
Practical verification of MSO properties of graphs

of bounded clique-width

Irène Durand (joint work with Bruno Courcelle)

LaBRI, Université de Bordeaux

13 décembre 2010

Cours de Master 2 Informatique, Logique et Langages, INF569, 2010

Objectives

Verify properties of graphs

Properties

◮ connectedness,
◮ k-colorability,
◮ existence of cycles
◮ existence of paths
◮ bounds (cardinality, degree, . . .)
◮ . . .

How : using term automata

Note that we consider finite graphs only

2/46

Connectedness

Not connectedConnected

Applications to frequency allocation, scheduling, . . .

3/46

k-Colorability

colored graph : two vertices connected by an edge do not have the
same color

not 3−colorable

3−colorable

not 2−colorable

2−colorable

bi−partite

4/46

Graphs as relational structures

For simplicity, we consider simple,loop-free undirected graphs
Extensions are easy
Every graph G can be identified with the relational structure
(VG , edgG) where VG is the set of vertices and edgG ⊆ VG × VG

the binary symmetric relation that defines edges.

v8

v7 v6 v2

v3

v4v5

v1

VG = {v1, v2, v3, v4, v5, v6, v7, v8}
edgG = {(v1, v2), (v1, v4), (v1, v5), (v1, v7), (v2, v3), (v2, v6),

(v3, v4), (v4, v5), (v5, v8), (v6, v7), (v7, v8)}

5/46

Expression of graph properties
First order logic (FO) :

◮ Atomic formulas : x = y , edg(x , y)

◮ Boolean connectives : ∧,∨,¬

◮ Example
Distance(x , y) ≤ 3 :
x = y ∨ edg(x , y) ∨ ∃z(edg(x , z) ∧ edg(z , y))∨
∃z , t(edg(x , z) ∧ edg(z , t) ∧ edg(t, y))

◮ quantification on single vertices x , y . . . only

◮ too weak ; can only express ”local” properties like having
degree or diameter bounded by some fixed integer

◮ k-colorability (k > 1) cannot be expressed

Second order logic (SO)

◮ quantifications on relations of arbitrary arity

◮ SO can express most properties of interest in Graph Theory

◮ too complex (many problems are undecidable or do not have a
polynomial solution).

6/46

Monadic second order logic (MSO)

◮ SO formulas that only use quantifications on unary relations
(i.e., on sets).

◮ can express many useful graph properties like connectedness,
k-colorability, planarity...

Example : k-colorability

Stable(X) : ∀u, v(u ∈ X ∧ v ∈ X ⇒ ¬edg(u, v))

Partition(X1, . . . ,Xm) :
∀x(x ∈ X1 ∨ . . . ∨ x ∈ Xm)

∧
i<j ∀x(x ∈ Xi ⇒ x 6∈ Xj)

k−colorability :
∃X1, . . . ,XkPartition(X1, . . . ,Xk)
∧Stable(X1) ∧ . . . ∧ Stable(Xk)

Interesting algorithmic consequences

7/46

The fundamental theorem

Theorem
[Courcelle (1990) for tree-width,
Courcelle, Makowski, Rotics (2001) for clique-width]
Monadic second-order model checking is fixed-parameter tractable
for tree-width and clique-width.

◮ Tree-width and clique-width : graph complexity measures
based on graph decompositions

◮ a decomposition produces a term representation of the graph

◮ the algorithm is given by a term automaton recognizing the
terms denoting graphs satisfying the property

◮ How can we find this automaton ?

8/46

Representation of graphs by terms
◮ depends on the chosen width (here clique-width)
◮ other widths : tree-width, path-width, boolean-width, ...

Let L a finite set of labels {a, b, c , . . .}.
Graphs G = (VG , edgG) s.t.

each vertex v ∈ VG has a label, label(v) ∈ L.

