

CCS: Processes and Equivalences

Reading: Peled 8.1, 8.2, 8.5

Mads Dam

2004 Mads Dam IMIT, KTH

1

2G1516/2G1521 Formal Methods

Finite State Automata

• Coffee machine A₁:

- Coffee machine A₂:
- Are the two machines "the same"?

2004 Mads Dam IMIT, KTH

2

CCS

Calculus of concurrent processes

Main issues:

- · How to specify concurrent processes in an abstract way?
- Which are the basic relations between concurrency and nondeterminism?
- Which basic methods of construction (= operators) are needed?
- · When do two processes behave differently?
- When do they behave the same?
- · Rules of calculation:
 - Replacing equals for equals
 - Substitutivity
- · Specification and modelling issues

2004 Mads Dam IMIT, KTH

3

2G1516/2G1521 Formal Methods

Process Equivalences

Sameness of behaviour = equivalence of states

Many process equivalences have been proposed (cf. Peled 8.5)

For instance: $q_1 \sim q_2$ iff

- $-q_1$ and q_2 have the same paths, or
- q₁ and q₂ may always refuse the same interactions, or
- q₁ and q₂ pass the same tests, or
- q₁ and q₂ satisfy the same temporal formulas, or
- q₁ and q₂ have identical branching structure

CCS: Focus on bisimulation equivalence

2004 Mads Dam IMIT, KTH

4

Bisimulation Equivalence

Intuition: $\textbf{q}_1 \sim \textbf{q}_2$ iff \textbf{q}_1 and \textbf{q}_2 have same branching structure

Idea: Find relation which will relate two states with the same transition structure, and make sure the relation is preserved

Strong Bisimulation Equivalence

Given: Labelled transition system $T = (Q, \Sigma, R)$

Looking for a relation $S \subseteq Q \times Q$ on states

S is a strong bisimulation relation if whenever $q_1 S q_2$ then:

- $-\ q_1 \rightarrow^{\alpha} q_1$ ' implies $q_2 \rightarrow^{\alpha} q_2$ ' for some q_2 ' such that q_1 ' S q_2 ' $-\ q_2 \rightarrow^{\alpha} q_2$ ' implies $q_1 \rightarrow^{\alpha} q_1$ ' for some q_1 ' such that q_1 ' S q_2 '

 q_1 and q_2 are strongly bisimilar iff q_1 S q_2 for some strong bisimulation relation S

 $q_1 \sim q_2$: q_1 and q_2 are strongly bisimilar

Peled uses \equiv_{bis} for \sim

2004 Mads Dam IMIT, KTH

Weak Transitions

What to do about internal activity?

τ: Transition label for activity which is not externally visible

- $q \Rightarrow^{\epsilon} q'$ iff $q = q_0 \rightarrow^{\tau} q_1 \rightarrow^{\tau} ... \rightarrow^{\tau} q_n = q', n \ge 0$
- $q \Rightarrow^{\tau} q' \text{ iff } q \Rightarrow^{\epsilon} q'$
- $q \Rightarrow^{\alpha} q' \text{ iff } q \Rightarrow^{\varepsilon} q_1 \rightarrow^{\alpha} q_2 \Rightarrow^{\varepsilon} q' (\alpha \neq \tau)$

Beware that $\Rightarrow^{\tau} = \Rightarrow^{\varepsilon}$ (non-standard notation)

Observational equivalence, v.1.0: Bisimulation equivalence with \Rightarrow in place of \rightarrow

Let $q_1 \approx 'q_2$ iff $q_1 \sim q_2$ with \Rightarrow^{α} in place of \rightarrow^{α}

Cumbersome definition: Too many transitions $q \Rightarrow^{\alpha} q'$ to check

2004 Mads Dam IMIT, KTH

9

2G1516/2G1521 Formal Methods

Observational Equivalence

Let $S \subseteq Q \times Q$. The relation S is a *weak bisimulation relation* if whenever $q_1 S q_2$ then:

- $q_1 \rightarrow^{\alpha} q_1$ ' implies $q_2 \Rightarrow^{\alpha} q_2$ ' for some q_2 ' such that q_1 ' S q_2 '
- $q_2 \rightarrow^{\alpha} q_2$ implies $q_1 \Rightarrow^{\alpha} q_1$ for some q_1 such that $q_1 \in Q_2$

 q_1 and q_2 are observationally equivalent, or weakly bisimulation equivalent, if q_1 S q_2 for some weak bisimulation relation S

