
EQUATIONS

in HNN-extensions

M. Lohrey and G. Sénizergues
FMI-Stuttgart

0.0- PLAN

0 INTRODUCTION

0.1 Problems

0.2 Motivations

0.3 Results

0.4 Tools

1- HNN EXTENSIONS

1.1 Presentation

1.2 t-sequences

1.3 Basic transfers

1.4 Further transfers

2- AB- ALGEBRAS

2.1 Types

2.2 AB-algebra axioms

2.3 AB-homomorphisms

2.4 the AB-algebra \mathbb{H}_t

2.5 the AB-algebra \mathbb{W}

0.0- PLAN

3- EQUATIONS over \mathbb{H}_t

3.1 Definition

3.2 Reduction

4- EQUATIONS over \mathbb{W}

4.1 Definition

4.2 Reduction

5- EQUATIONS over \mathbb{U}

5.1 Definition

5.2 Reduction

0.0- PLAN

6- TRANSFER

6.1 From \mathbb{G} to (\mathbb{H}, \mathbb{U})

6.2 Structure of \mathbb{U}

6.3 From \mathbb{G} to \mathbb{H} .

6.4 Transfer theorems

7- PERSPECTIVES

0.1- INTRODUCTION-PROBLEMS

Algorithmic problems.

$$P = \langle X, \equiv \rangle \text{ and } M = X^*/\equiv.$$

The Word Problem:

instance: $u, v \in X^*$

question: $u \equiv v?$

The Emptiness Problem for boolean combinations of rational expressions:

instance: A boolean combination of rational expression E over the alphabet X .

question: $L(E, M) = \emptyset?$

0.1- INTRODUCTION-PROBLEMS

The **Satisfiability Problem** for Equations:

instance: $u, v \in \mathcal{U}^* * M$

question: $\exists \sigma : \mathcal{U}^* \rightarrow M, \sigma(u) = \sigma(v) ?$

The **Satisfiability Problem** for Equations with rational constraints:

instance: $u, v \in \mathcal{U}^*, \mathsf{C} : \mathcal{U} \rightarrow \mathcal{B}(\mathsf{Rat}(M))$

question: $\exists \sigma : \mathcal{U}^* \rightarrow M,$

$$\sigma(u) = \sigma(v) \wedge \forall U \in \mathcal{U}, \sigma(U) \in \mathsf{C}(U) ?$$

0.2- INTRODUCTION-MOTIVATIONS

Solving equation:

- is a more **general** problem than:
 - *conjugacy problem (case of groups)
 - *membership problem for submonoids or subgroups (even if non finitely generated)
- is a **natural** thema in mathematics

0.2- INTRODUCTION-MOTIVATIONS

Solving equations with rational **constraints**:

- is even more general than solving equations
- is a useful tool for solving equations in monoids
i.e. even for groups where rational constraints might be
undecidable !
- is a useful tool for solving inequations in groups.

0.3- INTRODUCTION-RESULTS

Positive results:

(Lyndon 1960, Lorents 1968, Makanin 1977, Makanin 1983, Schulz 1991, Razborov, 1985, Rips-Sela 1995, Diekert-Matiyasevich-Muscholl 1999, Plandowski 1999)

Diekert-Hagenah-Gutierrez 2001: equations with rational constraints in free groups,

Diekert-Lohrey 2004: transfer theorem for graph products,

Negative results:

(Rips 1982) (GWP in hyperbolic groups),(Rozenblatt 1986)

(free inverse monoid),...

0.3- INTRODUCTION-RESULTS

New results.

Theorem 1 *Let \mathbb{H} be a cancellative monoid and \mathbb{G} an HNN-extension of \mathbb{H} with finite associated subgroups. The satisfiability problem for systems of equations with rational constraints in \mathbb{G} is decidable if and only if the satisfiability problem for systems of equations with rational constraints in \mathbb{H} is decidable.*

Numerous variations around this result:

amalgamated product \leftrightarrow HNN-extension

equations \leftrightarrow equations and inequations \leftrightarrow positive FO

rational constraints \leftrightarrow constants.

0.4- INTRODUCTION-TOOLS

Finite automata: notion of t-automaton over $\mathbb{H} * \{t, \bar{t}\}^*$.

Word rewriting: monadic semi-Thue systems, normal form theorems

AB-algebras: new notion

Equations in free group, with rational constraints

(Diekert-Hagenah-Gutierrez 2001)

Equations in free products (Diekert-Lohrey 2004)

1.1- HNN EXTENSIONS-PRESENTATION

Let \mathbb{H} be some monoid, $A, B < \mathbb{H}$ be subgroups, and $\varphi : A \rightarrow B$ an isomorphism. The **HNN**-extension of \mathbb{H} with stable letter t and associated subgroups A, B is:

$$\mathbb{G} = \mathbb{H} * \{t, \bar{t}\}^* / \approx$$

where \approx is generated by the rules:

$$t\bar{t} \approx \bar{t}t \approx \epsilon,$$

$$at \approx t\varphi(a), \quad \text{for all } a \in A,$$

$$b\bar{t} \approx \bar{t}\varphi^{-1}(b), \quad \text{for all } b \in B,$$

We define \sim as the monoid-congruence generated by:

$$at \sim t\varphi(a), \quad \text{for all } a \in A,$$

$$b\bar{t} \sim \bar{t}\varphi^{-1}(b), \quad \text{for all } b \in B,$$

1.2- HNN EXTENSIONS-T-SEQUENCES

We name ***t*-sequence** an element s of $H * \{t, \bar{t}\}^*$:

$$s = h_0 t^{\alpha_1} h_1 \cdots t^{\alpha_i} h_i \cdots t^{\alpha_n} h_n$$

where $n \in \mathbb{N}$, $\alpha_i \in \{+1, -1\}$, t^{-1} means the letter \bar{t} and $h_i \in H$.
 s is said **reduced** iff it does not contain any factor of the form $\bar{t}at$ (with $a \in A$) nor tbt (with $b \in B$).

