Contention-Related Crash Failures

Anaïs Durand

LIP6, Sorbonne Université, Paris

April 1st, 2019
Set Agreement and Renaming in the Presence of Contention-Related Crash Failures

Joint work with:

Michel Raynal

Gadi Taubenfeld
Computational Model

- Asynchronous deterministic system
- n processes p_1, \ldots, p_n
- Atomic read/write registers
- $0 \leq t < n$ process crashes
- Participation required
Process crashes

2 kinds of process crashes usually considered:

- Initially dead processes
- “Classical” (any-time) crashes: no constraints
- **Contention** = \# processes that accessed a shared register ≈ \# processes that started to compute

- \(\lambda \) = predefined contention threshold

- 2 possible definitions:

\[\begin{align*}
\text{No crashes} & \quad \Rightarrow \lambda \\
\text{No crashes} & \quad \Rightarrow \text{contention}
\end{align*} \]
Contention-Related Crash Failures

- **Contention** = \# processes that accessed a shared register
 \[\approx\] \# processes that started to compute

- \(\lambda\) = predefined contention threshold

- 2 possible definitions:

 - \(\lambda\)-constrained crashes
 - No crashes

\[\lambda\] contention
Contention-Related vs. Any-Time Crash Failures

■ Consensus:
 ► [Fischer et al., 85]: **Impossible** with one any-time crash failure.
 ► [Taubenfeld, 18]: Algorithm that tolerates one \((n - 1)\)-constrained crash failure for \(n > 1\).

■ \(k\)-Set Agreement, \(1 \leq k < n\):
 ► [Borowsky, Gafni, 93]: **Impossible** with \(k\) any-time crash failures.
 ► [Taubenfeld, 18]: Algorithm that tolerates \(\ell + k - 2\) \((n - \ell)\)-constrained crash failures for \(\ell \geq 1\) and \(n \geq 2\ell + k - 2\).
Consider a problem P that can be solved with t any-time crash failures, but impossible with $t + 1$ any-time crash failures.

Given λ, can P be solved with both

\[
\begin{align*}
t_1 & \text{ λ-constrained} \\
\text{and} \\
t_2 & \leq t \text{ any-time crash failures, with } t_1 + t_2 > t?
\end{align*}
\]

We consider here: k-set agreement (for $k \geq 2$) and renaming
k-Set Agreement
Definition

- One-shot object

- Operation $propose(\nu)$: propose value ν and return a decided value

- Properties:
 - **Validity**: decided value \in proposed values
 - **Agreement**: $\leq k$ decided values
 - **Termination**: every correct process decides
k-Set Agreement Algorithm: Properties

- \(\lambda = n - k \)
- \(k \geq 2 \)
- \(k = m + f, \; m \geq 0, \; f \geq 1 \)

<table>
<thead>
<tr>
<th>total # of faults</th>
<th>(t = 2m + f - 1 = k + m - 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda)-constrained crashes</td>
<td>(2m)</td>
</tr>
<tr>
<td>any-time crashes</td>
<td>(f - 1)</td>
</tr>
</tbody>
</table>

[Borowsky, Gafni, 93]: Impossible with \(k \) any-time crash failures.
k-Set Agreement: Parameters

Parameters f and m allow the user to tune the proportion of each type of crash failures.

- For max #any-time ($\leq k-1$), $t = k - 1$

- For max #\#-constrained ($\leq 2k-2$), $t = 2k - 2$

\[t = k - 1 \]

\[t = 2 \left\lfloor \frac{k}{2} \right\rfloor + \left\lceil \frac{k}{2} \right\rceil - 1 \]
k-Set Agreement: Shared Registers (1/2)

- **DEC:** atomic register, initially \perp

- **$PART[1 \ldots n]$:** snapshot object, initially $[\text{down, \ldots, down}]$

 - Atomic (linearizable) operations $\text{write}()$ and $\text{snapshot}()$

 - \approx array of single-writer multi-reader atomic registers $PART[1 \ldots n]$ such that:

