A Renormalisation Decoder for Kitaev's Toric Code

Wouter Rozendaal and Gilles Zémor

QuDATA, LaBRI - 25 January 2024

Wouter Rozendaal and Gilles Zémor. Analysis of the Error-Correcting Radius of a Renormalisation Decoder for Kitaev's Toric Code. 2023. arXiv: 2309.12165 [quant-ph]

Constructing Kitaev's Toric Code

Kitaev's code:

- Qubits indexed by edges of a toric tiling

Figure: Tiling of a 2-dimensional torus

Constructing Kitaev's Toric Code

Kitaev's code:

- Qubits indexed by edges of a toric tiling
- CSS stabiliser code $\left(\mathbf{H}_{X}, \mathbf{H}_{Z}\right)$

Figure: Tiling of a 2-dimensional torus

Constructing Kitaev's Toric Code

Kitaev's code:

- Qubits indexed by edges of a toric tiling
- CSS stabiliser code $\left(\mathbf{H}_{X}, \mathbf{H}_{Z}\right)$
- Rows of \mathbf{H}_{X}

Figure: Elementary cocycle

Constructing Kitaev's Toric Code

Kitaev's code:

- Qubits indexed by edges of a toric tiling
- CSS stabiliser code $\left(\mathbf{H}_{X}, \mathbf{H}_{Z}\right)$
- Rows of \mathbf{H}_{Z}

Figure: Elementary cycle

Constructing Kitaev's Toric Code

Kitaev's code:

- Qubits indexed by edges of a toric tiling
- CSS stabiliser code $\left(\mathbf{H}_{X}, \mathbf{H}_{Z}\right)$
- Orthogonality condition: $\mathbf{H}_{X} \mathbf{H}_{Z}^{\top}=\mathbf{0}$

Figure: Elementary cocycles and cycles meet in an even number of edges

Parameters of Kitaev's Toric Code

- Toric tiling of size $m \times m \rightarrow m^{2}$ vertices, $2 m^{2}$ edges

Figure: Tiling of a 2-dimensional torus

Parameters of Kitaev's Toric Code

- Toric tiling of size $m \times m \rightarrow m^{2}$ vertices, $2 m^{2}$ edges
- Parameters of the toric code:

Figure: Tiling of a 2-dimensional torus

Parameters of Kitaev's Toric Code

- Toric tiling of size $m \times m \rightarrow m^{2}$ vertices, $2 m^{2}$ edges
- Parameters of the toric code:
- Length: $n=2 m^{2}$

Figure: Tiling of a 2-dimensional torus

Parameters of Kitaev's Toric Code

- Toric tiling of size $m \times m \rightarrow m^{2}$ vertices, $2 m^{2}$ edges
- Parameters of the toric code:
- Length: $n=2 m^{2}$
- Dimension: $n-\operatorname{rank} \mathbf{H}_{X}-\operatorname{rank} \mathbf{H}_{Z}=2$

Figure: Generators of \mathbf{H}_{X} and \mathbf{H}_{Z}

Parameters of Kitaev's Toric Code

- Toric tiling of size $m \times m \rightarrow m^{2}$ vertices, $2 m^{2}$ edges
- Parameters of the toric code:
- Length: $n=2 m^{2}$
- Dimension: $n-\operatorname{rank} \mathbf{H}_{X}-\operatorname{rank} \mathbf{H}_{Z}=2$
- Minimum distance: $d=m=\sqrt{n / 2}$

Figure: Non trivial cycles of smallest weight

Decoding Kitaev's Toric Code

Z-error pattern \rightarrow error vector $\mathbf{e} \in \mathbb{F}_{2}^{n}$

Figure: Error vector e

Decoding Kitaev's Toric Code

Z-error pattern \rightarrow error vector $\mathbf{e} \in \mathbb{F}_{2}^{n}$

- Input: syndrome measurement $\sigma(\mathbf{e}):=\mathbf{H}_{X} \mathbf{e}^{\top}$

Figure: Syndrome $\sigma(\mathbf{e})$

Decoding Kitaev's Toric Code

Z-error pattern \rightarrow error vector $\mathbf{e} \in \mathbb{F}_{2}^{n}$

- Input: syndrome measurement $\sigma(\mathbf{e}):=\mathbf{H}_{X} \mathbf{e}^{\top}$
- Output: $\hat{\mathbf{e}} \in \mathbb{F}_{2}^{n}$ such that $\sigma(\hat{\mathbf{e}})=\sigma(\mathbf{e})$

