Conception Formelle : Module Modelisation et

Vérification

Cours

Alain Griffault

Master 1 Informatique
Université Bordeaux 1
2007-2008
g

L1

0 Formal methods : why, who, what
@ Some facts
@ Some remarks and ideas

© Formal methods : a survey

© The ALtaRICA formalism
@ The ALTARICA project
@ The ALTARICA language

O Validation and Verification
@ Dicky's logics
@ ALTARICA Checker : ARC and acheck

© The ALTARICA semantic
@ The methodology

0 Formal methods : why, who, what
@ Some facts
@ Some remarks and ideas

The bank of New-York (1985)

On November, 21, an integer (coding the different government
securities issues involved in transactions) increments from 32768 to
0.

The bank of New-York (1985)

On November, 21, an integer (coding the different government
securities issues involved in transactions) increments from 32768 to
0.

Consequences
@ More than 2 days without services.
@ The bank had to borrow 24 billion USD from the New York
Fed.

@ The Bank of New York was out of pocket about 5 million
USD, to pay interest on the money it had to borrow that
Thursday.

The ATT crash (1990)

Facts
A patch on January, 15

switch(i) {
case 1 : functionl1(); break;
case 2 : function2(); // a forgotten break;
default: defaultfunction();

}

for better performances, was used during 9 hours.

The ATT crash (1990)

Facts
A patch on January, 15

switch(i) {
case 1 : functionl1(); break;
case 2 : function2(); // a forgotten break;
default: defaultfunction();

}

for better performances, was used during 9 hours.

| \

Consequences
@ 75 million phone calls across the US went unanswered.

@ American Airlines estimated this error cost it 200,000
reservations.

@ The reputation of AT&T was damaged. g

The Pentium’s Bug (1994)

@ June : Thomas Nicely, an American professor of mathematics,
discovered that the calculus 1/824633702441.0 is erroneous.

@ October 30 : He concluded that there is a bug in the floating
point unit after he had eliminated all other likely sources of
error. He send a mail to Intel.

@ November 7 : An error in a lookup table was discovered.

The Pentium’s Bug (1994)

@ June : Thomas Nicely, an American professor of mathematics,
discovered that the calculus 1/824633702441.0 is erroneous.

@ October 30 : He concluded that there is a bug in the floating
point unit after he had eliminated all other likely sources of
error. He send a mail to Intel.

@ November 7 : An error in a lookup table was discovered.

Consequences

@ Intel acknowledged the bug but claimed that it was not serious
and would not affect most users. Intel offered to replace
processors to users who could prove that they were affected.

@ On December 20, 1994 Intel offered to replace all flawed
Pentium processors, in response to mounting public pressure.

@ Intel and AMD now publish reports showing theirs arithmetic L"I
algorithms and their proofs.

The Ariane 5 rocket (1996)

@ 39 seconds after launch, the rocket self destructs.

@ 36.7 seconds after launch, a conversion from a 64-bit format
to a 16-bit format produces an overflow error.

Normally, conversions are protected by extra lines of code.
Sometime, due to physical knowledge, no protection are done.
This code was exactly the same than the one in Ariane 4.
Unluckily, Ariane 5 was a faster rocket than Ariane 4. ..

Two computers, but the same code, and so the same bug. ..

¢ © 6 ¢ ¢ ¢

This function is not required for Ariane 5, but was maintained
for commodity. . .

L1

The Ariane 5 rocket (1996)

@ 39 seconds after launch, the rocket self destructs.

@ 36.7 seconds after launch, a conversion from a 64-bit format
to a 16-bit format produces an overflow error.

Normally, conversions are protected by extra lines of code.
Sometime, due to physical knowledge, no protection are done.
This code was exactly the same than the one in Ariane 4.
Unluckily, Ariane 5 was a faster rocket than Ariane 4. ..

Two computers, but the same code, and so the same bug. ..

¢ © 6 ¢ ¢ ¢

This function is not required for Ariane 5, but was maintained
for commodity. . .

v
Consequences

@ Cluster mission : 500 million USD.

L1

@ Ariane 502 : 1 year and 4 months later.

Therac-25 accidents (1982-1987)

@ 1982 : The Therac-25 delivers photons or electrons at various
energy levels. EACL said that Therac-25 is “easy to use”.

@ June 1985 : for a treatment to the clavicle area, the patient
said “You burned me.”. . .engineers said “Impossible”.

@ July 1985, new accident. A suspected transient failure in a
micro-switch is corrected. The patient died on November
1985.

@ December 1985 : new accident. AECL writes : ". . .this
damage could not have been produced by the Therac-25."

@ March 1986 : new accident. AECL engineers suggested an
electrical problem. The patient died five months after.

@ April 1986 : new accident. A race condition bug is reproduced.
The soft is modify. The patient died three weeks after. g

P 10097 - iAavnsr ~erirdAarm+ NlaAawry ki AivAa +A~ clhavAA

Therac-25 accidents (1982-1987)

Consequences

@ February 1987 : The machine was recalled for extensive design
changes, including hardware safeguards against software

errors.
@ The first software responsible for the death of four or more

persons.
v

Limits of traditional design methods

Cost of testing.
Different interpretations of usual words — UML.

Ambiguity if semi-formal methods (# semantics for UML).

Design patterns for POO are good, but event or reactive
programming are more difficult and there are no “pattern”.