Operations :
◮ constant a denotes a graph with a single vertex labeled by a,
◮ ⊕ (binary) : union of disjoint graphs
◮ adda b (unary) : adds the missing edges between every vertex

labeled a and every vertex labeled b,
◮ rena b (unary) : renames a to b

Let FL be the set of these operations and constants.
Every term t ∈ T (FL) defines a graph Gt whose vertices are the
constants (leaves) of the term t.
Note that, because of the relabeling operations, the labels of the
vertices in the graph G (t) may differ from the ones specified in the
leaves of the term.9/46

t0 = a t1 = b t2 = ⊕(a, b)

a b ba

t3 = adda b(t2) adda b(⊕(t2, t2)) adda b(⊕(a, rena b(t3)))

ba

ba

b a b b

a

Definition
A graph has clique-width at most k if it is defined by some
t ∈ T (FL) with |L| ≤ k .

Note that different terms may define identical graphs.

10/46

Examples
Clique (Kn) :

a a

a a

b

a a

a a

b

a a

a a

a a

a

a

a

K4

K5

t5 = ren b a(s2)s1 = ⊕(t4, b) s2 = add a b(s1)t4

Chain (Pn) :

a a

c

c

a a b

b b

b a

t2

P2

P3

s1 = ⊕(t2, c)

s2 = add a c(s2) t2 = ren cb(ren b a(s2))

11/46

Term automata (Bottom-up)
A = (F ,Q,Qf ,∆) with ∆ set of transitions f (q1, . . . , qn) → q

Automaton 2-STABLE

Signature: a b ren_a_b:1 ren_b_a:1 add_a_b:1 oplus:2*

States: <a> <ab> <error>

Final States: <a> <ab>

Transitions a -> <a> b ->

add_a_b(<a>) -> <a> add_a_b() ->

ren_a_b(<a>) -> ren_b_a(<a>) -> <a>

ren_a_b() -> ren_b_a() -> <a>

ren_a_b(<ab>) -> ren_b_a(<ab>) -> <a>

oplus*(<a>,<a>) -> <a> oplus*(,) ->

oplus*(<a>,) -> <ab> oplus*(,<ab>) -> <ab>

oplus*(<a>,<ab>) -> <ab> oplus*(<ab>,<ab>) -> <ab>

add_a_b(<ab>) -> <error> ren_a_b(<error>) -> <error>

add_a_b(<error>) -> <error> ren_b_a(<error>) -> <error>

oplus*(<error>,q) -> <error> for all q

12/46

Run of an automaton on a term
The term is recognized when we obtain a final state at the root.

ba

a b a b

a ba b a b<a>

<error>

<ab>

<a>

add a b

⊕

add a b

⊕

add a b

⊕

add a b

⊕

add a b

⊕

tG = add a b(⊕(a,b))

G

add_a_b(ren_a_b(oplus(a,b))) -> add_a_b(ren_a_b(oplus(<a>,b)))

-> add_a_b(ren_a_b(oplus(<a>,)) -> add_a_b(ren_a_b(<ab>))

-> add_a_b() ->

13/46

Free set variables P(X1, . . . ,Xm)
Each Xi corresponds to a subset of vertices
To express membership of vertices to the Xi , the constants
(representing the vertices of the graph) are associated with a
bit-vector k1 . . . km. ki = 1 iff the vertex belongs to Xi .

Stable(X1) : the subgraph induced by X1 is a stable
AStable(X1) can be obtained from AStable()

New signature:

a^0 a^1 b^0 b^1 ren_a_b:1 ren_b_a:1 add_a_b:1 oplus:2*

New constant transitions:

a^0 -> # a^1 -> <a>

b^0 -> # b^1 ->

New non constant transitions:

ren_*_*(#) -> # add_*_*(#) -> # oplus(#,q) -> q for all q

add_a_b(oplus(oplus(a^1,b^0),a^1)) ->+

add_a_b(oplus(oplus(<a>,#),<a>)) ->

add_a_b(oplus(#,<a>)) -> add_a_b(<a>) -> <a>

14/46

Example of the Path(X1,X2) property

Graph G , X1 and X2 two subsets of vertices of G
Predicate Path(X1,X2), true when X1 ⊆ X2, |X1| = 2 and some
path in G [X2] links the two vertices of X1.

