A Renormalisation Decoder for Kitaev's Toric Code

Wouter Rozendaal and Gilles Zémor

Institut de Mathématiques de Bordeaux

QuDATA, LaBRI - 25 January 2024

Wouter Rozendaal and Gilles Zémor. Analysis of the Error-Correcting Radius of a Renormalisation Decoder for Kitaev's Toric Code. 2023. arXiv: 2309.12165 [quant-ph]

Kitaev's code:

• Qubits indexed by edges of a toric tiling

Kitaev's code:

- Qubits indexed by edges of a toric tiling
- CSS stabiliser code $(\mathbf{H}_X, \mathbf{H}_Z)$

Kitaev's code:

- Qubits indexed by edges of a toric tiling
- CSS stabiliser code $(\mathbf{H}_X, \mathbf{H}_Z)$
 - Rows of \mathbf{H}_X

Figure: Elementary cocycle

Kitaev's code:

- Qubits indexed by edges of a toric tiling
- CSS stabiliser code $(\mathbf{H}_X, \mathbf{H}_Z)$
 - Rows of \mathbf{H}_Z

Figure: Elementary cycle

Kitaev's code:

- Qubits indexed by edges of a toric tiling
- CSS stabiliser code $(\mathbf{H}_X, \mathbf{H}_Z)$
 - Orthogonality condition: $\mathbf{H}_X \mathbf{H}_Z^{\mathsf{T}} = \mathbf{0}$

Figure: Elementary cocycles and cycles meet in an even number of edges

• Toric tiling of size $m \times m \to m^2$ vertices, $2m^2$ edges

- Toric tiling of size $m \times m \to m^2$ vertices, $2m^2$ edges
- Parameters of the toric code:

- Toric tiling of size $m \times m \to m^2$ vertices, $2m^2$ edges
- Parameters of the toric code:

• Length:
$$n = 2m^2$$

- Toric tiling of size $m \times m \to m^2$ vertices, $2m^2$ edges
- Parameters of the toric code:
 - Length: $n = 2m^2$
 - Dimension: $n \operatorname{rank} \mathbf{H}_X \operatorname{rank} \mathbf{H}_Z = 2$

Figure: Generators of \mathbf{H}_X and \mathbf{H}_Z

- Toric tiling of size $m \times m \to m^2$ vertices, $2m^2$ edges
- Parameters of the toric code:
 - Length: $n = 2m^2$
 - Dimension: $n \operatorname{rank} \mathbf{H}_X \operatorname{rank} \mathbf{H}_Z = 2$
 - Minimum distance: $d = m = \sqrt{n/2}$

Figure: Non trivial cycles of smallest weight

Z-error pattern \rightarrow error vector $\mathbf{e} \in \mathbb{F}_2^n$

Figure: Error vector **e**

A Renormalisation Decoder for Kitaev's Toric Code

Z-error pattern \rightarrow error vector $\mathbf{e} \in \mathbb{F}_2^n$

• Input: syndrome measurement $\sigma(\mathbf{e}) := \mathbf{H}_X \mathbf{e}^{\intercal}$

Figure: Syndrome $\sigma(\mathbf{e})$

Z-error pattern \rightarrow error vector $\mathbf{e} \in \mathbb{F}_2^n$

- Input: syndrome measurement $\sigma(\mathbf{e}) := \mathbf{H}_X \mathbf{e}^\intercal$
- Output: $\hat{\mathbf{e}} \in \mathbb{F}_2^n$ such that $\sigma(\hat{\mathbf{e}}) = \sigma(\mathbf{e})$

Figure: Output vector $\hat{\mathbf{e}}$ and its syndrome

Z-error pattern \rightarrow error vector $\mathbf{e} \in \mathbb{F}_2^n$

- Input: syndrome measurement $\sigma(\mathbf{e}) := \mathbf{H}_X \mathbf{e}^{\intercal}$
- Output: $\hat{\mathbf{e}} \in \mathbb{F}_2^n$ such that $\sigma(\hat{\mathbf{e}}) = \sigma(\mathbf{e})$
- Successful decoding: $\mathbf{e} + \hat{\mathbf{e}}$ is in the row space of \mathbf{H}_Z

Figure: $\mathbf{e} + \hat{\mathbf{e}}$ is a trivial cycle

- Errors accumulate while a quantum algorithm is running
- Need for sub-linear decoding algorithms

- Errors accumulate while a quantum algorithm is running
- Need for sub-linear decoding algorithms

- Errors accumulate while a quantum algorithm is running
- Need for sub-linear decoding algorithms

- Renormalisation idea: Duclos-Cianci and Poulin (2010)
- Time-complexity in $O(n \log_2 n)$ and parallelisable to $O(\log_2 n)$
- High threshold values for bit-flip and depolarisation channels

- Errors accumulate while a quantum algorithm is running
- Need for sub-linear decoding algorithms

- Renormalisation idea: Duclos-Cianci and Poulin (2010)
- Time-complexity in $O(n \log_2 n)$ and parallelisable to $O(\log_2 n)$
- High threshold values for bit-flip and depolarisation channels

Worst case behaviour?

