Bordeaux 1 University Master in Computer Science, S1, 2013/2014

LOGICS, J1IN7M12

Test on 17/10/2013. Some solutions.

Exercise 1 (5 pts)

Yes, the rule \lor_{ℓ} of LK is reversible. Here are the proofs with hypotheses that witness the derived rules:

$$-\frac{\overline{A\vdash A}^{\mathtt{ax'}}}{\overline{A\vdash A,B}^{\mathtt{wkn}_r}} - \frac{\overline{B\vdash B}^{\mathtt{ax'}}}{\Gamma, A\lor B \vdash \Delta}_{\mathtt{cut}}^{\mathtt{Hyp}} - \frac{\overline{B\vdash B}^{\mathtt{ax'}}}{\overline{B\vdash A,B}^{\mathtt{wkn}_r}} - \frac{\overline{B\vdash B}^{\mathtt{ax'}}}{\overline{B\vdash A,B}^{\mathtt{wkn}_r}} - \frac{\overline{B\vdash B}^{\mathtt{ax'}}}{\Gamma, A\lor B \vdash \Delta}_{\mathtt{cut}}^{\mathtt{Hyp}} - \frac{\overline{B\vdash B}^{\mathtt{ax'}}}{\Gamma, B\vdash \Delta}_{\mathtt{cut}}^{\mathtt{bx'}} - \frac{\overline{B\vdash B}^{\mathtt{bx'}}}{\Gamma, B\vdash \Delta}_{\mathtt{cut}}^{\mathtt{bx'}} - \frac{\overline{B} + \overline{B}}_{\mathtt{bx'}}^{\mathtt{bx'}} - \frac$$

Exercise 2 (6 pts)

1- Let us give the required proofs:

$$\frac{\overline{A, B \vdash A}^{\mathsf{ax'}} \overline{A, B \vdash B, C}^{\mathsf{ax'}}}{A, B \vdash A \land (B \lor C)} \stackrel{\wedge_r}{\wedge_r} \frac{\overline{A, C \vdash B, C}^{\mathsf{ax'}}}{A, C \vdash A \land (B \lor C)} \stackrel{\wedge_r}{\wedge_r} \frac{\overline{A, C \vdash B, C}^{\mathsf{ax'}}}{A, C \vdash B \lor C} \stackrel{\wedge_r}{\wedge_r} \frac{\overline{A, C \vdash B, C}^{\mathsf{ax'}}}{A, C \vdash A \land (B \lor C)} \stackrel{\wedge_r}{\wedge_r} \frac{\overline{A, C \vdash A \land (B \lor C)}^{\mathsf{ax'}}}{\frac{\Box \land A \land (B \lor C), \neg A, \neg B}{\neg r}} \stackrel{\wedge_r}{\to} \frac{\overline{C \vdash A \land (B \lor C), \neg A}^{\neg r}}{\left(\frac{\Box \land A \land (B \lor C), \neg A, (\neg B) \land \neg C}{\neg (A \land (B \lor C)) \vdash \neg A, (\neg B) \land \neg C} \right)} \stackrel{\wedge_r}{\wedge_r}$$

$$\frac{\overline{A,Q(x)\vdash Q(x)}^{\mathsf{ax'}}}{\overline{A\vdash A,\forall x\neg Q(x)}^{\mathsf{ax'}}} \stackrel{\mathsf{ax'}}{\overline{A\vdash \exists xQ(x),\neg Q(x)}}^{\exists_r} \stackrel{\exists_r}{\xrightarrow{\forall_r}} \\ \frac{\overline{A\vdash A,\forall x\neg Q(x)}^{\mathsf{ax'}}}{\overline{A\vdash \exists xQ(x),\forall x\neg Q(x)}^{\lor_r}} \stackrel{\forall_r}{\xrightarrow{\forall_r}} \\ \frac{\overline{A\vdash A \land \exists xQ(x),\forall x\neg Q(x)}^{\lor_r}}{\overbrace{\vdash A \land \exists xQ(x),(\neg A)\lor\forall x\neg Q(x)}^{\lor_r}} \stackrel{\forall_r}{\xrightarrow{\forall_r}} \\ \frac{\overline{(A\vdash A \land \exists xQ(x),\neg A,\forall x\neg Q(x))}^{\lor_r}}{\overbrace{\neg (A \land \exists xQ(x))\vdash (\neg A)\lor\forall x\neg Q(x)}^{\lor_l}}$$