 $q_1 \approx q_2$: q_1 and q_2 are observationally equivalent/weakly bisimilar

Exercise: Show that \approx ' = \approx

2004 Mads Dam IMIT, KTH

10

Calculus of Communicating Systems - CCS

Language for describing communicating transition systems

Behaviours as algebraic terms

Calculus: Centered on observational equivalence

Elegant mathematical treatment

Emphasis on process structure and modularity

Recent extensions to security and mobile systems

- CSP Hoare: Communicating Sequential Processes (85)
- ACP Bergstra and Klop: Algebra of Communicating Processes (85)
- CCS Milner: Communication and Concurrency (89)
- Pi-calculus Milner (99), Sangiorgi and Walker (01)
- SPI-calculus Abadi and Gordon (99)
- · Many recent successor for security and mobility (more in 2G1517)

2004 Mads Dam IMIT, KTH

13

2G1516/2G1521 Formal Methods

CCS - Combinators

The idea: 7 elementary ways of producing or putting together labelled transition systems

Pure CCS:

- Turing complete can express any Turing computable function
- Value-passing CCS:
- Additional operators for value passing
- Definable
- · Convenient for applications

Here only a taster

2004 Mads Dam IMIT, KTH

14

Actions

Names a,b,c,d,...

Co-names: a,b,c,d,...

- Sorry: Overbar not good in texpoint! $\overline{a} = a$

In CCS, names and co-names synchronize

Labels I: Names ∪ co-names

 $\alpha \in Actions = \Sigma = Labels \cup \{\tau\}$

Define $\bar{\alpha}$ by:

- $-\overline{I}=\overline{I}$, and
- $\ \overline{\tau} = \tau$

2004 Mads Dam IMIT, KTH

2G1516/2G1521 Formal Methods

CCS Combinators, II

Nil No transitions

in. \overline{out} .0 \rightarrow in out.0 \rightarrow \overline{out} 0 **Prefix** $\alpha.P$

 $\bigcirc \quad \text{in} \quad \longrightarrow \quad \overline{\text{out}} \quad \bigcirc$

Buffer == in.out.Buffer **Definition** A == PBuffer \rightarrow^{in} out.Buffer $\rightarrow^{\overline{out}}$ Buffer

2004 Mads Dam IMIT, KTH

CCS Combinators, Choice

$$\begin{array}{ll} \textbf{Choice} & \textit{P} + \textit{Q} & \textit{BadBuf} == in.(\tau.0 + \overline{out}.BadBuf) \\ & \textit{BadBuf} \rightarrow^{in} \tau.0 + \overline{out}.BadBuf \\ & \rightarrow^{\tau} 0 \quad \textbf{or} \\ & \rightarrow^{\overline{out}} \textit{BadBuf} \end{array}$$

Obs: No priorities between τ 's, a's or \overline{a} 's

CCS doesn't "know" which labels represent input, and which output

May use
$$\Sigma$$
 notation: $\Sigma_{i \in \{1,2\}} \alpha_i.P_i = \alpha_1.P_1 + \alpha_2.P_2$

2004 Mads Dam IMIT, KTH 17 2G1516/2G1521 Formal Methods

Example: Boolean Buffer

2-place Boolean Buffer $Buf^2 == in_0.Buf^2_0 + in_1.Buf^2_1$

 $Buf^{2}_{0} == out_{0}.Buf^{2} +$

 $Buf^2: Empty 2-place \ buffer \\ in_0.Buf^2_{\ 00} + in_1.Buf^2_{\ 01}$

Buf²₀: 2-place buffer holding a 0 Buf²₁ == ...

Buf²₀₀: Do. holding a 1 Buf²₀₀ == out₀.Buf²₀ Buf²₀₀: Do. Holding 00 Buf²₀₁ == out₀.Buf²₁

... etc. ... $Buf_{10}^2 = ...$ $Buf_{11}^2 = ...$

2004 Mads Dam IMIT, KTH 18 2G1516/2G1521 Formal Methods

Example: Scheduler

a_i: start task_ib_i: stop task_iRequirements:

- 1. $a_1,...,a_n$ to occur cyclically
- 2. a_i/b_i to occur alternately beginning with a_i
- Any a_i/b_i to be schedulable at any time, provided 1 and 2 not violated

Let $X \subseteq \{1,...,n\}$ Sched_{i,X}:

- i to be scheduled
- X pending completion

Scheduler == $Sched_{1,\emptyset}$

$$\begin{split} & Sched_{i,X} \\ &== \Sigma_{j \in X} b_j. Sched_{i,X \cdot \{j\}}, \text{ if } i \in X \\ &== \Sigma_{j \in X} b_j. Sched_{i,X \cdot \{j\}} \\ &+ a_i. Sched_{i+1,X \cup \{i\}}, \text{ if } i \not \in X \end{split}$$

2004 Mads Dam IMIT, KTH

19

2G1516/2G1521 Formal Methods

Example: Counter

Basic example of infinite-state system

Count == Count_o

Count₀ == zero.Count₀ + inc.Count₁

 $Count_{i+1} == inc.Count_{i+2} + dec.Count_{i}$

Can do stacks and queues equally easy – try it!