1.2- HNN EXTENSIONS-T-SEQUENCES

Homomorphisms

$$\mathbb{H} * \{t, \bar{t}\}^* \xrightarrow{\pi \sim} \mathbb{H} * \{t, \bar{t}\}^* / \sim \xrightarrow{\bar{\pi}_{\mathbb{G}}} \mathbb{G}$$

We note:

$$\mathbb{H}_t := \mathbb{H} * \{t, \bar{t}\}^* / \sim .$$

1.3- HNN EXTENSIONS-BASIC TRANSFERS

Theorem 2 *If \mathbb{H} has a decidable Word Problem, so has \mathbb{G}*

Theorem 3 *If \mathbb{H} has a decidable Conjugacy Problem, so has \mathbb{G}*

1.4- HNN EXTENSIONS-FURTHER TRANSFERS

Theorem 4 Suppose that \mathbb{H} is a group.

If \mathbb{H} has a decidable Generalized Word Problem, so has \mathbb{G}

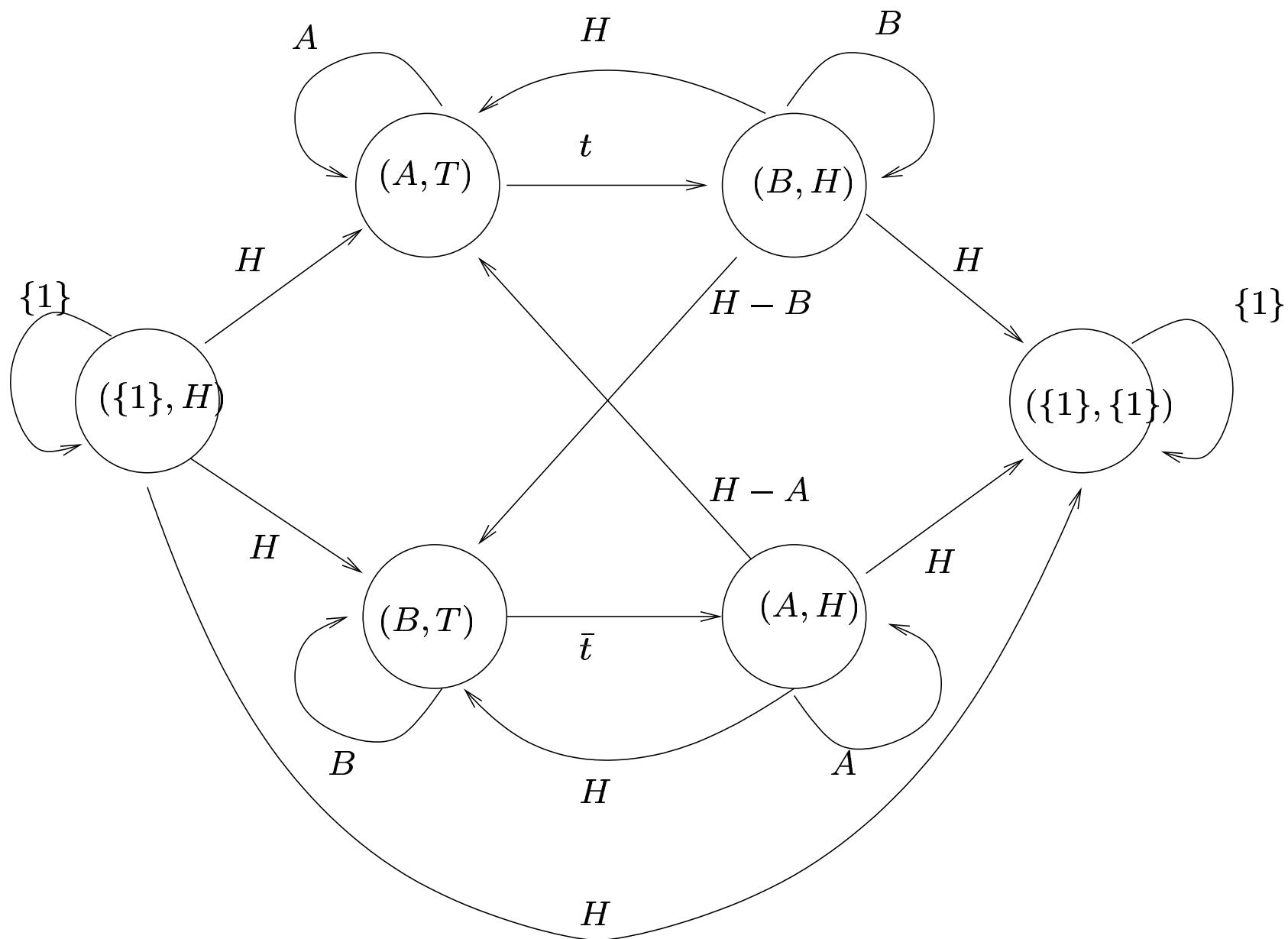
Theorem 5 If the emptiness problem for $\mathcal{B}(\text{Rat}(\mathbb{H}))$ is decidable, so is it for \mathbb{G}

1.4- HNN EXTENSIONS-FURTHER TRANSFERS

Main tool: **partitionned** t-automata.

