Tractable Reliable Broadcast with honest dealer in Multihop Networks

Silvia Bonomi, Giovanni Farina, Sébastien Tixeuil

Workshop ANR DESCARTES/ESTATE - 2nd April 2018
Blue
0 said Blue
0 said Blue
0 said Blue
0 said Blue

0 said Red

...
0 said Blue and Red

0 said Red
0 said Blue and Red

0 said Red

...
0 said Blue and Red
Target System Model

0 — 3 — 2

1 — 3 — 5

4 — 3 — 6
Problem Statement:
Byzantine Reliable Broadcast with honest dealer

A correct process called source wants to send a message to all other processes, ensuring:

▶ Safety: if a correct process delivers a message m then it has been previously sent by the source;
▶ Liveness: if a correct process broadcasts a message m, then m will be eventually delivered by every correct process.
Problem Statement:

Byzantine Reliable Broadcast with honest dealer

A *correct* process s called *source* wants to send a message to all other processes, ensuring:

- **Safety:** if a correct process delivers a message m then it has been previously sent by the source;

- **Liveness:** if a correct process broadcasts a message m, then m will be eventually delivered by every correct process.
Failure Assumptions

Globally Bounded

- $f=1$
- up to f faulty processes arbitrarily spread over the system

Locally Bounded

- $f=1$
- up to f faulty processes in the neighborhood of every process

Specific Spatial Distribution, Probabilistic Distribution, etc.
Simplest solution: Digital Signatures

- **Liveness** \iff If Byzantine processes are not a **cut** for the network;
- **Safety** \iff Certification Authority;

![Diagram](image-url)
Reliable Authenticated Channels

- Reliable Delivery;
- No creation;
- Authenticity.

![Diagram showing a network of nodes and messages with labels like "0: Blue" and "0: Bl#3" connected by lines, and another line with a label "It's 0 0: Red" from node B to node 1.]
Globally Bounded Failure Model

Static Multi-hop Network, assuming at most f faulty processes,

Safety $+$ Liveness \iff Network connectivity greater than $2f$
Globally Bounded Failure Model

Static Multi-hop Network, assuming at most f faulty processes,

Safety $+$ Liveness \iff Network connectivity greater than $2f$

-Known Topology

Unknown Topology

Globally Bounded Failure Model

Static Multi-hop Network, assuming at most f faulty processes,

\[\text{Safety } + \text{ Liveness } \iff \text{Network connectivity greater than } 2f \]

Known Topology

- Messages are routed through multiple fixed disjoint routes;
- **Delivery Complexity**: polynomial;
- **Message Complexity**: polynomial;

Unknown Topology

- Message flooding, the IDs of the traversed nodes are collected;
- **Delivery Complexity**: NP-Complete;
- **Message Complexity**: factorial;

Globally Bounded Failure Model

Static Multi-hop Network, assuming at most f faulty processes,

Safety $+$ Liveness \iff Network connectivity greater than $2f$

Known Topology

- Messages are routed through multiple fixed disjoint routes;

- *Delivery Complexity*: polynomial;

- *Message Complexity*: polynomial;

Unknown Topology

- Message flooding, the IDs of the traversed nodes are collected;

- *Delivery Complexity*: NP-Complete;

- *Message Complexity*: factorial;

 Globally Bounded Failure Model

 Reliable Authenticated Channels

 Topology Unaware

 Delivery Complexity: NP-Complete;

 Message Complexity: factorial;

 Is it possible to do better?

 We revised and improved the protocol proposed by Dolev
System Model:

- n processes (each one with an unique identifier);
- **static** communication network;
- messages exchange;
- processes: correct or Byzantine faulty;
- **globally bounded faults**: up to f processes can be Byzantine faulty;
- processes have no global knowledge (except the value of f);
- synchronous system;
- reliable authenticated channels.
Dolev’s algorithm

\[f = 1, \textbf{msg} := \langle \text{source, content, path} \rangle \]

Propagation algorithm: a process saves and relays \textbf{msg} sent by a neighbor \(q \) to all neighbors not included in \textit{paths}, appending to it the id of the sender \(q \).
Dolev’s algorithm

\[f = 1, \; \text{msg} := \langle \text{source, content, path} \rangle \]

