
Université Bordeaux I Algorithmique et Structures de Données

Master 1 BioInformatique 2005-2006 Devoir surveillé

Mardi 8 Novembre 2005 Durée 1h30

Exercice 1

mystere (n) {

s <- 0;

tant que n > 9 faire {

s <- s + n % 10;

n <- n / 10;

}

retourner s + n;

}

1. Faire tourner l’algorithme mystere avec n = 1984

2. Que fait la fonction mystere ?

3. Quelle est sa complexité ?

Exercice 2

On rappelle l’algorithme de recherche dichotomique d’un élément x dans un tableau trié t :

def dichoiter(x, t) {

g <- 0;

d <- len(t) - 1;

tant que g <= d faire {

m <- (g + d) / 2;

si t[m] = x alors

retourner m;

si x < t[m] alors

d <- m - 1;

sinon

g <- m + 1;

}

retourner -1;

}

Proposez une version récursive de cet algorithme. On pourra envisager une fonction récursive
dichorec(x, t, g, d) qui recherche l’élément x dans les cases g à d du tableau t.

T.S.V.P



Exercice 3

On considère la famille de suites récurrentes (U v

n
) paramétrées par leur valeur initiale v et

définies par :
u0 = v

un+1 =

{

un/2 si un est pair
3un + 1

2
si un est impair

1. Pour v = 3, écrire les valeurs des 6 premiers termes de la suite : u0, u1, u2, u3, u4, u5.

2. Écrire la fonction suivant(u) qui retourne le terme suivant un terme u dans une telle
suite.

3. Écrire la fonction u n(n,v) qui retourne le terme un de la suite (U v

n
).

4. À quoi peut servir la fonction suivante (dans laquelle v définit la suite (U v

n
)) :

atteint_un (v) {

u <- v;

i <- 1;

tant que vrai faire {

u <- suivant(u);

si u = 1 alors

retourner i;

i <- i + 1;

}

}