UML (RdP, ST, MSC), but how composition of a RdP and a
MSC is done ?

Adding functionalities without regression is a difficult task.

(4

(]

New trends and recommendations

@ Common Criteria for Information Technology Security
Evaluation.
@ Common Criteria Assurance Levels has seven levels.

© Functionally Tested.

© Structurally Tested.

© Methodically Tested and Checked.

© Methodically Designed, Tested and Reviewed.
© Semi-formally Designed and Tested.

Q@ Semi-formally Verified Design and Tested.

@ Formally Verified Design and Tested.

@ Today, only one product at level 5!

@ Mandatory for big company which require more and more to
their subcontractors, causing a snowball effect for 3 years.

L1

More examples

Some URLs

http://catless.ncl.ac.uk/Risks
http://www.zdnet.co.uk/toolkits/disasterrecovery/

ATT : http://catless.ncl.ac.uk/Risks/1.31.html#subj4
Pentium : http://www.trnicely.net/#PENT

Ariane : http://sunnyday.mit.edu/accidents/Arianebaccident
Therac 25 : http://courses.cs.vt.edu/ cs3604/1ib/Therac_25

ITSEC and EAL : http://www.cesg.gov.uk/site/iacs/

L1

© Formal methods : a survey

Formal method concepts

Goal and approach

@ Being able to reason about software and systems to determine
their behavior and control.

@ Systems are mathematical objects.

L1

Formal method concepts

Goal and approach

@ Being able to reason about software and systems to determine
their behavior and control.

@ Systems are mathematical objects.

V.
Process

o Getting a formal model of the software or system.

@ Analyze the model with an adequate formal techniques.

@ Translating the results of the models to real systems.

A\

L1

Formal method concepts

Goal and approach

@ Being able to reason about software and systems to determine
their behavior and control.

@ Systems are mathematical objects.

<

Process

o Getting a formal model of the software or system.
@ Analyze the model with an adequate formal techniques.

@ Translating the results of the models to real systems.

o

Problems

@ |s the model realistic and correct ? validation.

@ Can we verify all models? decidability.

@ Can we always translate results ? abstraction I-‘.I

Critical systems

Formal methods : For who ?

For economic reasons, the extra work due by formal techniques
implies that only designers and/or developers of complex and/or
critical systems are looking for formal techniques.

L1

Critical systems

Formal methods : For who ?

For economic reasons, the extra work due by formal techniques
implies that only designers and/or developers of complex and/or
critical systems are looking for formal techniques.

Formal methods : For what ?

| \

A system is said critical when either :

@ The lives of people is tied to its effective functioning. This is
the case of embedded software for the transport (air, train,
car, bus ...), controllers systems (nuclear power plants,
medical equipment .. .).

@ The economic cost of a failure is catastrophic. This is the case
of software made in silicon to be produced in very large
amounts (appliances, phones .. .).

L1

Survey of formal methods

Theorem prover

@ Automated Theorem Proving (ATP) deals with proofs as in
mathematics.

@ ATP tools are interactive, and help the user to construct a
certified proof.

@ Hardware verification is the largest industrial application of
ATP.

@ Not well suited for reactive systems.

Some tools

@ Coq (INRIA France)
@ Isabelle (Larry Paulson) Cambridge.
@ ACL2 (Matt Kaufmann and J Strother Moore) Austin.

° ... L1

Survey of formal methods

Abstract interpretation

@ Transforming a concrete problem in a more simple abstract
model, in which the proofs will be easier to make.

@ ‘“counting modulo 9" is an example of abstract interpretation.

o (Mc = ¢)= (MaF 4). /

@ PolySpace, Astree (P. Cousot) France

@ BLAST : Berkeley Lazy Abstraction Software Verification Tool
(Henzinger)

@ SLAM : The Software, Languages, Analysis and Model
checking (Microsoft).

Survey of formal methods

Domain Specific Languages

@ A language with primitives dedicated to application type.

@ A compiler to a classical language. (C; ADA).

4

Some tools

@ XML, HTML, LaTeX to produce texts
@ YACC, LEX to produce parsers and compilers.

@ Languages for protocols, drivers.
@ Esterel for real time software. (G. Berry) France

Survey of formal methods

Model checking

@ Tools that can automatically decide if a model M satisfies a
logical property ¢.
@ “Validation” is necessary.

@ State explosion problem.

4

Some tools

o CESAR, MEC, EMC (1985-1995)
o SMV, NuSMV, SPIN, StateMate
@ Uppaal, Kronos

@ Tina, PIPN,

o ...

A\

Survey of formal methods

Refinement and implementation

@ Allows, in a number of steps more or less important to
transform a specification to an implementation by preserving
at each stage the essential properties of the system.

@ Each step has to be prove, refinement often use a theorem
prover.

Some tools

@ Z (J. R. Abrial) Oxford, GB
@ B, Event- B (J. R. Abrial) Lausanne

o ...

L1

Survey of formal methods

Tests generation

o Generating test sequences from a model of the specification.

o Tests are relatives to specific goals.
@ Conformity tests are used to validate the real system.

@ Interoperability tests are used to validate the real system in an
open context.

4

Some tools

@ TGV (T. Jéron) Rennes, France
° ...

A\

L1

Survey of formal methods

Stochastic systems

@ Markov chains and stochastic processes add probability to
events.

@ To compute the probability that an event occurs.

