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ABSTRACT. For the whole class of linear term rewriting systems and for each integer k, we define
k-bounded rewriting as a restriction of the usual notion of rewriting. We show that the k-bounded
uniform termination, the k-bounded termination, the inverse k-bounded uniform, and the inverse k-
bounded problems are decidable. The k-bounded class (BO(k)) is, by definition, the set of linear
systems for which every derivation can be replaced by a k-bounded derivation. In general, for BO(k)
term rewriting systems, the uniform (respectively inverse uniform) k-bounded termination problem
is not equivalent to the uniform (resp. inverse uniform) termination problem, and the k-bounded (re-
spectively inverse k-bounded) termination problem is not equivalent to the termination (respectively
inverse termination) problem. This leads us to define more restricted classes for which these problems
are equivalent: the classes BOLP(k) of k-bounded systems that have the length preservation property.
By definition, a system is BOLP(k) if every derivation of length n can be replaced by a k-bounded
derivation of length n. We define the class BOLP of bounded systems that have the length preser-
vation property as the union of all the BOLP(k) classes. The class BOLP contains (strictly) several
already known classes of systems: the inverse left-basic semi-Thue systems, the linear growing term
rewriting systems, the inverse Linear-Finite-Path-Ordering systems, the strongly bottom-up systems.

1. Introduction

General context. A Term-Rewriting System (TRS in short) R is said to be terminating on a term
s when it does not admit any infinite derivation starting on s. It is said to be inverse terminat-
ing on s when the system R−1 terminates on s. The TRS R is said to be uniformly terminating
(u-terminating in short) when it does not admit any infinite derivation, and it is said to be inverse u-
terminating when the system R−1 u-terminates. The u-termination property is part of the definition
of a complete TRS, which is a useful algebraic notion. These properties are also pertinent for TRSs
which are models of functional programs or any kind of computational process. It is well-known
that these problems are undecidable for general finite TRS ([7]) and even for quite restricted sub-
classes of TRS (see [2],[10] for example). Nevertheless, because of its importance, many techniques
have been developed in order to prove uniform-termination (u-termination in short) and termination
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of TRSs (see in particular [3],[9, section 1.3], [14, chap. 6]) or even to decide automatically u-
termination or termination, but for specific classes of TRS.

Contents. The present paper follows the last trend of research quoted above:
1- we show that u-termination, inverse u-termination, termination, inverse termination are decidable
for a particular strategy that we call bounded rewriting,
2- we deduce from this decision procedure that the usuals u-termination, inverse u-termination,
termination and inverse termination problems are decidable for some classes of TRS.

We define a new rewriting strategy for linear TRSs called bounded rewriting. Let k ∈ N.
Intuitively, a derivation is said to be k-bounded (bo(k)) if when a rewriting rule is applied, the parts
of the substitution located at a depth greater than k are not used further in the derivation, i.e. do not
match a left-handside of a rule applied further. A TRS R will be said to be k-bounded (bo(k)) if for
any derivation s →∗

R t, there exists a k-bounded derivation s bo(k)→∗
R t. The class of k-bounded

TRS is denoted by BO(k), and the class of bounded TRS BO is
∪

k∈N BO(k). A TRS will be said
to bo(k)-terminates on a term s if there is no infinite bo(k)-derivation starting on s. It is said to
be uniformly bo(k)-terminates (u-bo(k)-terminates in short) if there is no infinite bo(k)-derivation.
The main result of this paper is the decidability of the u-bo(k)-termination problem and of the
bo(k)-termination problem. We also prove in section 6 that the inverse u-bo(k)-termination and
the inverse bo(k) termination prolems are decidable. This rewriting strategy is closely related to
the bottom-up strategy introduced in [4]: every bottom-up TRS is bounded, and for every bounded
TRS, there is an equivalent TRS which is bottom-up. Both strategies are defined using marking
tools, but the definition of the bounded strategy is simpler and more intuitive. For every linear TRS
(R,F) and every integer k, there is a TRS (R′,F) such that for every s, t ∈ T (F):

• there is a derivation of length n from s to t in R iff there is a derivation of length n from s
to t in R′,

• there is a bo(k)-derivation of length n from s to t in R iff there is a bo(0)-derivation of
length n form s to t in R′.

Thus, it is sufficient to prove that the u-bo(0)-termination and the bo(0)-termination problems are
decidable to obtain the decidability of the u-bo(k)-termination and the bo(k)-termination problems.
Following the idea developed for the bottom-up strategy, we use a ground TRS S ∪ A to simulate
bo(0)-derivations. This construction is made in such a way that the existence of an infinite bo(0)-
derivation starting on a term s in R is equivalent to the existence of an infinite derivation starting
on s in S ∪ A. It follows from the decidability of the termination and u-termination problems for
ground TRS that the u-bo(0)-termination and the bo(0)-termination problems are decidable. The
TRS A has rules which allow to replace any subterm of a term t located at an internal node by a leaf
labeled by the constant symbol #, and the TRS S consists of a set of rules of the form lσ → rσ
where l → r ∈ R and σ is a substitution that maps variables to an element of F0 ∪ {#}. A bo(0)-
step C[lσ] → C[rσ] in R is simulated in two steps : first, using A, we reduce C[lσ] to C[lσ′] where
lσ′ ∈ LHS(S), and then we apply the rule lσ′ → rσ′ ∈ S . We define a subclass of BO(k), the
length preservation bottom-up class BOLP(k), for which:

• termination (respectively inverse termination) and k-bounded termination (resp. inverse
k-bounded termination) are equivalent,

• u-termination (respectively inverse u-termination) and u-k-bounded termination (resp. in-
verse u-k-bounded termination) are equivalent.
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A BO(k) TRS is BOLP(k) iff for every derivation s →∗
R t there is a bo(k)-derivation of same

length. The class of length preservation bounded TRSs BOLP is
∪

k∈N BOLP(k). This class con-
tains several already known TRSs: the inverse left-basic semi-Thue systems [12], the linear growing
TRS [8], the inverse Linear-Finite-Path-Overlapping TRSs [13], and the strongly bottom-up TRSs
[4]. Note that a version of this article with full proofs is available at PRECISER.

