Bordeaux 1 University Master in Computer Science, S1, 2014/2015

LOGICS, J1IN7M12

Test on 16/10/2014. Some solutions.

Exercise 1 (4 pts)

1-Yes, the rule \vee'_{ℓ} is a derived rule of LK. Here is the corresponding proof with hypotheses:

$$\frac{\overline{\Gamma, A \vdash \Delta}^{\mathrm{Hyp}}}{\overline{\Gamma, \Gamma', A \vdash \Delta, \Delta'}^{\mathrm{wkn}_l^*, \mathrm{wkn}_r^*}} \frac{\overline{\Gamma', B \vdash \Delta}^{\mathrm{Hyp}}}{\overline{\Gamma, \Gamma', B \vdash \Delta, \Delta'}^{\mathrm{wkn}_l^*, \mathrm{wkn}_r^*}}_{\vee_l}$$

2- The rule \vee_{ℓ} is a derived rule of LK'. Here is the corresponding proof with hypotheses:

$$\frac{\overline{\Gamma, A \vdash \Delta}^{\mathsf{Hyp}} \ \overline{\Gamma, B \vdash \Delta}^{\mathsf{Hyp}}}{\frac{\Gamma, \Gamma, A \lor B \vdash \Delta, \Delta}{\Gamma, A \lor B \vdash \Delta}}_{\mathsf{contr}_l^*, \mathsf{contr}_r^*}^{\mathsf{Hyp}}$$

It follows that both systems have exactly the same set of *provable* sequents.

But the question 2 was ill-posed: it asked only whether the two systems had the same judgments. Thus the answer: "yes, by definition" is considered a correct answer too. **Exercise 2** (4 pts)

Structure \mathcal{B} :

Formula Φ means that every natural integer is a product of four *even* numbers. But the integer 1 is not divisible by 16, hence is not decomposable as such a product. It follows that $\mathcal{B} \not\models \Phi$. Structure \mathcal{C} :

With this interpretation, formula Φ means that every element of $\mathbb{Z}/3\mathbb{Z}$ is a sum of four squares. We check that:

$$0 = (0*0) + (0*0) + (0*0) + (0*0), \quad 1 = (1*1) + (0*0) + (0*0) + (0*0), \quad 2 = (1*1) + (1*1) + (0*0)$$

hence $\mathcal{C} \models \Phi$.

Structure \mathcal{D} :

With this interpretation, formula Φ means that every element of $\mathbb{Z}/3\mathbb{Z}$ is a product of four elements of the form y + y (for some $y \in \mathbb{Z}/3\mathbb{Z}$). We check that:

$$0 = (0+0)*(0+0)*(0+0)*(0+0), \quad 1 = (1+1)*(1+1)*(2+2)*(2+2), \quad 2 = (1+1)*(2+2$$

Exercice 3 (8 pts)

1- Let us build a counter-model \mathcal{M} for the formula:

$$\forall x \forall y \ [(\neg R(x)) \lor R(y)]$$

We define $D^{\mathcal{M}} := \{0,1\}, R^{\mathcal{M}}(0) := \text{True}, R^{\mathcal{M}}(1) = \text{False.}$ We define the valualtion ν by $\nu(x) := 0, \nu(y) := 1$. One can check that $\mathcal{M}, \nu \not\models [(\neg R(x)) \lor R(y)]$. It follows that

$$\mathcal{M} \not\models \forall x \forall y \ [(\neg R(x)) \lor R(y)].$$

By the soundness theorem for LK, we conclude that

$$\not \vdash_{\mathrm{LK}} \forall x \forall y \ [(\neg R(x)) \lor R(y)].$$

The three other sequents are provable within LK:

$$\frac{\overline{R(x) \vdash R(x)}^{ax}}{\vdash \neg R(x) \lor R(x)}^{\neg r} \xrightarrow{\forall r} (\neg R(x)) \lor R(x)} \xrightarrow{\forall r} (\neg R(x)) \lor R(x)} \xrightarrow{\forall r} (\neg R(x)) \lor R(x)]^{\exists r}} \xrightarrow{\forall r} (\neg R(x)) \lor R(x)]^{\exists r}} (\neg R(x)) \lor R(x)]^{\forall r} = \frac{\overline{R(x) \vdash R(x)}^{ax}}{\vdash \neg R(x), R(x) \lor \neg r} \xrightarrow{\forall r} (\neg R(x)) \lor R(x), (\neg R(z)) \lor R(x)} \xrightarrow{\forall r} (\neg R(x)) \lor R(y)], (\neg R(z)) \lor R(x)} \xrightarrow{\forall r} (\neg R(x)) \lor R(y)], (\neg R(z)) \lor R(x)} \xrightarrow{\forall r} (\neg R(x)) \lor R(y)], (\neg R(z)) \lor R(x)} \xrightarrow{\forall r} (\neg R(x)) \lor R(y)], (\neg R(z)) \lor R(x)} \xrightarrow{\forall r} (\neg R(x)) \lor R(y)], (\neg R(z)) \lor R(x)} \xrightarrow{\forall r} (\neg R(x)) \lor R(y)], (\neg R(z)) \lor R(x)} \xrightarrow{\exists r} (\neg R(x)) \lor R(y)], (\neg R(z)) \lor R(x)]} \xrightarrow{\exists r} (\neg R(x)) \lor R(y)], (\neg R(x)) \lor R(x)]} \xrightarrow{\exists r} (\neg R(x)) \lor R(y)], (\neg R(x)) \lor R(x)]} \xrightarrow{\exists r} (\neg R(x)) \lor R(y)]} \xrightarrow{\neg R(x)} (\neg R(x)) \lor R(y)} \xrightarrow{\neg R(x)} (\neg R(x)) \lor R(y)} \xrightarrow{\neg R(x)} (\neg R(x)) \lor R(x)} (\neg R(x)) \lor R(x)} \xrightarrow{\neg R(x)} (\neg R(x)) \lor R(y)]} \xrightarrow{\neg R(x)} (\neg R(x)) \lor R(y)} \xrightarrow{\neg R(x)} (\neg R(x)) \lor R(y)} (\neg R(x)) \lor R(y)} (\neg R(x)) \lor R(x)} (\neg R(x)) \lor R(x)} (\neg R(x)) \lor R(x)} (\neg R(x)) \lor R(x)} (\neg R(x)) \lor (\neg R(x)) \lor R(x)} (\neg R(x)) \lor R(x)$$

$$\frac{ \begin{array}{c} \vdash \neg R(x), R(x) \\ \hline \vdash \neg R(x) \lor R(x) \\ \hline \vdash \exists y \neg R(x) \lor R(y) \\ \hline \vdash \exists x \exists y \neg R(x) \lor R(y) \\ \end{array}}{\exists_r}$$

2- Let us treat the provability within LJ now. Suppose that, the following assumption (H) holds:

there exists some quantifiers $Q, Q' \in \{\forall, \exists\}$ such that the sequent $\vdash F_{QQ'}$ is provable within LJ.

By the cut-elimination theorem, this sequent would posess a $\it cut-free$ proof. This proof would have the form:

$$\pi$$

$$\vdots$$

$$- \vdash (\neg R(t)) \lor R(t') \qquad Q'_r$$

$$\vdash Q'y(\neg R(t)) \lor R(y) \qquad Q_r$$

$$\vdash QxQ'y(\neg R(x)) \lor R(y)$$

where t, t' are two terms (note that, if $Q = \forall$ then t = x and if $Q' = \forall$, then t' = y). The last rule of π must be one of the two rules that introduce disjunction on the right. It follows that the sequent just above $\vdash (\neg R(t)) \lor R(t')$ in π must be either $\vdash \neg R(t)$ or $\vdash R(t')$. But, by theorem 3.2.2 none of these two sequents is derivable in LK, hence none is derivable in LJ. We have shown that assumption (H) cannot hold. Hence all the four sequents $\vdash F_{QQ'}$ are non-provable within LJ.

Exercise 4 (4 pts)

1- One can compute all the values of the assertion $k \mid \models -\Phi$ for $k \in K$ and Φ subformula of $[\neg(A \land B)] \rightarrow [(\neg A) \lor (\neg B)]$, using the initial forcing relation and the inductive definition of $\mid \models -$. We present these values in a table:

$k \mid \models - \Phi$	A	В	$A \wedge B$	$\neg (A \land B)$	$\neg A$	$\neg B$	$(\neg A) \lor (\neg B)$	$[\neg (A \land B)] \to [(\neg A) \lor (\neg B)]$
0	F	F	F	Т	F	F	F	F
1	Т	F	F	Т	F	Т	Т	-
2	F	Т	F	Т	Т	F	Т	-

(the – entry means that this forcing value was unnecessary for solving the question, thus was not computed).

In particular

$$0 \not\models \neg (A \land B), \quad 0 \not\models \neg (\neg A) \lor (\neg B)$$
$$0 \not\models \neg [\neg (A \land B)] \to [(\neg A) \lor (\neg B)]$$

2- By question 1, the sequent $[\neg(A \land B)] \rightarrow [(\neg A) \lor (\neg B)]$ admits the Kripke counter-model \mathcal{K} . Hence it cannot be proved within LJ.