@ To compute witch elementary failures are involved in such an
event.

@ Reliability and safety analysis domain.

<

Some tools

@ Aralia (A. Rauzy) France.

o ...
V.

L1

Life cycle and formal methods

Recipe

Document;
Confidence

Specifications
Requirements

Formal Design

Architecture design

Tests generation
Formal model
\ \Logntnl specificat my

tests
Tests suite

Model checking|

e

N

Data design
Formal model Tests of modulesj
Abstract data)

S/
Domain Specific Languagps
Codes generation

N\
Tmplementation L etation
C, ADA code [)Pstrect nterpretatio
. Proofs
Certified code

The course : formal design

Specifications
Requirements

Formal Design

Architecture desigm Test
Model checking Formal model —
Logical speciﬁcatioy

efinement

L1

© The ALtaRICA formalism
@ The ALTARICA project
@ The ALTARICA language

The ALTARICA project

Goals

i
L -

AltaRica Descriptions

i)

node aComponent
flow ...
state ...
trans....

edon

A

Ay

/ Boolean Formulae
— M@:

Transition Systems

<

The ALTARICA project

A brief story of the project

@ 97/99 : definition of the language and first prototype.

Academics LaBRI and LADS.
Companies Dassault, Renault, Total, Schneider, IPSN.

@ Today few tools and numerous users.
OCAS ArtaRICA Dassault (simulation and Fault Tree)
SIMFIA V2 Airbus (simulation and Fault Tree)
AvrraRica DF A. Rauzy (stochastic and Fault Tree)
arc, mec 5 LaBRI (semantic and verification).
T_ArtaRIica (IRCCyN).
ArraRIcA«Lustre (European projects with CERT ONERA).
ArLTARICA + Abstract Data Types (ACI Projet Persee).

4

The ALTARICA model of calculus

Constraint automata

@ a finite set of state variables 5,

@ a finite set of flow variables ?
@ a finite set of events E,
°

a set of transitions :
G F) = 5:=0(,f)

G(3,f) is a guard (ie a boolean formula) and e € E,

an assertion (invariant) A(S, f),

a partial order on E to define priorities.

L1

Fundamental concepts of ALTARICA

Modular and compositional

@ Hierarchy (a tree).

@ Visibility of components.
® Leaves :

o Difference between flow and state variables.
@ Guarded transitions with post-condition.
@ An assertion binding flow and state variables.

@ Interaction between components :

o An assertion binding all visible flow and state variables.
@ Generalized synchronization vectors.
@ Priorities between events.

@ Bisimulation.

The hierarchy preserves the bisimulation relation. I.‘.I

The minimal node and the € event

node Minimal
edon

idie=true |) (

#

Syntax

The minimal node and the € event

node Minimal
edon

4

i
_idle=true) 0

A\

#

The minimal node and the € event

Syntax

node Minimal
edon

The semantic

| \

idie=true |) (

The € transition

| A

In all ALTARICA components, the transition
True |- € —>;
is implicit.

L1

#

Guarded transition with post condition

A FIFO

node FIFO_V1
state nbMessages : [0,2]; init nbMessages:=0;
event put, get;

trans
nbMessages<2 |- put -> nbMessages:=nbMessages+1;
nbMessages>0 |- get -> nbMessages:=nbMessages-1;
edon

<

L1

#
#
#

Guarded transition with post condition

Another equivalent FIFO

node FIFO_V2
state nbMessages : [0,2]; init nbMessages:=0;
event put, get;

trans
true |- put -> nbMessages:=nbMessages+1;
true |- get -> nbMessages:=nbMessages-1;
edon

4

J Ll

#
#
#

Flow variables and assertion

node Switch
state on : bool : public;
init on := true;
flow f1, f2 : [0,1];
event push;

trans true |- push -> on := “on;
assert on => (f1=£f2);
edon

L1

Flow variables and assertion

Computing the semantic

(Parallel Constraint
event assignments | resolution

K—)states —flow

Current
configuration

L1

Flow variables and assertion

The semantic

on=false,f1=0,f2=1
on=falsg,f1=1,f2=0
on=falsef1=1f2=1

on=false,f1=0,f2=0

=

ush \push %u%ush >ush ush

on=true,f1=0,f2=0
on=true,f1=1f2=1

#
#

Exercise : Flow variables and assertion

node Generator
flow plus, minus : [0,1];
state on : bool : public;

init on := true;

event failure, repair;

trans on |- failure -> on := false;
“on |- repair -> on := true;

assert plus = 1;
on = (minus = 0);

edon

L1

Exercise : Flow variables and assertion

on=false,plus=1,minus=1)()

< (repai r)> (failure)

on=true,plus=1,minus=0) 0

#
#

Exercise : a lamplight

node Lamplight
flow f1, f2 : [0,1];
state on, ok : bool;
init ok := true;
event reaction;
trans
ok & (f1=1&f2=1) |- reaction -> ok:=false,
on:=false;
ok & (on=(f1=f2)) |- reaction -> on:="on;
edon

L1

Exercise : a lamplight

The semantic

B

on=false,ok=true,f1=1,f2=1

on=false,ok=true,f1=0,f2=1
U f:

on=false,ok=fasef1=0,2=0
on=false,ok=false,f1=0,2=1
on=false,ok=falsef1=12=0
on=false ok=falsef1=1,2=1

on=false,ok=true,f1=0,f2=0

eiitizo 20
(reaction) (reaction)