2. Preliminaries

2.1. Words and Terms

The set N is the set of positive integers. A finite word over an alphabet A is a map
u : [0, ` − 1] → A, for some ` ∈ N. The integer ` is the length of the word u and is denoted by
|u|. The set of words over A is denoted by A∗ and endowed with the usual concatenation operation
u, v ∈ A∗ 7→ u · v ∈ A∗. The empty word is denoted by ε. A word u is a prefix of a word v iff
there exists some w ∈ A∗ such that v = u · w. We denote by u � v the fact that u is a prefix of v.
Assuming a total order on A, we denote by �Lex the lexicographic order on words.

We assume the reader familiar with terms. We call signature a set F of symbols with fixed arity
ar : F → N. The subset of symbols of arity m is denoted by Fm.

As usual, a set P ⊆ N∗ is called a tree-domain (or, domain, for short) iff for every u ∈ N∗,
i ∈ N:

(u · i ∈ P ⇒ u ∈ P ) & (u · (i + 1) ∈ P ⇒ u · i ∈ P ).
We call P ′ ⊆ P a subdomain of P iff, P ′ is a domain and, for every u ∈ P, i ∈ N:

(u · i ∈ P ′ & u · (i + 1) ∈ P ) ⇒ u · (i + 1) ∈ P ′.

A (first-order) term on a signature F is a partial map t : N∗ → F whose domain is a non-empty
tree-domain and which respects the arities. We denote by T (F ,V) the set of first-order terms built
upon the signature F ∪ V , where F is a finite signature and V is a denumerable set of variables of
arity 0.

The domain of t is also called its set of positions and denoted by Pos(t). The set of variables
of t is denoted by Var(t). The root symbol of t, t(ε) is also denoted by root(t). The set of variable
positions (resp. non variable positions) of a term t is denoted by PosV(t) (resp. PosV(t)). The set
of leaves of t is the set of positions u ∈ Pos(t) such that u · N ∩ Pos(t) = ∅. It is denoted by
Lv(t). A branch is a set of positions P satisfying: there exists u ∈ Lv(t) such that v ∈ P iff v � u.
We write Pos+(t) for Pos(t)\{ε}. Given v ∈ Pos+(t), its father fth(v) is the position u such that
v = u · w and |w| = 1. Given a term t and u ∈ Pos(t) the subterm of t at u is denoted by t/u and
defined by Pos(t/u) = {w | u · w ∈ Pos(t)} and ∀w ∈ Pos(t/u), t/u(w) = t(u · w). A term
which does not contain twice the same variable is called linear. Given a linear term t ∈ T (F ,V),
x ∈ Var(t), we shall denote by pos(t, x) the position of x in t. The depth of a term t is inductively
defined by:

• dpt(t) := 0 if t ∈ V ,
• dpt(t) := 1 if t ∈ F0,
• dpt(t) := 1 + max({dpt(t/i)), i ∈ {0 , . . . ,n}}) if root(t) ∈ Fn.

A term containing no variables is called ground. The set of ground terms is T (F). Among
all the variables, there is a special one �. A term containing exactly one occurrence of � is called
a context. A context is usually denoted as C[]. If v is the position of � in C[], C[t] denotes the
term C[] where t has been substituted at position v. We also denote by C[]v such a context and
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by C[t]v the result of the substitution. We denote by |t| := Card(Pos(t)) the size of a term t. A
substitution σ is a mapping from V to T (F ,V). The substitution σ extends uniquely to a morphism
σ : T (F ,V) → T (F ,V), where σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)), for each f ∈ F ,
ti ∈ T (F ,V). Let t be a linear term and PosV(t) = {u1, . . . , un}, where the ui are given in
lexicographic order. The term t is said to be standardized if for all i, 1 ≤ i ≤ n, t/ui = xi.

2.2. Term rewriting systems

A rewrite rule built upon the signature F is a pair l → r of terms in T (F ,V). We call l (resp. r)
the left-handside (resp. right-handside) of the rule (lhs and rhs for short). A rule is linear if both its
left and right-handsides are linear. A rule is left-linear (resp. right-linear) if its left-handside (resp.
right-hanside) is linear. Given a set of rules R, we denote by LHS(R) the set {l | l → r ∈ R}. A
TRS is a pair (R,F) where F is a signature and R a set of rewrite rules built upon the signature
F . When F is clear from the context or contains exactly the symbols of R, we may omit F and
write simply R. The TRS R is said to respect the variable restriction if for every l → r ∈ R,
Var(l) ⊆ Var(r). We denote by (R−1,F) the TRS consisting of the rules {r → l|l → r ∈ R}.
Given a TRS (R,F), and two terms t1, t2, we say that there exists a R-rewriting step between t1
and t2 in R and write t1 →R t2 if there exists a context C[], a rule l → r ∈ R, and a substitution
σ such that t1 = C[lσ] and t2 = C[rσ]. The term lσ is called a redex of t1, and rσ is called a
contractum of t1. Given some n ≥ 0, a derivation in R of length n from s to t is a sequence of
the form s = s0 →R s1 →R . . . →R sn = t. The relation →n

R is defined as follows: s →n t if
there exists a derivation of length n from s to t. The relation →∗

R (resp. →+
R) is defined by: s →∗ t

(resp. s →+ t) if there is some n ≥ 0 (resp. n > 0) such that s →n
R t. More generally, the notation

defined in [9] will be used in proofs.
A TRS is left-linear (resp. right-linear) if each of its rules is left-linear (resp. right-linear). A

TRS is linear if each of its rules is linear. A TRS R is growing [8] if for every rule l → r ∈ R, all
variables in Var(l)∩Var(r) occur at depth 0 or 1 in l. Two TRSs (R,F) and (R′,F) are said to be
equivalent if for all n ≥ 0, →n

R=→n
R′ .