Propagation algorithm: a process saves and relays msg sent by a neighbor \(q \) to all neighbors not included in paths, appending to it the id of the sender \(q \).
Dolev’s algorithm

\[f = 1, \text{msg} := \langle \text{source, content, path} \rangle \]

Propagation algorithm: a process saves and relays msg sent by a neighbor \(q \) to all neighbors not included in *paths*, appending to it the id of the sender \(q \).
Dolev’s algorithm

Propagation algorithm: a process saves and relays msg sent by a neighbor q to all neighbors not included in $paths$, appending to it the id of the sender q.

$f = 1, \ \textbf{msg} := \langle \text{source}, \text{content}, \text{path} \rangle$
Dolev’s algorithm

\[f = 1, \textbf{msg} := \langle \text{source, content, path} \rangle \]

Propagation algorithm: a process saves and relays \textbf{msg} sent by a neighbor \(q \) to all neighbors not included in \textit{paths}, appending to it the id of the sender \(q \).
Dolev’s algorithm

\[f = 1, \ \textbf{msg} := \langle \text{source}, \text{content}, \text{path} \rangle \]

Propagation algorithm: a process saves and relays \(\text{msg} \) sent by a neighbor \(q \) to all neighbors not included in \(\text{paths} \), appending to it the id of the sender \(q \).
Dolev’s algorithm

Propagation algorithm: a process saves and relays \(\text{msg} \) sent by a neighbor \(q \) to all neighbors not included in \(\text{paths} \), appending to it the id of the sender \(q \).
Dolev’s algorithm

\[f = 1, \textbf{msg} := \langle \text{source}, \text{content}, \text{path} \rangle \]

Verification algorithm: if a process receives many \textbf{msg} carrying the same \textit{source} and \textit{content} and it is possible to identify \(f + 1 \) disjoint paths among the related \textit{paths}, then \textit{content} is delivered by the process.
The propagation algorithm always generates **one message for every path** interconnecting the source with another node \Rightarrow **factorial** messages in the size of the network;
Optimization 1

- Deliver the contents directly sent from the source.

Safety: if a correct process delivers a message \(m \) then it has been previously sent by the source;

\[= \]

Reliable Authenticated Channel: No creation, Authenticity;
Optimization 2

- The delivered content can be relayed with an empty path.

A delivered content has been verified enforcing safety.
Optimization 3

- Relay further paths only to the neighbors that have not yet delivered.

- do not increase the number of disjoint paths computed on r.
Optimization 4

- Stop relaying further paths once the empty path has relayed (= halting condition).

- do not increase the number of disjoint paths computed on r.
Optimization 5

- If a neighbor q has delivered, then discard any further path that contains the label of q.

- do not increase the number of disjoint paths computed on r.
Practical Reliable Broadcast Protocol
Practical Reliable Broadcast Protocol
Practical Reliable Broadcast Protocol
Practical Reliable Broadcast Protocol

* delayed for ease of explanation

{ {1} }

{ {2} {3} }
Practical Reliable Broadcast Protocol
Practical Reliable Broadcast Protocol

0 2 5
3 6
4 1
7

{ {}, {} }
{ {1,4} }
{ {5} }
{ {6} }
Practical Reliable Broadcast Protocol
Preventing Flooding and Forwarding Policy

Every process has to consider all the received paths to deliver a content

⇒ a Byzantine process can flood the correct processes with spurious paths ⇒ No Liveness
Preventing Flooding and Forwarding Policy

Every process has to consider all the received paths to deliver a content

⇒ a Byzantine process can flood the correct processes with spurious paths ⇒ No Liveness

► **Bound the channel capacity** (i.e. constrain the number of messages that can be sent in a time window)

⇒ **Forwarding Policy** (which messages to send?)

