
Université Bordeaux I Algorithmique et Structures de Données

Master 1 BioInformatique 2005-2006 TD n
o 6 : Listes chainées

1. Écrire les primitives suivantes :

(a) InsererApres (L, P, x)

(b) InsererEnTete (L, x)

(c) SupprimerApres (L, P)

(d) SupprimerEnTete (L)

L est une liste, P est un pointeur vers une cellule de la liste, x est un élément de la liste.

InsererApres (L, P, x) {

new (Q);

Q.info <- x;

Q.suivant <- P.suivant;

P.suivant <- Q;

}

InsererEnTete (L, x) {

new (P);

P.info <- x;

P.suivant <- L;

L <- P;

}

SupprimerApres (L, P) {

P.suivant <- P.suivant.suivant;

}

SupprimerEnTete (L) {

L <- L.suivant;

}

2. À l’aide de ces primitives, écrire les algorithmes suivants :

(a) Inversion d’une liste.

ListeInverser (L) {

Linv <- nil;

P <- L;

Tant que (P != nil) Faire {

InsererEnTete (Linv, P.info);

P <- P.suivant;

}

retourner Linv;

}

(b) Duplication d’une liste.



ListeDupliquer (L) {

Lcp <- nil;

P <- L;

Si (P != nil) Alors {

InsererEnTete (Lcp, P.info);

Pcp <- Lcp;

P <- P.suivant;

}

Tant que (P != nil) Faire {

InsererApres (Lcp, Pcp, P.info);

Pcp <- Pcp.suivant;

P <- P.suivant;

}

retourner Lcp;

}

(c) Concaténation de deux listes.

ListeConcatener (L1, L2) { // Creation d’une nouvelle liste

L1cp <- ListeDupliquer (L1);

L2cp <- ListeDupliquer (L2);

Si (L1cp = nil) Alors

retourner L2cp;

P <- L1cp;

Tant que (P.suivant != nil) Faire

P <- P.suivant;

P.suivant <- L2cp;

retourner L1cp;

}

(d) Suppression de tous les éléments d’une liste vérifiant un prédicat donné.

ListeSupprimer (L, Predicat) { // Version 1

Tant que (L != nil ET Predicat (L.info)) Faire

SupprimerEnTete (L);

P <- L;

Si (P != nil) Alors {

Tant que (P.suivant != nil) Faire {

Si Predicat (P.suivant.info) Alors

SupprimerApres (L, P);

Sinon

P <- P.suivant;

}

}

}

(e) Insertion et suppression d’un élément dans une liste triée.



ListeTrieeInserer (L, x) { // Version 1

Si (L = nil OU x <= L.info) Alors

InsererEnTete (L, x);

Sinon {

P <- L;

Tant que (P.suivant != nil ET P.suivant.info < x) Faire

P <- P.suivant;

InsererApres (L, P, x);

}

}

ListeTrieeInserer (L, x) { // Version 2

P <- L;

P_prec <- nil;

Tant que (P != nil ET P.info < x) Faire {

P_prec <- P;

P <- P.suivant;

}

Si (P_prec = nil) Alors

InsererEnTete (L, x);

Sinon

InsererApres (L, P_prec, x);

}

(f) Recherche d’un élément dans une liste triée

// Fonction de recherche renvoyant une paire (booleen, pointeur)

// Si l’element x appartient a la liste, le booleen est VRAI et le pointeur

// indique la position de l’element dans la liste (pointeur vers le precedent).

// Si l’element x n’appartient pas a la liste, le booleen est FAUX et le

// pointeur indique la position d’insertion de l’element (pointeur vers le

// precedent).

ListeTrieeRecherche (L, x) {

Si (L = nil OU x < L.info) Alors

Retourner (FAUX, nil);

Si (x = L.info) Alors

Retourner (VRAI, nil);

P <- L;

Tant que (P.suivant != nil ET P.suivant.info < x) Faire

P <- P.suivant;

Si (P.suivant = nil OU P.suivant.info > x) Alors

retourner (FAUX, P);

retourner (VRAI, P);

}

(g) Insertion dans une liste triée



ListeTrieeInserer (L, x) { // Version 3

(est_element, P) <- ListeTrieeRecherche (L, x);

Si (P = nil) Alors

InsererEnTete (L, x);

Sinon

InsererApres (L, P, x);

} // Si on souhaite eviter les doublons, il faut tester est_element

(h) Suppression dans une liste triée

ListeTrieeSupprimer (L, x) {

(est_element, P) <- ListeTrieeRecherche (L, x);

Si (est_element) Alors {

Si (P = nil) Alors

SupprimerEnTete (L);

Sinon

SupprimerApres (L, P);

}

}