Graph: \mathcal{R}_6

Vertices: \mathcal{T}_6



2.1-AB-ALGEBRAS-TYPES

$$\mathcal{T} = \mathcal{T}_6 \times \mathbb{B} \times \mathcal{T}_6$$

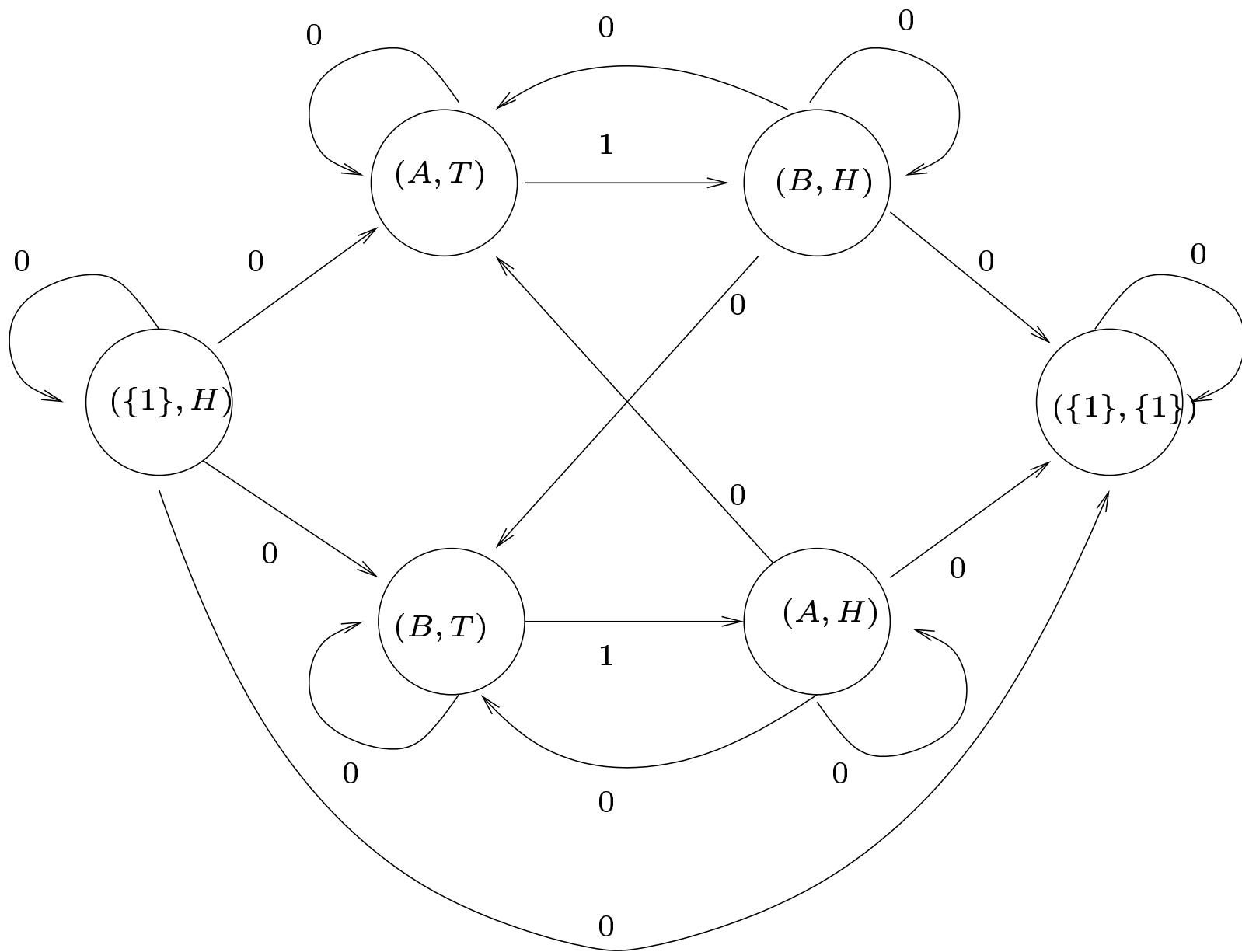
\mathbb{B} :booleans;

partial product: if $q = p'$ then

$$(p, b, q) \cdot (p', b', q') = (p, b \cdot b', q'),$$

otherwise the product is undefined.

$\langle \mathcal{P}(\mathcal{T}), \cdot \rangle$ is a semi-group.



$\mathcal{T}\mathcal{R}$: partial submonoid generated by the set of **edges** of \mathcal{R} .

2.2- AB-ALGEBRAS-AXIOMS

We call *AB-algebra* a structure of the form

$$\langle \mathbb{M}, \cdot, 1_{\mathbb{M}}, \mathbb{I}, \iota_A, \iota_B, \gamma, \mu, \delta \rangle$$

where $\iota_A : A \rightarrow \mathbb{M}$, $\iota_B : B \rightarrow \mathbb{M}$ are total maps,

$\mathbb{I} : \mathbb{M} \rightarrow \mathbb{M}$ is a partial map,

$\gamma : \mathbb{M} \rightarrow \mathcal{P}(\mathcal{T})$ is a total map,

$\mu : \mathcal{T} \times \mathbb{M} \rightarrow \mathcal{B}^2(Q_{\mathcal{A}})$ is a total map,

$\delta : \mathcal{T} \times \mathbb{M} \rightarrow \text{PGA}(A, B)$ is a total map ;

fulfilling the twelve axioms:

monoid:

$$(\mathbb{M}, \cdot, 1_{\mathbb{M}}) \text{ is a monoid ,} \quad (1)$$

embeddings:

$$\iota_A, \iota_B \text{ are injective monoid homomorphisms ,} \quad (2)$$

involution I:

$$\iota_A(A) \cup \iota_B(B) \subseteq \text{dom}(\mathbb{I}) \subseteq \mathbb{M} - \gamma^{-1}(\emptyset) \quad (3)$$

for every $m, m' \in \mathbb{M}$,

$$[\gamma(m) \cdot \gamma(m') \neq \emptyset] \Rightarrow [m \cdot m' \in \text{dom}(\mathbb{I}) \Leftrightarrow (m \in \text{dom}(\mathbb{I}) \wedge m' \in \text{dom}(\mathbb{I}))] \quad (4)$$

