o th |
Ip SORBONNE
I D UNIVERSITE
Contention-Related Crash Failures

Anais Durand

LIP6, Sorbonne Université, Paris

April 1st, 2019

Contention-Related Crash Failures @

Set Agreement and Renaming in the Presence of

Contention-Related Crash Failures

55§ 2018

Joint work with:

Michel Raynal Gadi Taubenfeld

"
b

Contention-Related Crash Failures @

Computational Model

Asynchronous deterministic system
N Processes pi, ..., Pn
Atomic read/write registers

0 < t < n process crashes

Participation required

Contention-Related Crash Failures

Process crashes

2 kinds of process crashes usually
considered:

m Initially dead processes

m “Classical” (any-time) crashs: no
constraints

Contention-Related Crash Failures @

Contention-Related Crash Failures [Taubenfeld, 18]

m Contention = # processes that accessed a shared register
~ # processes that started to compute

m)\ = predefined contention threshold

m 2 possible definitions:

No crashes

A

H—xK

contention

> 3%

No crashes

A

- - - - 3¢~ contention

Contention-Related Crash Failures @

Contention-Related Crash Failures

m Contention = # processes that accessed a shared register
A # processes that started to compute

m)\ = predefined contention threshold

m 2 possible definitions:

A-constrained crashes

/l \ No cn;ashes
*K—K *

> contention

A

Contention-Related Crash Failures @

Contention-Related vs. Any-Time Crash Failures

m Consensus:
» [Fischer et al., 85]: Impossible with one any-time crash failure.

» [Taubenfeld, 18]: Algorithm that tolerates one (n — 1)-constrained
crash failure for n > 1.

m k-Set Agreement, 1 < k < n:
» [Borowsky, Gafni, 93]: Impossible with k any-time crash failures.

» [Taubenfeld, 18]: Algorithm that tolerates ¢ + k — 2 (n — {)-constrained
crash failures for £ > 1 and n > 20 + k — 2.

Contention-Related Crash Failures @

Consider a problem P that can be solved with t any-time crash failures,
but impossible with t + 1 any-time crash failures.

Given), can P be solved with both

t; A-constrained w “ﬁw%ﬂ "
and - ﬁﬁﬁﬁﬁﬂ% s
t, < t any-time ‘m{{ﬂ 1

crash failures, with t; + to > t?

We consider here: k-set agreement (for k > 2) and renaming

Contention-Related Crash Failures @

k-Set Agreement

Contention-Related Crash Failures @

k-Set Agreement [Chaudhuri,90]

Definition

m One-shot object
m Operation propose(v): propose value v and return a decided value

m Properties:
» Validity: decided value € proposed values
» Agreement: < k decided values
» Termination: every correct process decides

Contention-Related Crash Failures @

k-Set Agreement Algorithm: Properties

mA=n—k
mk>2
mk=m+f, m>0f>1

total # of faults t=2m+f—-1=k+m-1
A-constrained crashes 2m
any-time crashes f—1

[Borowsky, Gafni, 93]: Impossible with k any-time crash failures.

Contention-Related Crash Failures @

k-Set Agreement: Parameters

Parameters f and m allow the user to tune the proportion of each type
of crash failures.

max #any-time (= k-1)
(a

0 k-1
—_ } > m
1 k t=k—1
+ - f
0 5] k-1
’ + > m
1 3] k t=2[5]+[5] -1
L 4 > f
0 k-1
+ 99— m
1 k t=2k—-2
—e —> f

f\ max #A-constrained (= 2k-2)

Contention-Related Crash Failures @

k-Set Agreement: Shared Registers (1/2)

m DEC: atomic register, initially 1

m PARTI1...n]: snapshot object, initially [down, ..., down]

» Atomic (linearizable) operations write() and snapshot()

» ~ array of single-writer multi-reader atomic registers
PARTIL...n] such that:

® p; invokes write(v) = writes v into PART[i]

® p; invokes snapshot() = obtains the value of the array
PARTI1...n] as if it read simultaneously and
instantaneously all its entries

Contention-Related Crash Failures @

k-Set Agreement: Shared Registers (2/2)

m MUTEX][1]: one-shot deadlock-free f-mutex

m MUTEX]2]: one-shot deadlock-free m-mutex

» Operations acquire() and release() (invoked at most
once)

» Properties:

® Mutual exclusion: < m processes simultaneously in critical
section

® Deadlock-freedom: if < m processes crashes, then > 1
process invoking acquire() terminates its invocation

Contention-Related Crash Failures @

k-Set Agreement Algorithm (1/2)

operation propose(in;) is

(1) PART.Write(up); % signal participation

Contention-Related Crash Failures @

k-Set Agreement Algorithm (1/2)

operation propose(in;) is

(1) PART.Write(up); % signal participation
(2) repeat

A3) part; := PART .snapshot(); % wait for n — t

(4) count; := |{x such that part;[x] = up}|; % participants

(5) until count; > n — t end repeat;

