Approximation Strategies for Generalized Binary Search in Weighted Trees

Dariusz Dereniowski¹, Adrian Kosowski², Przemysław Uznański³, Mengchuan Zou²

[1]Gdańsk University of Technology, Poland
[2]Inria Paris and IRIF, France
[3]ETH Zürich, Switzerland

ANR DESCARTES, Poitier
Oct. 4th, 2017
1. Introduction

2. Preliminaries

3. Building a QPTAS

4. $O(\sqrt{\log n})$-approximation algorithm

5. Conclusion and Perspective
Introduction

General Configuration of Searching Problem

- A set of data organized in some structure
-
-
-
Introduction

General Configuration of Searching Problem

- A set of data organized in some structure
- An oracle replies to queries on the data
Introduction

General Configuration of Searching Problem

- A set of data organized in some structure
- An oracle replies to queries on the data
- The oracle returns a subset of the data set which contains the target element
Generalized Binary Search in Trees

Binary Search

- For an ordered array (or totally ordered set)

```
2 2 3 5 7 8 11 12 12 15 16 18
```

target x: 11
Generalized Binary Search in Trees

Binary Search

- For an ordered array (or totally ordered set)

```
2  2  3  5  7  8  11  12  12  15  16  18
```

target x: 11
Generalized Binary Search in Trees

Binary Search

- For an ordered array (or totally ordered set)

```
2  2  3  5  7  8  11  12  12  15  16  18

↑?

target x: 11
```
Generalized Binary Search in Trees

Binary Search

- For an ordered array (or totally ordered set)

```
2 2 3 5 7 8 11 12 12 15 16 18
```

target x: 11
Generalized Binary Search in Trees

Binary Search

- For an ordered array (or totally ordered set)

Example:

```
2 2 3 5 7 8 11 12 15 16 18
```

target x: 11
Generalized Binary Search in Trees

Binary Search

- For an ordered array (or totally ordered set)

Our problem: Searching in Trees

- Data organized into a tree
- Target node x is known to the oracle, but not to the search algorithm
- The oracle returns the subtree in which the target lies
Query Model for Trees

– Query: a node v

[Diagram of a node v with an arrow pointing to it]
Query Model for Trees

- **Query**: a node \(v \)

- **Reply**:
 - **true**, if \(v \) is the target
Query Model for Trees

- **Query**: a node \(v \)

- **Reply**:
 - **true**, if \(v \) is the target
 - otherwise, return a **neighbor** \(u \) of \(v \) which is closer to the target \(x \)
Example 1

Query e

Target: f
Example 1

Query e

Target: f
Example 1

Query c

Target : f
Example 1

Query c

Target: f
Example 1

Query g

Target: f
Example 1

Query g

Target : f
Example 1

Query f

Target: f
Example 1

Found

Target: f
Example 1: cost of locating the target

Unweighted variant

Total of 4 queries to locate target: e, c, g, f
Example 1: cost of locating the target

Unweighted variant

- 4 queries to locate the target: e, c, g, f

Weighted variant

- Weight function $w: \mathbb{V} \rightarrow \mathbb{R}_+$

- Cost of locating the target = $w(e)+w(c)+w(g)+w(f)$
 $= 5+3+1+4=13$
General Graph Variation

General Graph: Query u
General Graph Variation

General Graph:
Query u
Reply a $v \in N(u)$, s.t. v is on the shortest path to the target
Setting

- Tree $T = (V, E, w)$ with root $r(T)$
- **Cost of query** to vertex $v: w: V \rightarrow \mathbb{R}_+, \max_v w(v) = 1$
- **Cost of search strategy** A on tree T: worst-case cost of finding a target
- **Optimal strategy**: search strategy with minimal cost on T, costs $OPT(T)$
Search Strategy Problem in Trees

Setting

- Tree $T = (V, E, w)$ with root $r(T)$
- **Cost of query** to vertex $v : w : V \rightarrow \mathbb{R}_+^+$, $\max_v w(v) = 1$
- **Cost of search strategy** A on tree T : worst-case cost of finding a target
- **Optimal strategy** : search strategy with minimal cost on T, costs $OPT(T)$