$\mathbb{I} : (\text{dom}(\mathbb{I}), \cdot, 1_{\mathbb{M}}) \rightarrow (\text{dom}(\mathbb{I}), \cdot, 1_{\mathbb{M}})$ is a monoid anti-isomorphism,
(5)

$$\mathbb{I} \circ \mathbb{I} = \mathbb{I}, \quad (6)$$

almost homomorphisms:

for every $m, m' \in \mathbb{M}$,

$$\gamma(m \cdot m') \supseteq \gamma(m) \cdot \gamma(m'), \quad (7)$$

for every $m, m' \in \mathbb{M}, \theta \in \gamma(m), \theta' \in \gamma(m')$, such that $(\theta, \theta') \in D(\cdot)$,

$$\mu(\theta \cdot \theta', m \cdot m') = \mu(\theta, m) \cdot \mu(\theta', m'), \quad (8)$$

$$\text{dom}(\delta(\theta, m)) \subseteq \text{Gi}(\theta), \text{im}(\delta(\theta, m)) \subseteq \text{Ge}(\theta) \quad (9)$$

$$\delta(\theta \cdot \theta', m \cdot m') = \delta(\theta, m) \circ \delta(\theta', m'). \quad (10)$$

commutation with I:

for every $a \in A, b \in B, m \in \mathbb{M}, \theta \in \gamma(m)$,

$$\mathbb{I}(\iota_A(a)) = \iota_A(a^{-1}); \quad \mathbb{I}(\iota_B(b)) = \iota_B(b^{-1}) \quad (11)$$

$$\gamma(\mathbb{I}(m)) = \mathbb{I}_{\mathcal{T}}(\gamma(m)); \quad \mu(\mathbb{I}_{\mathcal{T}}(\theta), \mathbb{I}(m)) = \mathbb{I}_{\mathcal{Q}}(\mu(\theta, m)); \quad \delta(\mathbb{I}_{\mathcal{T}}(\theta), \mathbb{I}(m)) = \delta(\theta, m)^{-1}. \quad (12)$$

2.3-AB-ALGEBRAS-AB-HOMOMORPHISMS

Let

$$\mathcal{M}_1 = \langle \mathbb{M}_1, \cdot, 1_{\mathbb{M}_1}, \iota_{A,1}, \iota_{B,1}, \mathbb{I}_1, \gamma_1, \mu_1, \delta_1 \rangle,$$

$$\mathcal{M}_2 = \langle \mathbb{M}_2, \cdot, 1_{\mathbb{M}_2}, \iota_{A,2}, \iota_{B,2}, \mathbb{I}_2, \gamma_2, \mu_2, \delta_2 \rangle$$

be two *AB*-algebras with the same underlying groups A, B and set Q . We call *AB*-homomorphism from \mathcal{M}_1 to \mathcal{M}_2 any map

$$\psi : \mathbb{M}_1 \rightarrow \mathbb{M}_2$$

fulfilling the seven properties below:

m -homomorphism:

$$\psi : (\mathbb{M}_1, \cdot, 1_{\mathbb{M}_1}) \rightarrow (\mathbb{M}_2, \cdot, 1_{\mathbb{M}_2}) \text{ is a monoid homomorphism} \quad (13)$$

ι -preservation:

$$\forall a \in A, \forall b \in B, \psi(\iota_{A,1}(a)) = \iota_{A,2}(a), \quad \psi(\iota_{B,1}(b)) = \iota_{B,2}(b) \quad (14)$$

\mathbb{I} -preservation:

$$\forall m \in \mathbb{M}_1 - \gamma_1^{-1}(\emptyset), \quad m \in \text{dom}(\mathbb{I}_1) \Leftrightarrow \psi(m) \in \text{dom}(\mathbb{I}_2) \quad (15)$$

$$\forall m \in \hat{\mathbb{M}}_1, \quad \mathbb{I}_2(\psi(m)) = \psi(\mathbb{I}_1(m)) \quad (16)$$

γ -compatibility:

$$\forall m \in \mathbb{M}_1, \gamma_2(\psi(m)) \supseteq \gamma_1(m) \quad (17)$$

μ -preservation:

$$\forall m \in \mathbb{M}_1, \forall \theta \in \gamma_1(m), \mu_2(\psi(m)) = \mu_1(\theta, m), \quad (18)$$

δ -preservation:

$$\forall m \in \mathbb{M}_1, \forall \theta \in \gamma_1(m), \delta_2(\theta, \psi(m)) = \delta_1(\theta, m). \quad (19)$$

2.4-AB-ALGEBRA: \mathbb{H}_t

Given: an HNN-extension and a partitionned, \sim -saturated finite t-automaton \mathcal{A} , we define an AB -algebra with underlying monoid $\mathbb{H} * \{t, \bar{t}\}^*$ and set of states $Q_{\mathcal{A}}$.

$$\langle \mathbb{H} * \{t, \bar{t}\}^*, \cdot, 1_{\mathbb{H}}, \iota_A, \iota_B, \mathbb{I}, \mu, \gamma, \delta \rangle$$

as follows:

$$\iota_A, \iota_B$$

are the natural injections from A (resp. B) into $\mathbb{H} * \{t, \bar{t}\}^*$,

$$\text{dom}(\mathbb{I}) = (I(\mathbb{H}) \cup \{t, \bar{t}\})^*$$

where $I(\mathbb{H})$ is the set of invertible elements of \mathbb{H} :

$$\mathbb{I}(h) = h^{-1}; \quad \mathbb{I}(t) = \bar{t}; \quad \mathbb{I}(\bar{t}) = t.$$

$$\gamma(s) = \{(p, b, q) \in \mathcal{T}_6 \times \mathbb{B} \times \mathcal{T}_6 \mid (p, q) \in \mu_{\mathcal{R}_6}(s) \wedge b = (\|s\| \neq 0)\}$$

