, NetServerGetInfo, NetServerEnum,
RegisterServiceCtrlHandler, SetServiceStatus

SetServiceStatus
The SetServiceStatus function updates the service control manager's status information for the
calling service.

BOOL SetServiceStatus(
 SERVICE_STATUS_HANDLE hServiceStatus~,
 // service status handle
 LPSERVICE_STATUS lpServiceStatus // address of status structure
);

Parameters

hServiceStatus~
Specifies a handle to the service control manager's status information structure for the
current service. This handle is returned by the RegisterServiceCtrlHandler function.

lpServiceStatus
Pointer to the SERVICE_STATUS structure the contains the latest status information for
the calling service.

Return Values

If the function succeeds, the return value is nonzero.

Services Page 69 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Errors

The following error codes can be set by the service control manager. Other error codes can be set
by the registry functions that are called by the service control manager.

Remarks

A ServiceMain function first calls the RegisterServiceCtrlHandler function to get the service's
SERVICE_STATUS_HANDLE. Then it immediately calls the SetServiceStatus function to
notify the service control manager of its SERVICE_START_PENDING status.

When a service receives a control request, the service's Handler function must call
SetServiceStatus, even if the service's status did not change. A service can also use this function
at any time and by any thread of the service to notify the service control manager of status
changes. Examples of such unsolicited status updates include:

Checkpoint updates that occur when the service is in transition from one state to another
(that is, SERVICE_START_PENDING).
Fatal error updates that occur when the service must stop due to a recoverable error.

A service can call this function only after it has called RegisterServiceCtrlHandler to get a
service status handle.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Import Library: Use advapi32.lib.

See Also

Services Overview, Service Functions, Handler, RegisterServiceCtrlHandler,
SERVICE_STATUS, ServiceMain, SetServiceBits

StartService
The StartService function starts a service.

Value Meaning

ERROR_INVALID_HANDLE The specified handle is invalid.

ERROR_INVALID_DATA The specified service status structure is invalid.

Services Page 70 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

BOOL StartService(
 SC_HANDLE hService, // handle of service
 DWORD dwNumServiceArgs, // number of arguments
 LPCTSTR *lpServiceArgVectors // array of argument strings
 // string pointers
);

Parameters

hService
Handle to the service. This handle is returned by the OpenService or CreateService
function, and it must have SERVICE_START access.

dwNumServiceArgs
Specifies the number of argument strings in the lpServiceArgVectors array. If
lpServiceArgVectors is NULL, this parameter can be zero.

lpServiceArgVectors
Pointer to an array of pointers that point to null-terminated argument strings passed to a
service. Driver services do not receive these arguments. If no arguments are passed to the
service being started, this parameter can be NULL. The service accesses these arguments
through its ServiceMain function. The first argument (argv[0]) is the name of the service
by default, followed by the arguments, if any, in the lpServiceArgVectors array.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Errors

The following error codes can be set by the service control manager. Others can be set by the
registry functions that are called by the service control manager.

Value Meaning

ERROR_ACCESS_DENIED The specified handle was not
opened with SERVICE_START
access.

ERROR_INVALID_HANDLE The specified handle is invalid.

ERROR_PATH_NOT_FOUND The service binary file could not be
found.

ERROR_SERVICE_ALREADY_RUNNING An instance of the service is
already running.

ERROR_SERVICE_DATABASE_LOCKED The database is locked.

ERROR_SERVICE_DEPENDENCY_DELETED The service depends on a service
that does not exist or has been
marked for deletion.

ERROR_SERVICE_DEPENDENCY_FAIL The service depends on another
service that has failed to start.

Services Page 71 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

Remarks

When a driver service is started, the StartService function does not return until the device driver
has finished initializing.

When a Win32-based service is started, the service control manager spawns the service process, if
necessary. If the specified service shares a process with other services, the required process may
already exist. The StartService function does not wait for the first status update from the new
service, because it can take a while. Instead, it returns when the service control manager receives
notification from the service control dispatcher that the ServiceMain thread for this service was
created successfully.

