

Contention-Related Crash Failures

Anaïs Durand

LIP6, Sorbonne Université, Paris

April 1st, 2019

Contention-Related Crash Failures

Set Agreement and Renaming in the Presence of Contention-Related Crash Failures

SSS 2018

Joint work with:



Gadi Taubenfeld

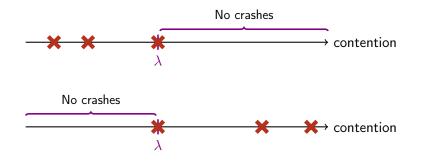
- Asynchronous deterministic system
- **n** processes p_1, \ldots, p_n
- Atomic read/write registers
- $0 \le t < n$ process crashes
- Participation required

2 kinds of process crashes usually considered:

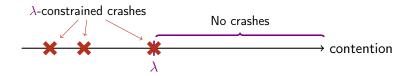
Initially dead processes

"Classical" (any-time) crashs: no constraints

- Contention = # processes that accessed a shared register $\approx \#$ processes that started to compute
- λ = predefined contention threshold
- 2 possible definitions:



- Contention = # processes that accessed a shared register $\approx \#$ processes that started to compute
- λ = predefined contention threshold
- 2 possible definitions:



Consensus:

- ▶ [Fischer *et al.*, 85]: Impossible with one any-time crash failure.
- ► [Taubenfeld, 18]: Algorithm that tolerates one (n 1)-constrained crash failure for n > 1.

• *k*-Set Agreement, $1 \le k < n$:

- ▶ [Borowsky, Gafni, 93]: Impossible with k any-time crash failures.
- [Taubenfeld, 18]: Algorithm that tolerates ℓ + k − 2 (n − ℓ)-constrained crash failures for ℓ ≥ 1 and n ≥ 2ℓ + k − 2.

Consider a problem P that can be solved with t any-time crash failures, but impossible with t + 1 any-time crash failures.

```
Given \lambda, can P be solved with both

t_1 \ \lambda-constrained

and

t_2 \leq t any-time

crash failures, with t_1 + t_2 > t?
```


We consider here: k-set agreement (for $k \ge 2$) and renaming

k-Set Agreement

Anaïs Durand

Contention-Related Crash Failures

Definition

- One-shot object
- Operation propose(v): propose value v and return a decided value

Properties:

- ► Validity: decided value ∈ proposed values
- ► Agreement: ≤ k decided values
- Termination: every correct process decides

k-Set Agreement Algorithm: Properties

 $\lambda = n - k$

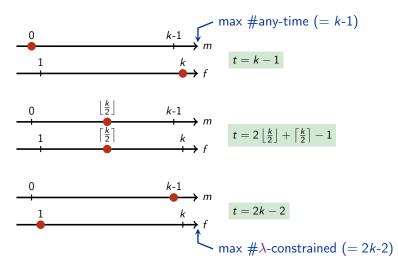
- *k* ≥ 2
- k = m + f, $m \ge 0$, $f \ge 1$

total # of faults	t=2m+f-1=k+m-1
λ -constrained crashes	2 <i>m</i>
any-time crashes	f-1

[Borowsky, Gafni, 93]: Impossible with k any-time crash failures.

k-Set Agreement: Parameters

Parameters f and m allow the user to **tune** the proportion of each type of crash failures.



Contention-Related Crash Failures

DEC: atomic register, initially \perp

- PART[1...,n]: snapshot object, initially [down,...,down]
 - Atomic (linearizable) operations write() and snapshot()
 - ➤ array of single-writer multi-reader atomic registers PART[1...n] such that:
 - p_i invokes write(v) = writes v into PART[i]
 - *p_i* invokes *snapshot*() = obtains the value of the array *PART*[1...n] as if it read simultaneously and instantaneously all its entries

MUTEX[1]: one-shot deadlock-free f-mutex

■ *MUTEX*[2]: one-shot deadlock-free *m*-mutex

- Operations acquire() and release() (invoked at most once)
- Properties:
 - Mutual exclusion: $\leq m$ processes simultaneously in critical section
 - Deadlock-freedom: if < m processes crashes, then ≥ 1 process invoking acquire() terminates its invocation

operation $propose(in_i)$ is

(1) **PART.write**(up);