⇒ **Multi-Shortest** Policy (i.e. give priority to “useful” shorter paths)
Protocol Evaluation: Simulation Setting

- synchronous system that evolves in sequential synchronous rounds;

- $f = \lfloor (k - 1)/2 \rfloor$ passive and active Byzantines;

- unbounded and bounded channel capacity (bound = $f + 1$);

- different topologies: random regular, k-pasted-tree, k-diamond, multi-partite wheel, Barabási-Albert graph, generalized wheel;
(a) multipartite wheel (b) generalized wheel
(c) k-pasted-tree (d) k-diamond
Comparison with the state of art

The diagram shows a comparison of message complexity for different network sizes, with two curves representing D_BRB and BFT_BRB. The y-axis represents message complexity on a logarithmic scale, while the x-axis represents network size.

The graph indicates that as the network size increases, the message complexity also increases, with D_BRB showing a significantly higher complexity compared to BFT_BRB. This suggests that BFT_BRB has a more efficient communication protocol under the specified conditions:

- Unbounded channel capacity
- Random regular graph
- 5-connected networks

These conditions are critical in network design and can significantly impact the choice of communication protocol.
Message Complexity

\[n=200, \quad f = \lfloor (k - 1)/2 \rfloor, \text{ bounded channels} \]

(a) passive Byzantines (b) active Byzantines.
Broadcast Latency

\[n = 200, \quad f = \lceil (k - 1) / 2 \rceil, \text{ bounded channels} \]

(a) passive Byzantines (b) active Byzantines.
Forwarding Policy Delay

\[n = 100, \quad f = \lfloor (k - 1)/2 \rfloor, \text{ passive Byzantine} \]

(a) bounded channel & Multi-Shortest policy (b) unbounded channels.
Barabási-Albert graph

Message complexity, \(f = \lfloor (k - 1)/2 \rfloor \), bounded channels, \(n = 100, 150, 200 \)

(a) passive Byzantines, (b) active Byzantines.
broadcast latency, $f = \lfloor (k - 1)/2 \rfloor$, bounded channels, $n = 100, 150, 200$

(a) passive Byzantines, (b) active Byzantines.
Generalized Wheel

\[f = \left\lfloor \frac{(k - 1)}{2} \right\rfloor, \text{ bounded channels, } n = 100 \]

(a) message complexity, (b) broadcast latency.
Comments

The protocol we defined works also on asynchronous systems and can be ported on dynamic networks.
Comments

The protocol we defined \textit{works also on asynchronous} systems and can be ported on \textit{dynamic networks}

\textbf{but} some additional assumptions have to be considered on order to keep it practically employable
Failure Assumptions

Globally Bounded

- up to f faulty processes arbitrarily spread over the system
- $f=1$

Locally Bounded

- up to f faulty processes in the neighborhood of every process
- $f=1$

Specific Spatial Distribution, Probabilistic Distribution, etc.
Locally Bounded Failure Model

Static Multi-hop Network

Assuming at most f faulty processes in the neighborhood of every node

1Pagourtzis, Aris, Giorgos Panagiotakos, and Dimitris Sakavalas. ”Reliable broadcast with respect to topology knowledge.” Distributed Computing 30.2 (2017): 87-102.
Locally Bounded Failure Model

Static Multi-hop Network

Assuming at most f faulty processes in the neighborhood of every node

Known Topology 1

Unknown Topology

Locally Bounded Failure Model

Static Multi-hop Network

Assuming at most f faulty processes in the neighborhood of every node

Known Topology

- Tolerate more faulty process with respect unknown topology;

- *Delivery Complexity:* NP-Hard;

Unknown Topology

1Pagourtzis, Aris, Giorgos Panagiotakos, and Dimitris Sakavalas. ”Reliable broadcast with respect to topology knowledge.” Distributed Computing 30.2 (2017): 87-102.
Locally Bounded Failure Model

Static Multi-hop Network

Assuming at most f faulty processes in the neighborhood of every node

Known Topology

- Tolerate more faulty process with respect unknown topology;
- Delivery Complexity: NP-Hard;

Unknown Topology

- Delivery Complexity: constant
- Message Complexity: polynomial;

1Pagourtzis, Aris, Giorgos Panagiotakos, and Dimitris Sakavalas. ”Reliable broadcast with respect to topology knowledge.” Distributed Computing 30.2 (2017): 87-102.
Certified Propagation Algorithm (CPA)

- the source broadcasts the message;
- a neighbor of the source directly accepts and relays the message;
- a process that receives the same message from $f + 1$ distinct neighbors accepts and relays the message.