The service control manager sets the following default status values before returning from
StartService:

Current state of the service is set to SERVICE_START_PENDING.
Controls accepted is set to none (zero).
The CheckPoint value is set to zero.
The WaitHint time is set to 2 seconds.

The calling process can determine if the new service has finished its initialization by calling the
QueryServiceStatus function periodically to query the service's status.

A service cannot call StartService during initialization. The reason is that the service control
manager locks the service control database during initialization, so a call to StartService will
block. Once the service reports to the service control manager that it has successfully started, it
can call StartService.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Import Library: Use advapi32.lib.
 Unicode: Implemented as Unicode and ANSI versions on Windows NT.

See Also

Services Overview, Service Functions, ControlService, CreateService, OpenService,
QueryServiceStatus, ServiceMain

ERROR_SERVICE_DISABLED The service has been disabled.

ERROR_SERVICE_LOGON_FAILED The service could not be logged
on.

ERROR_SERVICE_MARKED_FOR_DELETE The service has been marked for
deletion.

ERROR_SERVICE_NO_THREAD A thread could not be created for
the service.

ERROR_SERVICE_REQUEST_TIMEOUT The service did not respond to the
start request in a timely fashion.

Services Page 72 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

StartServiceCtrlDispatcher
The StartServiceCtrlDispatcher function connects the main thread of a service process to the
service control manager, which causes the thread to be the service control dispatcher thread for
the calling process.

BOOL StartServiceCtrlDispatcher(
 LPSERVICE_TABLE_ENTRY lpServiceStartTable // address of service
 // table
);

Parameters

lpServiceStartTable
Pointer to an array of SERVICE_TABLE_ENTRY structures containing one entry for
each service that can execute in the calling process. The members of the last entry in the
table must have NULL values to designate the end of the table.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Errors

The following error code can be set by the service control manager. Other error codes can be set
by the registry functions that are called by the service control manager.

Remarks

When the service control manager starts a service process, it waits for the process to call the
StartServiceCtrlDispatcher function. The main thread of a service process should make this call
as soon as possible after it starts up. If StartServiceCtrlDispatcher succeeds, it connects the
calling thread to the service control manager and does not return until all running services in the
process have terminated. The service control manager uses this connection to send control and
service start requests to the main thread of the service process. The main thread acts as a
dispatcher by invoking the appropriate Handler function to handle control requests, or by creating

Value Meaning

ERROR_INVALID_DATA The specified dispatch table contains entries that
are not in the proper format.

ERROR_SERVICE_ALREADY_RUNNING Windows NT 5.0 and later: The process has
already called StartServiceCtrlDispatcher. Each
process can call StartServiceCtrlDispatcher
only one time.

Services Page 73 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

a new thread to execute the appropriate ServiceMain function when a new service is started.

The lpServiceStartTable parameter contains an entry for each service that can run in the calling
process. Each entry specifies the ServiceMain function for that service. For
SERVICE_WIN32_SHARE_PROCESS services, each entry must contain the name of a service.
This name is the service name that was specified by the CreateService function when the service
was installed. For SERVICE_WIN32_OWN_PROCESS services, the service name in the table
entry is ignored.

If a service runs in its own process, the main thread of the service process should immediately call
StartServiceCtrlDispatcher. All initialization tasks are done in the service's ServiceMain
function when the service is started.

If multiple services share a process and some common process-wide initialization needs to be
done before any ServiceMain function is called, the main thread can do the work before calling
StartServiceCtrlDispatcher, as long as it takes less than 30 seconds. Otherwise, another thread
must be created to do the process-wide initialization, while the main thread calls
StartServiceCtrlDispatcher and becomes the service control dispatcher. Any service-specific
initialization should still be done in the individual service main functions.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Import Library: Use advapi32.lib.
 Unicode: Implemented as Unicode and ANSI versions on Windows NT.

