Approximation Strategies for Generalized Binary Search in
Weighted Trees

Dariusz Dereniowski', Adrian Kosowski?, Przemystaw Uznanski®,
Mengchuan Zou?

[1]Gdansk University of Technology, Poland
[2]Inria Paris and IRIF, France

[B]ETH Zirich, Switzerland

ANR DESCARTES, Poitier
Oct. 4th, 2017

ANR DESCARTES 2017

Content

Introduction

Preliminaries

Building a QPTAS

O(+/log n)-approximation algorithm

Conclusion and Perspective

ANR DESCARTES 2017

Introduction

General Co

= A set of data organized in some structure
|
]

ANR DESCARTES 2017

Introduction

General Co

= A set of data organized in some structure
= An oracle replies to queries on the data
]

ANR DESCARTES 2017

Introduction

General Configuration of Se ing Problem

= A set of data organized in some structure
= An oracle replies to queries on the data
m The oracle returns a subset of the data set which contains the target element

ANR DESCARTES 2017

Introduction

Generalized Binary Search in Trees

Binary Search

= For an ordered array (or totally ordered set)

|2|2|3|5|7|8|11|12|12|15|16|18|

1K

target x: 11

ANR DESCARTES 2017

Introduction

Generalized Binary Search in Trees

Binary Search

= For an ordered array (or totally ordered set)

|2|2|3|5|7|8|11|12|12|15|16|18|

T 9

target x: 11

ANR DESCARTES 2017

Introduction

Generalized Binary Search in Trees

Binary Search

= For an ordered array (or totally ordered set)

GGG
K

target x: 11

ANR DESCARTES 2017

Introduction

Generalized Binary Search in Trees

Binary Search

= For an ordered array (or totally ordered set)

pEEEEa

target x: 11

ANR DESCARTES 2017

Introduction

Generalized Binary Search in Trees

Binary Search

= For an ordered array (or totally ordered set)

T v

target x: 11

ANR DESCARTES 2017

Introduction

Generalized Binary Search in Trees

Binary Search

= For an ordered array (or totally ordered set)

Our problem : Searching in Trees

= Data organized into a tree
= Target node x is known to the oracle, but not to the search algorithm
m The oracle returns the subtree in which the target lies

ANR DESCARTES 2017

Introduction

Query Model for Trees

— Query : anode v

?
../

ANR DESCARTES 2017

Introduction

Query Model for Trees

— Query : anode v

?
./ H
®
— Reply :
m true, if v is the target
targetis v
@ v

ANR DESCARTES 2017

Introduction

Query Model for Trees

— Query : anode v
?
®

— Reply :
m true, if v is the target
targetis v
@ v

m otherwise, return a neighbor u of v which is closer to the target x

reply: u
Xe ?

/

ANR DESCARTES 2017

Introduction

Example 1

Query e

Target : f

ANR DESCARTES 2017

Introduction

Example 1

Query e

Target : f

ANR DESCARTES 2017

Introduction

Example 1

Query ¢

Target : f

ANR DESCARTES 2017

Introduction

Example 1

Query ¢

Target : f

ANR DESCARTES 2017

Introduction

Example 1

Query g
gyel
/ \
/ \
/ A\
/ \\
bO cQ
d :fl e:' f\
?
\
g h
Target : f

ANR DESCARTES 2017

Introduction

Example 1

Query g
gyel
/ \
/ \
/ A\
7/ \\
bO cQ
d :fl e:' f\
?2 WA
\
g h
Target : f

ANR DESCARTES 2017

Introduction

Example 1

Query f
a -,
x
/ \
/ \
/ AN
/ \\
bO cQ
/, ' \\
// l \\
R
d f e ot
4
7/
7/
7/
g {f, h
Target : f

ANR DESCARTES 2017

Introduction

Example 1

Found
a »
X
/ \
/ \
/7 \
/ \
\
b0 eQ
e N
s VN
4] N
7 N N
S ' N \/
’ ' N
d -§ ery f,
VAN
/ \
V \
7/ \
7/ \
g0 h\O
Target : f

ANR DESCARTES 2017

Introduction

Example 1 : cost of locating the target

Unweighted variant

@)

Total of 4 queries to locate target: e, c, g, f

ANR DESCARTES 2017

Introduction

Example 1 : cost of locating the target

Unweighted variant Weighted variant

weight function w: V—> R+

)
Total of 4 queries to locate target: e, c, g, f (3)

