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Outline

▶ Geometry of the quantum state space –
old and some new stuff

▶ Correlation constraints

▶ Quantum marginal problem

▶ Bloch representation

▶ Two-party systems
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Geometry of the quantum state space

▶ quest for image/model of quantum-mechanical state space
−→ to visualize dynamics, decoherence . . .

▶ pure states |ψ⟩ |ψ⟩ ∈ Hd

▶ mixed states ρ ρ ∈ B(H), ρ = ρ†
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Geometry of the quantum state space

qubits d = 2 ρ =
[

a00 a01
a∗

01 a11

]
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Geometry of the quantum state space

qubits d = 2 ρ =
[

a00 a01
a∗

01 a11

]

the qubit Bloch ball

ρ = 1
2 (12 + rxσx + ryσy + rzσz)

Bloch vector r = (rx , ry , rz)

rj = Tr (ρ σj)

purity Tr
(
ρ2)

= 1
2

(
1 + r2

x + r2
y + r2

z

)
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Ugo Fano (1912 − 2001)
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Geometry of the quantum state space

the qubit Bloch ball d = 2

ρ = 1
2 (12 + rxσx + ryσy + rzσz)

Bloch vector r = (rx , ry , rz)

rj = Tr (ρ σj)

purity Tr
(
ρ2)

= 1
2

(
1 + r2

x + r2
y + r2

z

)

Bloch 1946 ?
Fano 1954, Fano 1957, Feynman et al. 1957 !
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Geometry of the quantum state space

unfortunately . . . the qubit Bloch ball

−→ is not representative for d > 2
−→ provides some misleading intuition

Jens Siewert – Correlation constraints and Bloch geometry of two-party systems 7/28



Geometry of the quantum state space

the d = 2 Bloch ball

−→ not representative for d > 2
−→ misleading intuition

d = 2 d > 2

surface pure states ψ mostly mixed states

arbitrary rotations

flat surface parts

Jens Siewert – Correlation constraints and Bloch geometry of two-party systems 8/28



Geometry of the quantum state space: the qutrit

▶ . . . then try: a qutrit d = 3

▶ ρ =

[
a00 a01 a02
a∗

01 a11 a12
a∗

02 a∗
12 a22

]

▶ 8 real parameters

−→ look for 3d model of 8d object
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Geometry of the quantum state space: the qutrit

What are the "basis vectors" we use?

d = 2 d = 3

[
1 0
0 −1

]
Z

√
3
2

[
1 0 0
0 −1 0
0 0 0

]
, 1√

2

[
1 0 0
0 1 0
0 0 −2

]
Z1 ,Z2

[
0 1
1 0

]
X

√
3
2

[
0 1 0
1 0 0
0 0 0

] [
0 0 1
0 0 0
1 0 0

] [
0 0 0
0 0 1
0 1 0

]
X1,X2,X3

[
0 −i
i 0

]
Y

√
3
2

[
0 −i 0
i 0 0
0 0 0

] [
0 0 −i
0 0 0
i 0 0

] [
0 0 0
0 0 −i
0 i 0

]
Y1,Y2,Y3
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Geometry of the quantum state space: the qutrit

ρ = 1
3 [13+z1 Z1 + z2 Z2+

+ x1 X1 + x2 X2 + x3 X3

+ y1 Y1 + y2 Y2 + y2 Y3 ]
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Geometry of the quantum state space: the qutrit

ρ = 1
3 [13+z1 Z1 + z2 Z2+

+ x1 X1 + x2 X2 + x3 X3

+ y1 Y1 + y2 Y2 + y3 Y3 ]

only one coordinate left to choose: z1, z2, and

w =
√ ∑

j

(
x2

j + y2
j

)
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Geometry of the quantum state space: the qutrit

coordinates z1, z2 , and w =
√∑

j

(
x2

j + y2
j

)

▶ convex
▶ simply connected
▶ pure states @surface,

max radius
√

2
▶ pure states simply

connected
▶ neither polytope nor

smooth object
...
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Geometry of the quantum state space: the qutrit

application (I) unitary orbits of mixed states

▶ Birkhoff polytope
▶ Horn’s lemma
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Geometry of the quantum state space: the qutrit

application (II) action of paradigmatic quantum channels

depolarizing phase-damping amplitude-damping

d = 2
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Geometry of the quantum state space: the qutrit

application (II) action of paradigmatic quantum channels

depolarizing phase-damping amplitude-damping

d = 2

d = 3
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Intermediate conclusions