See Also

Services Overview, Service Functions, ControlService, Handler, RegisterServiceCtrlHandler,
ServiceMain, SERVICE_TABLE_ENTRY

UnlockServiceDatabase
The UnlockServiceDatabase function unlocks a service control manager database by releasing
the specified lock.

BOOL UnlockServiceDatabase(
 SC_LOCK ScLock // service control manager database lock to be
 // released
);

Parameters

ScLock
Specifies a lock obtained from a previous call to the LockServiceDatabase function.

Services Page 74 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Errors

The following error codes can be set by the service control manager. Other error codes can be set
by the registry functions that are called by the service control manager.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Import Library: Use advapi32.lib.

See Also

Services Overview, Service Functions, LockServiceDatabase, QueryServiceLockStatus

Service Structures

The following structures are used with services.

ENUM_SERVICE_STATUS

Value Meaning

ERROR_INVALID_SERVICE_LOCK The specified lock is invalid.

ENUM_SERVICE_STATUS

QUERY_SERVICE_CONFIG

QUERY_SERVICE_LOCK_STATUS

SC_ACTION

SERVICE_DESCRIPTION

SERVICE_FAILURE_ACTIONS

SERVICE_STATUS

SERVICE_TABLE_ENTRY

Services Page 75 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

The ENUM_SERVICE_STATUS structure is used by the EnumDependentServices and
EnumServicesStatus functions to return the name of a service in a service control manager
database and to return information about that service.

typedef struct _ENUM_SERVICE_STATUS { // ess
 LPTSTR lpServiceName;
 LPTSTR lpDisplayName;
 SERVICE_STATUS ServiceStatus;
} ENUM_SERVICE_STATUS, *LPENUM_SERVICE_STATUS;

Members

lpServiceName
Pointer to a null-terminated string that names a service in a service control manager
database. The maximum string length is 256 characters. The service control manager
database preserves the case of the characters, but service name comparisons are always case
insensitive. A slash (/), backslash (\), comma, and space are invalid service name characters.

lpDisplayName
Pointer to a null-terminated string that is to be used by user interface programs to identify
the service. This string has a maximum length of 256 characters. The name is case-
preserved in the Service Control Manager. Display name comparisons are always case-
insensitive.

ServiceStatus
Specifies a SERVICE_STATUS structure in which status information about the
lpServiceName service is returned.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Unicode: Defined as Unicode and ANSI structures.

See Also

Services Overview, Service Structures, EnumDependentServices, EnumServicesStatus,
SERVICE_STATUS

QUERY_SERVICE_CONFIG
The QUERY_SERVICE_CONFIG structure is used by the QueryServiceConfig function to
return configuration information about an installed service.

typedef struct _QUERY_SERVICE_CONFIG { // qsc
 DWORD dwServiceType;
 DWORD dwStartType;
 DWORD dwErrorControl;
 LPTSTR lpBinaryPathName;
 LPTSTR lpLoadOrderGroup;

Services Page 76 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

 DWORD dwTagId;
 LPTSTR lpDependencies;
 LPTSTR lpServiceStartName;
 LPTSTR lpDisplayName;
} QUERY_SERVICE_CONFIG, LPQUERY_SERVICE_CONFIG;

Members

dwServiceType
The value returned includes one of the following service type flags to indicate the type of
service. In addition, for a SERVICE_WIN32 service, the
SERVICE_INTERACTIVE_PROCESS flag might be set, indicating that the service
process can interact with the desktop.

dwStartType
Specifies when to start the service. One of the following values is specified:

dwErrorControl
Specifies the severity of the error if this service fails to start during startup, and determines

Value Meaning

SERVICE_WIN32_OWN_PROCESS A service type flag that indicates a Win32
service that runs in its own process.

SERVICE_WIN32_SHARE_PROCESS A service type flag that indicates a Win32
service that shares a process with other
services.

SERVICE_KERNEL_DRIVER A service type flag that indicates a device
driver.

SERVICE_FILE_SYSTEM_DRIVER A service type flag that indicates a file
system driver.