- Errors accumulate while a quantum algorithm is running
- Need for sub-linear decoding algorithms

- Renormalisation idea: Duclos-Cianci and Poulin (2010)
- Time-complexity in $O(n \log_2 n)$ and parallelisable to $O(\log_2 n)$
- High threshold values for bit-flip and depolarisation channels

Worst case behaviour?

What is the smallest weight of an error pattern for which decoding fails?

Figure: Decoding problem on a toric tiling. Input: syndrome of an error vector **e**

Figure: Reduction procedure: Move the syndrome vertices to the next subtiling

Figure: Locally pair-up syndrome vertices

Figure: Locally shift remaining syndrome vertices

Figure: Locally shift remaining syndrome vertices

Figure: Locally shift remaining syndrome vertices

Figure: Locally shift remaining syndrome vertices

Figure: Locally shift remaining syndrome vertices

Figure: Locally shift remaining syndrome vertices

Figure: Decoding problem on the subtiling. Input: syndrome of the vector $\mathbf{e} + \hat{\mathbf{e}}$

Figure: Reduction procedure: Move the syndrome vertices to the next subtiling

Figure: Decoding finishes. All syndromes vertices have been paired-up

Figure: Syndrome of the error vector \mathbf{e}

Figure: Output vector $\hat{\mathbf{e}}$ after the 1^{st} reduction step

Figure: Output vector $\hat{\mathbf{e}}$ after the 2^{nd} reduction step

A Hard-Decision and Deterministic Reduction Procedure

Figure: 1: Locally pair up diagonally opposed syndrome vertices in D cells

A Hard-Decision and Deterministic Reduction Procedure

Figure: 1: Locally pair up diagonally opposed syndrome vertices in D cells

Figure: 2: Locally pair up neighbouring syndrome vertices in B and C cells

A Hard-Decision and Deterministic Reduction Procedure

Figure: 1: Locally pair up diagonally opposed syndrome vertices in D cells

Figure: 2: Locally pair up neighbouring syndrome vertices in B and C cells

Figure: 3: Shift remaining syndrome vertices in A cells to their top-left corner

(a) Randomly generated error pattern.

(c) Sum of the two patterns.

Figure: Successful decoding cycle.

(a) Randomly generated error pattern.

(c) Sum of the two patterns.

Figure: Unsuccessful decoding cycle.

Figure: Results of the Monte Carlo simulations over the bit-flip channel.

Construction of 1-dimensional wrongly decoded error patterns:

Construction of 1-dimensional wrongly decoded error patterns:

 $d = 2^{0}$

Figure: \mathbf{e}_0 is a minimal cycle of the toric tiling of size 1×1

Construction of 1-dimensional wrongly decoded error patterns:

Figure: \mathbf{e}_1 is a half a cycle of the toric tiling of size 2×2

Construction of 1-dimensional wrongly decoded error patterns:

Figure: \mathbf{e}_2 is a preimage of \mathbf{e}_1 on the toric tiling of size 4×4

Construction of 1-dimensional wrongly decoded error patterns:

Figure: \mathbf{e}_3 is a preimage of \mathbf{e}_2 on the toric tiling of size 8×8

Construction of 1-dimensional wrongly decoded error patterns:

Figure: \mathbf{e}_4 is a preimage of \mathbf{e}_3 on the toric tiling of size 16×16

Construction of 1-dimensional wrongly decoded error patterns:

Figure: \mathbf{e}_5 is a preimage of \mathbf{e}_4 on the toric tiling of size 32×32

Construction of 1-dimensional wrongly decoded error patterns:

Figure: Weights of the error patterns

Construction of 1-dimensional wrongly decoded error patterns:

Figure: Weights of the error patterns

Upper Bound on the Error-Correcting Radius

There exist wrongly decoded error patterns whose weight scale like $d^{1/2}$.

Lower Bound on the Error-Correcting Radius

The renormalisation decoder corrects all errors of weight less than $\frac{5}{6}d^{\log_2(6/5)}$.

Lower Bound on the Error-Correcting Radius

The renormalisation decoder corrects all errors of weight less than $\frac{5}{6}d^{\log_2(6/5)}$.

Idea of the proof:

Lower Bound on the Error-Correcting Radius

The renormalisation decoder corrects all errors of weight less than $\frac{5}{6}d^{\log_2(6/5)}$.

