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Structure

• Continuous-time quantum walks

• Quantum search via continuous-time quantum walk: Childs and 
Golstone approach 

• Optimality and limitations

• Quantum walks for optimization (ongoing work)



Continuous-time classical random walk

Real parameter (rate)

Encodes connectivity of graph



Continuous-time quantum walk

Childs, Andrew M., and Jeffrey Goldstone. "Spatial search by quantum walk." 
Physical Review A 70.2 (2004): 022314.
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Classical vs Quantum random walk

Quantum walk spreads quadratically faster

Path graph

t=40

Standard deviation of position
after time t:

Quantum walk

Classical walk



Applications of quantum walks

Search problems Graph traversal problems

Others:
Element distinctness, triangle finding, …

NAND trees

Farhi, Edward, Jeffrey Goldstone, and Sam 
Gutmann. "A quantum algorithm for the 
Hamiltonian NAND tree." TOC 2008 .

Childs, Andrew M., et al. "Exponential 
algorithmic speedup by a quantum walk." 
STOC 2003

Gilyén, András, et al "(Sub) Exponential
advantage of adiabatic Quantum computation 
with no sign problem.", STOC 2021
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"Spatial search by quantum walk." 
Physical Review A 70.2 (2004): 022314.
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An analog analogue of Grover’s algorithm (Farhi, Gutmann 98)

Note that

Solving a search problem via continuous-time evolution: 

Task: Find

With the oracle Hamiltonian



An analog analogue of Grover’s algorithm (Farhi, Gutmann 98)

Note that

Grover’s algorithm

Solving a search problem via continuous-time evolution: 

Solution: Add a driving term

Task: Find

With the oracle Hamiltonian

with
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Adiabatic quantum search

Adiabatic quantum computing: 

i) Start in ground state of Hamiltonian 𝐻𝐼.

ii) Slowly change Hamiltonian towards a 𝐻𝐹. Adiabatic Theorem: If process is done slowly enough, the 
ground state of 𝐻𝐹 is prepared with high fidelity.  



Adiabatic quantum search

• To get the optimal running time of 𝑂 𝑛 , we need to 
adapt the adiabatic schedule 𝑟(𝑡).

• Linear schedule doesn’t work! We need to go slowly close 
to the minimum gap and fast elsewhere.

Roland, Jérémie, and Nicolas J. Cerf. "Quantum search by local adiabatic 
evolution." Physical Review A 65.4 (2002): 042308.

Adiabatic quantum computing: 

i) Start in ground state of Hamiltonian 𝐻𝐼.

ii) Slowly change Hamiltonian towards a 𝐻𝐹. Adiabatic Theorem: If process is done slowly enough, the 
ground state of 𝐻𝐹 is prepared with high fidelity.  
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What I talked about so far...
• Continuous-time quantum walks 

• Grover’s algorithm (circuit model)

• Farhi Gutmann algorithm (analog Grover, time-independent Hamiltonian)

• Adiabatic Grover algorithm (time-dependent Hamiltonian)

Coming up next...

• Search by quantum walk

• Optimization using quantum walks



Part I: Quantum search using continuous-time 
quantum walks



Continuous-time quantum walk

Childs, Andrew M., and Jeffrey Goldstone. "Spatial search by quantum walk." 
Physical Review A 70.2 (2004): 022314.



w

Childs and Goldstone approach 
(spatial search)

graph’s Laplacian

marked state

real parameter (hopping rate)

Or adjacency matrix



HypercubeComplete graph

Lattices

Optimal! 

Optimal! 

Optimal! 

Childs, Goldstone 2004



Andrew M. Childs and Yimin Ge. Spatial search by 
continuous-time quantum walks on crystal lattices. 

Phys.Rev. A, 89:052337, 2014

Jonatan Janmark, David A Meyer, Thomas G Wong. 
Global symmetry is unnecessary for fast quantum 
search. Physical Review Letters, 112(21):210502, 2014.

and several others…

Meyer, David A., and Thomas G. Wong. "Connectivity is 
a poor indicator of fast quantum search." Physical 
review letters 114.11 (2015): 110503.

Subsequent work:

LN, et al. "Systematic dimensionality reduction for quantum walks: 
Optimal spatial search and transport on non-regular graphs." Scientific 
reports 5.1 (2015): 1-16.
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Previous work: graph specific

Can we obtain general results about the
performance of this search algorithm?



Quantum search on Erdös-Renyi random graphs  
G(n, p )

Shantanav Chakraborty, LN, Andris Ambainis, Yasser Omar. Spatial 
search by quantum walk is optimal for almost all graphs. Physical 

review letters, 116(10):100501, 2016.

Two sites are connected with probability p
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Sufficient condition for optimal quantum search



Optimality of spatial search via continuous-time quantum walk,
S. Chakraborty, L. Novo, Jérémie Roland,  Phys. Rev. A 102, 032214, 2020
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Notation

Optimality of spatial search via continuous-time quantum walk,
S. Chakraborty, L. Novo, Jérémie Roland,  Phys. Rev. A 102, 032214, 2020

Condition on spectrum of 𝑳𝒏𝒐𝒓𝒎 (simplified)

Performance of quantum search

34/75



• There are graphs for which search via the Childs and
Goldstone approach does not provide a quadratic speed-up
wrt classical random walk (e.g. Rook’s graph).

• New sufficient condition for optimal quantum search
which reproduced all previous examples of optimality.

• Provided certain spectral conditions on 𝑳 are satisfied, we
can predict best possible performance of the algorithm .

Optimality of spatial search via continuous-time quantum walk,
S. Chakraborty, L. Novo, Jérémie Roland,  Phys. Rev. A 102, 032214, 2020
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General algorithms based on Hamiltonian evolution or 
discrete-time quantum walks to speed-up search problems 

for any Markov Chain and any number of marked elements. 