SERVICE_INTERACTIVE_PROCESS A flag that indicates a Win32 service
process that can interact with the desktop.

Value Meaning

SERVICE_BOOT_START Specifies a device driver started by the system
loader. This value is valid only if the service type
is SERVICE_KERNEL_DRIVER or
SERVICE_FILE_SYSTEM_DRIVER.

SERVICE_SYSTEM_START Specifies a device driver started by the
IoInitSystem function. This value is valid only if
the service type is
SERVICE_KERNEL_DRIVER or
SERVICE_FILE_SYSTEM_DRIVER.

SERVICE_AUTO_START Specifies a device driver or Win32 service started
by the service control manager automatically
during system startup.

SERVICE_DEMAND_START Specifies a device driver or Win32 service started
by the service control manager when a process
calls the StartService function.

SERVICE_DISABLED Specifies a device driver or Win32 service that
can no longer be started.

Services Page 77 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

the action taken by the startup program if failure occurs. One of the following values can be
specified:

lpBinaryPathName
Pointer to a null-terminated string that contains the fully qualified path to the service binary
file.

lpLoadOrderGroup
Pointer to a null-terminated string that names the load ordering group of which this service
is a member. If the pointer is NULL or if it points to an empty string, the service does not
belong to a group. The registry has a list of load ordering groups located at:

HKEY_LOCAL_MACHINE\System
\CurrentControlSet\Control\ServiceGroupOrder.

The startup program uses this list to load groups of services in a specified order with respect
to the other groups in the list. You can place a service in a group so that another service can
depend on the group.

The order in which a service starts is determined by the following criteria:
1. The order of groups in the registry's load-ordering group list. Services in groups in

the load-ordering group list are started first, followed by services in groups not in the
load-ordering group list and then services that do not belong to a group.

2. The service's dependencies listed in the lpszDependencies parameter and the
dependencies of other services dependent on the service.

dwTagId
Specifies a unique tag value for this service in the group specified by the
lpLoadOrderGroup parameter. A value of zero indicates that the service has not been
assigned a tag. You can use a tag for ordering service startup within a load order group by
specifying a tag order vector in the registry located at:

HKEY_LOCAL_MACHINE\System\CurrentControlSet
\Control\GroupOrderList

Tags are only evaluated for SERVICE_KERNEL_DRIVER and
SERVICE_FILE_SYSTEM_DRIVER type services that have SERVICE_BOOT_START

Value Meaning

SERVICE_ERROR_IGNORE

The startup (boot) program logs the error but continues the startup
operation.

SERVICE_ERROR_NORMAL

The startup program logs the error and displays a message box pop-up but
continues the startup operation.

SERVICE_ERROR_SEVERE

The startup program logs the error. If the last-known good configuration is
being started, the startup operation continues. Otherwise, the system is
restarted with the last-known-good configuration.

SERVICE_ERROR_CRITICAL

The startup program logs the error, if possible. If the last-known good
configuration is being started, the startup operation fails. Otherwise, the
system is restarted with the last-known good configuration.

Services Page 78 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

or SERVICE_SYSTEM_START start types.
lpDependencies

Pointer to an array of null-separated names of services or load ordering groups that must
start before this service. The array is doubly null-terminated. If the pointer is NULL or if it
points to an empty string, the service has no dependencies. If a group name is specified, it
must be prefixed by the SC_GROUP_IDENTIFIER (defined in the WINSVC.H file)
character to differentiate it from a service name, because services and service groups share
the same name space. Dependency on a service means that this service can only run if the
service it depends on is running. Dependency on a group means that this service can run if
at least one member of the group is running after an attempt to start all members of the
group.

lpServiceStartName
Pointer to a null-terminated string. If the service type is
SERVICE_WIN32_OWN_PROCESS or SERVICE_WIN32_SHARE_PROCESS, this
name is the account name in the form of "DomainName\Username", which the service
process will be logged on as when it runs. If the account belongs to the built-in domain,
".\Username" can be specified. If NULL is specified, the service will be logged on as the
LocalSystem account.