(reaction)

on=true,ok=truef1=0,{2=0 | D

on=true,ok=true,f1=0,f2=1 .
on=trueok=truefi=12=0 |2 0

#
#
#
#
#
#
#

Hierarchy and asynchrony

A first electrical circuit

A circuit links a switch, a generator and a lamplight.
node CircuitVil
sub G : Generator;
S : Switch;
L : Lamplight
assert S.fl1 = G.plus;
L.f1 = S.£2;
L.f2 = G.minus;
edon

L1

Hierarchy and asynchrony

The semantic : state and flow variables

node CircuitVi1

flow

G.plus : [0,1];
G.minus : [0,1];
S.f1 : [0,1];
S.
L.

f2 : [0,1];

f1 : [0,1];
L.f2 : [0,1];
state
G.on : bool;
S.on : bool;
L.on : bool;
L.ok : bool;

init G.on := true, S.on := true, L.ok := true; Isl

Hierarchy and asynchrony

The semantic : assertion

assert

S.f1 = G.plus;

L.f1 = S.£2;

L.f2 = G.minus;

G.plus = 1;

G.on = G.minus = 0;

not S.on or S.f1 = S.f2; |

L1

Hierarchy and asynchrony

The semantic : events and transitions

event
/* 1 %/ °<$,G.repair,S.$,L.$>7,
/* 2 %/ °<$,G.$,S.$,L.$>7,
/* 3 x/ ’<$,G.$,S.$,L.reaction>’,
/* 4 %/ °<$,G.failure,S.$,L.$>7,
/* 5 x/ °<$,G.$,S.push,L.$>’;

trans

true [-°<$,G.$,S.$,L.$>° ->

G.on |-°<$,G.failure,S.$,L.$>°—> G.on:=false;
not G.on|-’<$,G.repair,S.$,L.$>’ -> G.on:=true;
true |-°<$,G.$,S.push,L.$>’ -> S.on:=not S.on;

L.ok andL.f1 = 1 and L.f2 =1
|-°<$,G.$,S.$,L.reaction>’->L.on:=false,L.ok:=falsej;
L.ok and L.on = L.f1 = L.£f2 ISI
|-°<$,G.$,S.$,L.reaction>’->L.on:=not L.on;

Hierarchy and asynchrony

#
#
#
#
#
#
#
#
#
#
#
#
#
#

Hierarchy and synchronization

A second electrical circuit

node CircuitV2

sub G : Generator;
S : Switch;
L : Lamplight
state safe : bool; init safe := false;
event begin, repair, end;
trans “safe & "G.on |- begin -> safe := true;
safe |- repair ->;
safe & G.on |- end -> safe := false;

sync <repair, G.repair>;
assert “safe => (S.f1 = G.plus);
safe => (S.f1 = 0);

L.f1 = S.£2;

L.f2 = G.minus; I;I

edon

Hierarchy and synchronization

The semantic : state and flow variables

node CircuitV2

flow G.plus : [0,1];
G.minus : [0,1];
S.f1 : [0,1];
S.f2 : [0,1];
L.f1 : [0,1];
L.f2 : [0,1];

state safe : bool;
G.on : bool;
S.on : bool;
L.on : bool;
L.ok : bool;

init safe:=false, G.on:=true, S.on:=true, L.ok:=tru%;

L1

Hierarchy and synchronization

The semantic : assertion and events

assert safe or S.fl1 = G.plus;
not safe or S.f1 = 0;

L.f1 = S.£2;
L.f2 = G.minus;
G.plus = 1;

G.on = G.minus = 0;

not S.on or S.f1l S.f2;

event /* 1 */ ’<end,G.$,S.$,L.$>’,
/* 2 x/ ’}<repair,G.repair,S.$,L.$>’,
/* 3 */ ’<$,G.$,S.3,L.%>’,
/* 4 */ ’<begin,G.$,S.$,L.$>’,
/* 5 %/ ’<$,G.$,S.$,L.reaction>’,
/* 6 x/ ’<$,G.failure,S.$,L.$>’,
/x T

*/ 7<$,G.$,S.pUSh,L.$>7; L01

Hierarchy and synchronization

The semantic : transitions

trans
true |- ’°<$,G.$,S.$,L.$>° —>;
G.on |- ’°<$,G.failure,S.$,L.$>’ -> G.on:=false;
true |- ’<$,G.$,S.push,L.$>’ -> S.on:=not S.on;

safe and G.on|-’<end,G.$,S.$,L.$>’-> safe:=false;
not G.on and safe
| -’<repair,G.repair,S.$,L.$>’-> G.on:=true;
not safe and not G.on
|-’<begin,G.$,5.$,L.$>’-> safe:=true;
L.ok and L.f1 =1 and L.f2 = 1
[-°<$,G.$,S.$,L.reaction>’-> L.on:=false,L.ok:=false;
L.ok and L.on = L.f1 = L.f2
[-°<$,G.$,S.$,L.reaction>’-> L.on:=not L.on;

L1

Hierarchy and synchronization

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

Exercise : Are these models valid ?

Exercise : Are these models valid ?