Quadratic Speedup for Spatial Search by 
Continuous-Time Quantum Walk, S Apers, 
S Chakraborty, LN, and J Roland, 
Phys. Rev. Lett. 129, 160502 (2022)

Quadratic speedup for finding marked vertices by 
quantum walks, A Ambainis, A Gilyén, S Jeffery, M  
Kokainis,. In Proceedings of the 52nd Annual ACM 
SIGACT Symposium on Theory of Computing (pp. 
412-424), 2020. 

DTQW CTQW



Part II: Can we design optimization algorithms using  
continuous-time quantum walks?



Childs and Goldstone approach 
(from spatial search to optimization)

graph’s Laplacian

marked state

real parameter (hopping rate)

w

Can we use this kind of 
approach to optimize 
other cost functions? 
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(from spatial search to optimization)

graph’s Laplacian

problem Hamiltonian (site energies)

real parameter (hopping rate)

What can we prove about 
speed-ups in this formalism?
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Part II A: Can we obtain provable quadratic speed-
ups over classical unstructured search?
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Optimization by CTQW on the complete graph

Complete graph:



Notice similarity with: 

One-dimensional 
projector 

One-dimensional 
projector 

Optimality of spatial search via continuous-time quantum walk,
S. Chakraborty, L. Novo, Jérémie Roland,  Phys. Rev. A 102, 032214, 2020

We can use results from:
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Optimization by CTQW on the complete graph
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Complete graph:



• Best choice for 𝛾

• 𝐸𝐺𝑆 - ground state energy of 𝐻𝑃

• 𝐸𝛼 - other eigenvalues with degeneracy 𝑑𝛼

Running time: 

−1
−2

2

2

1

−3
−1

0

1

0

Optimization by CTQW on the complete graph



• Best choice for 𝛾
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Optimization by CTQW on the complete graph
Need to be 
computed 

beforehand. But 
how??



−1
−2

2

2

1

−3
−1

0

1

0

For typical problem Hamiltonians (Ising)

The problem of computing 

Is #P-hard 

Complexity result:
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For typical problem Hamiltonians (Ising)

The problem of computing 

Is #P-hard

Proof idea: Computing 𝛾∗ is as hard as computing amplitudes 
in IQP sampling. 

Complexity result:

Bremner, Montanaro, Shepherd. "Average-case complexity versus approximate 
simulation of commuting quantum computations." PRL 117.8 (2016): 080501.



Consequences for adiabatic quantum computing

For Ising problems

• Best possible running time: 𝑂 𝑁

• Achieving this running time needs knowledge about 𝑟∗. 

• However, computing 𝑟∗ is a #P-hard problem!

J Roland, N Cerf "Quantum search by local adiabatic evolution." PRA (2002)



Consequences for adiabatic quantum computing

For Ising problems

• Best possible running time: 𝑂 𝑁

• Achieving this running time needs knowledge about 𝑟∗. 

• However, computing 𝑟∗ is a #P-hard problem!

J Roland, N Cerf "Quantum search by local adiabatic evolution." PRA (2002)

Already known: 

"How to make the quantum adiabatic 
algorithm fail“

E Farhi et al., IJQI (2008) 



Consequences for adiabatic quantum computing

Can adiabatic quantum computing provide provable quadratic 
speed-ups over unstructured search??

• Some hope: Computing 𝑟∗ up to error 𝑂
1

𝑁
should be 

enough. 

• Can we do this in 𝑂 𝑁 time with a classical algorithm?

• Can we estimate it precisely enough by probing the quantum 
system? 



Part II B: Heuristic quantum optimization algorithms using 

continuous-time quantum walks

Collaboration: Viv Kendon, Nicholas Chancellor, 
Tamanna Dasanjh, Lasse Gerblich, Horatio Wong, David Ross



Optimization by CTQW on the hypercube



Optimization by CTQW on the hypercube

Adam Callison et al 2019 New J. Phys. 21 123022

Sherrington-Kirkpatrick 
model
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Optimization by CTQW on the hypercube

Adam Callison et al 2019 New J. Phys. 21 123022

Sherrington-Kirkpatrick 
model

Better than Grover 
speed-up!



Multistage quantum walks:  
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Farhi, Edward, Jeffrey Goldstone, and Sam Gutmann. "A quantum approximate optimization algorithm." arXiv:1411.4028

QAOA:



Multistage quantum walks:  

Farhi, Edward, Jeffrey Goldstone, and Sam Gutmann. "A quantum approximate optimization algorithm." arXiv:1411.4028

QAOA:

Two different discretizations of the adiabatic algorithm: 

Potential advantage: lower coherence times needed. 



Multistage quantum walks VS QAOA

Quantum simulation: Discretization of evolution under time-dependent Hamiltonians
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MSQW simulation error: 
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Multistage quantum walks VS QAOA

MSQW simulation error: 

Quantum simulation: Discretization of evolution under time-dependent Hamiltonians

QAOA simulation error: 

Related to norms of commutators 
between 𝑯𝑩 and 𝑯𝑷



Multistage quantum walks VS QAOA

Single-stage:

5 stages (Heuristic parameter choices):
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Summary
• CTQW provide simple ways to design search and optimization algorithms.

• General results about performance are known for spatial search problems on 
graphs.

• Identified limitation for provable quadratic speed-ups for adiabatic quantum 
unstructured search. 

• A new (and only?) complexity theoretic result about predicting position of 
avoided crossing.

• MSQW heuristic strategies seem to outperform QAOA.  
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Thank you for your attention!