If the service type is SERVICE_KERNEL_DRIVER or
SERVICE_FILE_SYSTEM_DRIVER, this name is the driver object name (that is,
\FileSystem\Rdr or \Driver\Xns) which the input and output (I/O) system uses to load the
device driver. If NULL is specified, the driver is run with a default object name created by
the I/O system based on the service name.

lpDisplayName
Pointer to a null-terminated string that is to be used by user interface programs to identify
the service. This string has a maximum length of 256 characters. The name is case-
preserved in the service control manager. Display name comparisons are always case-
insensitive.

Remarks

The configuration information for a service is initially specified when the service is created by a
call to the CreateService function. The information can be modified by calling the
ChangeServiceConfig function.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Unicode: Defined as Unicode and ANSI structures.

See Also

Services Overview, Service Structures, ChangeServiceConfig, CreateService,
QueryServiceConfig, StartService

QUERY_SERVICE_LOCK_STATUS

Services Page 79 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

The QUERY_SERVICE_LOCK_STATUS structure is used by the QueryServiceLockStatus
function to return information about the lock status of a service control manager database.

typedef struct _QUERY_SERVICE_LOCK_STATUS { // qsls
 DWORD fIsLocked;
 LPTSTR lpLockOwner;
 DWORD dwLockDuration;
} QUERY_SERVICE_LOCK_STATUS, * LPQUERY_SERVICE_LOCK_STATUS ;

Members

fIsLocked
Specifies whether the database is locked. If this member is nonzero, the database is locked.
If it is zero, the database is unlocked.

lpLockOwner
Pointer to a null-terminated string containing the name of the user who acquired the lock.

dwLockDuration
Specifies the time, in seconds, since the lock was first acquired.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Unicode: Defined as Unicode and ANSI structures.

See Also

Services Overview, Service Structures, QueryServiceLockStatus

SC_ACTION
[This is preliminary documentation and subject to change.]

The SC_ACTION structure represents an action that the service control manager can perform.

typedef struct _SC_ACTION {
 SC_ACTION_TYPE Type;
 DWORD Delay;
} SC_ACTION, *LPSC_ACTION;

Members

Type
Specifies the action to be performed. This member can be one of the following values.

Services Page 80 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

Delay
Specifies the time to wait before performing the specified action, in milliseconds.

Remarks

This structure is used by the ChangeServiceConfig2 and QueryServiceConfig2 functions, in the
SERVICE_FAILURE_ACTIONS structure.

QuickInfo

 Windows NT: Requires version 5.0 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.

See Also

Services Overview, Service Structures, ChangeServiceConfig2, QueryServiceConfig2,
SERVICE_FAILURE_ACTIONS

SERVICE_DESCRIPTION
[This is preliminary documentation and subject to change.]

The SERVICE_DESCRIPTION structure represents a service description.

typedef struct _SERVICE_DESCRIPTION {
 LPTSTR lpDescription;
} SERVICE_DESCRIPTION, *LPSERVICE_DESCRIPTION;

Members

lpDescription
Pointer to a description of the service. The string is limited to 1024 bytes. If this value is
NULL, the description remains unchanged. If this value is an empty string (""), the current
description is deleted.

Remarks

A description of NULL indicates no service description exists. The service description is NULL
when the service is created.

Value Meaning

SC_ACTION_NONE No action.

SC_ACTION_REBOOT Reboot the computer.

SC_ACTION_RESTART Restart the service.

SC_ACTION_RUN_COMMAND Run a command.

Services Page 81 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

The description is simply a comment that explains the purpose of the service. You can set the
description using the ChangeServiceConfig2 function. You can retrieve the description using the
QueryServiceConfig2 function. The description is also displayed by the Services snap-in.

QuickInfo

 Windows NT: Requires version 5.0 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Unicode: Defined as Unicode and ANSI structures.

