Université Bordeaux 1 Algorithmique et Structures de Données
Master 1 Biolnformatique 2005-2006 TD n° 3 : Tri avec Complexité

1 Drapeau de Dijkstra

1. On dispose de N boules noires et blanches alignées dans un ordre quelconque. On souhaite
regrouper les boules de méme couleur par échanges successifs. Il faut ne tester qu’une fois
la couleur d’une boule.

(a) Comment représenter les données du probleme ?

On utilise un tableau de taille N dont les valeurs appartiennent & {Noir, Blanc}. Idée de 1'algo-
rithme : deux indices 4,5 et 75y, indiquent la plage de “cases indéterminées”. Si ;,, ¢ correspond
a une case noire, i;,y est incrémenté : la plage des cases noires s’étend. Sinon, on échange les
contenus des cases i;,f et g,y et igyy est décrémenté : la plage des cases blanches s’étend.

(b) Donner un algorithme permettant de le résoudre.
Invariant : Vi, 1 <@ < i4,f,t[i] = Noir et Vi,i4,, < i < N, t[i] = Blanc.
Dijkstra_2couleurs(T) {
i_inf <- 1;
i_sup <- N;

Tant que (i_inf < i_sup) Faire {
Si T[i_inf] = Noir Alors

i_inf <- i_inf + 1;

Sinon {//T[i_inf] = Blanc

Echanger (T, i_inf, i_sup)

i_sup <- i_sup - 1}}

2. Méme question avec trois couleurs (par exemple Noir, Gris et Blanc).
Trois couleurs (Noir, Gris, Blanc) Invariant : Vi, 1 < i < iy, t[i] = Noir, Vi,in < i < i, t[i] =
Gris et Vi, iy, < i < N,t[i] = Blanc.

Dijkstra_3couleurs (T) {
i_Noir <- 0;
i_inf <- 1;

i_sup <- N;
Tant que (i_inf <= i_sup) Faire {
Selon que {

T[i_inf] = Gris: i_inf <- i_inf + 1;

T[i_inf] = Blanc: Echanger(T, i_inf, i_sup);
i_sup <- i_sup - 1;
T[i_inf] = Noir: i_Noir <- i_Noir + 1;
Echanger (T, i_Noir, i_inf);
i_inf <- i_inf +1;
}



2 Algorithmes a analyser

Que calculent les deux fonctions suivantes 7 Quelle est leur complexité ?

1. inconnuel (a) {

p <- 0;

Tant que (a modulo 2 = 0) Faire {
a <- a div 2;
P<-p+l

}

Si (a = 1) Alors
retourner p;

Sinon
retourner -1;

}

Si a = 2P, la fonction retourne p, sinon -1. Valeur de a entre 1 et 100 entrainant le plus de
calculs : 20 (plus grande puissance de 2 inférieure & 100. Complexité de la fonction : O(logaa)

2. inconnue2 (n, b) {

p <- 1;

r <- 0;

Tant que (n > 0) Faire {
r <- r + (n modulo 10) * p;
n <- n div 10;
P <-p *b;

}

retourner r;

}

Calcul de la valeur décimale de n (donné en base b). Complexité : O(logio(n)).



