UTILISATION DES SYSTEMES INFORMATIQUES (1)

Utilitaires (1)

Un filtre est une commande qui lit les données sur ’entrée standard, effectue des traitements sur
les lignes regues et écrit le résultat sur la sortie standard.

Bien siir, les entrées/sorties peuvent étre redirigées, ou enchainées avec des tubes (pipes).
Notez que cat est un filtre que vous avez déja employé.

Recopier chez vous les fichiers du répertoire ~jcaval/Utils.

1 Utilitaires tr, cut, sort

1.1 EXERCICE Tester le filtre tr (translate) :

bash$ tr [a-z] [A-Z]

aaaaaaa bbbbbbb ccc 11111 AAA A22222
AAAAAAA BBBBBBB CCC 11111 AAA A22222
bash$

bash$ tr [:lower:] [:upper:]

aaaaaaa bbbbbbb ccc 11111 AAA A22222
AAAAAAA BBBBBBB CCC 11111 AAA A22222

L’option -d permet de supprimer (delete) des caractéres, 'option -s permet de supprimer des répéti-
tions (squeeze-repeats) de caractéres. Essayer :

tr -s [a]l [a] < caracteres_repetes

tr -s [abc] [abcl< caracteres_repetes

tr -d [al < caracteres_repetes

1.2 EXERCICE

od -a blancs_et_tabs

od -o blancs_et_tabs

(On visualise, sous des formats différents, TOUS les caractéres du fichier blancs_et_tabs).
expand blancs_et_tabs > blancs_et_tabsl

od -a blancs_et_tabsl

Quel a été 'effet de “expand” ?

unexpand -a blancs_et_tabsl | od -a

Quel est V'effet de unexpand -a?

1.3 EXERCICE Ecrire une commande comprime <fichier> qui remplace toutes les séquences de ca-
ractéres d’espacement (sp,ht) par un seul espace (sp). Vérifier avec od que la commande fonctionne !

1.4 EXERCICE cut en sélection de colonnes :
cat acouper.

cut -c 4 acouper
cut -c 4,8 acouper
Comment faire pour obtenir les colonnes 4 & 87 les colonnes 4 et suivantes 7

1.5 EXERCICE cut en sélection de champs :

cat acouper.

cut -f 1 acouper

cut -f 2 acouper

On n’obtient pas les champs escomptés (le premier, puis le deuxiéme) car le séparateur par défaut est
TAB. On essaye alors :

cut -d > > -f 1 acouper

cut -d ?> > -f 2 acouper

Reprendre ces expériences avec le fichier acouper0. Comment expliquer ces résultats ? Utiliser la com-
mande comprime de I'exercice ci-dessus pour construire un fichier acouper1 sur lequel cut agisse “conve-
nalement”. Exécuter cut -d ’> ’> -f 2 acouperl

1.6 EXERCICE
sort -n -k 3 atrierl
sort -n -r -k 3 atrierl
(trie selon le champs 3, et 'ordre des entiers)
sort -k 2 atrierl
(trie selon le champs 2, et l’ordre alphabétique). Introduisez un blanc supplémentaire entre “Rene” et
“Sapri” (3ieme ligne de atrierl) et recommencer (le fichier obtenu s’appelle maintenant atrier2) :
sort -k 2 atrier2
Comment expliquez-vous ce changement dans le classement 7 Remplacer toutes les suites d’espacements
(’sp’ ou ’ht’) par un caractére ’ :’. Le fichier obtenu s’appelle maintenant atrier3
sort -k 3 atrier3
sort -t : -k 3 atrier3

1.7 EXERCICE Comment trier, par ordre chronologique, un fichier contenant une date par ligne sous
la forme : jj mm_aaaa? Appliquer votre solution au fichier dates.

1.8 EXERCICE On souhaiterait trier un fichier dont les lignes ont la forme
<champ1> <champ2>. .. NUMERO_<entier> ...

par ordre croissant des champs <entier>.