▶ Bloch representation has built-in
Hilbert-Schmidt ( = Euclidean ) geometry

▶ provides appropriate geometric intuition for non-trivial algebra

▶ method: find effective parameters for the characterization of
high-dimensional objects
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Correlation constraints
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Correlation constraints: composite systems

we want to study correlations between many quantum particles

−→ recall description of composite systems

|ψ⟩ ∈ H = H(1)
d1

⊗ H(2)
d2

⊗ . . .⊗ H(N)
dN

−→ again, we are also interested in the mixed states

ρ ∈ B(H)

−→ for example, consider N = 2 HAB = H(A)
d ⊗ H(B)

d
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Correlation constraints: Schmidt decomposition

−→ recall Schmidt decomposition

pure state |ψAB⟩ ∈ HAB , reduced states

ρA = TrB |ψAB⟩⟨ψAB|
ρB = TrA |ψAB⟩⟨ψAB|

⇐⇒ ρB = U ρA U†

−→ ask converse question:

how pure can ρAB be if ρB ̸= U ρA U† ?
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Correlation constraints and many-body physics

global requirements ⇔ local properties

▶ symmetries
▶ boundary

conditions, . . .
▶ H |Ψ⟩ = E |Ψ⟩

▶ ρA, ρB, ρC , . . .
▶ ρAB, ρAC , . . .
▶ observables (specific heat, conductivity,

susceptibilities, . . . )
determined by local states

−→ which global state Ψ (or ρ) is compatible with local states?

−→ “quantum marginal problem” aka “N representability”
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Correlation constraints: the quantum marginal problem

▶ back to the simplest problem: N = 2, d = 2 – two qubits
▶ was solved 20 years ago: Bravyi (2004)

marginals compatible with a global state with spectrum
λ1 ≥ λ2 ≥ λ3 ≥ λ4 iff

λA ≥ λ3 + λ4

λA + λB ≥ λ2 + λ3 + 2λ4

λB − λA ≤ λ1 − λ3

λB − λA ≤ λ2 − λ4
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λ1 ≥ λ2 ≥ λ3 ≥ λ4 iff

λA ≥ λ3 + λ4

λA + λB ≥ λ2 + λ3 + 2λ4

λB − λA ≤ λ1 − λ3

λB − λA ≤ λ2 − λ4

well . . .
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Correlation constraints: the quantum marginal problem

▶ back to the simplest problem: N = 2, d = 2 – two qubits
▶ was solved 20 years ago: Bravyi (2004)

marginals compatible with a global state with spectrum
λ1 ≥ λ2 ≥ λ3 ≥ λ4 iff

λA ≥ λ3 + λ4

λA + λB ≥ λ2 + λ3 + 2λ4

λB − λA ≤ λ1 − λ3

λB − λA ≤ λ2 − λ4

gets worse for more complex systems
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Correlation constraints: the quantum marginal problem

▶ back to the simplest problem: N = 2, d = 2 – two qubits
▶ was solved 20 years ago: Bravyi (2004)

marginals compatible with a global state with spectrum
λ1 ≥ λ2 ≥ λ3 ≥ λ4 iff

λA ≥ λ3 + λ4

λA + λB ≥ λ2 + λ3 + 2λ4

λB − λA ≤ λ1 − λ3

λB − λA ≤ λ2 − λ4

Klyachko (2004): 2 × 3 41 ineqs.
3×3 197 ineqs. + permut.
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Correlation constraints: Bloch representation reloaded

Bloch representation for two qudits

orthogonal basis {µj}, µ0 ≡ 1, Trµj = 0 (j ≥ 1), Tr
(
µjµ

†
k

)
= dδjk

ρAB = 1
d2

[
1⊗ 1 +

d2−1∑
j=1

aj µj ⊗ 1

+
d2−1∑
j=1

bk 1⊗ µk +
∑
lm

tlm µl ⊗ µm

]
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Bloch representation for two qudits

ρAB = 1
d2

[
1⊗ 1 +

d2−1∑
j=1

aj µj ⊗ 1

+
d2−1∑
j=1

bk 1⊗ µk︸ ︷︷ ︸
1−sector
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Correlation constraints: Bloch representation reloaded