See Also

Services Overview, Service Structures, ChangeServiceConfig2, QueryServiceConfig2

SERVICE_FAILURE_ACTIONS
The SERVICE_FAILURE_ACTIONS structure represents the action the service controller
should take on each failure of a service. A service is considered failed when it terminates without
reporting a status of SERVICE_STOPPED to the service controller.

typedef struct _SERVICE_FAILURE_ACTIONS {
 DWORD dwResetPeriod;
 LPTSTR lpRebootMsg;
 LPTSTR lpCommand;
 DWORD cActions;
 SC_ACTION * lpsaActions;
} SERVICE_FAILURE_ACTIONS, *LPSERVICE_FAILURE_ACTIONS;

Members

dwResetPeriod
Indicates the length of time, in seconds, after which to reset the failure count to zero if there
are no failures. Specify INFINITE to indicate that this value should never be reset.

lpRebootMsg
Message to broadcast to server users before rebooting in response to the
SC_ACTION_REBOOT service controller action.

If this value is NULL, the reboot message is unchanged. If the value is an empty string (""),
the reboot message is deleted and no message is broadcast.

lpCommand
Command line of the process for the CreateProcess function to execute in response to the
SC_ACTION_RUN_COMMAND service controller action. This process runs under the
same account as the service.

If this value is NULL, the command is unchanged. If the value is an empty string (""), the
command is deleted and no program is run when the service fails.

cActions

Services Page 82 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

Number of elements in the lpsaActions array.

If this value is 0, but lpsaActions is not NULL, the reset period and array of failure actions
are deleted.

lpsaActions
Pointer to an array of SC_ACTION structures.

If this value is NULL, the cActions and dwResetPeriod members are ignored.

Remarks

The service control manager counts the number of times each service has failed since the system
booted. The count is reset to 0 if the service has not failed for dwResetPeriod seconds. When the
service fails for the Nth time, the service controller performs the action specified in element [N-1]
of the lpsaActions array. If N is greater than cActions, the service controller repeats the last
action in the array.

QuickInfo

 Windows NT: Requires version 5.0 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Unicode: Defined as Unicode and ANSI structures.

See Also

Services Overview, Service Structures, CreateProcess, SC_ACTION

SERVICE_STATUS
The SERVICE_STATUS structure contains information about a service. The ControlService,
EnumDependentServices, EnumServicesStatus, and QueryServiceStatus functions use this
structure to return information about a service. A service uses this structure in the
SetServiceStatus function to report its current status to the service control manager.

typedef struct _SERVICE_STATUS { // ss
 DWORD dwServiceType;
 DWORD dwCurrentState;
 DWORD dwControlsAccepted;
 DWORD dwWin32ExitCode;
 DWORD dwServiceSpecificExitCode;
 DWORD dwCheckPoint;
 DWORD dwWaitHint;
} SERVICE_STATUS, *LPSERVICE_STATUS;

Members

dwServiceType
The value returned includes one of the following service type flags to indicate the type of
service. In addition, for a SERVICE_WIN32 service, the

Services Page 83 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

SERVICE_INTERACTIVE_PROCESS flag might be set, indicating that the service
process can interact with the desktop.

dwCurrentState
Indicates the current state of the service. One of the following values is specified:

dwControlsAccepted
Specifies the control codes that the service will accept and process. A user interface process
can control a service by specifying a control command in the ControlService function. By
default, all services accept the SERVICE_CONTROL_INTERROGATE value. Any or all
of the following flags can be specified to enable the other control codes.

dwWin32ExitCode
Specifies an Win32 error code that the service uses to report an error that occurs when it is

Value Meaning

SERVICE_WIN32_OWN_PROCESS A service type flag that indicates a Win32
service that runs in its own process.

SERVICE_WIN32_SHARE_PROCESS A service type flag that indicates a Win32
service that shares a process with other
services.

SERVICE_KERNEL_DRIVER A service type flag that indicates a device
driver.

SERVICE_FILE_SYSTEM_DRIVER A service type flag that indicates a file
system driver.