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

v8

v7 v6 v2

v3

v4v5

v1

X1 X1

X2
X2

X2

X2

X2

X1 = {v3, v8}
X2 = {v1, v3, v4, v7, v8}
v8 − v7 − v1 − v4 − v3

X1 = {v3, v8}
X2 = {v1, v3, v4, v8}

15/46

The following term describes the previous graph with one of the
set variables assignment :

add c d(
add b d(

⊕(d01,
ren d b(

add a d(
⊕(d00,

add c e(
⊕(add a b(add b c(⊕(a11,⊕(b01, c00)))),

add a b(add b e(⊕(a00,⊕(b01, e11))))))))))))

16/46

The Path(X1,X2) can be expressed by the following MSO formula :

∀x [x ∈ X1 ⇒ x ∈ X2] ∧ ∃x , y [x ∈ X1 ∧ y ∈ X1 ∧ x 6= y∧
∀z(z ∈ X1 ⇒ x = z ∨ y = z)∧
∀X3[x ∈ X3 ∧ ∀u, v(u ∈ X3 ∧ u ∈ X2 ∧ v ∈ X2 ∧ edg(u, v) ⇒ v ∈ X3)
⇒ y ∈ X3]]

of quantifier-height 5.
Uppercase variables correspond to sets of vertices, and lowercase
variables correspond to individual vertices.

17/46

The problem

Input :

◮ an MSO formula φ = P(X1, . . . ,Xm) expressing a graph
property

◮ a graph G represented by a term tG with an assignment to
X1, . . . ,Xm

Question :

◮ Does G satisfy the graph property expressed by φ

Example

Path(X1,X2) and the previous graph (with an assignement of the
sets variables).

18/46

The general solution

1. Transform the MSO formula φ into an automaton Aφ

2. Run Aφ on the term tG representing the graph.

In order to process an MSO formula, we must standardize φ.

1. translate it into an equivalent formula
◮ without first-order variables (same quantifier-height)
◮ with existential quantifiers only
◮ with boolean operations only (and, or, negation)
◮ and simple atomic properties like X = ∅, Sgl(X) (denoting

that X is a singleton set), Xi ⊆ Xj for which an automaton is
easily computable.

2. standardize the names of set variables.

19/46

Standardization of the formula (Example)

Path(X1,X2) = X1 ⊆ X2 ∧ P1(X1,X2)
P1(X1,X2) = ∃X3,X4,P2(X1,X2,X3,X4)
P2(X1,X2,X3,X4) = Sgl(X3) ∧ Sgl(X4) ∧ X3 ⊆ X1 ∧ X4 ⊆ X1 ∧ X3

6= X4 ∧ |X1| = 2 ∧ P4(X2,X3,X4)
P4(X2,X3,X4) = ¬P5(X2,X3,X4)
P5(X2,X3,X4) = ∃X ′

1,P6(X
′
1,X2,X3,X4)

P6(X
′
1,X2,X3,X4) = X3 ⊆ X5 ∧ ¬X4 ⊆ X5 ∧ P7(X

′
1,X2)

P7(X
′
1,X2) = ¬P8(X

′
1,X2)

P8(X
′
1,X2) = ∃X3,X4,P9(X

′
1,X2,X3,X4)

P9(X
′
1,X2,X3,X4) = Sgl(X3) ∧ Sgl(X4) ∧ X3 ⊆ X ′

1 ∧ X3 ⊆ X2∧
X4 ⊆ X2 ∧ Edg(X3,X4) ∧ ¬X4 ⊂ X ′

1

Note that this translation is here done by hand

20/46

Automata for atomic formulas
It is necessary to implement for once the ad-hoc contructions for
the automata corresponding to atomic formulas

◮ Edg(X1,X2),

◮ Sgl(X),

◮ X1 ⊆ X2,

◮ X1 = X2,

◮ . . .