 - p_i invokes $\text{write}(v) = \text{writes } v \text{ into } PART[i]$

 - p_i invokes $\text{snapshot}() = \text{obtains the value of the array } PART[1 \ldots n]$ as if it read simultaneously and instantaneously all its entries
k-Set Agreement: Shared Registers (2/2)

- **MUTEX[1]**: one-shot deadlock-free \(f \)-mutex

- **MUTEX[2]**: one-shot deadlock-free \(m \)-mutex

 - **Operations**: acquire() and release() (invoked at most once)
 - **Properties**:
 - Mutual exclusion: \(\leq m \) processes simultaneously in critical section
 - Deadlock-freedom: if \(< m \) processes crashes, then \(\geq 1 \) process invoking acquire() terminates its invocation
operation $\text{propose}(\text{in}_i)$ is

1. $\text{PART} . \text{write}(\text{up})$; % signal participation
operation propose\((i)\) is

(1) \(\text{PART}.\text{write}(\text{up})\);
% signal participation

(2) repeat

(3) \(\text{part}_{i} := \text{PART}.\text{snapshot}()\);
% wait for \(n - t\)

(4) \(\text{count}_{i} := |\{x \text{ such that } \text{part}_{i}[x] = \text{up}\}|\);
% participants

(5) until \(\text{count}_{i} \geq n - t\) end repeat;

if \(\text{count}_{i} \leq \lambda\) then
% split processes into groups

(7) \(\text{group}_{i} := 2\);
% ⇝ \(\text{MUTEX}[2]\) (m-mutex)

else
% end if

(9) \(\text{group}_{i} := 1\);
% ⇝ \(\text{MUTEX}[1]\) (f-mutex)

end if

launch in

// the threads \(T_{1}\) and \(T_{2}\);
k-Set Agreement Algorithm (1/2)

operation `propose(i)` **is**

1. `PART.write(up);` \hspace{1cm} % signal participation
2. **repeat**
3. \hspace{1cm} `part_i := PART.snapshot();` \hspace{1cm} % wait for $n - t$
4. \hspace{1cm} `count_i := |\{x \text{ such that } part_i[x] = up\}|;` \hspace{1cm} % participants
5. **until** `count_i \geq n - t` **end repeat**;
6. **if** `count_i \leq \lambda` **then**
7. \hspace{1cm} `group_i := 2;` \hspace{1cm} % split processes into groups
8. **else**
9. \hspace{1cm} `group_i := 1;` \hspace{1cm} % $\rightsquigarrow MUTEX[1]$ (f-mutex)
10. **end if**
k-Set Agreement Algorithm (1/2)

operation `propose(in_i)`

1. `PART .write(up);`
 % signal participation

2. **repeat**

3. `part_i := PART .snapshot();`
 % wait for n – t

4. `count_i := \{x \text{ such that } part_i[x] = up\};`
 % participants

5. **until** `count_i \geq n - t` **end repeat**

6. **if** `count_i \leq \lambda` **then**

7. `group_i := 2;`
 % \(\rightarrow \) MUTEX[2] (m-mutex)

8. **else**

9. `group_i := 1;`
 % \(\rightarrow \) MUTEX[1] (f-mutex)

10. **end if**

11. **launch in** // the threads \(T_1 \) and \(T_2 \);
thread T_1 is

12. loop forever
13. \hspace{2em} if $DEC \neq \bot$ then
14. \hspace{4em} return(DEC);
15. \hspace{2em} end if;
16. end loop;

% wait for a decided value
thread T_1 is
(12) loop forever
(13) if $DEC \neq \bot$ then
(14) return(DEC);
(15) end if;
(16) end loop;