We define an auxiliary function $\mu_1 : \mathcal{T} \times \mathbb{H} * \{t, \bar{t}\}^* \rightarrow \mathcal{B}(\mathbf{Q})$ by:

$$\mu_1(\theta, s) = \mu_{\mathcal{A}}(s) \cap (\tau_{\mathcal{A}}^{-1}(\tau i(\theta)) \times \tau_{\mathcal{A}}^{-1}(\tau e(\theta)))$$

and then

$$\mu(\theta, s) = (\mu_1(\theta, s), \mu_1(\mathbb{I}_{\mathcal{T}}(\theta), \mathbb{I}_t(s))^{-1}) \quad \text{if } s \in \text{dom}(\mathbb{I}_t);$$

$$\mu(\theta, s) = (\mu_1(\theta, s), \mu_1(\theta, s)) \quad \text{if } s \notin \text{dom}(\mathbb{I}_t).$$

$$\delta(\theta, s) = \{(g, g') \in \text{Gi}(\theta) \times \text{Ge}(\theta) \mid g \cdot s \sim s \cdot g'\}.$$

The monoid-congruence \sim is compatible with $\mathbb{I}, \iota_A, \iota_B, \gamma, \mu, \delta$. (due to the **special** properties of the t-automaton \mathcal{A}). We can naturally endow $\mathbb{H}_t = \mathbb{H} * \{t, \bar{t}\}^*/\sim$ with a structure of AB -algebra:

$$\langle \mathbb{H}_t, \cdot, 1_{\mathbb{H}}, \iota_{A,\sim}, \iota_{B,\sim}, \mathbb{I}_{\sim}, \mu_{\sim}, \gamma_{\sim}, \delta_{\sim} \rangle$$

2.5-AB-ALGEBRA: \mathbb{W}

Underlying idea:

- 1- notion of **generic** solution of an equation over \mathbb{H}_t .
→ solution in \mathbb{W} .
- 2- any **concrete** solution (i.e. in \mathbb{H}_t) is obtained by applying an ***AB*-homomorphism** on a generic solution.

2.5-AB-ALGEBRA: \mathbb{W}

$$\Omega := \mathcal{V}_0 \times \{-1, 0, 1\} \times \mathcal{T}\mathcal{A} \times \mathcal{B}^2(\mathbf{Q}_{\mathcal{A}}) \times \mathbf{PGA}(A, B).$$

$$\mathcal{W} := \{(V, \epsilon, \theta, m, \varphi) \in \Omega \mid \varphi \in \text{PIs}(\text{Gi}(\theta), \text{Ge}(\theta)), \forall (c, d) \in \varphi, \mu_{\mathcal{A}}(c) \cdot m = m \cdot \mu_{\mathcal{A}}(d)\}.$$

$$\check{\mathcal{W}} = \{W \in \mathcal{W} \mid p_2(W) = 0\}, \quad \hat{\mathcal{W}} = \{W \in \mathcal{W} \mid p_2(W) \neq 0\}$$

$\iota_A : A \rightarrow \mathcal{W}^* * A * B$ the natural embedding.

We define the AB -algebra:

$$\langle \mathcal{W}^* * A * B, \cdot, 1, \iota_A, \iota_B, \mathbb{I}, \mu, \gamma, \delta \rangle$$

$$\iota_A : A \rightarrow \mathcal{W}^* * A * B, \quad \iota_B : B \rightarrow \mathcal{W}^* * A * B$$

are the natural embeddings.

$$\text{dom}(\mathbb{I}) = \hat{\mathcal{W}}^* * A * B$$

$$\mathbb{I}(\iota_A(a)) = \iota_A(a^{-1}); \quad \mathbb{I}(\iota_B(b)) = \iota_B(b^{-1})$$

$$\mathbb{I}(V, \epsilon, \theta, m, \varphi) = (V, -\epsilon, \mathbb{I}_{\mathcal{T}}(\theta), \mathbb{I}_{\mathcal{Q}}(m), \varphi^{-1}).$$

$$\gamma(V, \epsilon, \theta, m, \varphi) = \{\theta\},$$

$$\gamma(\iota_A(a)) = \{(A, T, 0, A, T), (A, H, 0, A, H)\}, \text{ for } a \in A - \{1\}$$

$$\gamma(\iota_B(b)) = \{(B, T, 0, B, T), (B, H, 0, B, H)\}, \text{ for } b \in B - \{1\}$$

$$\begin{aligned} \gamma(1) &= \{(1, H, 0, 1, H), (1, 1, 0, 1, 1)\} \\ &\cup \{(A, T, 0, A, T), (A, H, 0, A, H), (B, T, 0, B, T), (B, H, 0, B, H)\} \end{aligned}$$

For $g_1, \dots, g_i, \dots, g_n \in \mathcal{W} \cup \iota_A(A) \cup \iota_B(B)$.

$$\gamma\left(\prod_{i=1}^n g_i\right) = \prod_{i=1}^n \gamma(g_i)$$

$$\begin{aligned}\mu(\theta, \iota_A(a)) &= \mu_t(\theta, a), \quad \mu(\theta, \iota_B(b)) = \mu_t(\theta, b), \\ \mu(\theta, (V, \epsilon, \theta, m, \varphi)) &= m, \quad \mu(\theta', (V, \epsilon, \theta, m, \varphi)) = \emptyset (\text{ if } \theta' \neq \theta).\end{aligned}$$

$$\begin{aligned}\delta(\theta, \iota_A(a)) &= \{(\iota_A(c), \iota_A(d)) \mid (c, d) \in \text{Gi}(\theta) \times \text{Ge}(\theta), ca = ad\}, \text{ if } \theta \in \gamma(\iota_A(a)) \\ \delta(\theta, \iota_A(a)) &= \{(1, 1)\}, \text{ if } \theta \notin \gamma(\iota_A(a)) \\ \delta(\theta, \iota_B(b)) &= \{(\iota_B(c), \iota_B(d)) \mid (c, d) \in \text{Gi}(\theta) \times \text{Ge}(\theta), ca = ad\}, \text{ if } \theta \in \gamma(\iota_B(b)) \\ \delta(\theta, \iota_B(b)) &= \{(1, 1)\}, \text{ if } \theta \notin \gamma(\iota_B(b)), \\ \delta(\theta, (V, \epsilon, \theta, m, \varphi)) &= \varphi, \\ \delta(\theta', (V, \epsilon, \theta, m, \varphi)) &= \{(1, 1)\} (\text{ if } \theta' \neq \theta).\end{aligned}$$