3. Bounded rewriting
From now on, until the end of section 5, we suppose that all the TRS are satisfying the variable

restriction. In order to define bounded rewriting for linear TRS, we need some marking tools. In
the following we assume that F is a signature. We shall illustrate many of our definitions with the
following TRS

Example 3.1. F = {a, b, f, g, h, i}, R1 = {f(x) → g(x), g(h(x)) → i(x), i(x) → a, a → b}.

3.1. Marking

We mark the symbols of a term using natural integers.

3.1.1. Marked symbols.

Definition 3.2. We define the (infinite) signature of marked symbols: FN := {f i | f ∈ F , i ∈ N}.
For j ∈ N, we denote by F≤j the signature: F≤j := {f i | f ∈ F , i ≤ j}. The mapping
m : FN → N maps every marked symbol to its mark: m(f i) = i.
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3.1.2. Marked terms.

Definition 3.3. The terms in T (FN,V) are called marked terms.

The mapping m is extended to marked terms by: if t ∈ V, m(t) := 0, otherwise,
m(t) := m(root(t)). For every f ∈ F , we identify f0 and f ; it follows that F ⊂ FN,
T (F) ⊂ T (FN) and T (F ,V) ⊂ T (FN,V).

We use mmax(t) to denote the maximal mark of a marked term t:
mmax(t) := max{m(t/u) | u ∈ Pos(t)}.

Example 3.4. m(a1) = 1, m(i0(a2)) = 0, m(h3(a0)) = 3, m(h1(x)) = 1, m(x) = 0,
mmax(i0(a1)) = 1, mmax(x) = 0.

Definition 3.5. Given t ∈ T (FN,V) and i ∈ N, we define the marked term ti whose marks are all
equal to i:

if t is a variable x ti := x
if t is a constant c ti := ci

otherwise t = f(t1, . . . , tn), where n ≥ 1 ti := f i(t1i, . . . , tn
i)

This marking extends to sets of terms S (Si := {ti | t ∈ S}) and substitutions σ (σi : x 7→ (xσ)i).
Notation: in the sequel, given a term t ∈ T (F ,V), t will always refer to a term of T (FN,V) such
that t

0 = t.

Definition 3.6. For every marked term t, we denote by t̂ the unique marked term such that:

t̂
0

:= t
0
, ∀u ∈ PosV(t), m(̂t/u) := max(m(t/u), |u| + 1).

We extend this definition to marked substitutions (σ̂ : x 7→ x̂σ) and sets of terms
(Ŝ := {ŝ | s ∈ S}).

Example 3.7. Let t1 = f0(f1(x)), and t2 = f2(f2(h2(a2))). We have: t̂1 = f1(f2(x)),
t̂2 = f2(f2(h3(a4))).

3.2. Marked rewriting

Let R be a linear TRS, and let s ∈ T (FN). Let us suppose that s decomposes as

s = C[lσ]v, with (l, r) ∈ R, (3.1)

for some marked context C[]v and substitution σ. We then write s ◦→ t when

s = C[lσ], t = C[rσ̂]. (3.2)

More precisely, an ordered pair of marked terms (s, t) is linked by the relation ◦→ iff, there
exists C[]v, (l, r), l, σ fulfilling equations (3.1-3.2). (This is illustrated by Figure 1, where the marks
are noted between brackets [. . .]).

The map s 7→ s0 (from marked terms to unmarked terms) extends into a map from marked
derivations to unmarked derivations: every

s0 = C0[l0σ0]v0 ◦→ C0[r0σ̂0]v0 = s1 ◦→ . . . ◦→ Cn−1[rn−1σ̂n−1]vn−1 = sn (3.3)

is mapped to the derivation

s0 = C0[l0σ0]v0 → C0[r0σ0]v0 = s1 → . . . → Cn−1[rn−1σn−1]vn−1 = sn. (3.4)
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CC

l r

s t

v

[m(s/w)] [0]

[k]

[max(k, |w| + 1)]

xσ̂
wxσ

Figure 1: A marked rewriting step

The context Ci[]vi , the rule (li, ri), the marked version l̄i of li and the substitution σi completely
determine si+1. Thus, for every fixed pair (s0, s0), this map is a bijection from the set of derivations
(3.3), to the set of derivations (3.4).

From now on, each time we deal with a derivation s →∗ t between two terms s, t ∈ T (F ,V),
we may implicitly decompose it as (3.4) where n is the length of the derivation, s = s0 and t = sn.

3.3. Bounded derivations

Definition 3.8. The marked derivation (3.3) is k-bounded (bo(k)) if the following assertions hold
for every 0 ≤ i < n :

• if li /∈ V , mmax(li) ≤ k.
• if li ∈ V , sup({m(li/u)|u ≺ vi}) ≤ k

The derivation (3.4) is bo(k) if the corresponding marked derivation (3.3) is bo(k).

Example 3.9. Let us consider the following derivations in R1:
(1) f(h(a)) → g(h(a)) → i(a) → a
(2) f(h(a)) → g(h(a)) → g(h(b)) → i(b) → a

The first derivation is bo(1) since the associated marked derivation is bo(1):
f(h(a)) ◦→ g(h1(a2)) ◦→ i(a2) ◦→ a. The second one is bo(2):
f(h(a)) ◦→ g(h1(a2)) ◦→ g(h1(b)) ◦→ i(b1) ◦→ a.

Let k ∈ N. It is clear that the composition of two bo(k) marked derivations is bo(k) too, but
the composition of two unmarked bo(k)-derivations might not be bo(k), as shown in the following
example:

Example 3.10. The two derivations in R1: f(h(a)) → g(h(a)) and g(h(a)) → i(a) → a are bo(0)
while the derivation: f(h(a)) → g(h(a)) → i(a) → a is not bo(0) (but is bu(1)).

In the following we thus (mainly) manipulate marked bo(k)-derivations. Let us introduce some
convenient notations.

