LOGIQUE, INF 462

Examen du 18/12/2009

Sujet de M. Sénizergues ; tous documents autorisés ; durée conseillée : 1h 30. Les 4 exercices sont indépendants.

Exercice 4 (2 pts /10)

Le professeur Cosinus pense avoir écrit une preuve dans LK :

$$\frac{P(x) \vdash P(x)}{P(x), Q(x) \vdash P(x)}^{\mathsf{aff}_g} \qquad \frac{Q(x) \vdash Q(x)}{P(x), Q(x) \vdash Q(x)}^{\mathsf{aff}_g} \\ \frac{P(x) \land Q(x) \vdash P(x)}{P(x) \land Q(x) \vdash \forall x P(x)}^{\lor_g} \\ \frac{P(x) \land Q(x) \vdash \forall x P(x)}{\forall x (P(x) \land Q(x)) \vdash \forall x P(x)}^{\lor_g} \\ \frac{\forall x (P(x) \land Q(x)) \vdash \forall x P(x)}{\forall x (P(x) \land Q(x)) \vdash \forall x Q(x)}^{\lor_g} \\ \frac{\forall x (P(x) \land Q(x)) \vdash \forall x P(x)}{\forall x (P(x) \land Q(x)) \vdash \forall x Q(x)}^{\lor_g}$$

- 1- Critiquer chaque étape de la preuve de Cosinus.
- 2- Le séquent $\forall x(P(x) \land Q(x)) \vdash (\forall xP(x)) \land (\forall xQ(x))$ est-il prouvable dans LK?

Exercice 5 (2,5 pts /10)

Pour chacun des séquents S_i suivants ($1 \le i \le 3$), déterminer si S_i est prouvable dans LJ.

$$S_1: \vdash (\neg A \lor B) \to (\neg \neg B \lor \neg A) \quad S_2: \vdash (\neg \neg B \lor \neg A) \to (\neg A \lor B)$$

 $S_3: \quad \neg \forall x R(x) \vdash \exists x \neg R(x).$

Aide : pour traiter S_3 on pourra construire une structure de Kripke possédant deux noeuds $0 \le 1$ et telle que $D(0) = \{a\}, D(1) = \{a, b\}.$

Exercice 6 (3 pts /10)

On considère l'ensemble d'entiers $E := \{2x + 3y \mid x \in \mathbb{N}, y \in \mathbb{N}\}.$

1- Vérifier que $0 \in E, 1 \in \mathbb{N} - E, 2 \in E, 3 \in E, 4 \in E, 5 \in E$. Montrer que $\mathbb{N} - E$ est un ensemble fini (que l'on calculera).

On rappelle que l'application $\nu: \{0,1\}^* \to \mathbb{N}$ associe à tout mot $u \in \{0,1\}^*$ le nombre qu'il représente i.e. $\nu(u[\ell-1] \cdot u[k] \dots u[0]) = \sum_{k=0}^{\ell-1} 2^k u[k]$ pour $\ell \geq 1$ et $\nu(\varepsilon) = 0$.

2- Construire un automate fini A, qui reconnait $\{u \in \{0,1\}^* \mid \nu(u) \in E\}$.

(bien préciser si cet automate fonctionne de droite à gauche ou de gauche à droite).

3- Construire un automate fini \mathcal{B} , qui reconnait $\{0,1\}^* - L(\mathcal{A})$.

Le langage $L(\mathcal{B})$ est-il fini? le langage $L(\mathcal{B}) \cap (1 \cdot \{0,1\}^* \cup \{\varepsilon\})$ est-il fini?

On considère maintenant l'ensemble d'entiers

$$E' := \{31x + 52y \mid x \in \mathbb{N}, y \in \mathbb{N}\}.$$

- 3- Comment peut-on construire, en principe, un automate fini \mathcal{A}' , qui reconnait $\{u \in \{0,1\}^* \mid \nu(u) \in E'\}$?
- N.B. On ne demande pas de construire explicitement cet automate \mathcal{A}' .

- 4- On se demande si E' est presqu'égal à \mathbb{N} i.e. si $\mathbb{N} E'$ est un ensemble fini. Comment peut-on résoudre ce problème en utilisant l'automate \mathcal{A}' ?
- 5- Peut-on exprimer le fait que $\mathbb{N} E'$ est un ensemble fini par une formule du premier ordre sur la signature $\{+, =\}$?

Exercice 7 (2,5 pts /10)

On considère l'ensemble \mathbf{EG} des axiomes de l'égalité sur une signature comprenant un symbole de fonction binaire * et le symbole d'égalité :

 $\mathbf{REF} : \forall x \ x = x$

 $\mathbf{SYM}: \forall x, y \ (x = y \to y = x)$

TRANS: $\forall x, y, z \ (x = y \land y = z) \rightarrow x = z$

COMPF: $\forall x_1, x_2, y_1, y_2 \ (x_1 = x_2 \land y_1 = y_2) \rightarrow (x_1 * y_1 = x_2 * y_2)$

On rappelle que l'ensemble \mathbf{MO} des axiomes des mono $\ddot{\mathbf{i}}$ des est l'union de l'ensemble des quatre axiomes de \mathbf{EG} (ci-dessus) avec les deux axiomes :

 $\mathbf{ASS} : \forall x, y, z \ x * (y * z) = (x * y) * z$

 $\mathbf{NE}: \forall x \ (x*e=x \land e*x=x)$

ici e est une constante d'arité 0; l'axiome **NE** exprime que e est un élément neutre pour la loi *.

On se place sur la signature $S: \langle \{=\}; \{*, a, b, c, d, e\} \rangle$ où les symboles a, b, c, d sont des symboles de constantes et =, *, e sont les symboles mentionnés plus haut.

1- Prouver, en utilisant la syntaxe usuelle des preuves mathématiques, que dans tout monoïde on a :

$$(a * (b * c)) * d = (a * b) * (c * d)$$

Justifier chaque étape de cette preuve par un axiome de MO.

2- Donner une preuve dans LJ de :

$$MO \vdash (a * (b * c)) * d = (a * b) * (c * d)$$

Aide : il suffit de formaliser la preuve informelle donnée à la question 1.