A loop of reactions in the first model

‘ on=truel X | S12=1 L f1=1L.£20

‘ on=true X | S2-0L 11=0,L 12=0 ‘ ‘ on=falseL okt G Sf251L11=1L 120 ‘

(Lreaction) (Spush) (Lreaction)

(Lresction) ‘ Goon=true,Son=faise,L on=false,L.ok=irue,G.plus=1,G minus=0§f1=1,82=0 11=0L 120

oL

on=falsel

| S12=1 L f1=1L.£20 ‘

L1

#
#
#
#
#

Exercise : Are these models valid ?

A correction
node CircuitV1_0K
sub G : Generator;
S : Switch;
L : Lamplight
assert S.fl1 = G.plus;
L.f1 = S.f2;
L.f2 G.minus;
// the switch must be oriented
(s.f2=1) => S.on;
edon

L1

Priority

A random scheduler

Consider a scheduler which takes randomly jobs in three different
FIFO representing pool of jobs.

node Pool0fJobs
state nbJobs : [0,2] : public;
init nbJobs := 0;
event put, get;

trans
true |- put -> nbJobs := nbJobs + 1;
true |- get -> nbJobs := nbJobs - 1;

edon

node SchedulerRandom
sub PJ1, PJ2, PJ3 : PoolOfJobs;

edon I;I

L1

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

Priority

A scheduler with priorities

Jobs in PJ1 must be done before jobs in PJ2 and so on. ..

node SchedulerPriority
sub PJ1, PJ2, PJ3 : PoolOfJobs;
event runl, run2, run3;
trans true |- runl -> ;
PJ1.nbJobs=0 |- run2 -> ;
PJ1.nbJobs=0 & PJ2.nbJobs=0 |- run3 -> ;
sync <runl, PJl.get>;
<run2, PJ2.get>;
<run3, PJ3.get>;

edon

L1

Priority

Semantic of the priority scheduler

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

Priority

A scheduler using the priority concept

node Scheduler
sub PJ1, PJ2, PJ3 : PoolOfJobs;
event runl > run2;
run?2 > run3;

trans true |- runl -> ;
true |- run2 -> ;
true |- run3 -> ;

sync <runl, PJl.get>;
<run2, PJ2.get>;
<run3, PJ3.get>;

edon

L1

Priority

Semantic of the scheduler with priority

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

Broadcast

A Teacher
A teacher speaks and gives papers to students during a course.

node Teacher
state present : bool;
init present := false;
event in_out, speaks, paper;
trans true |- in_out -> present:="present;
present |- speaks, paper —> ;
edon

Exercise : semantic of this teacher.

L1

Broadcast

Semantic of the Teacher

present=true [()) (paper)) (speaks)
<(i n_out)> (in_out)

present=false) 0

#
#

Broadcast

A student some times comes without its pencil.

node Student
state present, havePencil : bool;
init present:=false, havePencil:=true;
event in_out, listen, write;

trans present |- in_out -> present:=false,

havePencil:=true;

“present |- in_out -> present:=true,
havePencil:=true;

“present |- in_out -> present:=true,
havePencil:=false;

present |- listen -> ;

present & havePencil |- write -> ;

edon I.‘.I

Semantic of the Student

present=true,havePencil @ (listen)
<(i n_out)> (in_out)

present=fal se,havePencil=true > 0

<(i n_out) > (in_out)
present=true,havePencil=true @ (write)) (listen)

#
#
#

Broadcast

A very difficult course

3 students and the teacher brings only 2 papers.

node CoursesDifficult
sub T : Teacher;
S1, S2, S3 : Student;
sync
<T.speaks,S1.listen,S2.1listen,S3.1listen>;
<T.paper,S1.write,S2.write>;
<T.paper,S1.write,S3.write>;
<T.paper,S2.write,S3.write>;
edon

Exercise : semantic of this difficult course.

L1

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

Broadcast

A course with priority (1)

node CoursesPriority
sub T : Teacher;
S1, S2, S3 : Student;
event pri123 > {pri12,pri3,pr23};

pri2
pri3
pr23
pr_0
stil2
st13
st23
st_0
trans

>
>
>
<
>
>
>
<

{pr1, pr2};
{pr1, pr3};
{pr2, pr3l;
{pr1, pr2, pr3};
{st1, st2};
{st1, st3};
{st2, st3};
{st1, st2, st3};

true |- pri123,pri12,pri13,pr23,prl,pr2,pr3,pr_0 -> ;

true |-

st12,st13,st23,stl1,st2,st3,st_0 —> ;

L1

Yy

Broadcast

A course with priority (2)

sync <prl23,T.speaks,S1.listen,S2.listen,S3.listen>;
<prl12, T.speaks,S1.listen,S2.listen>;
<prl3, T.speaks,S1.listen,S3.listen>;

.paper,S3.write>; ‘
.paper>; I:I

<pr23, T.speaks,S2.listen,S3.listen>;
<prl, T.speaks,S1.listen>;
<pr2, T.speaks,S2.listen>;
<pr3, T.speaks,S3.listen>;
<pr_0, T.speaks>;
<st12, T.paper,Sl.write,S2.write>;
<st13, T.paper,Sl.write,S3.write>;
<st23, T.paper,S2.write,S3.write>;
<stl, T.paper,Sl.write>;
<st2, T.paper,S2.write>;
<st3, T

T

<st_O,

Broadcast

Semantic of the scheduler with priority

R — Vﬁﬂr 1]
e - =
: J1a

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

Broadcast

A course using the concept of broadcast

node Courses
sub T : Teacher;
S1, S2, S3 : Student;
sync
<T.speaks,S1.listen?,32.1listen?,S3.1listen?>;
<T.paper,Sl.write?,S52.write?,S3.write?> <=2;
edon

L1

Broadcast

Semantic of the scheduler with broadcast

E— — =
— =

>\

1> P
s 7

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

Visibility

Default value in bold.