Definition 3.11. Let n, k ∈ N. The binary relation bo(k) ◦ →n
R over T (FN) is defined by:

s bo(k) ◦→n
R t iff there exists a bo(k)-marked derivation from s to t of length n. The binary
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relation bo(k)◦→∗
R is defined by: s bo(k)◦→∗

R t iff there exists m ∈ N such that s bo(k)◦→m
R t. The

binary relation bo(k)→n
R over T (F) is defined by: s bo(k)→n

R t iff there exists a bo(k)-derivation
from s to t of length n. The binary relation bo(k)→∗

R is defined by: s bo(k)→∗
R t iff there exists

m ∈ N such that s bo(k)→m
R t.

Next lemma shows that the study of bo(k)-derivations can be reduced to the study of bo(0)-
derivations.

Lemma 3.12. Let R be a linear TRS and let k > 0. There exists an equivalent linear TRS R′ such
that: for all n ∈ N, bo(k)→n

R= bo(0)→n
R′ .

Sketch of proof. Let R′ be the TRS consisting of the rules:

{lσ → rσ | l → r ∈ R, σ : V → T (F ,V), lσ is standardized,∀x ∈ V, dpt(xσ) ≤ k}.
One can easily check that R′ is finite, equivalent to R and that, for all n ∈ N, bo(k)→n

R= bo(0)→n
R′ .

Example 3.13. Let us consider the bo(1)-derivation in example 3.9
f(h(a)) → g(h(a)) → i(a) → a and the TRS R′ built for R1 and k = 1. We have:

R′ ={f(x1) → g(x1), f(f(x1)) → g(f(x1)), f(g(x1)) → g(g(x1)),

f(h(x1)) → g(h(x1)), f(i(x1)) → g(i(x1)), f(a) → g(a), f(b) → g(b),

g(h(x1)) → i(x1), g(h(f(x1))) → i(f(x1)), g(h(g(x1))) → i(g(x1)),

g(h(h(x1))) → i(h(x1)), g(h(i(x1))) → i(i(x1)), g(h(a)) → i(a),

g(h(b)) → i(b), i(x1) → a, i(f(x1)) → a, i(g(x1)) → a,

i(h(x1)) → a, i(i(x1)) → a, i(a) → a, i(b) → a, a → b}
and the following bo(0)-derivation in R′:

f(h(a)) ◦→f(h(x1))→g(h(x1)) g(h(a1)) ◦→h(x1)→i(x1) i(a1) ◦→i(x1)→a a.

3.4. Bounded systems

We introduce here a hierarchy of classes of linear TRSs, based on their ability to meet the
bounded restriction over derivations.

Definition 3.14. Let p be some property of derivations. A TRS (R,F) is called P if ∀s, t ∈ T (F)
such that s →∗

R t there exists a p-derivation from s to t.

We denote by BO(k) the class of BO(k) TRSs. One can check that, for every k > 0,
BO(k − 1) ( BO(k). Finally, the class of bounded systems BO is defined by: BO =

∪
k∈N BO(k).

The class BO contains several classes of TRS (see section 7.2).

Remark 3.15. The natural extension of BO definition to left-linear TRSs (keeping the marking
process and the definitions unchanged) is not really interesting since even the TRS consisting of the
rules {f(x) → g(x, x), a → b} is not in BO: for every k ∈ N there is a bo(k + 1)-derivation:

f(f(. . . f(a)) . . .) → g(f1(f2(. . . (fk(ak+1)) . . .), f1(f2(. . . (fk(ak+1)) . . .))

→ g(f1(f2(. . . (fk(ak+1)) . . .), f1(f2(. . . (fk(b)) . . .))

but there is no bo(k)-derivation from f(f(. . . f(a)) . . .) to g(f(f(. . . (f(a)) . . .), f(f(. . . (f(b)) . . .)).
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Definition 3.16. We say that the TRS R u-bo(k)-terminate iff there is no infinite bo(k)-derivation
in R.
The bo(k)-termination problem for a linear TRS R is the following problem:
INSTANCE: A linear TRS R, and an integer k.
QUESTION: Does R u-bo(k)-terminate ?

Definition 3.17. We say that the TRS R bo(k)-terminate on a term s iff there is no infinite bo(k)-
derivation starting on s in R.
The bo(k)-termination problem for a linear TRS R is the following problem:
INSTANCE: A linear TRS R, an integer k, and a term s.
QUESTION: Does R bo(k)-terminate on s ?

The main result of this paper is the decidability of the u-bo(k)-termination and bo(k)-
termination problems. One can easily check that if there exists l → r ∈ R such that l ∈ V , then for
every term s, the TRS R does not bo(0)-terminate on s. Without loose of generality, we suppose
from now on until the end of section 5 that a TRS R is such that LHS(R) ∩ V = ∅.

4. Simulation of bounded derivations by a ground rewriting system
In this section, we prove that a bo(0)-derivation can be simulated using a ground TRS.

Definition 4.1. Let # be a constant such that # /∈ F0. Let A be the (infinite) TRS on T (F∪{#}N)
consisting of the rules:

{f i(a1, . . . , an) → #i | i ∈ N, f ∈ Fn, n > 0, a1, . . . , an ∈ (F0 ∪ {#})N}.
For j ∈ N, we denote by A≤j the restriction of A on T ((F ∪ {#})≤j) consisting of the rules:

{f i(a1, . . . , an) → #i | i ≤ j, f ∈ Fn, n > 0, a1, . . . , an ∈ (F0 ∪ {#})≤j}.

Lemma 4.2. Let s, t ∈ T ((F ∪ {#})N). If s →∗
A t, then ŝ →∗

A t̂.

Definition 4.3. A marked term t ∈ T ((F ∪ {#})N,V) is said to be smoothly-increasing
(s-increasing in short) iff for every branch b, the sequence of marks on b has the form:

0, 0, . . . , 0, 1, 2, . . . , `

i.e. more formally: for every w ∈ Lv(t), there exists some u � w such that,
• ∀v � u, m(t̄/v) = 0,
• ∀v � u,∀i ∈ N, if v · i � w then m(t̄/v · i) = m(t̄/v) + 1.

A substitution σ is said to be s-increasing if for every x ∈ V , the term xσ is s-increasing.