Idea of the proof:

- Evaluate the growth of $wt_r(\mathbf{e}_i) + P_i$ for increasing indexes
 - $wt_r(e_i)$: reduced weight of e_i
 - P_i : number of paths of \mathbf{e}_i

Lower Bound on the Error-Correcting Radius

The renormalisation decoder corrects all errors of weight less than $\frac{5}{6}d^{\log_2(6/5)}$.

Idea of the proof:

- Evaluate the growth of $wt_r(\mathbf{e}_i) + P_i$ for increasing indexes
 - $wt_r(e_i)$: reduced weight of e_i
 - P_i : number of paths of \mathbf{e}_i

Lemma

If \mathbf{e}_{i+1} is a preimage of \mathbf{e}_i , then $\mathsf{wt}_{\mathsf{r}}(\mathbf{e}_{i+1}) + P_{i+1} \geq \frac{6}{5}(\mathsf{wt}_{\mathsf{r}}(\mathbf{e}_i) + P_i)$

Lower Bound on the Error-Correcting Radius

The renormalisation decoder corrects all errors of weight less than $\frac{5}{6}d^{\log_2(6/5)}$.

Idea of the proof:

- Evaluate the growth of $wt_r(\mathbf{e}_i) + P_i$ for increasing indexes
 - $wt_r(e_i)$: reduced weight of e_i
 - P_i : number of paths of \mathbf{e}_i

Lemma

If \mathbf{e}_{i+1} is a preimage of \mathbf{e}_i , then $\mathsf{wt}_{\mathsf{r}}(\mathbf{e}_{i+1}) + P_{i+1} \geq \frac{6}{5}(\mathsf{wt}_{\mathsf{r}}(\mathbf{e}_i) + P_i)$

• Apply the Lemma to a wrongly decoded error \mathbf{e}_k : wt_r(\mathbf{e}_k) + $P_k \ge 2\left(\frac{6}{5}\right)^{k-1}$

Lower Bound on the Error-Correcting Radius

The renormalisation decoder corrects all errors of weight less than $\frac{5}{6}d^{\log_2(6/5)}$.

Idea of the proof:

- Evaluate the growth of $wt_r(\mathbf{e}_i) + P_i$ for increasing indexes
 - $wt_r(e_i)$: reduced weight of e_i
 - P_i : number of paths of \mathbf{e}_i

Lemma

If \mathbf{e}_{i+1} is a preimage of \mathbf{e}_i , then $\mathsf{wt}_{\mathsf{r}}(\mathbf{e}_{i+1}) + P_{i+1} \geq \frac{6}{5}(\mathsf{wt}_{\mathsf{r}}(\mathbf{e}_i) + P_i)$

- Apply the Lemma to a wrongly decoded error \mathbf{e}_k : wt_r(\mathbf{e}_k) + $P_k \ge 2\left(\frac{6}{5}\right)^{k-1}$
- Regular Hamming weight of \mathbf{e}_k is larger than:
 - reduced weight: $wt(\mathbf{e}_k) \ge wt_r(\mathbf{e}_k)$
 - number of paths: $wt(\mathbf{e}_k) \geq P_k$

- Recursively reduce the decoding problem to smaller codes
- Good time-complexity and can be parallelised
- High threshold values over bit-flip and depolarisation channels

- Recursively reduce the decoding problem to smaller codes
- Good time-complexity and can be parallelised
- High threshold values over bit-flip and depolarisation channels

Our deterministic renormalisation decoder:

- $d^{0.26} \lesssim$ error-correcting radius $\lesssim d^{0.5}$
- \bullet Threshold value over the bit-flip channel: $4.2\,\%$

- Recursively reduce the decoding problem to smaller codes
- Good time-complexity and can be parallelised
- High threshold values over bit-flip and depolarisation channels

Our deterministic renormalisation decoder:

- $d^{0.26} \lesssim$ error-correcting radius $\lesssim d^{0.5}$
- \bullet Threshold value over the bit-flip channel: $4.2\,\%$

Any deterministic renormalisation decoder:

- Existence of fractal-like wrongly decoded errors of weight d^{α}
- Improvements by increasing block size and using message-passing

- Recursively reduce the decoding problem to smaller codes
- Good time-complexity and can be parallelised
- High threshold values over bit-flip and depolarisation channels

Our deterministic renormalisation decoder:

- $d^{0.26} \lesssim$ error-correcting radius $\lesssim d^{0.5}$
- \bullet Threshold value over the bit-flip channel: $4.2\,\%$

Any deterministic renormalisation decoder:

- Existence of fractal-like wrongly decoded errors of weight $d^{\,\alpha}$
- Improvements by increasing block size and using message-passing

Thank you for your attention! Any questions?