UTILISATION DES SYSTEMES INFORMATIQUES

(12)

Shell (3)

1 Aiguillage et pattern matching

1.1 ExERCICE Ecrivez et testez le script suivant :

| affichoptions

opt_a=0
opt_b=0
opt_£f=0
£=0

USAGE="echo Usage: ‘basename $0¢ [-a] [-b] [-f nom]

if test $# =0
then

eval $USAGE
fi

while [ $# -gt 0 ]
do
case $1 in
—a )
opt_a=1
-b )
opt_b=1
-f )
opt_£f=1
shift
f=$1
—% )
eval $USAGE
esac
shift
done

; exit 1"



echo opt_a=$opt_a
echo opt_b=$opt_b
echo opt_f=$opt_£
echo f=$f

1.2 EXERCICE En utilisant la structure de controle case, écrire un script backup tel que backup
<nomi> <nomsg> ... recopie le fichier <nom;> en <nom;>.0LD. L’option -s permet de choisir le
suffixe ; 'option -b produit une sauvegarde de la sauvegarde si elle existe déja.

1.3 EXERCICE Modifier ifdef de facon a ce qu’il
- accepte 'option -C : ajout du commentaire
/* Fichier <nom>.h */

- rajoute automatiquement le suffixe .h s’il n’est pas présent dans <nom3.

2 Redirections et manipulation de fichiers

2.1 EXERCICE Essayez de comprendre ce que font les petits scripts suivants :

| mystere

#!/bin/sh

exec 3<fichier
( while read ligne
do

echo Ligne $ligne
done ) <&3

| mystere bis et repetita

#!/bin/sh

exec b<fichier
( while read ligne
do

echo Ligne $ligne
done ) <&5

mystere2



#!/bin/sh

exec 4<fichier
exec b<fichier2
(read ligne
(while read ligne
do
echo Ligne $ligne
done
) <&4
echo Ligne $ligne
) <&5

| etrange

exec 4<fichier
exec b>fichier3
(while read ligne

do

echo Ligne $ligne
done
) <&4 >&5

3 Visibilité des variables

11 existe des variables prédéfinies sous Unix. Vous avez déja vu la variable $HOME. Il existe une commande
set permettant de lister I’ensemble des variables définies & un instant donné.

3.1 EXERCICE Affichez ’ensemble des variables définies dans ’environnement courant.

3.2 EXERCICE Définissez une variable de nom UN sans U'exporter (avec la commande UN=un), et une
variable de nom DEUX que vous exporterez (avec la commande export DEUX=deux).

3.3 EXERCICE Affichez les valeurs de ces deux variables dans le shell courant.

3.4 EXERCICE Lancez un nouveau shell. Affichez la valeur des deux variables. Que remarquez-vous ?
Que pouvez-vous en conclure ?

3.5 EXERCICE Ecrivez dans le fichier script proc la commande permettant d’affecter & la variable de
nom TROIS la valeur trois, sans ’exporter et toujours a l'intérieur de ce script, visualisez le contenu

de la variable TROIS.

3.6 EXERCICE Exécutez la suite de commandes suivantes et expliquer les résultats :



set | grep TROIS
chmod 700 proc
proc

set | grep TROIS

3.7 EXERCICE Vous avez constaté que la variable TROIS n’a pas été trouvée dans le shell courant.
Pensez-vous que le résultat aurait été différent si la variable avez été exportée ? Testez-1e30.

REMARQUE : Pour que l'exécution du fichier proc puisse modifier ’environnement courant (i.e., le shell
courant), il faut exécuter le script en le précédant de la commande . (point) : . proc ou bien de la
commande source : source proc.

3.8 EXERCICE Testez cette derniére commande, et vérifiez que la variable TROIS est bien définie.

REMARQUE : Gréace a cette commande, il est possible de prendre en compte des modifications apportées
aux fichiers de configuration du bash.

3.9 EXERCICE Ecrivez et testez le script suivant :

| proc2

#!/bin/sh
QUATRE=quatre
(
CINQ=cing
(
SIX=six
echo SIX=$SIX
echo CINQ=$CINQ
echo QUATRE=$QUATRE
)
echo SIX=$SIX
echo CINQ=$CINQ
echo QUATRE=$QUATRE
)
echo SIX=$SIX
echo CINQ=$CINQ
echo QUATRE=$QUATRE

Que pouvez vous conclure quant au role des parenthéses ?

3.10 EXERCICE Dans votre zterm tapez directement la commande :
(TREIZE=XIII ;echo TREIZE=$TREIZE) ;echo TREIZE=$TREIZE

D’aprés vous, est-ce votre shell d’origine qui exécute les instructions entre parenthéses? Quel est le
shell qui exécute l'instruction sans parenthése ?

30 Attention : la commande export n’est pas reconnue pas le shell sh. Pour utiliser cette commande utilisez dans votre
script le bash, en écrivant comme premiére ligne : # ! /bin/bash.
g