Our Problem :

- Input : tree $T = (V, E, w)$
- Compute : Optimal strategy for generalized binary search query model
Search Strategy Problem in Trees

Setting
- Tree \(T = (V, E, w) \) with root \(r(T) \)
- **Cost of query** to vertex \(v : w : V \rightarrow \mathbb{R}_+, \max_v w(v) = 1 \)
- **Cost of search strategy** \(A \) on tree \(T \) : worst-case cost of finding a target
- **Optimal strategy** : search strategy with minimal cost on \(T \), costs \(OPT(T) \)

Our Problem :
- Input : tree \(T = (V, E, w) \)
- Compute : Optimal strategy for generalized binary search query model

Application Aspects
- Locating buggy nodes in network models
- Finding specific data in organized databases
State-of-the-Art

- Time complexity to compute optimal search strategy in different graphs

<table>
<thead>
<tr>
<th>Graph class</th>
<th>unweighted</th>
<th>weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path</td>
<td>O(n) time</td>
<td>O(n^2) time [1]</td>
</tr>
<tr>
<td>Tree</td>
<td>O(n) time</td>
<td>NP-hard [3]</td>
</tr>
<tr>
<td>Undirected Graph</td>
<td>m^Θ(log n) under ETH [4]</td>
<td>PSPACE-complete [4]</td>
</tr>
</tbody>
</table>

- Our scenario: Weighted trees
 - NP-hard, $O(\log n)$-approximation algorithm. [Dereniowski, 2006]
 - $O\left(\frac{\log n}{\log \log n}\right)$-approximation. [Cicalese, Jacobs, Laber, Valentin, 2012]
 - $O\left(\frac{\log n}{\log \log \log n}\right)$-approximation. [Cicalese, Keszegh, Lidický, Pálvölgyi, Valla, 2015]
Our Results

Results for the Search Strategy Problem in Weighted Trees:

Theorem 1. The problem admits a QPTAS.

QPTAS: Quasi-Polynomial-Time Approximation Scheme, \(O(\sqrt{\log n}) \)-approximation algorithm running in \(n \text{polylog}(n) \) time, for any given \(\varepsilon > 0 \).

This implies that the problem is not APX-hard unless \(\text{NP} \subseteq \text{DTIME}(n^{O(\log n)}) \).

Theorem 2. The problem admits a poly-time \(O(p \log n) \)-approximation algorithm.

Improves previous approximation ratio [ICALP 2017, Dereniowski, Kosowski, Uznański, Zou].
Our Results

Results for the Search Strategy Problem in Weighted Trees:

Theorem 1. The problem admits a QPTAS.

- QPTAS: Quasi-Polynomial-Time Approximation Scheme, $(1 + \varepsilon)$-approximation algorithm running in $n^{\text{polylog}(n)}$ time, for any given $\varepsilon > 0$.

- which implies that the problem is not APX-hard unless $NP \subseteq DTIME(n^{O(\log n)})$.

\[O(\sqrt{\log n})\]-approximation algorithm
Our Results

Results for the Search Strategy Problem in Weighted Trees:

Theorem 1. The problem admits a QPTAS.

- QPTAS: Quasi-Polynomial-Time Approximation Scheme, $(1 + \varepsilon)$-approximation algorithm running in $n^{\text{polylog}(n)}$ time, for any given $\varepsilon > 0$.
- which implies that the problem is not APX-hard unless $\text{NP} \subseteq \text{DTIME}(n^{O(\log n)})$

Theorem 2. The problem admits a poly-time $O(\sqrt{\log n})$-approximation algorithm.
- improves previous approximation ratio

[ICALP 2017, Dereniowski, Kosowski, Uznański, Zou]
Preliminaries: Characterization of a Valid Search Strategy

Characterization of a Search Strategy

- A query \Leftrightarrow an interval of time
 - length of interval: $l(v) = w(v)$
 - beginning time of v: when node v is queried during the search (if it is queried)
 - this time interval do not depend on the replies to other queries
Preliminaries: Characterization of a Valid Search Strategy

Characterization of a Search Strategy

- A query \Leftrightarrow an interval of time
 - length of interval: $l(v) = w(v)$
 - beginning time of v: when node v is queried during the search (if it is queried)
 - this time interval do not depend on the replies to other queries

- A query sequence \Leftrightarrow intervals of time $l(v)$ for all $v \in V$
Valid Search Strategy

- If the intervals of nodes u, v overlap, some node on the u–v path in the tree must be queried before both u and v.