Note that by definition of a s-increasing term t, and since the variables are all marked by 0, for
all positions u ∈ PosV(t), for all v � u, m(t/v) = 0.

Example 4.4. The terms f0(h1(x)) and f2(h1(a2)) are not s-increasing. The terms f0(f0(h1(a2)))
and f1(a2) are s-increasing.

Lemma 4.5. Let C[] and t be s-increasing. The term C[t] is s-increasing.

Proof. Since � ∈ V , it is an immediate consequence of the definition of s-increasing.

Lemma 4.6. Let s be a s-increasing term and s bo(0)◦→∗
R t. The marked term t is s-increasing.
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Definition 4.7. Let t ∈ T ((F ∪{#})N,V) be a marked term and P be a subdomain of Pos(t) such
that PosV(t) ⊆ P . We define Red(t, P ) as the unique term such that Pos(Red(t, P )) = P and
such that t →∗

A Red(t, P ).

The term Red(t, P ) is obtained from t by substituting the subtree t/u by the symbol #m(t/u),
for every position u ∈ P\Lv(t) such that ∀i ∈ N, u · i /∈ P .

Lemma 4.8. Let t ∈ T ((F ∪ {#})N,V) and P be a subdomain of Pos(t) such that PosV(t) ⊆ P .

We have Red(̂t, P ) = ̂Red(t, P ).

4.0.1. Top of a term.

Definition 4.9 (Top domain of a term). Let t be a s-increasing term. We define the top domain of t,
denoted by Topd(t) as: u ∈ Topd(t) iff u ∈ Pos(t) ∧ m(t/u) ≤ 1.

Note that by definition of a s-increasing term, Topd(t) is a subdomain of t and since for every
u ∈ PosV(t), m(t/u) = 0, we have PosV(t) ⊆ Topd(t).

Definition 4.10 (Top of a term). Let t be a s-increasing term. We denote by Top(t) the term
Red(t, Topd(t)).

Example 4.11. Let t1 = f0(h1(a2)), t2 = f0(h0(a1)). We have: Topd(t1) = {ε, 0},
Topd(t2) = Pos(t2),Top(t1) = f(#1), Top(t2) = t2.

Intuitively, the top of a term t will be the only part of t which could be used in a bo(0)-derivation
starting on t. We extend this definition to sets of s-increasing terms (Top(S) := {Top(t) | t ∈ S})
and to s-increasing marked substitutions (Top(σ) : x 7→ Top(xσ)).

Lemma 4.12. Let C[]v, t1 be s-increasing and let t = C[t1]. We have:

Top(t) = Top(C[]v)[Top(t1)]v.

Lemma 4.13. Let t and σ be s-increasing. We have: Top(tσ) = Top(t)Top(σ).

Proof. This lemma is obtained by applying lemma 4.12 several times at each position v ∈ PosV(t).

4.0.2. The ground system S .

Definition 4.14. For a linear TRS R, we consider the following ground TRS S over
T ((F ∪ {#})≤1) consisting of all the rules of the form: lσ → rσ̂, where l → r is a rule of R, and
σ : V → (F0 ∪ {#})≤1.

Note that since σ : V → (F0 ∪ {#})≤1, by definition of ,̂ σ̂ : V → (F0 ∪ {#})≤1. The TRS
S ∪ A≤1 will be used to simulate the bo(0)-derivations in R.
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Figure 2: Lemma 4.15

4.0.3. Lifting lemma.

Lemma 4.15. Let s′ ∈ T ((F ∪ {#})N) , s, t ∈ T ((F ∪ {#})≤1). Assume that s′ →∗
A s →S t.

There exists a term t′ ∈ T ((F ∪ {#})N) such that s′ bo(0)◦→R t′ →∗
A t.

Proof. We have s →S t. This means that s = C[lσ]v, t = C[rσ̂]v, for some rule l → r ∈ R,
marked context C[]v, and marked substitution σ : V → (F0 ∪ {#})≤1. Since s′ →∗

A s, and
since A goes from bottom to top, there exists a context C

′[]v, a substitution σ′ such that s′ is of
the form s′ = C ′[lσ′]v, with C

′[]v such that C
′[] →∗

A C[], and σ′ such that for every x ∈ Var(l),
xσ′ →∗

A xσ. By definition of bo(0)◦→, s′ = C ′[lσ′]v bo(0)◦→R t′ = C
′[rσ̂]v. By Lemma 4.2, for

every x ∈ Var(r), xσ̂′ →∗
A xσ̂. Hence, t′ = C ′[rσ̂′] →∗

A C[rσ̂′] →∗
A C[rσ̂] = t. We have built a

derivation: s′ bo(0)◦→ t′ →∗
A t. The result holds.

Example 4.16. Let us consider the TRS S built from the TRS R1.

S = {f(#) → g(#1), f(#1) → g(#1), f(a) → g(a1), f(a1) → g(a1),

f(b) → g(b1), f(b1) → g(b1), g(h(#)) → i(#1), g(h(#1)) → i(#1),

g(h(a)) → i(a1), g(h(a1)) → i(a1), g(h(b)) → i(b1), g(h(b1)) → i(b1),

i(#) → a, i(#1) → a, i(a) → a, i(a1) → a, i(b) → a, i(b1) → a, a → b}.
We have the following derivation:

g(h(a)) →A,a→# g(h(#)) →S,f(h(#))→i(#1)) i(#1)).

In the proof of lemma 4.15, we build the derivation:

g(h(a)) bo(0)◦→R1,g(h(x))→i(x) i(a1)) →A,a1→#1 i(#1).

4.0.4. Projecting lemma.

Lemma 4.17 (projecting lemma). Let s ∈ T (FN) be s-increasing, and s bo(0) ◦→R t. There is a
derivation: Top(s) →∗

A≤1→S Top(t).