State visibility

Keyword || Me Brother | Father (Grand-father)*
Guard
Assignment
private Assertion
Guard
Assignment Guard
parent Assertion Assertion
Guard
Assignment Guard Guard
public Assertion Assertion | Assertion

Visibility

Default value in bold.

Flow visibility

| Keyword || Me | Brother | Father | (Grand-father)* |
Guard
private Assertion
Guard Guard
parent Assertion Assertion
Guard Guard Guard
public Assertion Assertion | Assertion

Visibility

Default value in bold.

Event visibility

| Keyword || Me | Brother | Father | (Grand-father)* |
Transition
parent Synchro Synchro
Synchro
Transition if not previously
public Synchro Synchro | in one synchro

Declaration

Constant and Domain

Const LastlLevel = 3;
Domain Levels = [0,LastLevel];

Comment

| A\

// A comment that stops at the end of the line

/* A 5 lines comment.
* No imbrication

*

*

*/

A\

L1

Declaration

Initial values of states

node A
state a : bool;
edon
node B
sub Al : A;
state b : bool;
init b:= true, Al.a := false;
edon
node C
sub A2 : A;
Bl : B;
state ¢ : bool;

init A2.a := true, Bl.b := false, Bl.Al.a

edon

:= true;

O Validation and Verification
@ Dicky's logics
@ ALTARICA Checker : ARC and acheck

Informal definitions

Validation

A model is valid if it looks like the system. The model is a good
candidate to be the real system.

How to decide if a model is valid

@ The model must satisfy all properties that define a good
candidate. ..
but there is no such list of properties.

@ Minimal list of properties depends on the application type.

@ Simulation is considered as a good way to validate a system.

o

Validation ensures that “you built the right thing”.

Informal definitions

Verification

A validate model is verify if it satisfies all requirements.

How to decide if a model is verify

@ The model must satisfy all requirements describe in the
specification document.

@ Simulation is not considered as a good way to verify a critical
system.

@ Model checking is considered as a good way to verify a critical
system.

Verification ensures that “you built it right”.

L1

Model checking

@ The system is represented by a model M.

@ Requirements are described as a logical property ¢.

@ A model-checker is a tool that takes as input M and ¢, and
automatically gives as output either M = ¢ or M |~ ¢. In
that second case, it can give an explanation (a counter
example).

Model checking

Theoretical limits

M = ¢ must be decidable so (M, ¢) must be in a certain class of
models and formula.

@ Finite systems : all formula in behavior logics are decidable.
— numerous academic tools.

@ Infinite systems : very few formula in behavior logics are
decidable. A lot of results for specific infinite systems
(automata with counters, with clocks, with FIFO. .).
— numerous scientific papers and few tools.

L1

Model checking

Two main classes of property.

Safety (reachability) property

@ Something is impossible. (a configuration is not reachable)

@ Ex : After an event, an other event is possible.

o If a safety property is not satisfy, the counter example is a
finite word (a finite execution of the system).

Safety properties usually state that something bad never happens.

Liveness property

@ Something is always possible.

@ Ex : An event is always followed in a finite time by an other
event.

o If a liveness property is not satisfy, the counter example is an
infinite word (an infinite execution of the system). L:I

I vvAnmAce memimmrdt i me bkt m Flhhat cmammmrt i m e e~ A LA~ | o~

Model checking

Practical limits

@ Depends on computer memory when you use an explicit
representation of the reachability graph.

@ Depends on computer velocity when you use some implicit
representation of the reachability graph (BDD, DBM, ...).

@ The difficulty of the modelization task.
@ The difficulty to be sure that the model is valid.
@ The difficulty to write logical property.

— numerous results in algorithms, data structures and in design

methods.)

Formalisms

Formalisms to describe systems

@ Petri nets (numerous variations).

@ State-charts.

Message Sequence Charts (MSC).

Data flow diagrams.

Process algebra (CCS, CSP, LOTOS . ..)

Domain Specific Language (Lustre, Esterel, Promela, SMV,
ALTARICA, ...)

)
)
)
)

Formalisms

Behavior logics

@ CTL (Computational Tree Logics) and the extension CTL*.

@ LTL (Linear Time Logics) : The most popular, a subset of
CTL*.

@ HML (Hennessy-Milner Logics).

@ p—calculus : a very expressive logics.

@ Dicky's logics : a logics based on sets of states and sets of
transitions.

Choices for this courses.

ALTARICA finite automata

All variables must have finite domains. No integer, no real, ...

A1LTARICA Checker : ARC and acheck

The Dicky's logics with non alternating pu—calculus.

Another tool :
ALTARICA Checker : Mec V

The Park p—calculus.

Dicky's logics : part 1

® A logical property of an automaton can be seen as the set of
all entities that satisfy the formula.

@ This property can be checked by putting some marks during a
depth-first-search algorithm on the reachability graph.

@ Conjunction (resp. disjunction) of logical properties
corresponds to intersection (resp. union) of sets.