Exemple : le fichier

cetteyligne a,,1e , NUMERO, 2 mais elle estyici

ce NUMERO,1,,a,,bonne tete

j’aigle NUMERO,3

sera transformé en :

ce NUMERO_1_a bonne tete
cetteyligne a,,1e NUMERO, 2 mais elle estyici

j’aigle NUMERO,3

Peut-on effectuer simplement ce tri & 1’aide de la commande sort 7 Revenir 4 cette question aprés avoir
vu la commande sed.

1.9 EXERCICE Ecrire une commande renverser <fichier> qui renverse ’ordre des lignes d’un fichier
(on pourra combiner cat -n, sort -r et cut)

2 Expressions rationnelles

Symbole | emacs sed awk grep grep -E | signification

. X X X X X un caractére quelconque

* X X X X X expression précédente répétée 0 ou plu-
sieurs fois

- X X X X X début de ligne

$ X X X X X fin de ligne

\ X X X X X \ placé devant un caractére spécial annule
sa signification spéciale

[1] X X X X X un ensemble de caractéres

[~ 1 X X X X X complément d’un ensemble de caractéres

\NC\) X X sauvegarde d’un texte correspondant & un
motif (utilisé aussi pour grouper les sous-
expression)

\{n,m\} X X n < 4 < m occurrences de ’expression pré-
cédente

{n,m} X X idem

+ X X X expression précédente répétée une ou plus
de fois

? X X X répétition zéro ou une fois

| X X choix entre deux expressions rationnelles

\ | X idem emacs

() X X grouper les sous-expressions

EXEMPLES.

motif signification

mer* me, mer, merr, merrr,. ..

blaeiuolg deuxiéme lettre est une voyelle

~...3 une ligne contenant exactement trois caractéres

[A-Za-zZ] une lettre

[~0-9a-zA-Z] tout symbole sauf une lettre ou un chiffre

~[~.] le premier caractére n’est pas un point

~“\. [a-z]\{2,5\} | une ligne commencant par un point suivi par n lettres minuscules,

2 <n <5, (grep ou sed)
0\{5,\} cing ou plus de zéros

3 Utilitaire grep

Cet utilitaire (General Regular Ezpression Parser, analyseur général d’expressions réguliéres) sé-
lectionne toutes les lignes qui satisfont une expression réguliére (ou rationnelle).

‘grep [options| motif fichiers ‘

Recherche dans un ou plusieurs fichiers les lignes qui correspondent & ’expression réguliére motif.
Les valeurs de retour de grep sont : 0 si grep a trouvé des lignes, 1 si grep n’a trouvé aucune ligne, 2
en cas d’erreur. Si les fichiers sont absents grep lit ’entrée standard, ce qui permet de 1'utiliser comme
un filtre.

Quelques options

-1i ignorer la distinction entre les majuscules et les minuscules

-n sortir chaque ligne retrouvée précédée par son numéro

-v sortir les lignes qui ne correspondent pas au motif

-E utiliser les expression réguliéres étendue (comme egrep)

-1 sortir uniquement les noms de fichiers qui contiennent les lignes recherchées, mais

pas les lignes elle-méme.

-e motif le motif peut étre précédé par -e, utile si motif commence par « - ».

-w sortir les lignes qui possédent des mots correspondant au motif. Les caractéres diffé-
rents de lettres, chiffres et le caractére « _ » (souligner) sont considérés comme les
séparateurs des mots.

3.1 EXERCICE Trouver parmi vos fichiers dont le nom commence par point ceux qui contiennent le
mot PATH.

3.2 EXERCICE Rechercher dans tous les fichiers avec le suffixe .man les lignes qui contiennent un de
trois mots : “each”, “because”, “new”. Les mots doivent étre trouvés méme s’ils commencent par une

majuscule.

3.1 Utilisation de grep sous emacs

Lancer emacs. L'utilitaire grep peut étre lancé a partir d’emacs par la commande grep (évidem-
ment) :

Emacs ouvre le mini-buffer qui affiche grep -n -e et ou il faut taper la suite de commande, c’est-
a-dire le motif (aprés -e)) ensuite, éventuellement, d’autres options et finalement les noms de fichiers.
Aprés RET emacs affiche les résultats de la recherche dans une nouvelle fenétre. Vous pouvez parcourir

les lignes retrouvées a 1’aide de la commande .
3.3 EXERCICE Refaire Exo. 3.1 sous emacs. Parcourir les lignes retrouvées.