Proof. By definition of bo(0)◦→, there exists a context C[]v, a marked substitution σ, and a rule
l → r ∈ R such that s = C[lσ]v and t = C[rσ̂]v. Since s is s-increasing, by lemma 4.6, t is
s-increasing, and Top(t) is well defined. Moreover, the marked context C[]v, the substitution σ, and
the terms r and l are s-increasing. So, by lemmas 4.12 and 4.13: Top(s) = Top(C[]v)[lTop(σ)]v,
and, Top(t) = Top(C[]v)[rTop(σ̂)]v. By definition of Top, Top(s) ∈ T ((F ∪ {#})≤1). Let
us define the substitution τ by τ : x 7→ Red(xTop(σ), Topd(xTop(σ̂))). By definition of Red,
Top(s) →A Top(C[]v)[lτ ]. Moreover, Top(s) ∈ T ((F ∪ {#})≤1). Thus, we have Top(s) →∗

A≤1
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bo(0)
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Figure 3: Projecting lemma

Top(C[]v)[lτ ]v. Let x ∈ Var(l). Let us prove that xτ ∈ (F0 ∪ {#})≤1. Let u ∈ Pos(xσ). If
|u| ≥ 1, by definition of ̂, we have m(xσ̂/u) ≥ 2, and u /∈ Topd(xTop(σ̂)). Thus, xτ is reduced
to a constant, and since Top(s) ∈ T ((F ∪{#})≤1), xτ ∈ (F0 ∪ {#})≤1. Hence, the rule lτ → rτ̂

belongs to S and Top(s) →∗
A≤1 Top(C)[lτ ] →S Top(C)[rτ̂ ]. By lemma 4.8, for all x ∈ Var(r),

xτ̂ = ̂Red(xTop(σ),Topd(xTop(σ̂))) = Red(x̂Topσ),Topd(xTop(σ̂)) = xTop(σ̂).

So, τ̂ = Top(σ̂), and Top(t) = Top(C[]v)[rTop(σ̂)]v = Top(C[]v)[rτ̂ ]v. We have built a deriva-
tion: Top(s) →∗

A≤1→S Top(t). The result holds.

Example 4.18. Let us consider the TRS R1, S built for this TRS, and the following bo(0) rewriting
step: s = f(f(g1((a2)))) ◦→R1,f(x)→g(x) t = g(f1(g2(a3))).
We have Top(s) = f(f(#1)), Top(t) = g(#1), and the following derivation:
f(f(#1)) →A≤1 f(#) →S,f(#)→g(#1) g(#1).

Definition 4.19. Let us define the relation �m on marked terms by:

s �m t ⇔ s = t ∧ ∀u ∈ Pos(s), m(s/u) < m(t/u).

Lemma 4.20. Let s →∗
S∪A≤1 t. For every term s′ �m s there exists a term t′ �m t such that:

s′ →∗
S∪A≤1 t′.

5. Decidability of termination problems
In this section, we prove that the u-bo(k)-termination and the bo(k)-termination problems are

decidable.

Proposition 5.1. Let s0 ∈ T (FN). If the TRS S ∪ A≤1 does not terminate on s0, then R does not
bo(0)-terminate on s0.

Assume that S ∪ A≤1 does not terminate on s0. Then, by lemma 4.20, there exists an infinite
rewriting sequence of terms in T ((F ∪ {#})≤1) starting on s0. The TRS A≤1 is obviously u-
terminating. Thus, such an infinite derivation contains an infinite number of steps in S and is of the
form:

s0 →∗
A≤1 s1 →S s2 →∗

A≤1 s3 →S s4 →∗
A≤1 . . . →S s2n →∗

A≤1 . . . .

We now show that repeated applications of lemma 4.15 yields an infinite marked bo(0)-derivation
in R: first, consider s0 →∗

A≤1 s1 →S s2. By lemma 4.15 there exists t1 such that s0 bo(0) ◦→R
t1 →∗

A s2. Since t1 →∗
A s2, we can apply lemma 4.15 to t1 →∗

A s3 →S s4. We obtain a term
t2 such that s0 bo(0) ◦→R t1 bo(0) ◦→R t2 →∗

A s4. Following this process, we obtain an infinite
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sequence such that s0 bo(0)◦→R t1 bo(0)◦→R t2 bo(0)◦→R . . . bo(0)◦→R tn . . .. We conclude that
R does not bo(0)-terminate on s0.

Proposition 5.2. Let s0 ∈ T (F). If R does not bo(0)-terminate on s0, then S ∪ A≤1 does not
terminate on s0.

Proof. If R does not bo(0)-terminate on s0, there is an infinite derivation:

s0 = s0 bo(0)◦→R s1 bo(0)◦→R . . . sn bo(0)◦→R . . . .

The term s0 is s-increasing since it has no mark. Moreover, the step s0 bo(0) ◦→R s1 is bo(0). By
lemma 4.17, s0 = Top(s0) →∗

A≤1→S Top(s1). Another application of lemma 4.17 on s1 bo(0)◦→R
s2 leads to a derivation: Top(s0) →+

S∪A≤1 Top(s1) →+
S∪A≤1 Top(s2). Following this process, we

obtain an infinite derivation:

Top(s0) →+
S∪A≤1 Top(s1) →+

S∪A≤1 . . .Top(sn) →+
S∪A≤1 . . .

and S ∪ A≤1 does not terminate on s0.

Theorem 5.3. The bo(0)-termination and u-bo(0)-termination problems are decidable.

Proof. By propositions 5.1 and 5.2, a linear TRS R bo(0)-terminates on a term s0 iff the TRS
S ∪ A≤1 terminates on s0. If R does not u-bo(0)-terminate, then by proposition 5.2, the system
S ∪ A≤1 does not terminate. Reciprocally, if S ∪ A≤1 does not u-terminate, then there exists an
infinite derivation starting on a term s0. By proposition 5.1, the system R does not bo(0) terminate
on s0. So, R u-bo(0)-terminates iff the ground TRS S ∪ A≤1 u-terminates. It is well known that
the termination and the u-termination problems are decidable for ground TRS (see e.g.[1]). Hence,
the bo(0)-termination and u-bo(0)-termination problems are decidable.

Corollary 5.4. The bo(k)-termination and the u-bo(k)-termination problem are decidable.

Proof. This is just a consequence of theorem 5.3 and lemma 3.12.