% signal participation

operation $propose(in_i)$ is

(1) **PART.write**(up);

% signal participation

(2) repeat (3) $part_i := PART.snapshot();$ % wait for n - t(4) $count_i := |\{x \text{ such that } part_i[x] = up\}|;$ % participants (5) until $count_i > n - t$ end repeat;

operation $propose(in_i)$ is PART.write(up); % signal participation (1)(2)repeat $part_i := PART.snapshot();$ % wait for n - t(3)*count*_{*i*} := $|\{x \text{ such that } part_i[x] = up\}|;$ (4)% participants until *count*_i > n - t end repeat; (5)if *count*_{*i*} $\leq \lambda$ then (6)% split processes into groups $group_i := 2;$ $\% \rightsquigarrow MUTEX[2] (m-mutex)$ (8)else $group_i := 1;$ $\% \rightsquigarrow MUTEX[1]$ (f-mutex) (9) end if

operation $propose(in_i)$ is PART.write(up); (1)% signal participation (2)repeat $part_i := PART.snapshot();$ % wait for n - t(3)*count*_{*i*} := $|\{x \text{ such that } part_i[x] = up\}|;$ (4)% participants until *count*_i > n - t end repeat; (5)if *count*_i $\leq \lambda$ then (6)% split processes into groups group; := 2; $\% \rightsquigarrow MUTEX[2] (m-mutex)$ (8) else $group_i := 1;$ $\% \rightsquigarrow MUTEX[1]$ (f-mutex) (9) end if launch in // the threads T_1 and T_2 ;

k-Set Agreement Algorithm (2/2)

thread T_1 is		
(12)	loop forever	
(13)	if $DEC \neq \bot$ then	
(14)	return(<i>DEC</i>);	
(15)	end if;	
(16)	end loop;	

% wait for a decided value

thread T_1 is		
(12)	loop forever	
(13)	if $DEC \neq \bot$ then	
(14)	return(<i>DEC</i>);	
(15)	end if;	
(16)	end loop;	
	. 1 7 '-	
thre	ad T_2 is	
(17)	if $group_i = 1 \lor m > 0$ then	
(18)	<i>MUTEX</i> [group _i].acquire();	
(19)	if $DEC = \bot$ then	
(20)	$DEC := in_i;$	
(21)	end if	
(22)	<i>MUTEX</i> [group _i].release();	
(23)	return(<i>DEC</i>);	

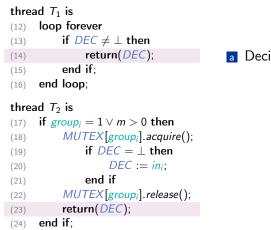
% wait for a decided value

% decide a value if enters its CS

(24)

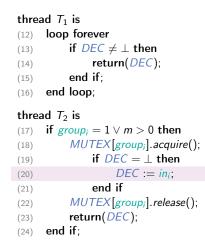
end if;

k-Set Agreement Algorithm: Validity & Agreement



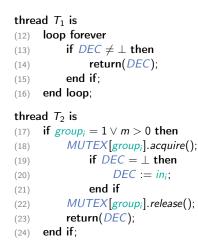
Decided value = DEC

k-Set Agreement Algorithm: Validity & Agreement



- a Decided value = DEC
- **b** *DEC* assigned to **proposed** values *in_i* in CS

k-Set Agreement Algorithm: Validity & Agreement



- Decided value = DEC
- **b** *DEC* assigned to **proposed** values *in_i* in CS

 $\Rightarrow \leq f + m = k$ decided values


```
    PART.write(up);
```

(2) repeat

```
(3) part_i := PART.snapshot();
```

```
(4) count_i := |\{x \text{ such that } part_i[x] = up\}|;
```

```
(5) until count<sub>i</sub> \geq n - t end repeat;
```

```
a \leq t crashes + participation required

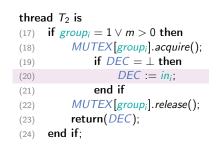
\rightsquigarrow eventually count<sub>i</sub> \geq n - t at every correct process p_i
```