Extension of idea of: [Dereniowski, 2006]
Valid Search Strategy

- If the intervals of nodes u, v overlap, some node on the u–v path in the tree must be queried before both u and v.

Lemma. There is an equivalence between optimizing search strategy and the following problem:

Assign intervals $l(v) = [a, b]$ to $v \in V$, where $|[a, b]| = w(v)$, s.t. $\forall u, v \in V$, $l(u) \cap l(v) \neq \emptyset \Rightarrow \exists z$ on the path from u to v and $\max(l(t)) \leq \min(l(u), l(v))$.
Schedule assignments:

- Schedule $S(v)$: set of time intervals of "uncovered" nodes in the subtree of v
- The interval $l(u)$ is "covered" by an ancestor x if x is assigned an earlier interval i.e. $(\max l(x) \leq \min l(u))$.
- Schedule assignment: schedule $S(v)$ for all $v \in V$

Constraints:

- No two interval in the schedule of a node could overlap
Schedule assignments:

- Schedule \(S(\nu) \): set of time intervals of "uncovered" nodes in the subtree of \(\nu \)
- The interval \(l(u) \) is "covered" by an ancestor \(x \) if \(x \) a strictly earlier interval, e.g. \((\max l(x) \leq \min l(u))\).
- Schedule assignment: schedule \(S(\nu) \) for all \(\nu \in V \)
Rounding and Alignment

Units of time: box and slot

- A box: time between integer multiples of $\frac{\varepsilon}{\log n}$
- A slot: time between integer multiples of $\frac{\varepsilon}{n}$

Rounding and Alignment: Time intervals of vertices are rounded and aligned to boxes or slots depending on their weight ("heavy": $w(v) > \frac{1}{\log n}$, "light": $w(v) \leq \frac{1}{\log n}$)

Lemma. Given tree T, there is an aligned schedule assignment S' with $\text{cost}_{S'}(T) \leq (1 + 11\varepsilon)\text{OPT}(T)$
Dynamic Programming

- Assume node v has children u_1, \ldots, u_l

- Store all valid aligned schedules $S(v)$ for every node

- Compute in bottom-up manner:
Dynamic Programming

- Assume node \(v \) has children \(u_1, \ldots, u_l \)
- Store all valid aligned schedules \(S(v) \) for every node
- Compute in bottom-up manner:
 1. Construct all valid aligned schedules for children \(u_1, \ldots, u_l \)
Dynamic Programming

- Assume node \(v \) has children \(u_1, \ldots, u_l \)

- Store all valid aligned schedules \(S(v) \) for every node

- Compute in bottom-up manner:
 1. Construct all valid aligned schedules for children \(u_1, \ldots, u_l \)
 2. Enumerate all possible start times of \(v \)
Dynamic Programming

- Assume node v has children u_1, \ldots, u_l

- Store all valid aligned schedules $S(v)$ for every node

- Compute in bottom-up manner:
 1. Construct all valid aligned schedules for children u_1, \ldots, u_l
 2. Enumerate all possible start times of v
 3. Obtain all possible schedules for v
Running Time

Fact. We have $1 \leq \text{OPT}(T) \leq \lceil \log_2 n \rceil$.

⇒ In Dynamic Programming, only consider aligned schedules of duration $\leq O(\log n)$.

$O(\log n)$ length

\[\square \square \square \square \square \quad \cdots \quad \square \square \square \]

\[? \in \{ [\square, \square] \} \quad \text{slot length} = \frac{\varepsilon}{n} \]
Fact. We have $1 \leq OPT(T) \leq \lceil \log_2 n \rceil$.

\Rightarrow In Dynamic Programming, only consider aligned schedules of duration $\leq O(\log n)$.