Contention-Related Crash Failures @

k-Set Agreement Algorithm (1/2)

operation propose(in;) is

(1) PART.Write(up); % signal participation

(2) repeat

®3) part; := PART .snapshot(); % wait for n — t

(4) count; := |{x such that part;[x] = up}|; % participants

(5) until count; > n— t end repeat;

(6) if count; < X then % split processes into groups
(7) group; := 2; % ~» MUTEX[2] (m-mutex)
(8) else

(9) group; :=1; % ~~ MUTEX]1] (f-mutex)
(10) end if

Contention-Related Crash Failures @

k-Set Agreement Algorithm (1/2)

operation propose(in;) is

(1) PART.Write(up); % signal participation

(2) repeat

®3) part; := PART .snapshot(); % wait for n — t

(4) count; := |{x such that part;[x] = up}|; % participants

(5) until count; > n— t end repeat;

(6) if count; < X then % split processes into groups
(7) group; := 2; % ~» MUTEX|[2] (m-mutex)
(8) else

(9) group; :=1; % ~» MUTEX[1] (Fmutex)
(10) end if

(11) launch in // the threads T7 and Tp;

Contention-Related Crash Failures @

k-Set Agreement Algorithm (2/2)

thread T; is % wait for a decided value
(12) loop forever

(13) if DEC # 1 then

(14) return(DEC);

(15) end if;

(16) end loop;

Contention-Related Crash Failures @

k-Set Agreement Algorithm (2/2)

thread T7 is % wait for a decided value
12) loop forever

(

(13) if DEC # 1 then

(14) return(DEC);

(15) end if;

(16) end loop;

thread 75 is % decide a value if enters its CS
(17) if group; =1V m > 0 then
(18) MUTEX [group;].acquire();
(19) if DEC = 1| then
(20) DEC := inj;

(21) end if

(22) MUTEX [group;].release();
(23) return(DEC);

(24) end if;

Contention-Related Crash Failures @

k-Set Agreement Algorithm: Validity & Agreement

thread T; is

(12) loop forever

(13) if DEC # 1 then

(14) return(DEC); B Decided value = DEC
(15) end if;

(16) end loop;

thread T> is

17) if group; =1V m > 0 then

(

(18) MUTEX [group;].acquire();
(19) if DEC = 1 then
(20) DEC := in;j;

(21) end if

(22) MUTEX [groupi].release();
(23) return(DEC);

(24) end if;

Contention-Related Crash Failures @

k-Set Agreement Algorithm: Validity & Agreement

thread T; is
12) loop forever

(

(13) if DEC # 1 then

(14) return(DEC); B Decided value = DEC
(15) end if;

(16) end loop;

B DEC assigned to proposed

thread Ty is values in; in CS
17) if group; =1V m > 0 then

(

(18) MUTEX [group;].acquire();
(19) if DEC = 1 then
(20) DEC := in;j;

(21) end if

(22) MUTEX [groupi].release();
(23) return(DEC);

(24) end if;

Contention-Related Crash Failures @

k-Set Agreement Algorithm: Validity & Agreement

thread T; is

(12) loop forever

(13) if DEC # 1 then

(14) return(DEC); B Decided value = DEC
(15) end if;

(16) end loop;

w

B DEC assigned to proposed
thread 7> is values in; in CS

17) if group; =1V m > 0 then

18 MUTEX [group;].acquire();

(

:19; if DEC = 1 then MUTEX[1] ~ < f # values

(20) DEC := in;; MUTEX][2] ~ < m # values

(21) end if .

(22) MUTEX [groupi].release(); = < f + m = k decided values
(23) return(DEC);

(24)

24) end if;

Contention-Related Crash Failures @

k-Set Agreement Algorithm: Termination (1/5)

(1) PART .write(up);

(2) repeat

(3) part; := PART .snapshot();

(4) count; := |{x such that part;[x] = up}|;
(5) until count; > n— t end repeat;

B < t crashes + participation required
~ eventually count; > n — t at every correct process p;

Contention-Related Crash Failures @

k-Set Agreement Algorithm: Termination (1/5)

PART .write(up);

2 repeat
3 part; := PART .snapshot();
4 count; := |{x such that part;[x] = up}|;

)
)
)
)
5) until count; > n— t end repeat;
) if count; < X then

)

)

)

7 group; := 2;
8 else

9 group; :=1;
10) end if

B < t crashes + participation required
~ eventually count; > n — t at every correct process p;

B < n— k processes with count; < n— k = X\ when leaving loop (2)-(5)
~» < n — k processes in group 2