Some variable change or homomorphisms (and inverse
homomorphisn) may be applied in order to obtain all the desired
versions.
Some variable change or inverse homomorphisms may be applied in
order to obtain all the desired versions. These transformations
preserve determinism.
For instance, from an automaton for a property P(), we can easily
obtain variants for P(X), P(X), P(Xi), P(Xi ∪ Xj), P(Xi ∩ Xj),
P(. . . ,Xi , . . .).

21/46

The general algorithm for computing the automaton

If the formula is atomic (or if we already have an automaton for it)
then return the corresponding automaton.
Otherwise :

◮ disjunction φ = φ1 ∨ φ2 : union of Aφ1
and Aφ2

.

◮ conjunction φ = φ1 ∧ φ2 : intersection of Aφ1
and Aφ2

.

◮ negation φ = ¬φ′ : complementation of Aφ′ . (Aφ′ must be
determinized first).

◮ existential formula ∃Xi ,P(X1, . . . ,Xm) : projection of
AP(X1,...,Xm) on (1, . . . , i − 1, i + 1,m). which implies a shift in
the indices of variables Xi+1, . . .Xm. creates nondeterminism

◮ φ = P(X1, . . . ,Xj , . . . ,Xm) does not use Xj : cylindrification
of the automaton AP(X ′

1,...X
′
m−1)

(with X ′
i = Xi for 1 ≤ i < j

and X ′
i = Xi+1 for j ≤ i < m) on the j-th components.

preserves determinism

22/46

Autowrite

◮ Lisp software (currently 15000 lines)

◮ First designed to check call-by-need properties of term
rewriting systems.

◮ Implements botton-up term-automata and most of the
well-known operations on such automata

◮ union
◮ intersection
◮ determinization
◮ minimization
◮ complementation
◮ projection
◮ cylindrification
◮ (inverse) homomorphism
◮ . . .

23/46

(setf *p9* (intersection-automata

(list (setup-singleton-automaton *cwd* 4 3)

(setup-singleton-automaton *cwd* 4 4)

(setup-subset-automaton *cwd* 4 3 1)

(setup-subset-automaton *cwd* 4 3 2)

(setup-subset-automaton *cwd* 4 4 2)

(complement-automaton

(setup-subset-automaton *cwd* 4 4 1))

(setup-edge-automaton *cwd* 4 3 4))))

(setf *p8* (project-and-simplify-automaton *p9* ’(0 1)))

(setf *p7* (complement-automaton *p8*))

(setf *p7p* (cylindrify-and-simplify-automaton *p7* ’(2 3)))

(setf *p6* (intersection-automata

(list *p7p*

(setup-subset-automaton *cwd* 4 3 1)

(complement-automaton

(setup-subset-automaton *cwd* 4 4 1)))))

(setf *p5* (vprojection *p6* ’(1 2 3))))

24/46

(setf *p5* ;; blows up for cwd=3

(ndeterminize-automaton *p5*))

(setf *p5* (nsimplify-automaton *p5*))

(setf *p4* (complement-automaton *p5*))

(setf *p4p* (cylindrify-and-simplify-automaton *p4* 0))

(setf *p3* (intersection-automata

(list *p4p*

(setup-subset-automaton *cwd* 4 3 1)

(setup-subset-automaton *cwd* 4 4 1)

(complement-automaton

(setup-equality-automaton *cwd* 4 3 4))

(setup-cardinality-automaton *cwd* 4 1 2))))

(setf *p2* (intersection-automata

(list *p3*

(setup-singleton-automaton *cwd* 4 3)

(setup-singleton-automaton *cwd* 4 4))))

(setf *p1* (project-and-simplify-automaton *p2* ’(0 1)))

(setf *p* (intersection-automata

(list *p1* (setup-subset-automaton *cwd* 2 1 2))))

25/46

Results for the Path property

cwd 2 3

A/min(A) 25 / 12 out

◮ Runs out of memory for cwd = 3, although we know that the
minimal automaton has 124 states which is still reasonnable.

◮ The problem comes from intermediate steps.

◮ The non-deterministic version of AP5(X2,X3,X4) has 308 states.

◮ Its complementation triggers its determinization which causes
the blow up.