3.4 EXERCICE Refaire Exo. 3.2 sous emacs. Parcourez les lignes retrouvées, essayez de modifier cer-
taines lignes, par exemple remplacez certaines occurrences de “because” par “parce que”, “each” par
“chaque”, etc. Notez que aprés avoir modifié les lignes vous pouvez relancer le parcours de lignes re-

trouvées par grep en tapant encore une fois C-x ¢.

4 sed - stream oriented editor

Sed opére selon les régles suivantes :

— Chaque ligne est copiée dans un buffer spécial (pattern space).

— Toutes les commandes sont appliquées une & une dans ’ordre sur les textes dans le buffer.

— Si une commande change le contenu du buffer la commande suivante est appliquée au texte
modifié et non pas a la ligne originale.

— Le fichier d’entrée original ne change pas, le résultat d’édition sort sur la sortie standard et peut
étre rédirigé vers un fichier.

La syntaxe de sed :

sed [options] commande fichier ‘

Si le fichier est absent alors sed lit sur ’entrée standard. Deux options nous seront utiles :

|—e commande| ou commande est une commande, cette option est utile si nous avons
plusieurs commandes & exécuter.

[-n] supprime la sortie par défaut ; sed affiche seulement les lignes spécifiées
par la commande p ou par l'option p de la commande s.

Les commandes de sed ont la forme suivante :

Ladressel [, adresse2]]['] commande [arguments]

Comme nous pouvons voir ci-dessus, une commande sed peut étre précédée par 0, 1 ou 2 adresses.
Une adresse peut avoir la forme :
n ol n est un entier et désigne la ligne numéro n.
$ désigne la derniére ligne.
/motif/ ol motif est une expression réguliére (entre deux caractéres slash).
\%motif), idem, mais le séparateur / peut étre remplacé par un autre caractére (ici par %).

si la commande est précédée par : | alors elle s’applique a :

aucune adresse chaque ligne
une adresse chaque ligne qui corresponde & I’adresse
deux adresses chaque ligne & partir de la premiére ligne qui

correspond & adressel jusqu’a la ligne qui cor-
respond & ’adresse adresse2
une adresse suivie de! chaque ligne qui ne correspond pas a l'adresse

EXEMPLES. Les exemples qui suivent utilisent la commande d (delete).
/"BEGIN/,/~END/d Supprime toutes les lignes entre une ligne qui commence par BEGIN et
la premiére ligne qui suit et qui commence par END (inclusivement).
Si aucune ligne qui suit BEGIN ne commence par END alors toute les
lignes jusqu’a la fin du fichier sont supprimeées.
/SAVE/'d Supprime les lignes qui ne contiennent pas SAVE.
1,$1d Supprime toutes les lignes sauf la premiére et la derniére.

4.1 Quelques commandes de sed

Sauf mention contraire, vous allez tester vos commandes sed en utilisant le fichier toto.

4.1.1 Commande d

‘ |adressel|,adresse2]|[!|d ‘

La commande d supprime la ligne (ou les lignes) spécifiées par I’adresse. Ces lignes ne passent pas
vers la sortie standard. Une nouvelle ligne est lue et 1’édition recommence avec la premiére commande
du script.

4.1 EXERCICE Supprimer les lignes vides du fichier toto.
4.2 EXERCICE Supprimer les lignes vides ou composées uniquement des caracteéres TAB et SPC.

REMARQUE 10 Pour entre un caractére spéciale interprété par bash?? dans la ligne de commande on
le tape précédé par C-v.

22Comme TAB, le caractére de nouvelle ligne (RET), C-a, C-e, C-p et d’autres.

4.1.2 Commande p

‘ [adressel[,adresse2]|[!|p ‘

La commande p envoie le contenu du buffer (pattern space) vers le sortie standard. Une nouvelle
ligne est lue. Cette commande s’utilise uniquement si sed était invoqué avec l'option -n.

