
Université Bordeaux I Algorithmique et Structures de Données

Master 1 BioInformatique 2005-2006 Devoir surveillé

Mardi 8 Novembre 2005 Durée 1h30

Exercice 1

mystere (n) {

s <- 0;

tant que n > 9 faire {

s <- s + n % 10;

n <- n / 10;

}

retourner s + n;

}

1. Faire tourner l’algorithme mystere avec n = 1984

s n n%10

0 1984 4
4 198 8

12 19 9
21 1

s + n = 22, la fonction retourne 22.

2. Que fait la fonction mystere ? Elle retourne la somme des chiffres de n.

3. Quelle est sa complexité ?

On passe blog10(n)c fois dans la boucle.
La complexité est en O(log(n)).

Exercice 2

On rappelle l’algorithme de recherche dichotomique d’un élément x dans un tableau trié t :

def dichoiter(x, t) {

g <- 0;

d <- len(t) - 1;

tant que g <= d faire {

m <- (g + d) / 2;

si t[m] = x alors

retourner m;

si x < t[m] alors

d <- m - 1;

sinon

g <- m + 1;

}

retourner -1;

}

Proposez une version récursive de cet algorithme. On pourra envisager une fonction récursive
dichorec(x, t, g, d) qui recherche l’élément x dans les cases g à d du tableau t.



def dichorec(x, t, g, d):

if g > d:

return -1

m = (g + d) / 2

if x == t[m]:

return m

if x < t[m]:

return dichorec(x, t, g, m - 1)

return dichorec(x, t, m + 1, d)

def recherche(x,t):

return dichorec(x,t,0,len(t)-1)

Exercice 3

On considère la famille de suites récurrentes (U v

n
) paramétrées par leur valeur initiale v et

définies par :
u0 = v

un+1 =

{

un/2 si un est pair
3un + 1

2
si un est impair

1. Pour v = 3, écrire les valeurs des 6 premiers termes de la suite : u0, u1, u2, u3, u4, u5.

u0 = 3, u1 = 5, u2 = 8, u3 = 4, u4 = 2, u5 = 1

2. Écrire la fonction suivant(u) qui retourne le terme suivant un terme u dans une telle
suite.

def suivant(u):

if u % 2 == 0:

return u/2

return (3 * u + 1)/2

3. Écrire la fonction u n(n,v) qui retourne le terme un de la suite (U v

n
).

def u_n(n,v):

if n == 0:

return v

return suivant(suite(n-1,v))

4. À quoi peut servir la fonction suivante (dans laquelle v définit la suite (U v

n
)) :

atteint_un (v) {

u <- v;

i <- 1;

tant que vrai faire {

u <- suivant(u);

si u = 1 alors

retourner i;

i <- i + 1;

}

}



Cette fonction retourne la première valeur de n pour laquelle un = 1 si une telle valeur aexiste.
Elle boucle sinon.

aExpérimentalement, il existe toujours une telle valeur de n. Mais ce fait n’est toujours pas prouvé à ce jour.

Cette suite est connue depuis l’antiquité sous le nom de “Suite de Syracuse”.


