
Université Bordeaux I Algorithmique et Structures de Données

Master 1 BioInformatique 2005-2006 TD n
o 4 : Récursivité

1. Version récursive de l’élévation à la puissance par multiplications successives.

Puissance_rec (a, b) {

Si b = 0 Alors

retourner 1;

retourner (Puissance_rec (a, b-1) * a);

}

2. Calcul de n! (version itérative puis récursive).

Factorielle (n) {

fact <- 1;

Pour i <- 2 a n Faire

fact <- fact * i;

retourner fact;

}

3. Version récursive du calcul du pgcd.

Pgcd_rec (a, b) {

Si a = b Alors

retourner a;

Si a > b Alors

retourner Pgcd_rec (a-b, b);

Sinon

retourner Pgcd_rec (a, b-a);

}

Remarque : problème si un des deux nombres est nul.

4. Calcul du terme un de la suite de Fibonacci, définie par :

u0 = 0

u1 = 1

un+1 = un + un−1

Donner une version itérative et une version récursive.



Fibo (n) {

Si n = 0 alors retourner 0;

u_i-1 <- 0; //u_0

u_i <- 1; //u_1

Pour i de 2 a n Faire { //Calcul du ie terme de la suite

terme_suiv <- u_i + u_i-1;

u_i-1 <- u_i;

u_i <- terme_suiv;

}

retourner u_i;

}

Fibo_rec (n) {

Si n = 0 Alors retourner 0;

Si n = 1 Alors retourner 1;

retourner (Fibo_rec (n-1) + Fibo_rec (n-2));

}

5. Soit l’algorithme du tri rapide donné ci-dessous.

def partition (t,g,d):

m = g + 1

while m <= d:

if t[m] < t[g]:

m = m + 1

else:

echange(t,m,d)

d = d - 1

echange(t,g,d)

return d

def tri_rapide (t,g,d):

if g < d:

m = partition(t,g,d)

tri_rapide(t,g,m-1)

tri_rapide(t,m+1,d)

def tri (t):

tri_rapide(t,0,len(t)-1)

Remarque : partition est similaire à Dikstra avec 2 couleurs

(a) Faire tourner sur un exemple cet algorithme.

(b) Expliquer son principe.

(c) Donner un exemple pour lequel cet algorithme n’est pas efficace.

(d) Donnez la complexité de cet algorithme.


