
Université Bordeaux I Algorithmique et Structures de Données

Master 1 BioInformatique 2005-2006 TD no 2 : Tableaux

1. Calcul de la moyenne et du minimum des éléments d’un tableau.

Moyenne (T, N) {

somme <- 0;

Pour i <- 1 a N Faire

somme <- somme + T[i];

moyenne <- somme / N;

retourner moyenne;

}

2. Calcul du nombre d’occurences d’un élément donné dans un tableau.

Nb_occurences (T, N, X) {

nb_occ <- 0;

Pour i <- 1 a N Faire

Si T[i] = X Alors

nb_occ <- nb_occ + 1;

retourner (nb_occ);

}

Minimum (T, N) {

min <- T[1];

Pour i <- 2 a N Faire

Si T[i] < min Alors {

min <- T[i];

pos_min <- i;

}

retourner (min, pos_min);

}

3. Écrire un algorithme qui teste si un tableau est trié.

Est_trie (T, N) {

i <- 1;

Tant que i < N ET T[i] <= T[i+1] Faire

i <- i + 1;

est_trie <- (i = N);

retourner est_trie;

}

4. Écrire un algorithme qui teste si deux tableaux sont identiques.

Sont_identiques (T1, T2, N) {

i <- 1;

Tant que (i <= N) ET (T1[i] = T2[i]) Faire

i <- i + 1;

sont_identiques <- (i = N + 1);

retourner sont_identiques;

}

5. Calcul du produit scalaire de deux vecteurs réels u et v de dimension n.

u.v =
i=n∑

i=1

uivi

Produit_scalaire (u, v, n) {

prod_scalaire <- 0;

Pour i <- 1 a n Faire

prod_scalaire <- prod_scalaire + u[i] * v[i];

retourner prod_scalaire;

}

6. Décalage des éléments d’un tableau. Exemple :

Tableau initial : D E C A L A G E

Tableau modifié (décalage à gauche) : E C A L A G E D

Decalage_gauche (T, N) {

tmp <- T[1];

Pour i <- 1 a N-1 Faire

T[i] <- T[i+1];

T[N] <- tmp;

}

7. Calcul du produit de deux matrices carrées réelles A = (aij) et B = (bij) de dimension n.

cij =
k=n∑

k=1

aikbkj

Produit_matriciel (a, b, n) {

Pour i <- 1 a n Faire

Pour j de 1 a n Faire {

c[i][j] <- 0;

Pour k de 1 a n Faire

c[i][j] <- c[i][j] + a[i][k] * b[k][j];

}

retourner c;

}

8. Soit un tableau T avec T (i) ∈ {0, 1}. Écrire un algorithme qui retourne la position i dans
le tableau telle que T [i] est le début de la plus longue suite consécutive de zéros.

def pos_suite_0 (t):

pos = -1

lmax = 0

suite = 0

for i in range(0,len(t)):

if t[i] == 0:

if not suite:

lg = 0

suite = 1

lg += 1

else: # t[i] = 1

if suite:

suite = 0

if lg > lmax:

lmax = lg

pos = i - lg

if suite and lg > lmax:

pos = i - lg + 1

return pos

O(len(t))

9. Écrire un algorithme qui calcule le plus grand écart dans un tableau (l’écart est la valeur
absolue de la différence de deux éléments).

def plus_grand_ecart (t):

min = t[0]

max = t[0]

for i in range(1,len(t)):

if t[i] > max:

max = t[i]

else:

if t[i] < min:

min = t[i]

return max - min

O(len(t))