SERVICE_INTERACTIVE_PROCESS A flag that indicates a Win32 service
process that can interact with the desktop.

Value Meaning

SERVICE_STOPPED The service is not running.

SERVICE_START_PENDING The service is starting.

SERVICE_STOP_PENDING The service is stopping.

SERVICE_RUNNING The service is running.

SERVICE_CONTINUE_PENDING The service continue is pending.

SERVICE_PAUSE_PENDING The service pause is pending.

SERVICE_PAUSED The service is paused.

Value Meaning

SERVICE_ACCEPT_STOP

The service can be stopped. This enables the
SERVICE_CONTROL_STOP value.

SERVICE_ACCEPT_PAUSE_CONTINUE

The service can be paused and continued. This enables the
SERVICE_CONTROL_PAUSE and SERVICE_CONTROL_CONTINUE
values.

SERVICE_ACCEPT_SHUTDOWN

The service is notified when system shutdown occurs. This enables the
system to send a SERVICE_CONTROL_SHUTDOWN value to the
service. The ControlService function cannot send this control code.

Services Page 84 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

starting or stopping. To return an error code specific to the service, the service must set this
value to ERROR_SERVICE_SPECIFIC_ERROR to indicate that the
dwServiceSpecificExitCode member contains the error code. The service should set this
value to NO_ERROR when it is running and on normal termination.

dwServiceSpecificExitCode
Specifies a service specific error code that the service returns when an error occurs while
the service is starting or stopping. This value is ignored unless the dwWin32ExitCode
member is set to ERROR_SERVICE_SPECIFIC_ERROR.

dwCheckPoint
Specifies a value that the service increments periodically to report its progress during a
lengthy start, stop, pause, or continue operation. For example, the service should increment
this value as it completes each step of its initialization when it is starting up. The user
interface program that invoked the operation on the service uses this value to track the
progress of the service during a lengthy operation. This value is not valid and should be
zero when the service does not have a start, stop, pause, or continue operation pending.

dwWaitHint
Specifies an estimate of the amount of time, in milliseconds, that the service expects a
pending start, stop, pause, or continue operation to take before the service makes its next
call to the SetServiceStatus function with either an incremented dwCheckPoint value or a
change in dwCurrentState. If the amount of time specified by dwWaitHint passes, and
dwCheckPoint has not been incremented, or dwCurrentState has not changed, the service
control manager or service control program can assume that an error has occurred.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.

See Also

Services Overview, Service Structures, ControlService, EnumDependentServices,
EnumServicesStatus, QueryServiceStatus, SetServiceStatus

SERVICE_TABLE_ENTRY
The SERVICE_TABLE_ENTRY structure is used by the StartServiceCtrlDispatcher function
to specify the ServiceMain function for a Win32 service that can run in the calling process.

typedef struct _SERVICE_TABLE_ENTRY { // ste
 LPTSTR lpServiceName;
 LPSERVICE_MAIN_FUNCTION lpServiceProc;
} SERVICE_TABLE_ENTRY, *LPSERVICE_TABLE_ENTRY;

Members

lpServiceName
Pointer to a null-terminated string that names a service that can run in this service process.
This string is ignored if the service is installed in the service control manager database as a

Services Page 85 sur 85

file://C:\Documents and Settings\Administrateur\Local Settings\Temp\~hhFFA4.htm 10/12/2003

SERVICE_WIN32_OWN_PROCESS service type. For a
SERVICE_WIN32_SHARE_PROCESS service process, this string names the service that
uses the ServiceMain function pointed to by the lpServiceProc member.

lpServiceProc
Pointer to a ServiceMain function.

QuickInfo

 Windows NT: Requires version 3.1 or later.
 Windows: Unsupported.
 Windows CE: Unsupported.
 Header: Declared in winsvc.h.
 Unicode: Defined as Unicode and ANSI structures.

See Also

Services Overview, Service Structures, ServiceMain, StartServiceCtrlDispatcher

