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Introduction

General Configuration of Searching Problem

A set of data organized in some structure
An oracle replies to queries on the data
The oracle returns a subset of the data set which contains the target element
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Generalized Binary Search in Trees

Binary Search

For an ordered array (or totally ordered set)
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Generalized Binary Search in Trees

Binary Search

For an ordered array (or totally ordered set)

Our problem : Searching in Trees

Data organized into a tree
Target node x is known to the oracle, but not to the search algorithm
The oracle returns the subtree in which the target lies
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Query Model for Trees

– Query : a node v

– Reply :

true, if v is the target

otherwise, return a neighbor u of v which is closer to the target x
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Example 1

Query e

Target : f
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Example 1

Found

Target : f
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Example 1 : cost of locating the target
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Example 1 : cost of locating the target
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General Graph Variation

General Graph :
Query u

ANR DESCARTES 2017
ANR DESCARTES, Poitier Oct. 4th, 2017 23 /

57



Introduction Preliminaries Building a QPTAS O(
p

log n)-approximation algorithm Conclusion and Perspective

General Graph Variation

General Graph :
Query u
Reply a v 2 N(u), s.t. v is on the shortest path to the target
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Search Strategy Problem in Trees

Setting
Tree T = (V ,E ,w) with root r(T )

Cost of query to vertex v : w : V ! R+, maxv w(v) = 1
Cost of search strategy A on tree T : worst-case cost of finding a target
Optimal strategy : search strategy with minimal cost on T , costs OPT (T )

Our Problem :
Input : tree T = (V ,E ,w)

Compute : Optimal strategy for generalized binary search query model

Application Aspects
Locating buggy nodes in network models
Finding specific data in organized databases
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State-of-the-Art

Time complexity to compute optimal search strategy in different graphs

Graph class unweighted weighted
Path O(n) time O(n2) time [1]
Tree O(n) time [2] NP-hard [3]

Undirected Graph m⇥(log n) under ETH [4] PSPACE-complete [4]
Directed Graph PSPACE-complete [4] PSPACE-complete [4]

[1] Cicalese, Jacobs, Laber, Valentin, 2012
[2] Onak, Parys, 2006
[3] Dereniowski, Nadolski, 2006
[4] Emamjomeh-Zadeh, Kempe, Singhal, 2016

Our scenario : Weighted trees
NP-hard, O(log n)-approximation algorithm. [Dereniowski, 2006]
O( log n

log log log n )-approximation. [Cicalese, Jacobs, Laber, Valentin, 2012]

O( log n
log log n )-approximation. [Cicalese, Keszegh, Lidický, Pálvölgyi, Valla, 2015]
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Our Results

Results for the Search Strategy Problem in Weighted Trees :

Theorem 1. The problem admits a QPTAS.
QPTAS : Quasi-Polynomial-Time Approximation Scheme, (1 + ")-approximation algorithm
running in npolylog(n) time, for any given ✏ > 0.

which implies that the problem is not APX-hard unless NP ✓ DTIME(nO(log n))

Theorem 2. The problem admits a poly-time O(
p

log n)-approximation algorithm.
improves previous approximation ratio

[ICALP 2017, Dereniowski, Kosowski, Uznański, Zou]
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Preliminaries : Characterization of a Valid Search Strategy

Characterization of a Search Strategy

A query , an interval of time
length of interval : l(v) = w(v)
beginning time of v : when node v is queried during the search(if it is queried)
this time interval do not depend on the replies to other queries

A query sequence , intervals of time l(v) for all v 2 V
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Preliminaries : Characterization of a Valid Search Strategy

Valid Search Strategy

If the intervals of nodes u, v overlap, some node on the u–v path in the tree must
be queried before both u and v .

Extension of idea of : [Dereniowski, 2006]
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Preliminaries : Characterization of a Valid Search Strategy

Valid Search Strategy

If the intervals of nodes u, v overlap, some node on the u–v path in the tree must
be queried before both u and v .