% wait for a decided value

% decide a value if enters its CS

thread T_2 is
(17) if $group_i = 1 \lor m > 0$ then
(18) $MUTEX[group_i].acquire()$;
(19) if $DEC = \bot$ then
(20) $DEC := in_i$;
(21) end if
(22) $MUTEX[group_i].release()$;
(23) return(DEC);
(24) end if;
thread T_1 is
(12) loop forever
(13) if $DEC \neq \bot$ then
(14) return(DEC);
(15) end if;
(16) end loop;

thread T_2 is
(17) if $\text{group}_i = 1 \lor m > 0$ then
(18) $\text{MUTEX}[\text{group}_i].\text{acquire}()$;
(19) if $DEC = \bot$ then
(20) $DEC := \text{in}_i$;
(21) end if
(22) $\text{MUTEX}[\text{group}_i].\text{release}()$;
(23) return(DEC);
(24) end if;

\[\text{Decided value} = DEC \]
thread T_1 is
(12) loop forever
(13) if $\mathit{DEC} \neq \bot$ then
(14) return(DEC);
(15) end if;
(16) end loop;

thread T_2 is
(17) if $\mathit{group}_i = 1 \lor m > 0$ then
(18) $\mathit{MUTEX}[\mathit{group}_i].\mathit{acquire}()$;
(19) if $\mathit{DEC} = \bot$ then
(20) $\mathit{DEC} := \mathit{in}_i$;
(21) end if
(22) $\mathit{MUTEX}[\mathit{group}_i].\mathit{release}()$;
(23) return(DEC);
(24) end if;

\begin{itemize}
\item[\textbf{a}] Decided value $= \mathit{DEC}$
\item[\textbf{b}] DEC assigned to \textit{proposed} values in_i in CS
\end{itemize}
k-Set Agreement Algorithm: Validity & Agreement

thread T_1 is
(12) loop forever
(13) if $DEC \neq \bot$ then
(14) return(DEC);
(15) end if;
(16) end loop;

thread T_2 is
(17) if $\text{group}_i = 1 \lor m > 0$ then
(18) $\text{MUTEX}[^{\text{group}_i}].\text{acquire}()$;
(19) if $DEC = \bot$ then
(20) $DEC := in_i$;
(21) end if
(22) $\text{MUTEX}[^{\text{group}_i}].\text{release}()$;
(23) return(DEC);
(24) end if;

\[\text{Decided value} = DEC \]

\[\text{DEC assigned to proposed values in}_i \text{ in CS} \]

\[\text{MUTEX}[1] \leadsto \leq f \neq \text{values} \]
\[\text{MUTEX}[2] \leadsto \leq m \neq \text{values} \]

\[\Rightarrow \leq f + m = k \text{ decided values} \]
k-Set Agreement Algorithm: Termination (1/5)

(1) $\text{PART}.\text{write}(\text{up});$

(2) repeat

(3) $\text{part}_i := \text{PART}.\text{snapshot}();$

(4) $\text{count}_i := |\{x \text{ such that } \text{part}_i[x] = \text{up}\}|;$

(5) until $\text{count}_i \geq n - t$ end repeat;

\[a \leq t \text{ crashes } + \text{ participation required} \]
\[\leadsto \text{ eventually } \text{count}_i \geq n - t \text{ at every correct process } p_i \]
(1) \(\text{PART}.\text{write}(\text{up}); \)
(2) \text{repeat}
(3) \(\text{part}_i := \text{PART}.\text{snapshot}(); \)
(4) \(\text{count}_i := |\{x \text{ such that } \text{part}_i[x] = \text{up}\}|; \)
(5) \text{until } \text{count}_i \geq n - t \text{ end repeat} ;
(6) \text{if } \text{count}_i \leq \lambda \text{ then}
(7) \quad \text{group}_i := 2;
(8) \text{else}
(9) \quad \text{group}_i := 1;
(10) \text{end if}

\text{a} \leq t \text{ crashes } + \text{ participation required } \\
\leadsto \text{ eventually } \text{count}_i \geq n - t \text{ at every correct process } p_i

\text{b} \leq n - k \text{ processes with } \text{count}_i \leq n - k = \lambda \text{ when leaving loop (2)-(5) } \\
\leadsto \leq n - k \text{ processes in group 2}
thread \(T_1 \) is

