Unison : clocks synchronization

Each process u has a clock : $c(u)$
- the difference of clock values between neighbors is at most 1 (safety)
- Each process increments its clock infinitely often (liveness)

Distributed algorithm using a bounded clock – a bound on network size is known (K)

∀ v in the neighborhood of u, we have $c(v) \in \{c(u), c(u)+1\%K\}$
→ $c(u) := (c(u)+1) \%K$

The initial configuration is a safe configuration

$K > \text{size of networks}$
Unison: clocks synchronization

∀v in the neighborhood of u, we have c(v) ∈ [c(u), c(u)+1%K]
→ c(u) := (c(u)+1) %K

The initial configuration is a safe configuration

K > size of networks

Unison: clocks synchronization

∀v in the neighborhood of u, we have c(v) ∈ [c(u), c(u)+1%K]
→ c(u) := (c(u)+1) %K

The initial configuration is a safe configuration

K > size of networks

Unison: clocks synchronization

∀v in the neighborhood of u, we have c(v) ∈ [c(u), c(u)+1%K]
→ c(u) := (c(u)+1) %K

The initial configuration is a safe configuration

K > size of networks

Unison: clocks synchronization

∀v in the neighborhood of u, we have c(v) ∈ [c(u), c(u)+1%K]
→ c(u) := (c(u)+1) %K

The initial configuration is a safe configuration

K > size of networks

Unison: clocks synchronization

∀v in the neighborhood of u, we have c(v) ∈ [c(u), c(u)+1%K]
→ c(u) := (c(u)+1) %K

The initial configuration is a safe configuration

K > size of networks

Unison: clocks synchronization

∀v in the neighborhood of u, we have c(v) ∈ [c(u), c(u)+1%K]
→ c(u) := (c(u)+1) %K

The initial configuration is a safe configuration

K > size of networks
Unison: clocks synchronization
\[\forall v \text{ in the neighborhood of } u, \text{ we have } c(v) \in [c(u), (c(u)+1) \% K] \]
\[\implies c(u) := (c(u)+1) \% K \]

The initial configuration is a safe configuration

K > size of networks

Self-stabilizing algorithm

Goal of the algorithm

To rewind (To reset) To reuse

Correct Configuration

Distributed Algorithm

Unison algorithm is not self-stabilizing
To rewind (To reset) To reuse
Chaos to reach a correct configuration
Goal of the algorithm
Distributed Algorithm

- Awerbuch, Patt-Shamir, Varghese: self-stabilization by local checking and global reset (extended abstract). FOCS '91
- Awerbuch, Patt-Shamir, Varghese, Dolev: self-stabilization by local checking and global reset (extended abstract). WDAG'94

Self-stabilizing resetting algorithm

- identified network
- mono initiator
- weakly fair scheduler

SDR algorithm - Self-stabilizing Distributed Reset algorithm
- anonymous network,
- no network knowledge
- multi initiators
- unfair scheduler
- linear number of process moves
- Unbounded timestamps

Self stabilizing resetting

Total mess
Chaos
Correct Configuration
reseting

Chaos → Correct behavior

I : distributed algorithm solving a task (static or dynamic) from a correct configuration
Chaos
SDR ◦ I

Correct configuration of I

I: distributed algorithm solving a task (static or dynamic) from a correct configuration

Correct configuration of I
P_ICorrect(u): predicate on u and u's neighbor variables
P_ICorrect(u) is closed along I
∀ u we have (P_ICorrect(u) == true) = the configuration is correct (≠ legitimate)
Pr(u) is closed along I iff Pr(u) stays verified along any execution of I

Local resetting in I

I: distributed algorithm solving a task (static or dynamic) from a correct configuration

Local resetting in I
reset(u): macro resetting the value of u's variables
P_reset(u): predicate on u's variable:
 it is true iff u's variable are reseted
If u and all u's neighbors verify P_reset then
P_ICorrect(u) == true
Unison – resetable?

\(\forall v \text{ in the neighborhood of } u, \text{ we have } c(v) \in \{c(u), c(u)+1\%K\} \)
\(\rightarrow c(u) := (c(u)+1) \%K \)

\(P_{\text{ICorrect}}(u) \) is the safety predicate

\(\forall v \text{ in the neighborhood of } u, \text{ we have } c(v) \in \{c(u)-1\%K, c(u), c(u)+1\%K\} \)

\(\text{reset}(u) : c(u) := 0 \)

\(P_{\text{reset}}(u) : c(u) = 0 \)

If \(u \) and all \(u \)'s neighbors verify \(c==0 \) then
\(P_{\text{ICorrect}}(u)==true \)