2004 Mads Dam IMIT, KTH

20

CCS Combinators, Composition

Composition

P|Q

 $Buf_1 == in.comm.Buf_1$ $Buf_2 == \overline{comm.out.Buf_2}$

Buf₁ | Buf₂

 $ightarrow^{\text{in}}$ comm.Buf₁ | Buf₂ $ightarrow^{\tau}$ Buf₁ | out.Buf₂ $ightarrow^{\text{out}}$ Buf₁ | Buf₂

But also, for instance:

Buf₁ | Buf₂

2004 Mads Dam IMIT, KTH

21

2G1516/2G1521 Formal Methods

Composition, Example

 $Buf_1 == in.comm.Buf_1$

 $Buf_2 == \overline{comm}.out.Buf_2$

Buf₁ | Buf₂:

2004 Mads Dam IMIT, KTH

22

CCS Combinators, Restriction

 $\begin{array}{ll} \text{Restriction} & \text{P\L} & \text{Buf}_1 == \text{in.comm.Buf}_1 \\ & \text{Buf}_2 == \overline{\text{comm}}.\text{out.Buf}_2 \\ & (\text{Buf}_1 \mid \text{Buf}_2) \hspace{-0.5mm} \setminus \{\text{comm}\} \\ \end{array}$

 \rightarrow^{in} comm.Buf₁ | Buf₂ \rightarrow^{t} Buf₁ | out.Buf₂ \rightarrow^{out} Buf₁ | Buf₂

 $\begin{array}{l} \text{But } \textit{not.} \\ (\text{Buf}_1 \mid \text{Buf}_2) \setminus \{\text{comm}\} \\ \longrightarrow^{\text{comm}} \text{Buf}_1 \mid \text{out.Buf}_2 \\ \longrightarrow^{\text{out}} \text{Buf}_1 \mid \text{Buf}_2 \end{array}$

2004 Mads Dam IMIT, KTH

23

2G1516/2G1521 Formal Methods

CCS Combinators, Relabelling

Relabelling P[f] Buf == in.out.Buf₁

 $Buf_1 == Buf[comm/out]$ = in. \overline{comm} .Buf₁

Buf₂ == Buf[comm/in] = comm.out.Buf₂

Relabelling function f must preserve complements:

 $f(\bar{a}) = \overline{f(a)}$

And τ :

 $f(\tau) = \tau$

Relabelling function often given by name substitution as above

2004 Mads Dam IMIT, KTH

24

Example: 2-way Buffers

1-place 2-way buffer: $Buf_{ab} == a_{+}.\overline{b}_{.}.Buf_{ab} + b_{+}.\overline{a}_{.}.Buf_{ab}$

Flow graph:

LTS:

Buf_{bc} ==

 $\begin{aligned} &\text{Buf}_{ab}[c_{+}/b_{+},c/b_{-},b/a_{+},b_{+}/a_{-}]\\ &\text{(Obs: Simultaneous substitution!)}\\ &\text{Sys} = (\text{Buf}_{ab} \mid \text{Buf}_{bc}) \backslash \{b_{+},b_{-}\}\\ &\text{Intention:} \end{aligned}$

What went wrong?

2004 Mads Dam IMIT, KTH

2

2G1516/2G1521 Formal Methods

Transition Semantics

To apply observational equivalence need a formalised semantics

Each CCS expression -> state in LTS derived from that expression

Compositionality: Construction of LTS follows expression syntax

Inference rules:

$$\frac{P_1 \to^{\alpha} P_2}{P_1 \mid Q \to^{\alpha} P_2 \mid Q}$$

Meaning: For all P_1 , P_2 , Q, α , if there is an α transition from P_1 to P_2 then there is an α transition from $P_1 \mid Q$ to $P_2 \mid Q$