(12) loop forever

(13) if \(DEC \neq \bot \) then

(14) return(\(DEC \));

(15) end if;

(16) end loop;

thread \(T_2 \) is

(17) if \(group_i = 1 \lor m > 0 \) then

(18) \(MUTEX[group_i].acquire() \);

(19) if \(DEC = \bot \) then

(20) \(DEC := in_i; \)

(21) end if

(22) \(MUTEX[group_i].release() \);

(23) return(\(DEC \));

(24) end if;

\(a \) \(\leq t \) crashes + participation required

\(\Rightarrow \) eventually \(count_i \geq n - t \) at every correct process \(p_i \)

\(b \) \(\leq n - k \) processes with \(count_i \leq n - k = \lambda \) when leaving loop (2)-(5)

\(\Rightarrow \leq n - k \) processes in group 2

\(c \) one process decides \(\Rightarrow \) every correct process decides
k-Set Agreement Algorithm: Termination (2/5)

Diagram 1
- **If** $m = 0$: $k = m + f = f$

![Diagram](image)

- $n - t$ correct processes
- $f - 1$ any-time crashes
- Group 1
- Group 2
\(k \)-Set Agreement Algorithm: Termination (2/5)

\[\text{d If } m = 0: \ k = m + f = f \]

- If \(m = 0 \):
 - \(k = m + f = f \)
 - \(f \)-1 any-time crashes
 - \(n - t \) correct processes
 - \(n - t = n - (f - 1) = n - k + 1 \)

\[n - t \]

\[\text{Group 1} \]

\[\text{Group 2} \]

\[n - k \]
If $m = 0$: $k = m + f = f$

$n - t$ correct processes

$n - t = n - (f - 1) = n - k + 1$

f-1 any-time crashes

$n-k$

Group 1

Group 2
\[\text{If } m = 0: \quad k = m + f = f \]

\[n - t = n - (f - 1) = n - k + 1 \]

\[\Rightarrow \geq 1 \text{ correct process } \& \leq f - 1 \text{ (any-time) crashes in group 1} \]

(Properties of DF \(f \)-mutex \(MUTEX[1] \)) \(\Rightarrow \) at least one process decides
If $m > 0$:
- $\left| \text{group 1} \right| \geq f$

- $2m \lambda$-constrained crashes

- $f-1$ any-time crashes

- $n - t$ correct processes

- Group 1

- Group 2
If $m > 0$:

- $|\text{group 1}| \geq f$

2m λ-constrained crashes

$f-1$ any-time crashes

$n - t$ correct processes

Group 1

Group 2
If $m > 0$:

- $|\text{group 1}| \geq f$

- $2m \lambda$-constrained crashes

- $f-1$ any-time crashes

- $n - t$ correct processes

- Group 1

- Group 2
If $m > 0$:

- $|\text{group 1}| \geq f$

\[2m \lambda \text{-constrained crashes} \]
\[f-1 \text{ any-time crashes} \]
\[n-t \text{ correct processes} \]

\[\leadsto \geq 1 \text{ correct process } \& \leq f-1 \text{ (any-time) crashes in group 1} \]

(Properties of DF f-mutex MUTEX[1]) \Rightarrow at least one process decides
\textbf{k-Set Agreement Algorithm: Termination (4/5)}

\textbf{d} \textbf{If} \ m > 0:\n\begin{itemize}
\item $|\text{group 1}| < f$, \textbf{correct} \in group 1
\end{itemize}

\begin{tikzpicture}
\node (A) at (0,0) {$2m$ λ-constrained crashes};
\node (B) at (0,-3) {$n - t$ correct processes};
\node (C) at (3,0) {f-1 any-time crashes};
\node (D) at (6,0) {f};
\node (E) at (6,-3) {Group 1};
\node (F) at (9,-3) {Group 2};
\end{tikzpicture}

$\Rightarrow \geq 1$ correct process $\& \leq f - 1$ (any-time) crashes in group 1
(Properties of DF f-mutex \textit{MUTEX}[1]) \Rightarrow at least one process decides
If \(m > 0 \):

