
Université Bordeaux I Algorithmique et Structures de Données

Master 1 BioInformatique 2005-2006 TD no 3 : Tri avec Complexité

1 Drapeau de Dijkstra

1. On dispose de N boules noires et blanches alignées dans un ordre quelconque. On souhaite
regrouper les boules de même couleur par échanges successifs. Il faut ne tester qu’une fois
la couleur d’une boule.

(a) Comment représenter les données du problème ?

On utilise un tableau de taille N dont les valeurs appartiennent à {Noir, Blanc}. Idée de l’algo-
rithme : deux indices iinf et isup indiquent la plage de “cases indéterminées”. Si iinf correspond
à une case noire, iinf est incrémenté : la plage des cases noires s’étend. Sinon, on échange les
contenus des cases iinf et isup et isup est décrémenté : la plage des cases blanches s’étend.

(b) Donner un algorithme permettant de le résoudre.

Invariant : ∀i, 1 ≤ i < iinf , t[i] = Noir et ∀i, isup < i ≤ N, t[i] = Blanc.

Dijkstra_2couleurs(T) {

i_inf <- 1;

i_sup <- N;

Tant que (i_inf < i_sup) Faire {

Si T[i_inf] = Noir Alors

i_inf <- i_inf + 1;

Sinon {//T[i_inf] = Blanc

Echanger(T, i_inf, i_sup)

i_sup <- i_sup - 1}}

2. Même question avec trois couleurs (par exemple Noir, Gris et Blanc).

Trois couleurs (Noir, Gris, Blanc) Invariant : ∀i, 1 ≤ i ≤ iN , t[i] = Noir, ∀i, iN < i < iinf , t[i] =
Gris et ∀i, isup < i ≤ N, t[i] = Blanc.

Dijkstra_3couleurs (T) {

i_Noir <- 0;

i_inf <- 1;

i_sup <- N;

Tant que (i_inf <= i_sup) Faire {

Selon que {

T[i_inf] = Gris: i_inf <- i_inf + 1;

T[i_inf] = Blanc: Echanger(T, i_inf, i_sup);

i_sup <- i_sup - 1;

T[i_inf] = Noir: i_Noir <- i_Noir + 1;

Echanger(T, i_Noir, i_inf);

i_inf <- i_inf +1;

}

}



2 Algorithmes à analyser

Que calculent les deux fonctions suivantes ? Quelle est leur complexité ?

1. inconnue1 (a) {

p <- 0;

Tant que (a modulo 2 = 0) Faire {

a <- a div 2;

p <- p + 1;

}

Si (a = 1) Alors

retourner p;

Sinon

retourner -1;

}

Si a = 2p, la fonction retourne p, sinon -1. Valeur de a entre 1 et 100 entrainant le plus de
calculs : 26 (plus grande puissance de 2 inférieure à 100. Complexité de la fonction : O(log2a)

2. inconnue2 (n, b) {

p <- 1;

r <- 0;

Tant que (n > 0) Faire {

r <- r + (n modulo 10) * p;

n <- n div 10;

p <- p * b;

}

retourner r;

}

Calcul de la valeur décimale de n (donné en base b). Complexité : O(log10(n)).