Note that in general, for a BO(0) TRS, the u-bo(0)-termination property (respectively the bo(k)
termination property) and the u-termination (resp. termination) property are not equivalent.

Definition 5.5. Let R be a BO(k) TRS. We say that R has the bo(k) length preservation property
if for every n ∈ N: →n

R= bo(k)→n
R.

We denote by BOLP(k) the class of BO(k) TRSs that have the bo(k) length preservation
property. Finally, the class of bounded systems with the length preservation property is denoted by
BOLP. One can check that for every k > 0, BOLP(k − 1) ( BO(k).

Example 5.6. Let R2 = {f(x) → g(x), g(a) → f(a)}. This TRS is BO(0) but does not have the
bo(0) length preservation property. There is a derivation of length 2: f(a) → g(a) → f(a), but there
is no bo(0)-derivation of length 2 from f(a) to f(a) (there is one of length 0). Moreover, this TRS
does not u-terminate but u-bo(0)-terminates.

Corollary 5.7. Termination and u-termination problems for TRSs in BOLP(k) are decidable.

Proof. Let us prove that, for a TRS R ∈ BOLP(k), the bo(k)-termination and termination are
equivalent properties. Clearly, if R does not bo(k)-terminate on s0, then the TRS R does not
terminate on s0. Conversely, let us suppose that there is an infinite derivation starting on s0: s0 →R
s1 →R s2 →R . . . →R sn . . . . Since R has the bo(k) length preservation property, there is for
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each m ∈ N a marked bo(k)-derivation Dm such that Dm = s0 bo(k) ◦→m
R sm. The TRS R has a

finite number of rules, so there is only a finite number of possible one step rewriting starting on s0.
Hence, there exists a term s′1 such that the set {m′ | Dm′ = s0 bo(k)◦→R s′1 bo(k)◦→m′−1

R sm′} is
infinite. Repeating this process, we obtain an infinite derivation:

s0 bo(k)◦→R s′1 bo(k)◦→R . . . bo(k)◦→R s′n bo(k)◦→ . . . .

Hence, the TRS R does not bo(k)-terminate. We have established that, for all s0 ∈ T (F):

R bo(k)-terminates on s0 ⇔ R terminates on s0.

So, for R, termination problem is equivalent to bo(k)-termination problem, and u-termination prob-
lem is equivalent to u-bo(k)-termination problem. By corollary 5.4, bo(k)-termination and u-bo(k)
termination problems are decidable. Hence, termination and u-termination problems for TRSs in
BOLP(k) are decidable.

6. Decidability of inverse termination problems
Definition 6.1. Let R be a linear TRS satisfying the variable restriction. The system R is said to
inverse bo(k)-terminate on a term s when R−1 does not admit any infinite derivation s0 →R−1

s1 →R−1 . . . →R−1 sn . . . such that for all m ∈ N there exists sm such that sm+1 bo(k)◦→R sm. It
is said to inverse u-bo(k)-terminate when for all terms s ∈ T (F), R bo(k)-terminates on s.

In the previous definition, if R does not bo(0)-terminate on s, we can suppose that all the si

are s-increasing.

Definition 6.2. For a term s ∈ T (FN), we denote by N0(s) the number of positions u in s such
that m(s/u) 6= 0:

N0(s) = Card({u ∈ Pos(s)|m(s/u) 6= 0}).

Lemma 6.3. Let R be a linear TRS such that for all l → r ∈ R, Var(l) = Var(r) and let
s,t be s-increasing. If s bo(0) ◦→R t then N0(s) ≤ N0(t). Moreover, if N0(s) = N0(t), then
Top(s) →S Top(t) (where S is the ground TRS defined in 4.14).

Proposition 6.4. The inverse u-bo(k)-termination problem is decidable.

Sketch of proof. By lemma 3.12, we only have to prove this result for the inverse u-bo(0)-termination
problem. Let R be a linear TRS. If there exists a rule l → r such that Var(r) ⊂ Var(l), one can
easily check that there exists an infinite inverse-bo(0) derivation in R−1 using only the rule r → l.
Thus, we can suppose that Var(r) = Var(l). Let us prove that R inverse u-bo(0)-terminate iff
the ground TRS S−1 u-terminates. Clearly, if there is an infinite derivation in S−1, R−1 does not
inverse bo(0)-terminate. Reciprocally s0 →R−1 s1 →R−1 . . . →R−1 sn →R−1 . . . be an infi-
nite inverse-bo(0) derivation. By lemma 6.3, there is an integer N such that for all m ≥ N , :
N0(sm) = N0(sN ). By lemma 6.3, for all m ≥ N , Top(sm+1) →S Top(sm). Hence, there is an
infinite derivation in S−1: Top(sN ) →S−1 Top(sN+1) →S−1 . . .. Since the u-termination problem
for ground TRS is decidable, the result holds.

Proposition 6.5. The inverse bo(k)-termination problem is decidable.

Proposition 6.6. Let R be a BOLP(k) TRS. The system R−1 u-terminates (respectively terminates
on s) iff R inverse u-bo(k)-terminates (resp. bo(k)-terminates).
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Corollary 6.7. Let R be a BOLP(k) TRS. The termination, u-termination, inverse termination, and
inverse u-termination problems are decidable.

6.1. Bottom-up derivations

We now release the hypothesis that every TRS R satisfying LHS(R)∩V = ∅. All the rewriting
systems in this section are satisfying the variable restriction. The class of BO linear TRSs is closely
related to the class of bottom-up TRSs BU introduced in [4] in the following sense: every BU TRS
is BO, and for every BO TRS, there is an equivalent TRS which is BU. The BU TRSs are also
defined using marking tools. The marked derivation used to defined BU TRS will be denoted by
.→. Let us recall some of the definitions given in [4].