Cost of locating target = w(e)+w(c)+w(g)+w(f)
=5+3+1+4=13

ANR DESCARTES 2017

Introduction

General Graph Variation

General Graph :
Query u

ANR DESCARTES 2017

Introduction

General Graph Variation

General Graph :
Query u
Reply a v € N(u), s.t. v is on the shortest path to the target

ANR DESCARTES 2017

Introduction

Search Strategy Problem in Trees

Setting
m Tree T = (V, E, w) with root r(T)
m Cost of query tovertex v: w: V — Ry, maxy w(v) =1
m Cost of search strategy A on tree T : worst-case cost of finding a target
= Optimal strategy : search strategy with minimal cost on T, costs OPT(T)

ANR DESCARTES 2017

Introduction

Search Strategy Problem in Trees

Setting
m Tree T = (V, E, w) with root r(T)
m Cost of query tovertex v: w: V — Ry, maxy w(v) =1
m Cost of search strategy A on tree T : worst-case cost of finding a target
= Optimal strategy : search strategy with minimal cost on T, costs OPT(T)

Our Problem :
m Input:tree T = (V,E, w)
m Compute : Optimal strategy for generalized binary search query model

ANR DESCARTES 2017

Introduction

Search Strategy Problem in Trees

Setting
m Tree T = (V, E, w) with root r(T)
m Cost of query tovertex v: w: V — Ry, maxy w(v) =1
m Cost of search strategy A on tree T : worst-case cost of finding a target
= Optimal strategy : search strategy with minimal cost on T, costs OPT(T)

Our Problem :
m Input:tree T = (V,E, w)
m Compute : Optimal strategy for generalized binary search query model

Application Aspects
m Locating buggy nodes in network models
m Finding specific data in organized databases

ANR DESCARTES 2017

Introduction

State-of-the-Art

= Time complexity to compute optimal search strategy in different graphs

Graph class unweighted weighted
Path O(n) time O(n?) time [1]
Tree O(n) time [2] NP-hard [3]

Undirected Graph ~ m®(°9" under ETH [4] PSPACE-complete [4]
Directed Graph PSPACE-complete [4] PSPACE-complete [4]

[1] Cicalese, Jacobs, Laber, Valentin, 2012

[2] Onak, Parys, 2006

[3] Dereniowski, Nadolski, 2006

[4] Emamjomeh-Zadeh, Kempe, Singhal, 2016

m Our scenario : Weighted trees

m NP-hard, O(log n)-approximation algorithm. [Dereniowski, 2006]

B O :gg 557)-approximation. [Cicalese, Jacobs, Laber, Valentin, 2012]

u O(bgﬂ%)—approximaﬁon. [Cicalese, Keszegh, Lidicky, Palvélgyi, Valla, 2015]

ANR DESCARTES 2017

Introduction

Our Results

Results for the Search Strategy Problem in Weighted Trees :

ANR DESCARTES 2017

Introduction

Our Results

Results for the Search Strategy Problem in Weighted Trees :

Theorem 1. The problem admits a QPTAS.

®m QPTAS : Quasi-Polynomial-Time Approximation Scheme, (1 +)-approximation algorithm
running in nP°¥9(") time, for any given e > 0.

= which implies that the problem is not APX-hard unless NP C DTIME(n®(°9™)

ANR DESCARTES 2017

Introduction

Our Results

Results for the Search Strategy Problem in Weighted Trees :

Theorem 1. The problem admits a QPTAS.

®m QPTAS : Quasi-Polynomial-Time Approximation Scheme, (1 +)-approximation algorithm
running in nP°¥9(") time, for any given e > 0.

= which implies that the problem is not APX-hard unless NP C DTIME(n®(°9™)

Theorem 2. The problem admits a poly-time O(+/log n)-approximation algorithm.
= improves previous approximation ratio

[ICALP 2017, Dereniowski, Kosowski, Uznanski, Zou]

ANR DESCARTES 2017

Preliminaries

Preliminaries : Characterization of a Valid Search Strategy

Characterization of a Search Strategy

= A query < an interval of time
m length of interval : I(v) = w(v)
®m beginning time of v : when node v is queried during the search(if it is queried)
= this time interval do not depend on the replies to other queries

ANR DESCARTES 2017

Preliminaries

Preliminaries : Characterization of a Valid Search Strategy

Characterization of a Search Strategy

= A query < an interval of time

m length of interval : I(v) = w(v)
®m beginning time of v : when node v is queried during the search(if it is queried)
= this time interval do not depend on the replies to other queries

= A query sequence < intervals of time I(v) forall v € V

ANR DESCARTES 2017

Preliminaries

Preliminaries : Characterization of a Valid Search Strategy

Valid Search Strategy

m [f the intervals of nodes u, v overlap, some node on the u—v path in the tree must
be queried before both v and v.