Figure: Output vector ê and its syndrome

Decoding Kitaev's Toric Code

Z-error pattern \rightarrow error vector $\mathbf{e} \in \mathbb{F}_{2}^{n}$

- Input: syndrome measurement $\sigma(\mathbf{e}):=\mathbf{H}_{X} \mathbf{e}^{\top}$
- Output: $\hat{\mathbf{e}} \in \mathbb{F}_{2}^{n}$ such that $\sigma(\hat{\mathbf{e}})=\sigma(\mathbf{e})$
- Successful decoding: $\mathbf{e}+\hat{\mathbf{e}}$ is in the row space of \mathbf{H}_{Z}

Figure: $\mathbf{e}+\hat{\mathbf{e}}$ is a trivial cycle

Decoding Kitaev's Toric Code

- Errors accumulate while a quantum algorithm is running
- Need for sub-linear decoding algorithms

Decoding Kitaev's Toric Code

- Errors accumulate while a quantum algorithm is running
- Need for sub-linear decoding algorithms

Renormalisation decoders!

Decoding Kitaev's Toric Code

- Errors accumulate while a quantum algorithm is running
- Need for sub-linear decoding algorithms

Renormalisation decoders!

- Renormalisation idea: Duclos-Cianci and Poulin (2010)
- Time-complexity in $O\left(n \log _{2} n\right)$ and parallelisable to $O\left(\log _{2} n\right)$
- High threshold values for bit-flip and depolarisation channels

Decoding Kitaev's Toric Code

- Errors accumulate while a quantum algorithm is running
- Need for sub-linear decoding algorithms

Renormalisation decoders!

- Renormalisation idea: Duclos-Cianci and Poulin (2010)
- Time-complexity in $O\left(n \log _{2} n\right)$ and parallelisable to $O\left(\log _{2} n\right)$
- High threshold values for bit-flip and depolarisation channels

Worst case behaviour?

Decoding Kitaev's Toric Code

- Errors accumulate while a quantum algorithm is running
- Need for sub-linear decoding algorithms

Renormalisation decoders!

- Renormalisation idea: Duclos-Cianci and Poulin (2010)
- Time-complexity in $O\left(n \log _{2} n\right)$ and parallelisable to $O\left(\log _{2} n\right)$
- High threshold values for bit-flip and depolarisation channels

Worst case behaviour?

What is the smallest weight of an error pattern for which decoding fails?

Example of Renormalisation Decoding

Figure: Decoding problem on a toric tiling. Input: syndrome of an error vector \mathbf{e}

Example of Renormalisation Decoding

Figure: Reduction procedure:
Move the syndrome vertices to the next subtiling

Example of Renormalisation Decoding

Figure: Locally pair-up syndrome vertices

Example of Renormalisation Decoding

Figure: Locally pair-up syndrome vertices

Example of Renormalisation Decoding

Figure: Locally shift remaining syndrome vertices

Example of Renormalisation Decoding

Figure: Locally shift remaining syndrome vertices

Example of Renormalisation Decoding

Figure: Locally shift remaining syndrome vertices

Example of Renormalisation Decoding

Figure: Locally shift remaining syndrome vertices

Example of Renormalisation Decoding

Figure: Locally shift remaining syndrome vertices

Example of Renormalisation Decoding

Figure: Locally shift remaining syndrome vertices

Example of Renormalisation Decoding

Figure: Decoding problem on the subtiling. Input: syndrome of the vector $\mathbf{e}+\hat{\mathbf{e}}$

Example of Renormalisation Decoding

Figure: Reduction procedure:
Move the syndrome vertices to the next subtiling

Example of Renormalisation Decoding

Figure: Locally pair-up syndrome vertices

Example of Renormalisation Decoding

Figure: Locally pair-up syndrome vertices

Example of Renormalisation Decoding

Figure: Locally pair-up syndrome vertices

Example of Renormalisation Decoding

Figure: Locally pair-up syndrome vertices

Example of Renormalisation Decoding

Figure: Decoding finishes.
All syndromes vertices have been paired-up

Example of Renormalisation Decoding

Figure: Syndrome of the error vector \mathbf{e}

Example of Renormalisation Decoding

Figure: Output vector ê after the $1^{\text {st }}$ reduction step

Example of Renormalisation Decoding

Figure: Output vector $\hat{\mathbf{e}}$ after the $2^{\text {nd }}$ reduction step

A Hard-Decision and Deterministic Reduction Procedure

Figure: 1: Locally pair up diagonally opposed syndrome vertices in D cells

A Hard-Decision and Deterministic Reduction Procedure

Figure: 1: Locally pair up diagonally opposed syndrome vertices in D cells

Figure: 2: Locally pair up neighbouring syndrome vertices in B and C cells

A Hard-Decision and Deterministic Reduction Procedure

Figure: 1: Locally pair up diagonally opposed syndrome vertices in D cells

Figure: 2: Locally pair up neighbouring syndrome vertices in B and C cells

Figure: 3: Shift remaining syndrome vertices in A cells to their top-left corner

Analysis over the Bit-Flip Channel

(a) Randomly generated error pattern.