- **O(log n) length**
 - $? \in \{?, \square\}$
 - slot length = $\frac{\epsilon}{n}$

- **O($\frac{n}{\epsilon}$ log n) slots**

- **$2^{O(\frac{n}{\epsilon} \log n)}$ possibilities**

Exponential!
Speed up Running Time

Relaxation: disregarding order of queries strictly inside a box

\[O(\log n) \text{ length} \]

\[\text{box length} = \frac{\varepsilon}{\log n} \]

For each box, store only number of full slots in this box.

\[\frac{n}{\log n} \text{ possibilities for one box} \leq n \]

\[\leq n^{O\left(\frac{\log^2 n}{\varepsilon}\right)} \text{ possibilities} \]
Speed up Running Time

Relaxation computed by dynamic programming:

- can be computed exactly in $n^{O\left(\frac{\log^2 n}{\varepsilon}\right)}$ time
 * running time can be reduced to $n^{O\left(\frac{\log n}{\varepsilon^2}\right)}$ by adaptively choosing box sizes
- not worse cost than optimal schedule

- not a valid schedule assignment
 * but: can be fixed at small extra cost [non-trivial, based on solution of optimal strategy in unweighted trees]
\hat{S}^* – solution by DP routine disregarding orders of light queries strictly inside a box.
R – an subsequence of nodes based on optimal solution for unweighted trees
S^+ – a valid $(1 + \varepsilon)$ approximation

\[\text{DP} \quad \text{infeasible cost} \leq (1+\varepsilon)\text{OPT}\]
QPTAS

\hat{S}^* – solution by DP routine disregarding orders of light queries strictly inside a box.
R – an subsequence of nodes based on optimal solution for unweighted trees
S^+ – a valid $(1 + \varepsilon)$ approximation
QPTAS

\(\hat{S}^* \) – solution by DP routine disregarding orders of light queries strictly inside a box.

\(R \) – an subsequence of nodes based on optimal solution for unweighted trees

\(S^+ \) – a valid \((1 + \varepsilon)\) approximation
From QPTAS to $O(\sqrt{\log n})$-approximation algorithm

Corollary of QPTAS

- set $\varepsilon = 1 \Rightarrow n^{O(\log n)}$ running time constant-factor approximation

Recursive decomposition with central subtree T^*

- Cost on $T = \text{Cost of locating } x' \text{ in } T^* + \text{Cost of executing the strategy in } T_{x'}$
From QPTAS to $O(\sqrt{\log n})$-approximation algorithm

Corollary of QPTAS

- set $\varepsilon = 1 \Rightarrow n^{O(\log n)}$ running time constant-factor approximation

Recursive decomposition with central subtree T^*

- Cost on $T = \text{Cost of locating } x' \text{ in } T^* + \text{Cost of executing the strategy in } T_{x'}$

Result

- We can choose T^*, such that:
 - Running time of every recursion level is $\text{poly}(n)$, constant factor approximation
 - Recursion depth is bounded by $O(\sqrt{\log n})$
- Approximation factors add up along recursions
- Results in a polynomial-time $O(\sqrt{\log n})$-approximation algorithm
Conclusion

Main Results

- A QPTAS (quasi-polynomial-time approximation scheme) for strategies of generalized binary search in weighted trees
 - implies the problem is not APX-hard unless $NP \subseteq DTIME(n^{O(\log n)})$
- An $O(\sqrt{\log n})$-approximation polynomial-time algorithm for strategies of generalized binary search in weighted trees
 - improves previous approximation ratio

Open Questions

- Find constant-factor approximation?
- Results for other classes of graphs?
- Oracle with error-reply rate?
Conclusion

Main Results

- A QPTAS (quasi-polynomial-time approximation scheme) for strategies of generalized binary search in weighted trees
 - implies the problem is not APX-hard unless $NP \subseteq DTIME(n^{O(\log n)})$
- An $O(\sqrt{\log n})$-approximation polynomial-time algorithm for strategies of generalized binary search in weighted trees
 - improves previous approximation ratio

Open Questions

- Find constant-factor approximation?
- Results for other classes of graphs?
- Oracle with error-reply rate?

Thanks!
Thanks