\(K > \text{size of networks} \)

SDR – Overall presentation

• A process \(u \) starts the resetting because
\(P_{\text{ICorrect}}(u) != true \)

• The resetting is propagated (a DAG rooted at \(u \) is built)

• The DAG is frozen from the leaves to the initiator of the resetting (\(u \))

• Processes go back to the Initial algorithm/task from the initiator (\(u \)) to the leaves of the DAG

SDR – variables on \(u \)

• To store the DAG structure:
 – \(d(u) \) : distance to an initiator of the resetting

SDR – variables on \(u \)

• To store the DAG structure:
 – \(d(u) \) : distance to an initiator of the resetting

SDR – variables on \(u \)

• To store the DAG structure:
 – \(d(u) \) : distance to an initiator of the resetting

• The status of the resetting : \(st(u) \) : RB, RF, or C
 – a resetting is in progress
 • RB : propagation of the resetting
 • RF : propagation of the ending of broadcast phase
 – no resetting is in progress : C
SDR – Self-stabilizing Distributed Reset

R_R : a process u starts the reseting because

$$P_{\text{-ICorrect}}(u) \neq \text{true} \text{ or } ...$$

R_R : If $(st(u)==C)$ and $\neg P_{\text{-ICorrect}}(u)$

$$\text{reset}(u); \ st(u) := \text{RB}; \ d(u) := 0;$$

A process performs at most one time R_R rule

A process can be the root of a single DAG

At most n DAG structure is built during any execution

(n being the network size)

R_B : If $(st(u)==C)$ and a’ u neighbor v verified $(st(v)==\text{RB})$

$$\text{reset}(u); \ st(u) := \text{RB}; \ d(u) := d(v)+1;$$

R_B : the reseting is propagated (a DAG is built)

A process cannot join two times the same DAG structure

A process performs at most $n-1$ times the rule R_B

(n being the network size)

R_F : If $(st(u)==\text{RB})$ and the reseting propagation is over in the DAG rooted at u

$$\text{reset}(u); \ st(u) := \text{RF};$$

R_F : the DAG is frozen from the leaves to the initiator

A process takes the status RB at most n times

A process performs at most $n+1$ times the rule R_F

(n being the network size)

Unison : clocks synchronization

$$\forall v \text{ in the neighborhood of } u, \text{ we have } c(v) \in \{c(u), c(u)+1\text{mod}K\}$$

$$\rightarrow c(u) := (c(u)+1) \text{ mod} K$$

An Unsafe Configuration

Unison : clocks synchronization

$$\forall v \text{ in the neighborhood of } u, \text{ we have } c(v) \in \{c(u), c(u)+1\text{mod}K\}$$

$$\rightarrow c(u) := (c(u)+1) \text{ mod} K$$

Resetting Propagation phase

A process

- A process performs at most one time R_R rule
- A process can be the root of a single DAG
- At most n DAG structure is built during any execution (n being the network size)

A process cannot

- Join two times the same DAG structure
- Performs at most $n-1$ times the rule R_B

(n being the network size)

A process takes

- The status RB at most n times
- Performs at most $n+1$ times the rule R_F

(n being the network size)

Reseting Propagation phase

- d takes the status RB at most n times
- Performs at most n times the rule R_C

(n being the network size)
∀v in the neighborhood of u, we have c(v) ∈ {c(u), c(u)+1%K} → c(u) := (c(u)+1) %K

Resetting Propagation phase

End of Resetting Propagation phase

Freezing phase
∀v in the neighborhood of u, we have c(v) ∈ \{c(u), c(u)+1\%K\} → c(u) := (c(u)+1) \%K

Freezing phase

End of Freezing phase

Back to the Initial Algorithm
∀v in the neighborhood of u, we have c(v) ∈ {c(u), c(u)+1%K} → c(u) := (c(u)+1) %K

A Safe Configuration

Step/Round - illustration

1st round - 3 steps

2nd round – 2 steps

enabled
triggered
unable
Self-stabilizing Unison

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Memory</th>
<th>Stops</th>
<th>Rounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>$O(n^3)$</td>
<td>-</td>
<td>$O(Dn)$ [Boulinier PhD]</td>
</tr>
<tr>
<td>[2]</td>
<td>$O(n)$</td>
<td>$O(Dn^3)$ [3]</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>SDR o I</td>
<td>unbounded</td>
<td>$O(Dn^2)$</td>
<td>$3n$</td>
</tr>
</tbody>
</table>

[1] Couvreur, Francez, Gouda: Asynchronous unison (extended abstract), ICDCS’92

Technical report on HAL:
Self Stabilizing Distributed Cooperative Reset.

ICDCS’19