- \(|\text{group 1}| < f\), correct \(\notin \text{group 1} \)

\[
(n - k) - (n - t) = t - k = (2m + f - 1) - (m + f) = m - 1
\]

\(\Rightarrow \) \(\geq 1 \) correct process \& \(\leq m - 1 \) crashes in group 2

(Properties of DF \(m \)-mutex \(MUTEX \)[2]) \(\Rightarrow \) at least one process decides
If $m > 0$:

- $|\text{group 1}| < f$, correct \notin group 1

\[
(n - k) - (n - t) = t - k = (2m + f - 1) - (m + f) = m - 1
\]

\implies at least one correct process & $\leq m - 1$ crashes in group 2

(Properties of DF m-mutex $\text{MUTEX}[2]$) \Rightarrow at least one process decides
k-Set Agreement Algorithm: Properties

- $\lambda = n - k$
- $k \geq 2$
- $k = m + f$, $m \geq 0$, $f \geq 1$

<table>
<thead>
<tr>
<th>total # of faults</th>
<th>$t = 2m + f - 1 = k + m - 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ-constrained crashes</td>
<td>$2m$</td>
</tr>
<tr>
<td>any-time crashes</td>
<td>$f - 1$</td>
</tr>
</tbody>
</table>
k-Set Agreement Algorithm: Generalization

- $\lambda = n - \ell$
- $k \leq \ell \leq n$
- $k \geq 2$
- $k = m + f$, $m \geq 0$, $f \geq 1$

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>total # of faults</td>
<td>$t = 2m + \ell - k + f - 1$</td>
</tr>
<tr>
<td>λ-constrained crashes</td>
<td>$2m + \ell - k$</td>
</tr>
<tr>
<td>any-time crashes</td>
<td>$f - 1$</td>
</tr>
</tbody>
</table>
Conclusion

- Notion of contention-related crash failures

- Allows to circumvent impossibility results

- **Better understanding** of fault tolerance:
 In the k-set agreement algorithm, can trade 1 “strong” any-time failure for 2 “weak” $(n - k)$-constrained failures

- **Future work:**
 - Tight bounds?
 - General algorithm for k-set agreement, $\forall k \geq 1$.
 - What about crashes after the contention threshold λ?
 - What about other definitions of weak crash failures?
Thank you for your attention!

Do you have any question?
Renaming
Renaming

Definition

- **Initial name**: id_i
- **New name space**: $\{1 \ldots M\}$
- **Operation** $rename(id_i)$: return a new name
- **Properties**:
 - **Validity**: new name $\in \{1 \ldots M\}$
 - **Agreement**: no 2 same new names
 - **Termination**: invokation of $rename()$ by a correct process terminates
Renaming Algorithm: Properties

- \(M = n + f \)
- \(\lambda = n - t - 1 \)
- \(t = m + f, \ m \geq 0, \ f \geq 0 \)

<table>
<thead>
<tr>
<th>total # of faults</th>
<th>(t = m + f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda)-constrained crashes</td>
<td>(m)</td>
</tr>
<tr>
<td>any-time crashes</td>
<td>(f)</td>
</tr>
</tbody>
</table>

[Herlihy, Shavit, 93]: Impossible with \(f + 1 \) any-time crash failures.
Parameters f and m allow the user to tune the proportion of each type of crash failures and the size of the new name space.

\[
M = n + t
\]

\[
M = n + \left\lceil \frac{t}{2} \right\rceil
\]

\[
M = n
\]
Renaming Algorithm: Shared Registers

- **PART** $[1 \ldots n]$: snapshot object, initially [down, \ldots, down]