2004 Mads Dam IMIT, KTH

26

CCS Transition Rules

$$(\text{no rule for 0!}) \hspace{1cm} \textbf{Prefix} \hspace{0.1cm} \frac{\textbf{-}}{\alpha.P \to^{\alpha} P} \hspace{1cm} \textbf{Def} \hspace{0.1cm} \frac{P \to^{\alpha} Q}{A \to^{\alpha} Q} (A == P)$$

$$\text{Com}_{\text{L}} \frac{P \xrightarrow{\alpha} P'}{P|Q \xrightarrow{\alpha} P'|Q} \quad \text{Com}_{\text{R}} \frac{Q \xrightarrow{\alpha} Q'}{P|Q \xrightarrow{\alpha} P|Q'} \quad \text{Com} \frac{P \xrightarrow{P} P' \quad Q \xrightarrow{\bar{I}} Q'}{P|Q \xrightarrow{\tau} P'|Q'}$$

2004 Mads Dam IMIT, KTH 27 2G1516/2G1521 Formal Methods

CCS Transition Rules, II

Closure assumption: \rightarrow^{α} is least relation closed under the set of rules

Example derivation:

$$\begin{aligned} \mathsf{Buf}_1 &== \mathsf{in}.\overline{\mathsf{comm}}.\mathsf{Buf}_1 \\ \mathsf{Buf}_2 &== \mathsf{comm}.\overline{\mathsf{out}}.\mathsf{Buf}_2 \\ (\mathsf{Buf}_1 \mid \mathsf{Buf}_2) \diagdown \{\mathsf{comm}\} \\ &\to^{\mathsf{in}} \overline{\mathsf{comm}}.\mathsf{Buf}_1 \mid \mathsf{Buf}_2 \\ &\to^{\mathsf{\tau}} \mathsf{Buf}_1 \mid \overline{\mathsf{out}}.\mathsf{Buf}_2 \\ &\to^{\overline{\mathsf{out}}} \mathsf{Buf}_1 \mid \mathsf{Buf}_2 \end{aligned}$$

2004 Mads Dam IMIT, KTH

28

Example: Semaphores

Semaphore:

 $S^1 \mid S^1 \sim S^2$

Unary semaphore: p

 $S^1 == p.S_1^1$

 $S_1^1 == v.S_1^1$

Proof: Show that $\{(S^1 | S^1, S^2),$

Result:

 $(S_1^1 | S_1, S_1^2),$ $(S^1 | S^1_1, S^2_1),$

 $(S_1^1 | S_1^1, S_2^2)$

is a strong bisimulation relation

Binary semaphore:

 $S^2 == p.S^2_1$

 $S_1^2 = p.S_2^2 + v.S_2^2$

 $S_{2}^{2} == v.S_{1}^{2}$

2004 Mads Dam IMIT, KTH

2G1516/2G1521 Formal Methods

Example: Simple Protocol

Spec == in.out.Spec

Sender == in.Transmit

Transmit == transmit.WaitAck

WaitAck == ack₊.Sender + ack₋.Transmit

Receiver == transmit.Analyze

Analyze == τ .out.ack₊.Receiver + τ .ack₋.Receiver

 $Protocol == (Sender \mid Receiver) \setminus \{transmit, ack_{\downarrow}, ack_{\bot}\}$

Exercise: Prove Spec ≈ Protocol

2004 Mads Dam IMIT, KTH

30

Example: Jobshop

i_E: input of easy job

i_N: input of neutral job

i_D: input of difficult job

O: output of finished product

$$A == i_E.A' + i_N.A' + i_D.A'$$

 $A' == \overline{0}.A$

 $Spec = A \mid A$

Hammer: H == gh.ph.H Mallet: M == gm.pm.M

Jobber:

 $J == \sum_{x \in \{E, N, D\}} i_x \cdot J_x$

 $J_E == o.J$

 $\begin{array}{l} J_{N}^{-} == \underline{\overline{gh}}.\underline{\overline{ph}}.J_{E} + \overline{gm}.\overline{pm}.J_{E} \\ J_{D} == \underline{\overline{gh}}.\overline{\overline{ph}}.J_{E} \end{array}$

Jobshop ==

 $(J | J | H | M) \setminus \{gh,ph,gm,pm\}$

Theorem:

Spec ≈ Jobshop

Exercise: Prove this.

2004 Mads Dam IMIT, KTH

2G1516/2G1521 Formal Methods

Proving Equivalences

The bisimulation proof method:

To establish P ≈ Q:

- 1. Identify a relation S such that P S Q
- 2. Prove that S is a weak bisimulation relation

This is the canonical method

There are other methods for process verification:

- Equational reasoning
- Temporal logic specification/proof/model checking