2- Let us give the required proof:

$$\frac{\overline{P(y), Q(y) \vdash P(y)}^{\mathsf{ax}'} \overline{P(y), Q(y) \vdash Q(y)}^{\mathsf{ax}'}}{P(y), Q(y) \vdash P(y) \land Q(y)}^{\mathsf{ax}'} \\ \frac{\overline{P(y), Q(y) \vdash P(y) \land Q(y)}}{\overline{P(y), Q(y) \vdash \exists y (P(y) \land Q(y))}}^{\exists_r} \\ \frac{\overline{\forall x P(x), Q(y) \vdash \exists y (P(y) \land Q(y))}}{\forall x P(x), \exists y Q(y) \vdash \exists y (P(y) \land Q(y))}^{\exists_l} \\ \frac{\overline{\forall x P(x), \exists y Q(y) \vdash \exists y (P(y) \land Q(y))}}{(\forall x P(x)) \land \exists y Q(y) \vdash \exists y (P(y) \land Q(y))}^{\land_l}$$

Exercice 3 (5 pts)

1- The signature S used by MO and the sequent S is $S := \langle =; *, e \rangle$ where both symbols =,* have arity 2 and e has arity 0.

A structure over \mathcal{S} , fulfilling all the axioms of MO is a t-uple

$$\mathcal{M} := \langle M; =^{\mathcal{M}}; *^{\mathcal{M}}, e^{\mathcal{M}} \rangle$$

such that M is non-empty, * is an associative law over M and e is a neutral element for the law *. If every element m of M has a right-inverse m^{-1} i.e. such that $m * m^{-1} = e$ then the formula $\forall x \ \forall y \ \exists z \ x = y * z$ is true in this structure: let $x, y \in M$, let us define $z := y^{-1} * x$. We then have:

y * z =	$y*(y^{-1}*x)$	by our choice of z
=	$(y*y^{-1})*x$	associativity
=	e * x	right-inverse
=	x	neutral element

It follows that $\mathcal{M} \models$ MO and

$$\mathcal{M} \models \forall x \ \forall y \ \exists z \ x = y * z$$

It thus suffices to choose a structure \mathcal{M} which is a group: for example the trivial group, with only one element $\{1\}$, is such a model. (But any other group is also a model).

2- Let us consider the set of booleans, $\{0, 1\}$, endowed with the law * defined by

$$0 * 0 = 0, 0 * 1 = 1 * 0 = 1, 1 * 1 = 1$$

(this law is usually denoted by + and defines the semantics of the disjunction). The boolean 0 is a neutral element for *.

But, for x := 0 and y := 1, there does not exist any $z \in \{0, 1\}$ such that x = y * z because $1 + 0 = 1 + 1 = 1 \neq 0$. Thus, if we choose

$$\mathcal{M}_2 := \langle \{0, 1\}; =^{\mathcal{M}_2}; +, 0 \rangle$$

$$\mathcal{M}_2 \models \text{ MO and } \mathcal{M}_2 \not\models \forall x \ \forall y \ \exists z \ x = y * z$$

3- The sequent S has a counter-model; hence, by the soundness theorem, it cannot be proved within LK.

Since every sequent provable in LJ is also provable in LK, it cannot, a fortiori, be proved in LJ.

Exercise 4 (5 pts)

1- Since $0 \mid \models - {}_{0}A$ we are sure that $0 \mid \models -A$, hence that

 $0 \mid \models -A \lor \neg A$

We know that $0 \models (\neg \neg B)$ means that,

$$\forall k \ge 0, \exists k' \ge k, k' \mid \models -B.$$

Since, for $k' \in \{1,2\}, k' \mid \models -B$ and $\{1,2\}$ are the two maximal elements of K, we conclude that

$$0 \mid \vdash - (\neg \neg B) \tag{1}$$

But B is atomic and $0 \not\models - _0 B$, hence

$$0 \not\models -B \tag{2}$$

It follows from (1),(2) that

$$0 \not\models - (\neg \neg B) \to B$$

2- Let us consider the following Kripke structure $\mathcal{K}' := (K', \leq', | \vdash - {}_0')$, over the propositional signature consisting of one predicate symbol A of arity 0 : $K' := \{0', 1'\}$ the partial ordering over K' is defined by $0' \leq 1'$ and the initial forcing relation

 $K' := \{0', 1'\}$, the partial ordering over K' is defined by $0' \le 1'$ and the initial forcing relation is $|-_0 := \{(1', A)\}$.

Since A is atomic and $0' \not\models - _0A$, we conclude that $0' \not\models - A$.

Since $1' \ge 0'$ and $1' \models -A$, we conclude that $0' \models -\neg A$.

Hence $0' \not\models -A \lor \neg A$. The sequent $\vdash A \lor \neg A$ thus admits the Kripke counter-model \mathcal{K}' . Hence it cannot be proved within LJ.

By question 1, the sequent $\vdash (\neg \neg B) \rightarrow B$ admits the Kripke counter-model \mathcal{K} . Hence it cannot be proved within LJ.