- **RENAMEING**$_f$: $(n + f)$-renaming object that:
 - tolerates $\leq f$ any-time crash failures
 - does not require participation

 e.g. [Attiya, Welch, 04]
operation $rename(id_i)$ is

1. $PART\text{.write}(up)$; % signal participation
2. repeat
3. $part_i := PART\text{.snapshot}()$; % wait for $n - t$
4. $count_i := |\{x \text{ such that } part_i[x] = up\}|$; % participants
5. until $count_i \geq n - t$ end repeat;
6. $newName_i := RENAMING.f.rename(id_i)$; % get new name
7. return $(newName_i)$
operation rename(id_i) is

(1) \(PART.write(up)\); % signal participation
(2) repeat
(3) \(part_i := PART.snapshot()\); % wait for \(n - t\)
(4) \(count_i := |\{x \text{ such that } part_i[x] = up\}|\); % participants
(5) until \(count_i \geq n - t\) end repeat;
(6) \(newName_i := \text{RENAMEING}_f.rename(id_i)\); % get new name
(7) return(newName_i);
Renaming Algorithm: Proof

(1) \textit{PART}.write(up);

(2) repeat

(3) \texttt{part}_i := \textit{PART}.snapshot();

(4) \texttt{count}_i := |\{x \text{ such that } \texttt{part}_i[x] = \text{up}\}|;

(5) until \texttt{count}_i \geq n - t end repeat;

\[a \leq t \text{ crashes + participation required} \]
\[\leadsto \text{eventually } \texttt{count}_i \geq n - t \text{ at every correct process } p_i \]
Renaming Algorithm: Proof

(1) \(PART.write(up); \)
(2) repeat
(3) \(part_i := PART.snapshot(); \)
(4) \(count_i := |\{x \text{ such that } part_i[x] = up\}|; \)
(5) until \(count_i \geq n - t \) end repeat;

\[\begin{align*}
\text{a} & \quad \leq t \text{ crashes } + \text{ participation required} \\
& \quad \leadsto \text{ eventually } count_i \geq n - t \text{ at every correct process } p_i \\
\text{b} & \quad n - t > \lambda \leadsto \text{ no } \lambda\text{-constrained crashes in } RENAMING_f \\
& \quad \leadsto \leq f \text{ crashes in } RENAMING_f
\end{align*} \]
Renaming Algorithm: Proof

(1) \(\text{PART}.\text{write}(\text{up}); \)

(2) repeat

(3) \(\text{part}_i := \text{PART}.\text{snapshot}(); \)

(4) \(\text{count}_i := |\{x \text{ such that } \text{part}_i[x] = \text{up}\}|; \)

(5) until \(\text{count}_i \geq n - t \) end repeat;

\[\textbf{a} \leq t \text{ crashes } + \text{ participation required} \]
\[\implies \text{ eventually } \text{count}_i \geq n - t \text{ at every correct process } p_i \]

\[\textbf{b} \quad n - t > \lambda \implies \text{ no } \lambda\text{-constrained crashes in } \text{RENAMING}_f \]
\[\implies \leq f \text{ crashes in } \text{RENAMING}_f \]

\[\textbf{c} \quad \text{ participation not required for } \text{RENAMING}_f + \text{ properties of } \text{RENAMING}_f \]
\[\implies \text{ validity, agreement, } \& \text{ termination } \]
Generalization to One-Shot Concurrent Objects

Transform $OB = \text{one-shot object tolerating } < X \text{ any-time crashes, participation not required}$

- $\lambda = n - t - 1$
- $t = m + f, \ m \geq 0, 0 \leq f \leq X$

<table>
<thead>
<tr>
<th>total # of faults</th>
<th>$t = m + f$</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ-constrained crashes</td>
<td>m</td>
</tr>
<tr>
<td>any-time crashes</td>
<td>$f \leq X$</td>
</tr>
</tbody>
</table>

operation $\text{op}(in_i)$ is

1. $\text{PART}.\text{write}(up)$;
2. repeat
3. $part_i := \text{PART}.\text{snapshot}()$;
4. $count_i := |\{ x \text{ such that } part_i[x] = up \}|$;
5. until $count_i \geq n - t$ end repeat;
6. $res_i := OB.\text{op}(in_i)$;
7. return(res_i);