LOGICS

TD0 : Natural deduction

Propositionnal calculus

Exercise 0.1 NJ
Give a proof within system NJ for the formulas :
$\vdash(B \rightarrow \perp) \leftrightarrow \neg B$
$\vdash A \rightarrow \neg \neg A$
$\vdash \neg \neg \neg A \rightarrow \neg A$
$\vdash(\neg A \vee \neg B) \rightarrow \neg(A \wedge B)$
$\vdash \neg(A \vee B) \leftrightarrow(\neg A \wedge \neg B)$
$\vdash \neg \neg(A \vee \neg A)$
$\vdash(A \rightarrow B) \rightarrow(\neg B \rightarrow \neg A)$

Exercise 0.2 NK

Give a proof within system NK for the formulas :
$\vdash \neg \neg A \rightarrow A$
$\vdash A \vee \neg A$
$\vdash \neg(A \wedge B) \rightarrow \neg A \vee \neg B$
$\vdash(\neg B \rightarrow \neg A) \rightarrow(A \rightarrow B)$
Exercise 0.3 De Bruijn's numbering
Let Φ be some first-order formula and p a leaf of the planar tree $P(\Phi)$ that represents this formula. If p is labeled by a variable $v \in \mathcal{V}$, we define its De Bruijn's number by :

$$
\begin{aligned}
N(p):= & -1 \text { if } v \text { is free at } p \\
N(p):= & \operatorname{Card}\{\mathrm{q} \in \operatorname{Dom}(\mathrm{P}(\Phi)) \mid \mathrm{r} \prec \mathrm{q} \prec \mathrm{p}, \mathrm{P}(\Phi)(\mathrm{q}) \in \mathcal{Q} \mathcal{V}, \mathrm{P}(\Phi)(\mathrm{q}) \notin \mathcal{Q}\{\mathrm{v}\}\} \\
& \text { if } P(\Phi)(r) \in \mathcal{Q}\{v\} \text { and } \forall q,(r \prec q \prec p \Rightarrow P(\Phi)(q) \notin \mathcal{Q}\{v\}) .
\end{aligned}
$$

In words : $N(p)$ is the number of the first quantification of the variable v that is encountered when " climbing" the tree from position p up to the root. One defines then the planar tree $\mathrm{DB}(\Phi)$ by

$$
\begin{array}{rlrl}
\operatorname{Dom}(\operatorname{DB}(\Phi)) & := & \operatorname{Dom}(\mathrm{P}(\Phi)) & \\
\operatorname{DB}(\Phi)(p) & := & (P(\Phi))(p) & \\
\text { if }(P(\Phi))(p) \text { is a connective or a symbol of the signature } \\
\operatorname{DB}(\Phi)(p) & := & Q & \\
\text { if }(P(\Phi))(p) \in Q \mathcal{V} \text { where } Q \text { is a quantifier } \\
\operatorname{DB}(\Phi)(p) & := & N(p) & \\
\text { if }(P(\Phi))(p) \in \mathcal{V} \text { and } N(p) \geq 0 \\
\operatorname{DB}(\Phi)(p) & := & v & \\
\text { if }(P(\Phi))(p) \in \mathcal{V} \text { and } N(p)=-1
\end{array}
$$

1- Show that, if Φ, Φ^{\prime} are first-order formulas, $\Phi \equiv_{\alpha} \Phi^{\prime}$ if and only if $\mathrm{DB}(\Phi)=\mathrm{DB}\left(\Phi^{\prime}\right)$.
2- Show that $\Phi \mapsto \mathrm{DB}(\Phi)$ can be computed in linear time.

3- Construct an algorithm that takes in input (Φ, v, t) where Φ is a first-order formula, v is a variable and t is a term and returns a representative of $\Phi[v:=t]$.
4- Describe an algorithmic method allowing, given a first-order formula Ψ to compute all the formulas Φ, up to α-equivalence, such that there exists some variable v and some term t such that

$$
\Phi[v:=t] \equiv_{\alpha} \Psi
$$

Exercise 0.4 variables that are linked several times
The " four-squares theorem" asserts that, every natural integer can be written as a sum of four squares. Using the signature $\mathcal{S}=\{E ; P, M\}$, this theorem can be expressed by :

$$
\forall x \cdot \exists y_{1} \cdot \exists y_{2} \cdot \exists y_{3} \cdot \exists y_{4} \cdot E\left(x, P\left(M\left(y_{1}, y_{1}\right), P\left(M\left(y_{2}, y_{2}\right), P\left(M\left(y_{3}, y_{3}\right), M\left(y_{4}, y_{4}\right)\right)\right)\right)\right)
$$

Could you express the same theorem by a formula that uses three variables only?

Exercise 0.5

What do you think about the following " proofs"?
π_{1} :
$1-P(x) \vdash P(x) \quad$ (axiom)
$2-P(x) \vdash \forall x \cdot P(x) \quad\left(1, \forall_{\text {intro }}\right)$
$3-P(x) \vdash P(y) \quad\left(2, \forall_{\text {elim }}\right)$
$4-\vdash P(x) \rightarrow P(y) \quad\left(3, \rightarrow_{\text {elim }}\right)$
$5-\vdash \forall y \quad P(x) \rightarrow P(y) \quad\left(4, \forall_{\text {intro }}\right)$
$6-\vdash \forall x \quad \forall y \quad P(x) \rightarrow P(y) \quad\left(5, \forall_{\text {intro }}\right)$
π_{2} :
$1-\forall z \cdot z=z \vdash \forall z \cdot z=z \quad$ (axiom)
$2-\forall z \cdot z=z \vdash x=x \quad\left(1, \forall_{\operatorname{elim}}\right)$
$3-\forall z \cdot z=z \vdash \exists y \cdot x=y \quad(2, \forall$ intro $)$
$4-\forall z \cdot z=z \vdash \forall x \cdot \exists y \cdot x=y \quad\left(3, \forall_{\text {intro }}\right)$
$5-\forall z \cdot z=z \vdash \exists y \cdot S(y)=y \quad\left(4, \forall_{\text {elim }}\right)$
Exercise 0.6 NJ
Give a NJ proof for the following formulas :
$\vdash(\forall x P(x) \wedge \forall y Q(y)) \rightarrow \forall z(P(z) \wedge Q(z))$
$\vdash(\forall x P(x) \wedge \exists y Q(y)) \rightarrow \exists z(P(z) \wedge Q(z))$
$\vdash \neg \exists x P(x) \leftrightarrow \forall x \neg P(x)$
$\vdash \exists x P(x) \rightarrow \neg \forall x \neg P(x)$
$\vdash \exists x \neg P(x) \rightarrow \neg \forall x P(x)$

Exercise 0.7 NK

Give a NK proof for the following formulas :

$$
\begin{aligned}
& \vdash[\neg \forall x \cdot \neg P(x)] \rightarrow[\exists x \cdot P(x)] \\
& \vdash\left[\forall x \cdot\left(R \vee R^{\prime}(x)\right)\right] \rightarrow\left[R \vee \forall x \cdot R^{\prime}(x)\right]
\end{aligned}
$$