The right-action � of the monoid (N, max, 0) over the set FN consists in applying the operation
max on every mark: for every t̄ ∈ FN, n ∈ N,

Pos(t̄ � n) := Pos(t̄), ∀u ∈ Pos(t̄), m((t̄ � n)/u) := max(m(t̄/u), n),

(t̄ � n)0 = t̄0

For every linear marked term t̄ ∈ T (FN,V) and variable x ∈ Var(t̄), we define:

M(t̄, x) := sup{m(t/w) | w < pos(t, x)} + 1. (6.1)

Let s ∈ T (FN) and t ∈ T , and let us suppose that s ∈ T (FN) decomposes as

s = C[lσ]v, with (l, r) ∈ R, (6.2)

for some marked context C[]v and substitution σ. We define a new marked substitution σ (such that
σ

0 = σ0) by: for every x ∈ Var(r),

xσ := (xσ) � M(l, x). (6.3)

We then write s .→ t when
s = C[lσ], t = C[rσ]. (6.4)

The map s 7→ s0 (from marked terms to unmarked terms) extends into a map from marked
derivations to unmarked derivations: every derivation d:

s0 = C0[l0σ0]v0 .→ C0[r0σ0]v0 = s1 .→ . . . .→ Cn−1[rn−1σn−1]vn−1 = sn (6.5)

is mapped to the derivation d:

s0 = C0[l0σ0]v0 → C0[r0σ0]v0 = s1 → . . . → Cn−1[rn−1σn−1]vn−1 = sn. (6.6)

Definition 6.8 ([4]). The marked derivation (6.5) is weakly bottom-up if, for every 0 ≤ i < n,
li /∈ V ⇒ m(li) = 0, and li ∈ V ⇒ sup{m(si/u) | u < vi} = 0.

Definition 6.9 ([4]). The derivation (6.6) is weakly bottom-up if the corresponding marked deriva-
tion (6.5) starting on the same term s = s is weakly bottom-up.

We shall abbreviate “weakly bottom-up” to wbu.

Definition 6.10 ([4]). A derivation is bu(k) if it is wbu and, in the corresponding marked derivation
∀0 ≤ i ≤ n, mmax(si) ≤ k.
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7. Equivalence between bounded rewriting and bottom-up rewriting

7.1. Bottom-up systems

We denote by BU(k) the class of bu(k) TRSs. We define the class of bottom-up systems,
denoted BU, by: BU =

∪
k∈N BU(k).

A TRS is said to be strongly bu(k) iff every wbu derivation is bu(k). The class of strongly
BU(k) TRSs is denoted by SBU(k). We define strongly bottom-up systems, denoted SBU by:

SBU =
∪

k∈N SBU(k).

Lemma 7.1. Let R be a TRS and let e = max({dpt(l)|l → r ∈ R}). The following assertions
hold:

(1) if R is BU(k), then R is BO(k · e),
(2) if R is SBU(k) then R is BOLP(k · e),
(3) if R is BO, there is an equivalent TRS R′ in BU(1).

7.2. Classes of systems in BOLP

The class SBU(1) contains several classes of TRSs [4]. Among them, there are:
• the inverse left-basic semi-Thue systems (viewed as unary term rewriting systems) [12],
• the linear growing term rewriting systems [8],
• the inverse Linear-Finite-Path-Overlapping TRSs [13],
• the strongly bottom-up TRSs [4].

By corollary 5.7 and lemma 7.1, for all these TRSs, the termination problem is decidable.

7.3. Some other properties of bounded systems

Let us give some properties which directly follow from the equivalence between BU and BO
and the results presented in [4].

Definition 7.2. A TRS (R,F) is said to inverse-preserves rationality if for every recognizable set
T ⊆ T (F), the set (→∗

R)[T ] := {s ∈ T (F) | ∃t ∈ T, s →∗
R t} is recognizable too.

Since every BU TRS inverse-preserves rationality [4], by lemma 7.1 the following proposition
holds:

Proposition 7.3. Every BO TRS inverse-preserves rationality.

Definition 7.4. The BO(k) (respectively BU(k)) membership problem is the following:
INSTANCE : An integer k and a linear rewriting TRS R.
QUESTION : Does R belong to BO(k) (resp. BU(k)) ?

Since the BU(1) membership problem is undecidable [4], by lemma 7.1, the following propo-
sition holds:

Corollary 7.5. The BO(k) membership problem is undecidable.



16 I. DURAND, G. SÉNIZERGUES, AND M. SYLVESTRE

8. Related works and perspectives

Related works. We borrowed from [4] the idea of simulating derivations according to a special
strategy by some ground TRS. Note however, that the class BO(k) itself is new. Its advantages over
the class BU(k) is that its definition is simpler, it allows a simpler proof of the projecting lemma and
it makes lemma 3.12 true, while this lemma, mutatis mutandis, does not hold for the class BU(k).

The principle of replacing the original rewriting relation over a signature F by some other
binary relation over a marked-alphabet FN was already used in [5] in order to get an algorithm for
termination. However, the two marking mechanisms turn out to be different:
- in the case of word rewriting systems, the marked derivation used here is not generated by a semi-
Thue system while the marked derivation of [5] is generated by an (infinite) semi-Thue system;
- the direct image of a rational set R by a system which is match-bounded over R is rational while
the direct image of a rational set by a BO(0) system needs not be rational; from this point of view
our BO(0)-semi-Thue systems resemble the inverses of match-bounded systems (though, they are
not comparable for inclusion);
- the marking process used here extends naturally to terms while the notion of [5] seems more
difficult to extend to terms (although interesting ways of doing such an extension have been studied
in [6] and successfully implemented).

Perspectives. Let us mention some natural perspectives of development for this work:
• it is tempting to extend the notion of bounded rewriting (resp. system) to left-linear systems.

This class would extend the class of growing systems studied in [11];
• we think that the direct image of a context-free language through bounded rewriting is

context-free;
• the whole class of bounded systems (at least semi-Thue) should have a decidable termina-

tion problem;
• one should try to devise a class of semi-Thue systems that includes both the class of BO(k)

systems and the class of inverses of match-bounded systems, and still possesses the inter-
esting algorithmic properties of these classes.

Some work in these directions has been undertaken by the authors.

Acknowledgment. We thank the anonymous referees for their useful comments, which improved
the presentation of our results.
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