(b) Pattern proposed by the decoder.

(c) Sum of the two patterns.

Figure: Successful decoding cycle.

Analysis over the Bit-Flip Channel

(a) Randomly generated error pattern.

(b) Pattern proposed by the decoder.

(c) Sum of the two patterns.

Figure: Unsuccessful decoding cycle.

Analysis over the Bit-Flip Channel

Figure: Results of the Monte Carlo simulations over the bit-flip channel.

Analysis over the Adversarial Channel

Construction of 1-dimensional wrongly decoded error patterns:

Analysis over the Adversarial Channel

Construction of 1-dimensional wrongly decoded error patterns:

$$
d=2^{0}
$$

Figure: \mathbf{e}_{0} is a minimal cycle of the toric tiling of size 1×1

Analysis over the Adversarial Channel

Construction of 1-dimensional wrongly decoded error patterns:

$$
\begin{aligned}
& d=2^{0} \\
& d=2^{1}
\end{aligned}
$$

Figure: \mathbf{e}_{1} is a half a cycle of the toric tiling of size 2×2

Analysis over the Adversarial Channel

Construction of 1-dimensional wrongly decoded error patterns:

$$
\begin{aligned}
& d=2^{0} \\
& d=2^{1} \\
& d=2^{2}
\end{aligned}
$$

Figure: \mathbf{e}_{2} is a preimage of \mathbf{e}_{1} on the toric tiling of size 4×4

Analysis over the Adversarial Channel

Construction of 1-dimensional wrongly decoded error patterns:

$$
\begin{aligned}
& d=2^{0} \\
& d=2^{1} \\
& d=2^{2} \\
& d=2^{3}
\end{aligned}
$$

Figure: \mathbf{e}_{3} is a preimage of \mathbf{e}_{2} on the toric tiling of size 8×8

Analysis over the Adversarial Channel

Construction of 1-dimensional wrongly decoded error patterns:

Figure: \mathbf{e}_{4} is a preimage of \mathbf{e}_{3} on the toric tiling of size 16×16

Analysis over the Adversarial Channel

Construction of 1-dimensional wrongly decoded error patterns:

Figure: \mathbf{e}_{5} is a preimage of \mathbf{e}_{4} on the toric tiling of size 32×32

Analysis over the Adversarial Channel

Construction of 1-dimensional wrongly decoded error patterns:

Figure: Weights of the error patterns

Analysis over the Adversarial Channel

Construction of 1-dimensional wrongly decoded error patterns:

Figure: Weights of the error patterns

Upper Bound on the Error-Correcting Radius

There exist wrongly decoded error patterns whose weight scale like $d^{1 / 2}$.

Analysis over the Adversarial Channel

Lower Bound on the Error-Correcting Radius

The renormalisation decoder corrects all errors of weight less than $\frac{5}{6} d^{\log _{2}(6 / 5)}$.

Analysis over the Adversarial Channel

Lower Bound on the Error-Correcting Radius

The renormalisation decoder corrects all errors of weight less than $\frac{5}{6} d^{\log _{2}(6 / 5)}$.

Idea of the proof:

Analysis over the Adversarial Channel

Lower Bound on the Error-Correcting Radius

The renormalisation decoder corrects all errors of weight less than $\frac{5}{6} d^{\log _{2}(6 / 5)}$.

Idea of the proof:

- Evaluate the growth of $w t_{r}\left(\mathbf{e}_{i}\right)+P_{i}$ for increasing indexes
- $\mathrm{wt}_{r}\left(\mathbf{e}_{i}\right)$: reduced weight of \mathbf{e}_{i}
- P_{i} : number of paths of \mathbf{e}_{i}

Analysis over the Adversarial Channel

Lower Bound on the Error-Correcting Radius

The renormalisation decoder corrects all errors of weight less than $\frac{5}{6} d^{\log _{2}(6 / 5)}$.