Certified Propagation Algorithm (CPA)

- the source broadcasts the message;
- a neighbor of the source directly accepts and relays the message;
- a process that receives the same message from $f + 1$ distinct neighbors accepts and relays the message.

Certified Propagation Algorithm (CPA)

- the source broadcasts the message;
- a neighbor of the source directly accepts and relays the message;
- a process that receives the same message from $f + 1$ distinct neighbors accepts and relays the message.

$f = 1$

Certified Propagation Algorithm (CPA)

- the source broadcasts the message;
- a neighbor of the source directly accepts and relays the message;
- a process that receives the same message from $f + 1$ distinct neighbors accepts and relays the message.

Certified Propagation Algorithm (CPA)

- the source broadcasts the message;
- a neighbor of the source directly accepts and relays the message;
- a process that receives the same message from $f + 1$ distinct neighbors accepts and relays the message.

\[f = 1 \]

Certified Propagation Algorithm (CPA)

- the source broadcasts the message;
- a neighbor of the source directly accepts and relays the message;
- a process that receives the same message from \(f + 1 \) distinct neighbors accepts and relays the message.

\[f = 1 \]

Certified Propagation Algorithm (CPA)

- the source broadcasts the message;
- a neighbor of the source directly accepts and relays the message;
- a process that receives the same message from $f + 1$ distinct neighbors accepts and relays the message.

Liveness - MKLO

\[k = 3 \]
Liveness - MKLO

$k = 3$
Liveness - MKLO

k = 3
Liveness - MKLO

\[k = 3 \]
Liveness - MKLO

$k = 3$
Necessary and Sufficient conditions

Necessary condition: MKLO with $k = f+1$

Sufficient condition: MKLO with $k = 2f+1$

Strict condition: MKLO with $k = f+1$ removing any possible placement of the Byzantine processes (NP-Complete Problem)

The order of the appearances matters
System Model:

- n processes (each one with an unique identifier);
- **dynamic** communication network - evolving graph;
- messages exchange;
- processes: correct or Byzantine faulty;
- **locally bounded faults**: up to f processes can be Byzantine faulty in the neighborhood of every process;
- processes have no global knowledge (except the value of f);
- **synchronous system**;
- reliable authenticated channels.
The CPA protocol can easily be ported on dynamic networks
→ every process has to relay delivered messages to every new process met.
CPA liveness on dynamic networks

Temporal Minimum K-Level Ordering (TMKLO)

TMKLO is a partition of V in levels L_i, each one with a time i associated.

Necessary condition: TMKLO with $k = f + 1$

Sufficient condition: TMKLO with $k = 2f + 1$
Comments

It is possible to verify whether the reliable broadcast can be achieved
Comments

It is possible to verify whether the reliable broadcast can be achieved

but the precise characterization about the evolution of the network has to be provided (i.e. all the snapshots)

or classes of dynamic networks in which there exist a specific subgraph in which the edges reappear infinitively often.
Conclusion and open issues 1

- reliable broadcast with honest dealer on static multi-hop network, globally bounded failure model, polynomial message complexity

⇒ prove a theoretical bound for the message complexity

⇒ it may help in identifying conditions from a polynomial message complexity on dynamic networks

⇒ weaker safety and/or liveness properties

⇒ tractable self-stabilizing broadcast in dynamic networks (arbitrary initial state of processes and channels)
Conclusion and open issues 2

- conditions for reliable broadcast with honest dealer on dynamic multi-hop network, locally bounded failure model

but, dynamic networks are usually characterized by global and general features

⇒ conditions on the dynamic networks that guarantee the liveness of reliable broadcast without the precise knowledge of the evolution?

⇒ weaker safety and/or liveness properties

⇒ tractable self-stabilizing broadcast (arbitrary initial state of processes and channels)
References