@ Two kinds of properties for a graph G(V, E) : state properties
(S € V) and transition properties (T C V x E x V).

o

Dicky's logics : part 1

For each automaton :

@ The empty set : ()
® The set of all states : any_s

® The set of all transitions : any_t

@ The set of all initial states : initial

L1

Dicky's logics : part 1

Set operators

F1, F, are two formula of same type (state or transition)
o [F1and F] = [FA & F] = [A]N]F]
o [Fior Rl =[F | F]=[A]YIFI]
o [A - Rl =[A]\I[F]
S is a state formula and T a transition formula.
@ [not S] = [any-s] \ [S]
® [not T] = [any-t] \ [T]

Dicky's logics : part 1

src, tgt, rsrc and rtgt operators

S is a state formula and T a transition formula.

@ src(T) is a state formula and [src(T)] = {s|3(s,e,t) € T}
(states that are source of a transition of T)

@ tgt(T) is a state formula and [tgt(T)] = {t|3(s,e,t) € T}
(states that are target of a transition of T)

@ rsrc(S) is a transition formula and
[rsrc(S)] = {(s,e, t)|s € S, } (transitions having their source
in S)

@ rtgt(S) is a transition formula and
[rtgt(S)] = {(s, e, t)|t € S, } (transitions having their target
in S)

Dicky's logics : Exercise 1

What is the meaning of these formula ?

@ any.s — src(any-t)
@ src(rtgt(S)N T)
o tgt(rsre(S)N T)

<

Compare these sets

o src(rsrc(S)) with S rsrc(sre(T)) with T
o tgt(rtgt(S)) with S rtgt(tgt(T)) with T
@ A—B=10 AN (any.s—B) =1

o tgt(T1)N (any-s — src(T2)) =10
o rsrc(tgt(T1))N (T2) # 0

Dicky's logics : part 2

reach, coreach and loop operators

S is a state formula and T, Ty, T, are transition formula.

@ reach(S,T) is a state formula that computes all reachable
states starting from S and using only transitions in T.

@ coreach(S,T) is a state formula that computes all states

from them, it is possible to reach S by using only transitions
in T.

@ loop(Ti,T») is a transition formula that compute the strongly
connected components (SCC) T3 defined by T3 C T, and
T3N Ty 75 0.

L1

Dicky’s logics : Exercise 2

What is the meaning of these properties ?

@ reach(S;, anyt - T)NS, =10 #+0
® any s - coreach(any s — src(any.t), anyt) =0 #0
@ loop(7,T) =10 #0
@ any_ t - loop(rsrc(initial), any.t) =0 #0
@ loop(T3, reach(tgt(Ty), anyt - T3)) =10 # @)

@ acheck is a batch ALTARICA model checker.

@ acheck takes as input two files : first for the ALTARICA
model and second for the list of properties to check.

@ User must map properties to ALTARICA node.
@ All output commands can be redirected to files.

Due to state and flow variables, set of states in Dicky'logics are
replaced by set of configurations.

L1

Acheck

Predefine properties

In addition to Dicky's constants (), any_s, any_t and initial,
acheck computes these properties for each nodes.

@ epsilon : set of transitions where each component does e.

@ self : set of transitions where target configuration is equal to
source configuration.

® self_epsilon : define by epsilon N self.

® not_deterministic : set of non-determinitic transitions,

more formely define as the set
{(s,e,t1) € E|Itr € V,(s,e,t2) € E}.

L1

Acheck

User's define properties
with Switch, CircuitV1l, Scheduler do

deadlock := any_s - src(any_t - self_epsilon);
notSCC := any_t - loop(any_t, any_t);
done

with CircuitV1l, CircuitV2, CircuitV1_0OK do

bug [L.on & “L.ok];

notControl (label G.failure | label L.reaction

| epsilon) - self_epsilon;

// IR means infinite reactions

IR := loop(notControl, notControl);
done
with SchedulerRandom, SchedulerPriority, Scheduler do
bug := rsrc(tgt(label PJ2.put)) & label PJ3.get;

done) I;I

Acheck

acheck operators

In addition to Dicky's operators, acheck implements :

@ trace(S;, T,Sy) is a set of transitions (not a logical formula)
representing one of the shortest path from S; to S, using only
T transitions.

@ project(S, T, ’aNewNodeName’, booleanValue) or
project (S, T, ’aNewNodeName’, booleanValue, aNode)
builts, with all transitions in T having their origin in S, a new
ALTARICA node that respect the aNode declaration

trace is very usefull to understand counter examples and project
to built controller of systems.

<

L1

Acheck

acheck output commands
with Switch, CircuitV1l, Scheduler do

show(all) > ’$NODENAME.prop’;
test(deadlock,0) > ’$NODENAME.res’;
test (notSCC,0) >> ’$NODENAME.res’;
done
with CircuitV1l, CircuitV2, CircuitV1_0K do
quot () > ’$NODENAME.dot’;
tr_IR := trace(initial, any_t, src(IR));
ce_IR := reach(src(tr_IR), tr_IR | IR);
dot(ce_IR, tr_IR | IR) > ’$NODENAME-IR.dot’;
show(tr_IR, ce_IR) >> ’$NODENAME.prop’ ;
done

b

L1

© The ALTARICA semantic

The ALTARICA model of calculus

ALTARICA constraint automata

@ S : a finite set of state variables,
o f : afinite set of flow variables,
@ E : a finite set of events,

o T : a set of transitions
G(5.f) -5 5:=05.f)
Gi(5,f) is a guard (ie a boolean formula) and e; € E,

o A(3,f) : an assertion (invariant),

@ < : a partial order on E to define priorities.