Lemma. There is a equivalence between optimizing search strategy and the following
problem :
Assign intervals l(v) = [a, b] to v 2 V, where |[a, b]| = w(v), s.t. 8u, v 2 V,
l(u) \ l(v) 6= ; ) 9z on the path from u to v and max(l(t))  min(l(u), l(v))
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Schedule assignments

Schedule assignments :
Schedule S(v) : set of time intervals of "uncovered" nodes in the subtree of v
The interval l(u) is "covered" by an ancestor x if x is assigned an earlier interval
i.e. (max l(x)  min l(u)).
Schedule assignment : schedule S(v) for all v 2 V

Constraints

No two interval in the schedule of a node could overlap
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Schedule assignments

Schedule assignments :
Schedule S(v) : set of time intervals of "uncovered" nodes in the subtree of v
The interval l(u) is "covered" by an ancestor x if x a strictly earlier interval, e.g.
(max l(x) <= min l(u)).
Schedule assignment : schedule S(v) for all v 2 V
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Rounding and Alignment

Units of time : box and slot

A box : time between integer multiples of "
log n

A slot : time between integer multiples of "
n

Rounding and Alignment : Time intervals of vertices are rounded and aligned to
boxes or slots depending on their weight ("heavy" : w(v) > 1

log n , "light" :w(v)  1
log n )

Lemma. Given tree T , there is an aligned schedule assignment S0 with
costS0 (T )  (1 + 11")OPT (T )
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Dynamic Programming

Assume node v has children
u1, ...ul

Store all valid aligned schedules
S(v) for every node

Compute in bottom-up manner :
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Dynamic Programming

Assume node v has children
u1, ...ul

Store all valid aligned schedules
S(v) for every node

Compute in bottom-up manner :
1 Construct all valid aligned

schedules for children u1, ...ul

ANR DESCARTES 2017
ANR DESCARTES, Poitier Oct. 4th, 2017 35 /

57



Introduction Preliminaries Building a QPTAS O(
p

log n)-approximation algorithm Conclusion and Perspective

Dynamic Programming

Assume node v has children
u1, ...ul

Store all valid aligned schedules
S(v) for every node

Compute in bottom-up manner :
1 Construct all valid aligned

schedules for children u1, ...ul
2 Enumerate all possible start times

of v

ANR DESCARTES 2017
ANR DESCARTES, Poitier Oct. 4th, 2017 36 /

57



Introduction Preliminaries Building a QPTAS O(
p

log n)-approximation algorithm Conclusion and Perspective

Dynamic Programming

Assume node v has children
u1, ...ul

Store all valid aligned schedules
S(v) for every node

Compute in bottom-up manner :
1 Construct all valid aligned

schedules for children u1, ...ul
2 Enumerate all possible start times

of v
3 Obtain all possible schedules for v
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Running Time

Fact. We have 1  OPT (T )  dlog2ne.

) In Dynamic Programming, only consider aligned schedules of duration <= O(log n).
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Speed up Running Time

Relaxation : disregarding order of queries strictly inside a box
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Speed up Running Time

Relaxation computed by dynamic programming :

can be computed exactly in nO( log2 n
" ) time

⇤ running time can be reduced to nO( log n
"2 ) by adaptively choosing box sizes

not worse cost than optimal schedule

not a valid schedule assignment
⇤ but : can be fixed at small extra cost [non-trivial, based on solution of optimal

strategy in unweighted trees]
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QPTAS

Ŝ⇤ – solution by DP routine disregarding orders of light queries strictly inside a box.
R – an subsequence of nodes based on optimal solution for unweighted trees
S+ – a valid (1 + ") approximation
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From QPTAS to O(
p

log n)-approximation algorithm

Corollary of QPTAS

set " = 1 ) nO(log n) running time constant-factor approximation

Recursive decomposition with central subtree T⇤

Cost on T = Cost of locating x 0 in T⇤ + Cost of executing the strategy in Tx0

ANR DESCARTES 2017
ANR DESCARTES, Poitier Oct. 4th, 2017 45 /

57



Introduction Preliminaries Building a QPTAS O(
p

log n)-approximation algorithm Conclusion and Perspective

From QPTAS to O(
p

log n)-approximation algorithm

Corollary of QPTAS

set " = 1 ) nO(log n) running time constant-factor approximation

Recursive decomposition with central subtree T⇤

Cost on T = Cost of locating x 0 in T⇤ + Cost of executing the strategy in Tx0

Result

We can choose T⇤, such that :
Running time of every recursion level is poly(n), constant factor approximation
Recursion depth is bounded by O(

p
log n)

Approximation factors add up along recursions
Results in a polynomial-time O(

p
log n)-approximation algorithm
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Conclusion

Main Results

A QPTAS (quasi-polynomial-time approximation scheme) for strategies of
generalized binary search in weighted trees

implies the problem is not APX-hard unless NP ✓ DTIME(nO(log n))

An O(
p

log n)-approximation polynomial-time algorithm for strategies of
generalized binary search in weighted trees

improves previous approximation ratio

Open Questions

Find constant-factor approximation?
Results for other classes of graphs?
Oracle with error-reply rate?

Thanks !
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Thanks

Thanks !
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