Bloch representation for two qudits

ρAB = 1
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1⊗ 1 +

d2−1∑
j=1

aj µj ⊗ 1
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1−sector

+
d2−1∑
l ,m=1

tlm µl ⊗ µm︸ ︷︷ ︸
2−sector

]

encodes local
states ρA, ρB

describes
two-party
correlations
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Correlation constraints: Bloch representation reloaded

Bloch representation for two qudits

ρAB = 1
d2

[
1⊗ 1 +

d2−1∑
j=1

aj µj ⊗ 1

+
d2−1∑
j=1

bk 1⊗ µk +
∑
lm

tlm µl ⊗ µm

]

Bloch vector lengths ∥a∥2 =
∑

j |aj |2 = d Tr
(
ρ2

A
)
−1

∥b∥2 =
∑

k |bk |2 = d Tr
(
ρ2

B
)
−1

correlation strength ∥TAB∥2 =
∑

lm |tlm|2
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Correlation constraints: bounding two-party correlations

▶ how pure can global state get if local purities are different?
▶ important result: tight bound for maximal global eigenvalue

λmax ≤ 1 − 1√
2d | ∥a∥ − ∥b∥ |

▶ this immediately gives a purity bound

d Tr
(
ρ2

AB
)

≤ d −
√

2d | ∥a∥ − ∥b∥ | + | ∥a∥ − ∥b∥ |2

−→ can be saturated for all d
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Correlation constraints: tripartite ’monogamy’ relation

▶ consider pure tripartite state |ψABC ⟩
▶ since Tr

(
ρ2

C
)

= Tr
(
ρ2

AB
)

−→ monogamy-type relation

∥c∥2 ≤ d
2 − 1 +

[ √
d
2 − | ∥a∥ − ∥b∥ |

]2

▶ reminiscent of Coffman-Kundu-Wootters monogamy relation
for three qubits Coffman et al PRA (2000)

2[1 − Tr
(
ρ2

A
)
] ≥ C2(ρAB) + C2(ρAC )

−→ now d × d × d
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Correlation constraints: Two-qubit Bloch ball

▶ another bound for correlation strength
Morelli et al. Lin Alg Appl (2020)

∥TAB∥ ≥
√

d − 1 ( ∥a∥ + ∥b∥) − (d − 1)

▶
bounds give rise to
Bloch-ball type picture
for two qubits
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Correlation constraints: Two-qubit Bloch ball

▶ again: lots of physics information in this picture
▶ in particular: characterize entangled vs. separable regions

entangled

∥TAB∥2 > 1 −
∣∣ ∥a∥2 − ∥b∥2

∣∣
separable ball

∥TAB∥2 ≤ 1
3 − ∥a∥2 − ∥b∥2

separable region

∥TAB∥ ≤


√

1
6

(
2 − 3(∥a∥ + ∥b∥)2

)
∥a∥ + ∥b∥ ≤ 2

3

1 − ∥a∥ − ∥b∥ 2
3 < ∥a∥ + ∥b∥

∥a∥ + ∥b∥ − 1 1 < ∥a∥ + ∥b∥

Jens Siewert – Correlation constraints and Bloch geometry of two-party systems 26/28



Correlation constraints: Two-qubit Bloch ball

▶ again: lots of physics information in this picture
▶ in particular: characterize entangled vs. separable regions

entangled

∥TAB∥2 > 1 −
∣∣ ∥a∥2 − ∥b∥2

∣∣
separable ball

∥TAB∥2 ≤ 1
3 − ∥a∥2 − ∥b∥2

separable region

∥TAB∥ ≤


√

1
6

(
2 − 3(∥a∥ + ∥b∥)2

)
∥a∥ + ∥b∥ ≤ 2

3

1 − ∥a∥ − ∥b∥ 2
3 < ∥a∥ + ∥b∥

∥a∥ + ∥b∥ − 1 1 < ∥a∥ + ∥b∥

Jens Siewert – Correlation constraints and Bloch geometry of two-party systems 26/28



Conclusions

▶ Bloch representation of quantum states facilitates discovery
and geometric visualization of algebraic relations

▶ derived new correlation constraints for two-party systems

▶ method: study coarse-grained version of quantum marginal
problem

▶ hopefully new geometric intuition for quantum correlations for
systems with more than two parties

▶ method to visualize higher-dimensional state spaces

−→ necessary loss of features
−→ retain & emphasize relevant features
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Thank you
Eltschka, Huber, Morelli, Siewert, Quantum 5, 485 (2021)

Morelli, Eltschka, Huber, Siewert, Phys. Rev. A 109, 012423 (2024).
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