4.3 EXERCICE Sortir uniquement les lignes 19-21 du fichier toto.
4.4 EXERCICE Sortir les lignes 19 et 21 uniquement.
4.5 EXERCICE Sortir les lignes qui contiennent au moins trois chiffres consécutifs.

4.6 EXERCICE Sortir les lignes plus longues que 65 caractéres.

4.1.3 Commander

‘ [adresse|r fichier ‘

La commande r lit le fichier et 'ajoute au buffer d’édition. Il faut exactement un espace entre r
et le nom de fichier

4.7 EXERCICE Ajouter le fichier items dans le fichier toto aprés la ligne qui contient “Liste des items”.
(Vous pouvez utiliser le fichier items qui se trouve chez ~jcaval/Utils/items).

4.1.4 Commande s

‘ [adressel],adresse2]||!|s/motif /subst/options ‘

La commande s est la principale commande de sed. Elle provoque une substitution de motif par
subst.

Les options suivantes peuvent étre specifiéees :

1 ol ¢ est un entier, remplace i*® occurence du motif. Par défaut seulement la premiére

occurence du motif sur la ligne est remplacée.

g Toutes les occurences du motif seront remplacées, pas seulement la premiére.

p Si la ligne dans le buffer a subi une substitution alors elle sera envoyée vers la sortie
standard. Cette option est a utiliser seulement si sed a été invoqué avec l'option -n.

4.8 EXERCICE Substituer “foo” par “tar” seulement si la ligne contient “baz”.
4.9 EXERCICE Ajouter 4 espaces au début de chaque ligne du fichier toto.

4.10 EXERCICE Sortir uniquement les lignes contenant la lettre “a” en remplacant chaque occurrence
de “a” par “aaa’.

4.11 EXERCICE Supprimer de chaque ligne de toto les caractéres blancs (SPC et TAB) au début de la
ligne.

4.12 EXERCICE Supprimer de chaque ligne de toto les caractéres blancs (SPC et TAB) au début et a la
fin de chaque ligne.

4.13 EXERCICE Supprimer les lignes vides qui se trouvent au début du fichier toto (et seulement celles
au début).

4.14 EXERCICE Remplacer la premiére occurrence de “toto” par “bobo” (la premiére dans le fichier et
non pas la premiére dans chaque ligne).

4.15 EXERCICE Sur chaque ligne supprimer le premier mot entre les accolades. Par exemple toto
contient la ligne :

{un} {deux} {trois}
qui & la sortie de votre script doit avoir la forme :

{3 A{deux} {trois}

4.16 EXERCICE Deviner quel est le résultat de la commande suivante :
echo foo | sed ’s/o*/AAA/?

Exécuter la commande pour le vérifier.

Maintenant il devait étre clair quelle sera la sortie de la commande :
echo foo | sed ’s/ox/AAA/g’
(Dans le cas contraire exécuter-la.)

REMARQUE 11 Jusqu’a maintenant la partie subst de la commande s était indépendante du motif. 11
y a deux possibilités pour réutiliser le motif entier ou les sous-motifs dans la substitution :
— Le caractére & utilisé dans subst désigne tout le motif.
— Les sous-motifs peuvent étre entourés par \ (et \). Dans ce cas la notation \n, oll n est un entier,
1 <n <9, utilisée dans subst désigne le n®™e sous-motif.

4.17 EXERCICE Essayer : sed ’s/.*/(&)/’ toto

4.18 EXERCICE Le fichier toto posséde une ligne qui contient le mot “ Prenom” que vous pouvez voir
avec grep Prenom toto. Exécuter la commande

sed ’s/\(Nom : [A-Z][a-z]*\)\(.*\)\(Prenom : [A-Z][a-z]*\)/\3\2\1/’ toto

et vérifiez comment elle a agi sur cette ligne.

4.19 EXERCICE Remplacer dans toto chaque occurrence d’une suite de chiffres “o” par “item « : 7.

4.20 EXERCICE Ecrire une commande sed qui, utilisée comme un filtre, simule la commande basename
de bash. Par exemple,

echo ’/usr/local/bolo’ | wotre_commande_sed
et
echo ’/usr/local/bolo/’ | wotre commande sed

donneront & la sortie : le mot “bolo”.