26/46

Second method : direct construction of the automaton

Observation : intermediate steps induce an exponential blow up
although the final automaton is not so big.
Idea : give a direct construction of the automaton.
This method is not general.
For each property, one must give a description of the automaton

◮ description of the states,

◮ description of the transitions rules

◮ the state computed at t encodes information about the graph
Gt defined by the subterm processed so far.

◮ the transition function computes the new state (the new
information) from the information contained in the states
obtained for the subterms.

27/46

Direct construction of an automaton for PATH(X1,X2)

Such a description exists for the path property
The direct construction works up to cwd = 4.

cwd 2 3 4 5

A/min(A) 25 / 12 213 / 124 4792 / 2015 out

Number of states of the unique minimal automaton :
2cwd

2/2 < |Q| < 2cwd
2+2 For cwd = 5 : 33554432 < |Q|

Comment : the automata are simply too big !

28/46

Experiments with a direct construction

Illustration with connectedness

◮ In the automaton for connectedness, roughly, the state
accessible from a term t contain the set of sets of labels of
the connected components of Gt .

◮ The final states are all the singleton states.

29/46

Direct construction for connectedness
Term Graph State

t1 = a
a

[< a >]

t2 = b
b

[< b >]

t3 = ⊕(t1, t2)
ba

[< a >< b >]

t4 = add a b(t3)
ba

[< ab >]

t5 = ⊕(b, t4)

b

b

a

[< b >< ab >]

t6 = ⊕(a, t5)

b

b a

a

[< a >< b >< ab >]

t7 = add a b(t6)

ba

b a
[< ab >]

30/46

Results for the connectedness property

Number of states : 22
cwd−1 + 2cwd − 2

◮ works up to cwd = 3

◮ runs out of memory

cwd 2 3 4

A/min(A) 10 / 6 134 / 56 out

For cwd = 4 : |Q| = 32782

Number of states of the minimal automaton : |Q| > 22
⌊cwd/2⌋

Comment : the automata are simply too big !

31/46

Fly automata
Principle : the transitions are represented by a function (in our case
a Lisp function) ; the complete sets of transitions, states and
finalstates are never computed in extenso.

fly automaton A = (F , final , δ) : abstraction of the usual
automaton (with stored transitions)

(defun fly-path-automaton (cwd)

(make-fly-automaton

(setup-signature cwd 2)

(lambda (root states) ;; f(q1 ... qn) -> q

(path-transitions-fun root states)))

(lambda (state)

(path-final-p state)))

(defclass abstract-automaton (named-object signed-object)

((transitions :accessor get-transitions)))

(defclass fly-automaton (abstract-automaton)

((finalstates-fun :reader finalstates-fun)))

(defun make-fly-automaton (signature tfun finalstates-fun))
32/46

Remark : in compilation, one uses small automata to process large
words. Here we use huge automata to process small terms (say 100
to 100000 nodes).

33/46

Connectedness case

Expression of non connectedness :

∃X [∃x ∈ X ∧ ∃y 6∈ X ∧ ∀x , y(Edg(x , y) ⇒ [x ∈ X ⇔ y ∈ X])]

34/46

Lisp description

(defclass connectedness-state (graph-state)

((components :type list :reader components)))

(defmethod graph-add-target (a b (co connectedness-state)) ...)

(defmethod graph-ren-target (a b (co connectedness-state)) ...)

(defmethod graph-oplus-target

((co1 connectedness-state) (co2 connectedness-state))

(make-connectedness-state

(append (components co1) (components co2))))

(defmethod connectedness-transitions-fun

((root constant-symbol) (states (eql nil)))

(let ((port (name-to-port (name root))))

(make-connectedness-state

(list (make-port-state (list port))))))

(defmethod connectedness-transitions-fun

((root parity-symbol) (states list))

(common-transitions-fun root states))35/46

Fly automata

◮ runs on all our data

◮ no limitation on the clique-width to create the automaton

◮ limitations come when running the automaton on very deep
terms (stack exhaustion)

◮ runs in 1mn on a grid 80x80 (cwd=81) connectedness

The implementation of operations on fly automata uses intensively
the functional programming paradigm.

