
Université Bordeaux I Algorithmique et Structures de Données

Master 1 BioInformatique 2005-2006 TD n
o 5 : Piles

1. Transformation d’une expression arithmétique parenthésée en expression arithmétique
postfixée.

Exemple : (2 + 3) × (4 + 5) → 2 3 + 4 5 + ×

Parenthesee_vers_postfixee (expr_par, n) {

P = Pile_vide (); //P est une pile de caracteres

n_post <- 0;

Pour i de 1 A n Faire {

c <- expr_par[i];

Selon que {

c dans ’0’..’9’ :

expr_post[n_post] <- c;

n_post <- n_post + 1;

c = ’(’ :

Empiler(P, c);

c = ’)’:

Tant que (Valeur_sommet(P) <> ’(’) Faire {

expr_post[n_post] <- Valeur_sommet (P);

n_post <- n_post + 1;

Depiler (P);

}

Depiler (P);

c dans (’+’, ’-’, ’*’, ’/’) :

Tant que (Non Pile_vide? (P) ET

Valeur_sommet (P) <> ’(’ ET

Priorite (Valeur_sommet (P)) >= Priorite (c))) {

expr_post[n_post] <- Valeur_sommet (P);

n_post <- n_post + 1;

Depiler (P);

}

Empiler (P, c);

}

}

Tant que (Non Pile_vide? (P)) Faire {

expr_post[n_post] <- Valeur_sommet (P);

n_post <- n_post + 1;

Depiler (P);

}

retourner expr_post, n_post;

}

2. Écrire un algorithme d’inversion d’une file.



Inverser_file (F) {

P = Pile_vide ();

Tant que Non File_vide? (F) Faire {

Empiler (P, Valeur_premier(F));

Defiler (F);

}

Tant que Non Pile_vide? (P) Faire {

Enfiler (F, Valeur_sommet (P));

Depiler (P);

}

}

3. Écrire un algorithme de tri à l’aide de trois piles.

Tri_Pile (P) {

Tant que non Pile_Vide(P) faire {

Tant que non Pile_vide(P1) et sommet(P) <= sommet(P1) faire

Empiler(Dépiler(P1),P3);

Empiler(Dépiler(P),P1);

Tant que non Pile_Vide(P3) faire

Empiler(P1, Dépiler(P3));

Tant que non Pile_Vide(P1) faire

Empiler(P,Dépiler(P1))

}

}