Contention-Related Crash Failures @

k-Set Agreement Algorithm: Termination (1/5)

thread T> is

17) if group; =1V m > 0 then

1 MUTEX [group;].acquire();
19 if DEC = L then

thread T; is
12) loop forever
1 if DEC # 1 then

)

w

(
((18)
(13) (19)
(14) return(DEC); (20) DEC := in;;
15 end if; (21) end if
(16) end loop; (22) MUTEX [groupy].release();
v i (23) return(DEC);
(24) end if;

B < t crashes + participation required
~ eventually count; > n — t at every correct process p;

B < n— k processes with count; < n— k = X\ when leaving loop (2)-(5)
~» < n — k processes in group 2

one process decides = every correct process decides

Contention-Related Crash Failures @

k-Set Agreement Algorithm: Termination (2/5)

Bfm=0k=m+f=fFf

f-1 any-time
crashes

n—t
correct processes

Group 1 Group 2

Contention-Related Crash Failures @

k-Set Agreement Algorithm: Termination (2/5)

Bfm=0k=m+f=fFf

f-1 any-time
crashes

n-k

n—t
correct processes

het—n—(F—1)= Group 1 Group 2

n—k+1

Contention-Related Crash Failures @

k-Set Agreement Algorithm: Termination (2/5)

Bfm=0k=m+f=fFf

f-1 any-time

crashes
OO0 "

QOO0
00000
OO
correc: ;'cfcesses OO0
Group 1 Group 2

n—t=n—(f-1)=
n—k+1

Contention-Related Crash Failures @

k-Set Agreement Algorithm: Termination (2/5)

BIfm=0 k=m+Ff=f

f-1 any-time

crashes
0000 ™

QOO0
00000
OO
correc: ;'cfcesses OO0
Group 1 Group 2

n—t=n—(f-1)=
n—k+1

~+ > 1 correct process & < f — 1 (any-time) crashes in group 1
(Properties of DF f-mutex MUTEX]1]) = at least one process
decides

Contention-Related Crash Failures @

k-Set Agreement Algorithm: Termination (3/5)

@ If m>0:
» |group 1| > f

2m \-constrained

crashes
’ ")/ “’/“
f-1 any-time f '/"/‘\,‘/"\,7"\,‘
crashes A A
SRR
O
SRR
n—t Group 1 Group 2
correct processes

Contention-Related Crash Failures @

k-Set Agreement Algorithm: Termination (3/5)

@ If m>0:
» |group 1| > f

2m \-constrained
crashes

f-1 any-time
crashes

n—t
correct processes

Group 2

Contention-Related Crash Failures @

k-Set Agreement Algorithm: Termination (3/5)

@ If m>0:
» |group 1| > f

2m \-constrained

crashes
f-1 any-time
crashes
(L
0000
n—t Group 1 Group 2

correct processes

Contention-Related Crash Failures @

k-Set Agreement Algorithm: Termination (3/5)

@ If m>0:
» |group 1| > f

2m \-constrained

crashes
f-1 any-time
crashes
(L
0000
n—t Group 1

correct processes

Group 2

~» > 1 correct process & < f — 1 (any-time) crashes in group 1
(Properties of DF f-mutex MUTEX][1]) = at least one process decides

Contention-Related Crash Failures

k-Set Agreement Algorithm: Termination (4/5)

@ If m>0:
» |group 1| < f, correct € group 1

2m \-constrained
crashes

f-1 any-time
crashes

n—t Group 1 Group 2

correct processes

~» > 1 correct process & < f — 1 (any-time) crashes in group 1
(Properties of DF f-mutex MUTEX][1]) = at least one process decides

Contention-Related Crash Failures @

k-Set Agreement Algorithm: Termination (5/5)

B If m>o0:
» |group 1| < f, correct ¢ group 1

2m M-constrained
crashes

f-1 any-time f
crashes

n—t
correct processes

(n—k)y—(n—t)=t—k=2m+f—-1)—(m+f)=m—1

~» > 1 correct process & < m — 1 crashes in group 2
(Properties of DF m-mutex MUTEX][2]) = at least one process decides

Contention-Related Crash Failures @

k-Set Agreement Algorithm: Termination (5/5)

B If m>o0:
» |group 1| < f, correct ¢ group 1

2m M-constrained
crashes

f-1 any-time
crashes

n—t
correct processes

(n—k)y—(n—t)=t—k=02m+f—-1)—(m+f)=m—1

~+ > 1 correct process & < m — 1 crashes in group 2
(Properties of DF m-mutex MUTEX]2]) = at least one process decides

Contention-Related Crash Failures @

k-Set Agreement Algorithm: Properties

B)\=n—k
mk>2
mBk=m+f m>0f>1

total # of faults t=2m+f—-1=k+m-1
A-constrained crashes 2m
any-time crashes f—1

Contention-Related Crash Failures @

k-Set Agreement Algorithm: Generalization

m\=n—/
mk</<n
mk>2

Bk=m+f m>0f>1

total # of faults t=2m+/(—k+f—-1
A-constrained crashes 2m+ 0 — k
any-time crashes f—1

Contention-Related Crash Failures @

Conclusion

m Notion of contention-related crash failures
m Allows to circumvent impossibility results

m Better understanding of fault tolerance:
In the k-set agreement algorithm, can trade 1 “strong” any-time
failure for 2 “weak” (n — k)-constrained failures

m Future work:
» Tight bounds?
» General algorithm for k-set agreement, Vk > 1.
» What about crashes after the contention threshold \?
» What about other definitions of weak crash failures?