36/46

Operation on fly automata

◮ Union

◮ Intersection

◮ Determinization

◮ Complementation

◮ Homomorphism

Uses intensively the functional programming paradigm

37/46

Operations on Fly-automata

(defmethod complement-automaton ((f fly-automaton))

(make-fly-automaton

(get-transitions f)

(complement-finalstate-fun f)))

(defmethod union-automaton

((f1 fly-automaton) (f2 fly-automaton))

(make-fly-automaton

(lambda (root states)

(target-union

(apply-transition-function-gft

root states (get-transitions f1)

(apply-transition-function-gft

root states (get-transitions f2)))))

(lambda (state)

(or (finalstate-p state f1)

(finalstate-p state f2)))))

38/46

Fly-automata versus Table-automata

Table-automata

◮ compiled version of fly-automata

◮ faster for recognizing a term

◮ use space for storing the transitions table

◮ the space depends on the clique-width

Fly-automata

◮ use constant space

◮ slower for term recognition because of the calls to the
transition function

◮ the time depends on the clique-width

Use

◮ a table-automaton when the transitions table can be
computed

◮ a fly-automaton otherwise

39/46

Experimental results
Connectedness on graphs PN (cwd = 3)

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

T
im

e
in

se
co
n
d
s

N/1000

table automaton

fly automaton

40/46

Some properties

Direct constructions of the automata for the following properties.

Polynomial

◮ Stable()

◮ Partition(X1, . . . ,Xm)

◮ k-Cardinality()

non polynomial

◮ k-Coloring(C1, . . . ,Ck) compilable up to cwd = 4 (for k = 3)

◮ Connectedness() compilable up to cwd = 3

◮ Clique() compilable up to cwd = 4

◮ Path(X1,X2) compilable up to cwd = 4

◮ Forest() (no cycle) not compilable

41/46

Some more properties

With the previous properties, using homomorphisms and boolean
operations, we obtain automata for

◮ k-Colorability() compilable up to k = 3 (cwd = 2), k = 2
(cwd = 3)

◮ k-Acyclic-Colorability() not compilable (uses Forest)

◮ k-Chord-Free-Cycle()

◮ k-Max-Degre()

◮ Vertex-Cover(X1) 2
cwd states

◮ k-Vertex-Cover()

42/46

Example of vertex-cover

a combination of already defined automata

;; Vertex-Cover(X1) = Stable(V-X1)

(defun fly-vertex-cover (cwd)

(x1-to-cx1 ;; Stable(V-X1)

;; Stable(X1)

(fly-subgraph-stable-automaton cwd 1 1)))

(defun fly-k-vertex-cover (k cwd)

;; exists X1 s.t. vertex-cover(X1) and card(X1) = k

(vprojection

(intersection-automaton

(fly-vertex-cover cwd) ;; Vertex-Cover(X1)

(fly-subgraph-cardinality-automaton ;; Card(X1) = k

k cwd 1 1))))

43/46

Experimental results

3-colorability on square-grids NxN (clique-width N + 1)

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8

T
im

e
in

th
ou

sa
n
d
s
of

ec
on

d
s

N

44/46

Experimental results

3-colorability on rectangular grids 6xN (clique-width 8)

0

200

400

600

800

1000

1200

1400

1600

1800

0 100 200 300 400 500 600 700 800 900 1000

T
im

e
in

te
n
s
of

se
co
n
d
s

N

45/46

Results and future work

Property graph cwd Time

4-ac-colorability petersen 7 17mn

3-colorability grid 6x33 8 85mn

Size of the graphs Limit around 1 000 000 vertices
⇒ terms of size 4 000 000
need to increase stack size because the run of an automaton on a
term is recursive

◮ more graph properties

◮ tests on real graphs and random graphs

◮ graph decomposition using few labels (parsing problem)

◮ the concept of fly-automata is general and could be applied to
other domains

46/46