(1) **PART.write(up)**;

```
repeat
(2)
             part_i := PART.snapshot();
(3)
             count<sub>i</sub> := |\{x \text{ such that } part_i[x] = up\}|;
(4)
       until count<sub>i</sub> \geq n - t end repeat;
(5)
       if count_i < \lambda then
(6)
             group_i := 2;
(7)
       else
(8)
            group_i := 1;
(9)
       end if
```

- a $\leq t$ crashes + participation required \rightsquigarrow eventually $count_i \geq n - t$ at every correct process p_i
- **b** $\leq n k$ processes with $count_i \leq n k = \lambda$ when leaving loop (2)-(5) $\rightsquigarrow \leq n - k$ processes in group 2

thread T_1 is		
(12)	loop forever	
(13)	if $DEC \neq \bot$ then	
(14)	return(<i>DEC</i>);	
(15)	end if;	
(16)	end loop;	

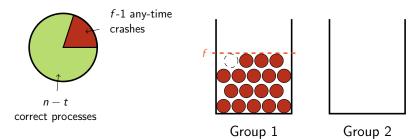


a ≤ t crashes + participation required
 → eventually count_i ≥ n − t at every correct process p_i

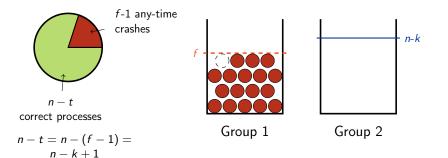
b $\leq n - k$ processes with $count_i \leq n - k = \lambda$ when leaving loop (2)-(5) $\rightsquigarrow \leq n - k$ processes in group 2

c one process decides \Rightarrow every correct process decides

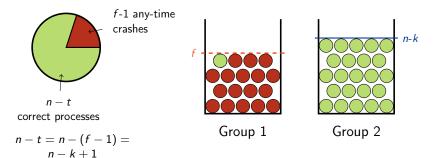
d If
$$m = 0$$
: $k = m + f = f$



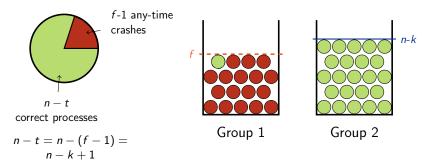
d If
$$m = 0$$
: $k = m + f = f$



d If
$$m = 0$$
: $k = m + f = f$

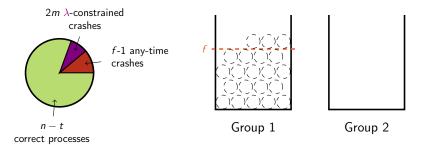


d If m = 0: k = m + f = f

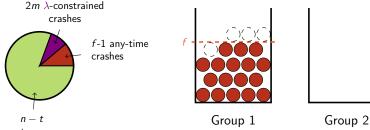


 $\rightarrow \geq 1$ correct process & $\leq f - 1$ (any-time) crashes in group 1 (Properties of DF *f*-mutex *MUTEX*[1]) \Rightarrow at least one process decides

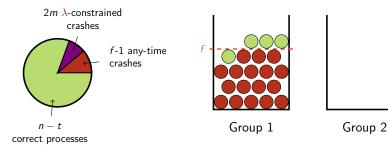
- d If m > 0:
 - ▶ $|\text{group } \mathbf{1}| \ge f$



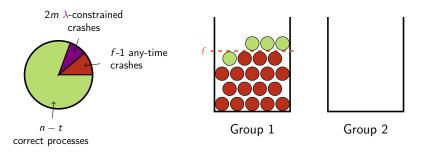
- d If m > 0:
 - ▶ $|\text{group } \mathbf{1}| \ge f$