Notation : V represents all parent and public variables of AC.

L1

Semantic of guarded transitions

Post condition can be removed

ACl =< 5. f,E, T AGG, f), <g>

is equivalent to

AC?2 =<5, f,E, T2 A, f), <g>

where

for each t}(Gi, e, 0;) € T, t2(G?, e, 0;) € T?
with

G2(5,f) = GL(5, f) & IF A(0i(5,), F)

Semantic of guarded transitions

An example

node FIFO_V2
state nbMessages : [0,2]; init nbMessages:=0;
event put, get;

trans
true |- put -> nbMessages:=nbMessages+1;
true |- get -> nbMessages:=nbMessages-1;
edon

is equivalent to

node FIFO_V1
state nbMessages : [0,2]; init nbMessages:=0;
event put, get;
trans
nbMessages<2 |- put -> nbMessages:=nbMessages+1;

L1

Semantic of the partial order on events

The partial order can be removed

AC? =< 5,f,E, T2 A, f), <>

is equivalent to

AC3 =< 5,f,E, T3 A, f), <>

where

for each t?(Gj, e, 0;) € T2, t3(G3,e,0;) € T3
with

G3(5,f) = GA(5.) & (A

~G2(3,1))

e <ej

Semantic of the partial order on events

An example

node SchedulerSimple

state nbl, nb2 : [0,2];

event putl, put2; getl > get2;

trans true |- putl, put2, getl, get2 -> ;
edon

is equivalent to

node SchedulerPrioritySimple
state nbl, nb2 : [0,2];
event putl, put2, getl, get2;
trans nbl < 2 |- putl -> ;
nb2 < 2 |- put2 -> ;
nbl > 0 |- getl -> ;
nb2 > 0 & “(nbl > 0) |- get2 > ; I;I

Semantic of a hierarchy AC = (ACO, (AC1!, AC2%))

Semantic of leaves

AC =< AC11, AC2!, 50, 0, EO, TO,A(s_f), £0, v1, v_é), < Fo, Sync >
is equivalent to

AC =< AC13, AC23, 50, 0, EO, TO,A(s_f), £0, v1, v_é), < Fo, Sync >
by computing the semantic of each leaves.

Semantic of a hierarchy AC = (ACO, (AC1!, AC21))

Variables and Assertion

vV =s0, fO : {parent, public}
U s1,f1: {public}
U s2, 2 : {public}
A3, f) =A(s0, 0, vi, v2)
& A(si, 1)

& A(s2,12)

Semantic of a hierarchy AC = (ACO, (AC1!, AC2%))

Semantic of broadcast

Sync C (EOU{e} UEO?) x (E1U{e} UE1?) x (E2U {e} U E27)
is equivalent to

Sync C(E0U {e}) x (ELU {e}) x (E2U {e}) and <gsme

Semantic of a hierarchy AC = (ACO, (AC1!, AC21))

Events and partial order

E0¥" =E0 — 7(Synct, 1)
E19"¢ =E1 — 7(Sync,?2)
E29"¢ =E2 — 7(Sync?, 3)

E =Sync!
U (E0Y™ x {ACl.e} x {AC2.€})
({e} x E1™" : parent x {AC2.€})
(E17 : public x E1%"¢ : public x {AC2.€})
({e} x {ACL.e} x E2¥" : parent)
(E2™" : public x {ACl.e} x E2%" : public) I.‘.I

CcC C C C

Semantic of a hierarchy AC = (ACO, (AC1!, AC2%))

Transitions

T is the set of

<ACO.e,-,<AC1.ej,AC2.ek>>
—

AC0.G; & ACL.G? & AC2.G}
§:= (0i(s0, £0), 0(s1, 1), o (52, 2))

for all < ACO.e;, < ACl.ej, AC2.¢f >>€ E

Semantic of a hierarchy AC = (ACO, (AC1!, AC2%))

Flatten semantic

—

AC =< AC11, AC2!, 50, 0, EO, TO,A(s_f), f0, v1, v_é), < Fo, Sync >
After computing all these steps

AC =< 3,f,E, T,A(5, f),<g>

Recursively from bottom to top of the hierarchy.

@ The methodology

The first model
© Identification of all basic components by a top-down analysis.

© Choice between functionnal or architectural design.
© Choice between open or close system.

© Built of the hierarchy from bottom to top.

The process

Validation of the first model

© Topology of the reachability graph (deadlock, SCC, ...)

© Properties depending of the application (No infinite reaction,
© All events are usefull.

© Visualisation of small components.

© Simulation.

Step 1 and 2 must be repeat as long the model is not a valid one.

o

The process

Verification of the model

© Specification has to be write as a list of logical properties.
© For each property which is not satisfy, a counter example as
small as possible must be compute.

Step 1, 2 and 3 must be repeat as long the model doesn't satisfy
all its requirements.

L1

	Formal methods : why, who, what
	Some facts
	Some remarks and ideas

	Formal methods : a survey
	The AltaRica formalism
	The AltaRica project
	The AltaRica language

	Validation and Verification
	Dicky's logics
	AltaRica Checker : ARC and acheck

	The AltaRica semantic
	The methodology