2.5-AB-ALGEBRA: \mathbb{W}

Two sub-algebras:

\mathcal{W}_t is the set of letters $W \in \mathcal{W}$ such that, $\exists s \in \mathbb{H}_t$, such that:

$$W \in \text{dom}(\mathbb{I}_{\mathbb{W}}) \Leftrightarrow s \in \text{dom}(\mathbb{I}_t)$$

$$\gamma(W) \subseteq \gamma(s), \quad \mu(\theta, W) = \mu(\theta, s), \quad \delta(\theta, W) = \delta(\theta, s).$$

\mathcal{W}_H is the set of letters $W \in \mathcal{W}$ which have a H-type.

$$\mathbb{W}_t := \mathcal{W}_t^* * A * B / \equiv, \quad \mathbb{W}_H := \mathcal{W}_H^* * A * B / \equiv.$$

3.1-EQUATIONS OVER \mathbb{H}_t -DEFINITION

A system of **t-equations** is a family of ordered pairs

$$\mathcal{S} = (w_i, w'_i)_{i \in I}$$

where $w_i, w'_i \in \mathbb{W}_t, \gamma(w_i) = \gamma(w'_i) \neq \emptyset$.

A *solution* of \mathcal{S} is any

AB-homomorphism $\psi_t : \mathbb{W}_t \rightarrow \mathbb{H}_t$

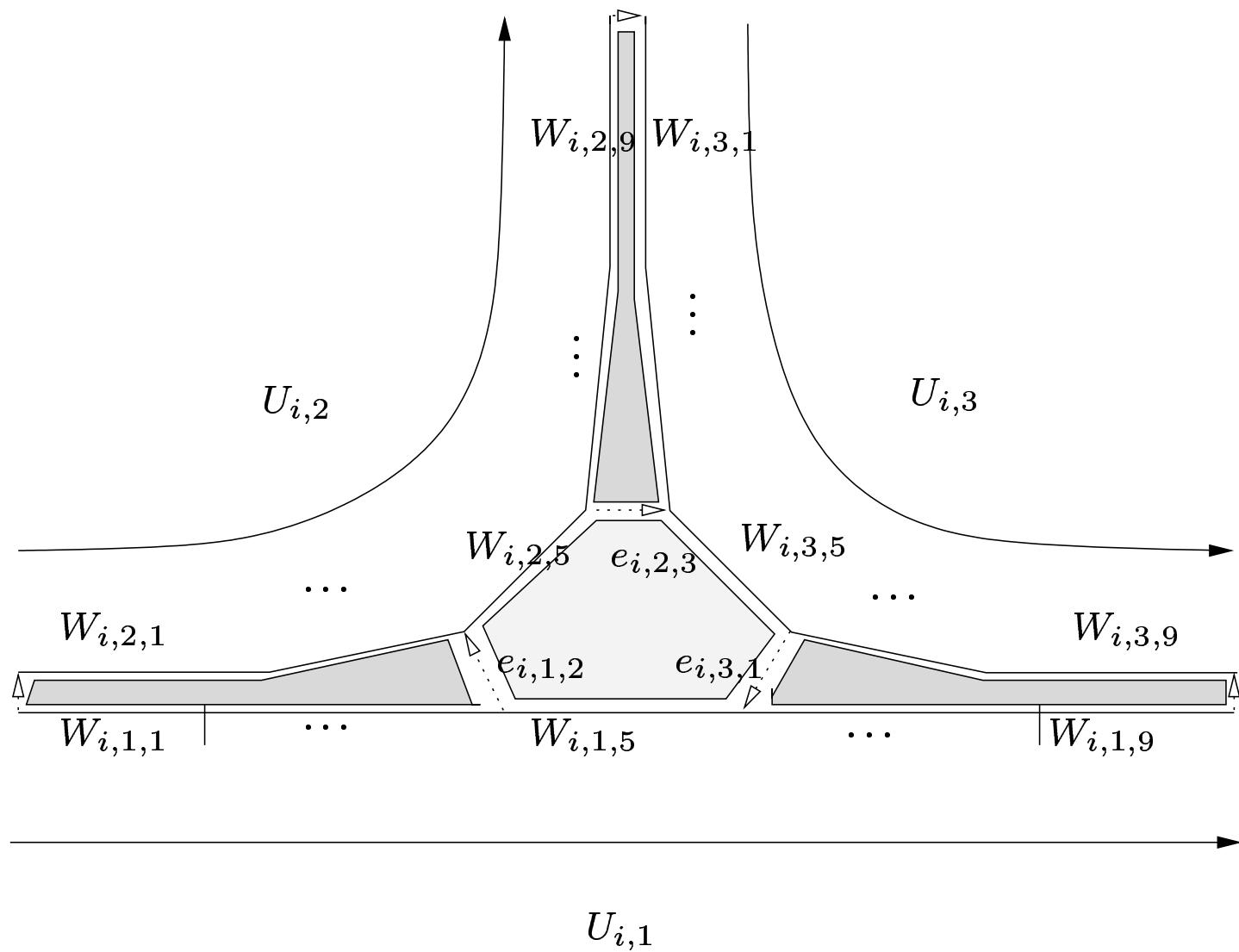
such that, for every $i \in I$

$$\psi_t(w_i) = \psi_t(w'_i).$$

3.2-EQUATIONS OVER \mathbb{H}_t -REDUCTION

We start with equations over \mathbb{G} , with rational constraint C:

$$E_i : (U_{i,1}, U_{i,2}U_{i,3}) \text{ for all } 1 \leq i \leq n$$



For every “admissible” vector (\vec{W}, \vec{e}) (i.e. with correct types and values of μ) we define:

t-equations $\mathcal{S}_t(\mathcal{S}, \vec{W}, \vec{e})$:

$$\begin{aligned}
 & \left(\prod_{k=1}^9 W_{i,j,k}, \quad \prod_{k=1}^9 W_{i',j',k} \right) \quad \text{if } U_{i,j} = U_{i',j'} \\
 (W_{i,1,1}W_{i,1,2}W_{i,1,3}W_{i,1,4}e_{i,1,2}, & \quad W_{i,2,1}W_{i,2,2}W_{i,2,3}W_{i,2,4}) \quad \text{for } 1 \leq i \leq n \\
 (W_{i,2,6}W_{i,2,7}W_{i,2,8}W_{i,2,9}, & \quad e_{i,2,3}\overline{W}_{i,3,4}\overline{W}_{i,3,3}\overline{W}_{i,3,2}\overline{W}_{i,3,1}) \quad \text{for } 1 \leq i \leq n \\
 (W_{i,1,5}W_{i,1,6}W_{i,1,7}W_{i,1,8}, & \quad e_{i,1,3}W_{i,3,6}W_{i,3,7}W_{i,3,8}W_{i,3,9}) \quad \text{for } 1 \leq i \leq n
 \end{aligned}$$

H-equations $\mathcal{S}_{\mathbb{H}}(\mathcal{S}, \vec{W}, \vec{e})$:

$$(W_{i,1,5}, \quad e_{i,1,2}W_{i,2,5}e_{i,2,3}W_{i,3,5}e_{i,3,1}) \quad \text{for } 1 \leq i \leq n$$

$$\begin{array}{ccc}
 \mathcal{U}^* & \xrightarrow{\sigma_{\vec{W}, \vec{e}}} & \mathbb{W} \\
 \sigma \downarrow & & \downarrow \sigma_t \\
 \mathbb{G} & \xleftarrow{\bar{\pi}_{\mathbb{G}}} & \mathbb{H}_t
 \end{array}$$

4.1-EQUATIONS OVER \mathbb{W} -DEFINITION

A system of \mathbb{W} -equations is a family of ordered pairs together with an involution:

$$\mathcal{S} = ((w_i, w'_i)_{i \in I}, \mathbb{I}')$$

where $w_i, w'_i \in \mathbb{W}_t, \gamma(w_i) = \gamma(w'_i) \neq \emptyset, \mathbb{I}' \in \mathcal{I}$.

A *solution* of \mathcal{S} is any AB -homomorphism

$\sigma_{\mathbb{W}} : (\mathbb{W}_t, \mathbb{I}) \rightarrow (\mathbb{W}_t, \mathbb{I}')$ such that, for every $i \in I$

$$\sigma_{\mathbb{W}}(w_i) = \sigma_{\mathbb{W}}(w'_i). \quad (20)$$

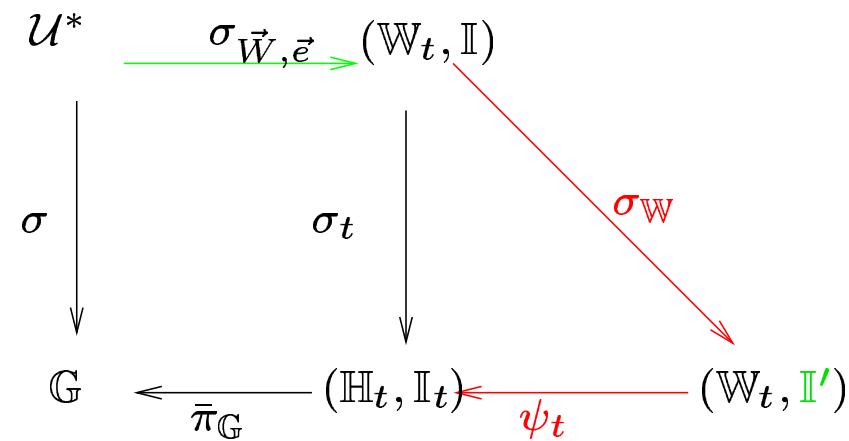
4.2-EQUATIONS OVER \mathbb{W} -REDUCTION

Lemma 6 (factorisation of t -solutions) *Let $\mathcal{S} = ((w_i, w'_i))_{1 \leq i \leq n}$ be a system of t -equations. Let us suppose that $\sigma_t : \mathbb{W}_t \rightarrow \mathbb{H}_t$ is an AB -homomorphism solving the system \mathcal{S} . Then there exists an involution $\mathbb{I}' \in \mathcal{I}$ and AB -homomorphisms*

$$\sigma_{\mathbb{W}} : (\mathbb{W}_t, \mathbb{I}) \rightarrow (\mathbb{W}_t, \mathbb{I}'), \quad \psi_t : (\mathbb{W}_t, \mathbb{I}') \rightarrow (\mathbb{H}_t, \mathbb{I}_t)$$

such that, $\sigma_t = \sigma_{\mathbb{W}} \circ \psi_t$ and

$$\sigma_{\mathbb{W}}(w_i) = \sigma_{\mathbb{W}}(w'_i) \text{ for all } 1 \leq i \leq n.$$



5.1-EQUATIONS OVER \mathbb{U} -DEFINITION

We define the group

$$\mathbb{U} := \langle A * B, \mathcal{W}'; \bar{W}eW = \delta(W)(e) \quad (e \in \text{Gi}(W), W \in \mathcal{W}) \rangle$$

5.2-EQUATIONS OVER \mathbb{U} -REDUCTION

Let us consider a system of \mathbb{W} -equations, together with a morphism:

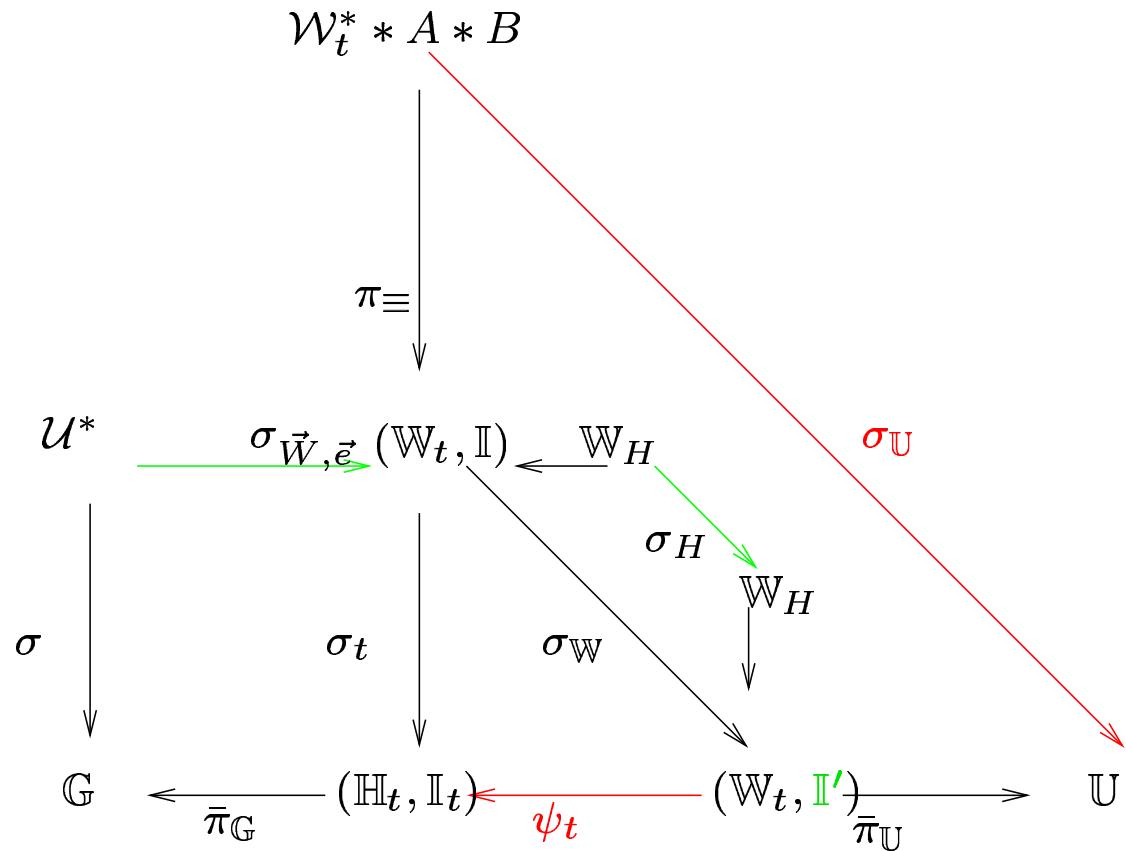
$$\mathcal{S}_{\mathbb{W}} = ((w_i, w'_i)_{i \in I}, \mathbb{I}'); \quad \sigma_H \in \text{Hom}_{AB}(\mathbb{W}_H, \mathbb{W}_H).$$

We can define a system of equations over \mathbb{U} with rational constraint:

$$\mathcal{S}_{\mathbb{U}}(\sigma_H) := ((z_i, z'_i)_{1 \leq i \leq n}, \mathbb{C}),$$

in such a way that

Lemma 7 *The map $\Phi : \text{Hom}_{AB}(\mathbb{W}_t, \mathbb{W}_t) \rightarrow \text{Hom}(\mathcal{W}_t^* * A * B, \mathbb{U})$, $\sigma_{\mathbb{W}} \mapsto \pi_{\mathbb{W}} \circ \sigma_{\mathbb{W}} \circ \bar{\pi}_{\mathbb{U}}$ induces a **bijection** from the set of solutions of $\mathcal{S}_{\mathbb{W}}$ which extend σ_H , into the set of solutions of $\mathcal{S}_{\mathbb{U}}(\sigma_H)$.*



6.1-TRANSFER-FROM \mathbb{G} TO (\mathbb{H}, \mathbb{U})

The satisfiability problem for systems of equations with rational constraints in \mathbb{G} is **Turing-reducible** to the pair of problems (Q_1, Q_2) , where

- 1- Q_1 is the SAT-problem for systems of equations with rational constraints in \mathbb{U}
- 2- Q_2 is the SAT-problem for systems of equations with rational constraints in \mathbb{H}

6.2-TRANSFER-STRUCTURE OF \mathbb{U}

$$\mathbb{K} \rightarrow \mathbb{U}_1 \rightarrow \dots \rightarrow \mathbb{U}_i \rightarrow \mathbb{U}_{i+1} \dots \rightarrow \mathbb{U},$$

where:

$$K = A \propto F(\mathcal{V})$$

$$\mathbb{U}_i \rightarrow \mathbb{U}_{i+1}$$

is an HNN-extension with associated subgroups **strictly smaller** than A .

Equations in \mathbb{K} : (Diekert-Gutierrez-Hagenah, 2001)

HNN-extensions with trivial associated subgroups:

(Diekert-Lohrey, 2004)

6.3-TRANSFER-FROM \mathbb{G} TO \mathbb{H}

Theorem 8 *For cancellative monoids \mathbb{H} , the satisfiability problem for systems of equations with rational constraints in*

$$\langle \mathbb{H}, t, \bar{t}; t\bar{t} = \bar{t}t = \epsilon, \bar{t}at = \varphi(a) \ (a \in A) \rangle$$

*is **Turing-reducible** to the SAT-problem for systems of equations with rational constraints in \mathbb{H}*

6.4-TRANSFER-THEOREMS

Other transfer theorems (obtained by the same technique):

Equations with rational constraints in an **amalgamated product**

Equations with **constants** in an HNN-extension

Equations and **inequations** with rational constraints, in an HNN-extension (case of groups)

Equations and inequations with rat constraints in an **amalgamated product** (case of groups).

7-PERSPECTIVES

Equations and **inequations** with rational constraints, in an HNN-extension (case of cancellative monoids)

Equations and inequations with rat constraints in an **amalgamated product** (case of cancellative monoids).

Positive first order theory in an HNN-extension.