- d If m > 0:
 - ▶ $|\text{group } \mathbf{1}| \ge f$



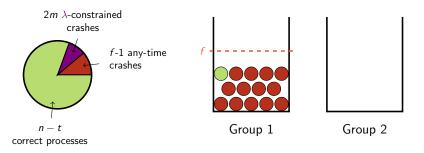
- d If m > 0:
 - ▶ $|\text{group } \mathbf{1}| \ge f$



 $\rightarrow \geq 1$ correct process & $\leq f - 1$ (any-time) crashes in group 1 (Properties of DF *f*-mutex *MUTEX*[1]) \Rightarrow at least one process decides

d If m > 0:

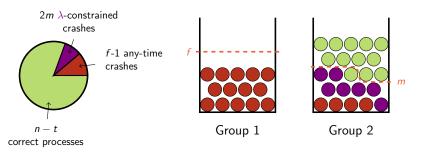
 $\blacktriangleright ||group | 1| < f, correct \in group | 1|$



 $\rightarrow \geq 1$ correct process & $\leq f - 1$ (any-time) crashes in group 1 (Properties of DF *f*-mutex *MUTEX*[1]) \Rightarrow at least one process decides

d If m > 0:

 $\blacktriangleright |group \ 1| < f, \ correct \notin group \ 1$



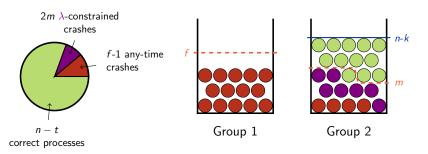
$$(n-k) - (n-t) = t - k = (2m + f - 1) - (m + f) = m - 1$$

 $\rightarrow \geq 1$ correct process & $\leq m-1$ crashes in group 2 (Properties of DF *m*-mutex *MUTEX*[2]) \Rightarrow at least one process decides

k-Set Agreement Algorithm: Termination (5/5)

d If m > 0:

 $\blacktriangleright |group \ 1| < f, \ correct \notin group \ 1$



$$(n-k) - (n-t) = t - k = (2m + f - 1) - (m + f) = m - 1$$

 $\rightarrow \geq 1$ correct process & $\leq m-1$ crashes in group 2 (Properties of DF *m*-mutex *MUTEX*[2]) \Rightarrow at least one process decides

k-Set Agreement Algorithm: Properties

$$\lambda = n - k$$

$$k \ge 2$$

$$k - m + f \quad m \ge 0 \quad f \ge 1$$

total # of faults	t=2m+f-1=k+m-1
λ -constrained crashes	2 <i>m</i>
any-time crashes	f-1

k-Set Agreement Algorithm: Generalization

 $\quad \bullet \quad \lambda = n - \ell$

•
$$k \leq \ell \leq n$$

- *k* ≥ 2
- k = m + f, $m \ge 0$, $f \ge 1$

total # of faults	$t = 2m + \ell - k + f - 1$
λ -constrained crashes	$2m + \ell - k$
any-time crashes	f-1

- Notion of contention-related crash failures
- Allows to circumvent impossibility results
- Better understanding of fault tolerance: In the k-set agreement algorithm, can trade 1 "strong" any-time failure for 2 "weak" (n – k)-constrained failures

Future work:

- ► Tight bounds?
- General algorithm for k-set agreement, $\forall k \geq 1$.
- What about crashes after the contention threshold λ ?
- What about other definitions of weak crash failures?

Thank you for your attention! Do you have any question?

Anaïs Durand

Contention-Related Crash Failures

Renaming

Anaïs Durand

Contention-Related Crash Failures

Definition

- Initial name: *id_i*
- New name space: {1...M}
- Operation rename(id_i): return a new name
- Properties:
 - ▶ Validity: new name $\in \{1 \dots M\}$
 - Agreement: no 2 same new names
 - Termination: invokation of rename() by a correct process terminates

Renaming Algorithm: Properties

$$\blacksquare M = n + f$$

$$\lambda = n - t - 1$$

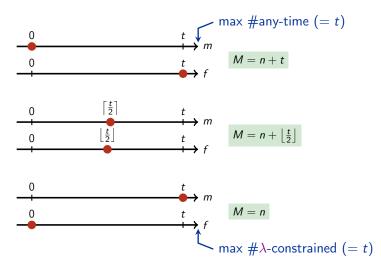
•
$$t = m + f$$
, $m \ge 0$, $f \ge 0$

total # of faults	t = m + f
λ -constrained crashes	т
any-time crashes	f

[Herlihy, Shavit, 93]: Impossible with f + 1 any-time crash failures.