Contention-Related Crash Failures @

Thank you for your attention!

Do you have any question?

Contention-Related Crash Failures

Renaming

Contention-Related Crash Failures @

[Attiya et al.,90]

Renaming

Definition

Initial name: id;
New name space: {1... M}
Operation rename(id;): return a new name

Properties:

» Validity: new name € {1... M}
» Agreement: no 2 same new names
» Termination: invokation of rename() by a correct process terminates

Contention-Related Crash Failures @

Renaming Algorithm: Properties

mM=n+f
mEAN=n—-t-—-1
] t:m—i—f,mZO,fZO

total # of faults t=m+f
A-constrained crashes m
any-time crashes f

[Herlihy, Shavit, 93]: Impossible with f + 1 any-time crash failures.

Contention-Related Crash Failures @

Renaming Algorithm: Parameters

Parameters f and m allow the user to tune the proportion of each type
of crash failures and the size of the new name space.

(max Fany-time (= t)

m

+ =

V.

M=n+t

lodo

F O
—
N+
-
~

F O
—
NI~ @
~ +

+
3
Il

=]

e
—
Nl
[l

®
W
-

‘o 1o

f\ max #\-constrained (= t)
Contention-Related Crash Failures @

Renaming Algorithm: Shared Registers

m PARTI1...n]: snapshot object, initially [down, ..., down]

m RENAMING¢: (n+ f)-renaming object that:
» tolerates < f any-time crash failures
» does not require participation

e.g. [Attiya, Welch, 04]

Contention-Related Crash Failures @

Renaming Algorithm

operation rename(id;) is

(1) PART .write(up); % signal participation
(2) repeat

(3) part; := PART .snapshot(); % wait for n — t

(4) count; := |{x such that partj[x] = up}|; % participants

(5) until count; > n— t end repeat;

Contention-Related Crash Failures @

Renaming Algorithm

operation rename(id;) is

(1) PART .write(up); % signal participation
(2) repeat

(3) part; := PART .snapshot(); % wait for n —t

(4) count; := |{x such that partj[x] = up}|; % participants

(5) until count; > n— t end repeat;

(6) newlName; := RENAMINGf.rename(id,-); % get new name

(7) return(newlName;);

Contention-Related Crash Failures @

Renaming Algorithm: Proof

(1) PART .write(up);

(2) repeat

3) part; := PART .snapshot();

(4) count; := |{x such that part;[x] = up}|;
(5) until count; > n— t end repeat;

B < t crashes + participation required
~ eventually count; > n — t at every correct process p;

Contention-Related Crash Failures @

Renaming Algorithm: Proof

(1) PART .write(up);

(2) repeat

3) part; := PART .snapshot();
(4)

(5)

count; := |{x such that part;[x] = up}
until count; > n — t end repeat;

B < t crashes + participation required
~ eventually count; > n — t at every correct process p;

B n—t >)\~ no \-constrained crashes in RENAMING ¢
~ < f crashes in RENAMING ¢

Contention-Related Crash Failures @

Renaming Algorithm: Proof

(1) PART .write(up);

(2) repeat

3) part; := PART .snapshot();

(4) count; := |{x such that part;[x] = up}|;
(5)

until count; > n — t end repeat;

B < t crashes + participation required
~ eventually count; > n — t at every correct process p;

B n—t >)\~ no \-constrained crashes in RENAMING ¢
~ < f crashes in RENAMING ¢

participation not required for RENAMING ¢ + properties of
RENAMING ¢
~ validity, agreement, & termination

Contention-Related Crash Failures @

Generalization to One-Shot Concurrent Objects

Transform OB = one-shot object tolerating < X any-time crashes,
participation not required

total # of faults t=m+f

mEA\=n—-t-—-1
mt=m+f m>00<f<X

A-constrained crashes

any-time crashes f<X
operation op(in;) is
(1) PART .write(up);
(2) repeat
(3) part; := PART .snapshot();
(4) count; := |{x such that part;[x] = up}|;
(5) until count; > n— t end repeat;

(6) resj := OB.op(in;);
(7) return(res;);

Contention-Related Crash Failures @

	k-Set Agreement
	Appendix
	Renaming