Idea of the proof:

- Evaluate the growth of $\mathrm{wt}_{r}\left(\mathbf{e}_{i}\right)+P_{i}$ for increasing indexes
- $\mathrm{wt}_{r}\left(\mathbf{e}_{i}\right)$: reduced weight of \mathbf{e}_{i}
- P_{i} : number of paths of \mathbf{e}_{i}

Lemma

If \mathbf{e}_{i+1} is a preimage of \mathbf{e}_{i}, then $w t_{r}\left(\mathbf{e}_{i+1}\right)+P_{i+1} \geq \frac{6}{5}\left(w t_{r}\left(\mathbf{e}_{i}\right)+P_{i}\right)$

Analysis over the Adversarial Channel

Lower Bound on the Error-Correcting Radius

The renormalisation decoder corrects all errors of weight less than $\frac{5}{6} d^{\log _{2}(6 / 5)}$.

Idea of the proof:

- Evaluate the growth of $\mathrm{wt}_{r}\left(\mathbf{e}_{i}\right)+P_{i}$ for increasing indexes
- $\mathrm{wt}_{r}\left(\mathbf{e}_{i}\right)$: reduced weight of \mathbf{e}_{i}
- P_{i} : number of paths of \mathbf{e}_{i}

Lemma

If \mathbf{e}_{i+1} is a preimage of \mathbf{e}_{i}, then $w t_{r}\left(\mathbf{e}_{i+1}\right)+P_{i+1} \geq \frac{6}{5}\left(w t_{r}\left(\mathbf{e}_{i}\right)+P_{i}\right)$

- Apply the Lemma to a wrongly decoded error \mathbf{e}_{k} : $\mathrm{wt}_{\mathrm{r}}\left(\mathbf{e}_{k}\right)+P_{k} \geq 2\left(\frac{6}{5}\right)^{k-1}$

Analysis over the Adversarial Channel

Lower Bound on the Error-Correcting Radius

The renormalisation decoder corrects all errors of weight less than $\frac{5}{6} d^{\log _{2}(6 / 5)}$.

Idea of the proof:

- Evaluate the growth of $\mathrm{wt}_{r}\left(\mathbf{e}_{i}\right)+P_{i}$ for increasing indexes
- $\mathrm{wt}_{r}\left(\mathbf{e}_{i}\right)$: reduced weight of \mathbf{e}_{i}
- P_{i} : number of paths of \mathbf{e}_{i}

Lemma

If \mathbf{e}_{i+1} is a preimage of \mathbf{e}_{i}, then $w t_{r}\left(\mathbf{e}_{i+1}\right)+P_{i+1} \geq \frac{6}{5}\left(w t_{r}\left(\mathbf{e}_{i}\right)+P_{i}\right)$

- Apply the Lemma to a wrongly decoded error \mathbf{e}_{k} : $\mathrm{wt}_{r}\left(\mathbf{e}_{k}\right)+P_{k} \geq 2\left(\frac{6}{5}\right)^{k-1}$
- Regular Hamming weight of \mathbf{e}_{k} is larger than:
- reduced weight: $\mathrm{wt}\left(\mathbf{e}_{k}\right) \geq \mathrm{wt}_{r}\left(\mathbf{e}_{k}\right)$
- number of paths: $\mathbf{w t}\left(\mathbf{e}_{k}\right) \geq P_{k}$

Take Away

Renormalisation decoders:

- Recursively reduce the decoding problem to smaller codes
- Good time-complexity and can be parallelised
- High threshold values over bit-flip and depolarisation channels

Take Away

Renormalisation decoders:

- Recursively reduce the decoding problem to smaller codes
- Good time-complexity and can be parallelised
- High threshold values over bit-flip and depolarisation channels

Our deterministic renormalisation decoder:

- $d^{0.26} \lesssim$ error-correcting radius $\lesssim d^{0.5}$
- Threshold value over the bit-flip channel: 4.2%

Take Away

Renormalisation decoders:

- Recursively reduce the decoding problem to smaller codes
- Good time-complexity and can be parallelised
- High threshold values over bit-flip and depolarisation channels

Our deterministic renormalisation decoder:

- $d^{0.26} \lesssim$ error-correcting radius $\lesssim d^{0.5}$
- Threshold value over the bit-flip channel: 4.2%

Any deterministic renormalisation decoder:

- Existence of fractal-like wrongly decoded errors of weight d^{α}
- Improvements by increasing block size and using message-passing

Take Away

Renormalisation decoders:

- Recursively reduce the decoding problem to smaller codes
- Good time-complexity and can be parallelised
- High threshold values over bit-flip and depolarisation channels

Our deterministic renormalisation decoder:

- $d^{0.26} \lesssim$ error-correcting radius $\lesssim d^{0.5}$
- Threshold value over the bit-flip channel: 4.2%

Any deterministic renormalisation decoder:

- Existence of fractal-like wrongly decoded errors of weight d^{α}
- Improvements by increasing block size and using message-passing

Thank you for your attention! Any questions?