Renaming Algorithm: Parameters

Parameters f and m allow the user to **tune** the proportion of each type of crash failures and the size of the new name space.



■ *PART*[1...,n]: snapshot object, initially [down,..., down]

RENAMING_f: (n + f)-renaming object that:

- tolerates $\leq f$ any-time crash failures
- does not require participation
- e.g. [Attiya, Welch, 04]

operation $rename(id_i)$ is

(1)
$$PART.write(up);$$

(2) repeat
(3) $part_i := PART.snapshot();$
(4) $count_i := |\{x \text{ such that } part_i[x] = up\}|;$
(5) $until count_i \ge n - t \text{ end repeat};$
(1) $PART.write(up);$
(2) $\%$ signal participation
(3) $\%$ wait for $n - t$
(4) ϕ participants
(5) $until count_i \ge n - t \text{ end repeat};$

operation rename(id_i) is

- (2) repeat
- $(3) \quad part_i := PART.snapshot();$
- (4) $count_i := |\{x \text{ such that } part_i[x] = up\}|;$
- (5) until *count*_i $\geq n t$ end repeat;

- % signal participation
- % wait for n-t
- % participants
- (6) $newName_i := RENAMING_f.rename(id_i);$
- (7) return(*newName_i*);

% get new name

Renaming Algorithm: Proof

```
    PART.write(up);
```

```
(2) repeat
```

```
(3) part_i := PART.snapshot();
```

```
(4) count_i := |\{x \text{ such that } part_i[x] = up\}|;
```

```
(5) until count<sub>i</sub> \geq n - t end repeat;
```

```
a \leq t crashes + participation required

\rightsquigarrow eventually count<sub>i</sub> \geq n - t at every correct process p_i
```

Renaming Algorithm: Proof

PART.write(up);

(2) repeat

```
(3) part_i := PART.snapshot();
```

- (4) $count_i := |\{x \text{ such that } part_i[x] = up\}|;$
- (5) until *count*_i $\geq n t$ end repeat;
- a ≤ t crashes + participation required
 → eventually count_i ≥ n t at every correct process p_i
 b n t > λ → no λ-constrained crashes in RENAMING_f
 - $\rightsquigarrow \leq f$ crashes in *RENAMING* f

PART.write(up);

(2) repeat

```
(3) part_i := PART.snapshot();
```

- (4) $count_i := |\{x \text{ such that } part_i[x] = up\}|;$
- (5) until *count*_i $\geq n t$ end repeat;
- a ≤ t crashes + participation required
 → eventually count_i ≥ n − t at every correct process p_i
- **b** $n t > \lambda \rightsquigarrow$ no λ -constrained crashes in *RENAMING*_f $\rightsquigarrow \leq f$ crashes in *RENAMING*_f
- **c** participation not required for *RENAMING*_f + properties of *RENAMING*_f

 \rightsquigarrow validity, agreement, & termination

Generalization to One-Shot Concurrent Objects

Transform OB = one-shot object tolerating < X any-time crashes, participation not required

$$\lambda = n - t - 1$$

•
$$t = m + f$$
, $m \ge 0$, $0 \le f \le X$

total # of faults	t = m + f
λ -constrained crashes	т
any-time crashes	$f \leq X$

operation $op(in_i)$ is

(2) repeat

(3) $part_i := PART.snapshot();$

- (4) $count_i := |\{x \text{ such that } part_i[x] = up\}|;$
- (5) **until** $count_i \ge n t$ end repeat;

(6)
$$res_i := OB.op(in_i);$$

(7) return(res_i);