Itg)= m=__ []

Extension of idea of : [Dereniowski, 2006]

ANR DESCARTES 2017

Preliminaries

Preliminaries : Characterization of a Valid Search Strategy

Valid Search Strategy

m [f the intervals of nodes u, v overlap, some node on the u—v path in the tree must
be queried before both v and v.

Itg)= m=__ []

Lemma. There is a equivalence between optimizing search strategy and the following
problem :

Assign intervals I(v) = [a, b] to v € V, where |[a, b]| = w(v), s.t. Vu,v € V,

I(u) N I(v) # O = 3z on the path from u to v and max(I(t)) < min(/(u), I(v))

ANR DESCARTES 2017

Preliminaries

Schedule assignments

Schedule assignments :
m Schedule S(v) : set of time intervals of "uncovered" nodes in the subtree of v
m The interval I(u) is "covered" by an ancestor x if x is assigned an earlier interval
i.e. (max/(x) < min/(u)).
m Schedule assignment : schedule S(v) forall v € V

)= [l |

s@4 [i[[d]d
s |
f

s@=_ el Jst=[___ [l |

= No two interval in the schedule of a node could overlap

ANR DESCARTES 2017

Preliminaries

Schedule assignments

Schedule assignments :
m Schedule S(v) : set of time intervals of "uncovered" nodes in the subtree of v

m The interval /(u) is "covered" by an ancestor x if x a strictly earlier interval, e.g.
(max /(x) <= min/(u)).
m Schedule assignment : schedule S(v) forall v € V

s@=[o] Jst=[[|

ANR DESCARTES 2017

Building a QPTAS

Rounding and Alignment

Units of time : box and slot

A box : time between integer multiples of

Iog n
A slot : time between integer multiples of £

box slot

L

Rounding and Alignment : Time intervals of vertices are rounded and aligned to

boxes or slots depending on their weight ("heavy" : w(v) > Iogn’ "light" :w(v) < Iogn)
light vertex aligned to slots heavy vertex aligned to boxes
unaligned [light | unaligned \ heavy i
aligned light aligned

Lemma. Given tree T, there is an aligned schedule assignment S’ with
costs/ (T) < (1 + 11€)OPT(T)

ANR DESCARTES 2017

Building a QPTAS

Dynamic Programming

= Assume node v has children
ug, ..U

m Store all valid aligned schedules
S(v) for every node

= Compute in bottom-up manner :

ANR DESCARTES 2017

Building a QPTAS

Dynamic Programming

= Assume node v has children
ug, ..U

m Store all valid aligned schedules
S(v) for every node

= Compute in bottom-up manner :

Construct all valid aligned
schedules for children uy, ...u;

ANR DESCARTES 2017

Building a QPTAS

Dynamic Programming

= Assume node v has children
ug, ..U

m Store all valid aligned schedules
S(v) for every node

= Compute in bottom-up manner :

Construct all valid aligned
schedules for children uy, ...u;
Enumerate all possible start times

of v

ANR DESCARTES 2017

Building a QPTAS

Dynamic Programming

m Assume node v has children
U1 K "'ul

= Store all valid aligned schedules
S(v) for every node

m Compute in bottom-up manner :

Construct all valid aligned
schedules for children uy, ...u;
Enumerate all possible start times

of v
Obtain all possible schedules for v

ANR DESCARTES 2017

Building a QPTAS

Running Time

Fact. We have 1 < OPT(T) < [logon].
= In Dynamic Programming, only consider aligned schedules of duration <= O(log n).

O(log n) length

E{D,.} slot length= ?

[~]

ANR DESCARTES 2017

Building a QPTAS

Running Time

Fact. We have 1 < OPT(T) < [logan].
= In Dynamic Programming, only consider aligned schedules of duration <= O(log n).

O(log n) length

G{D,.} slot length= % »

O(glog n) slots

~)
[o]

ﬂ . g
0Glen Kossibilities

Exponential!

ANR DESCARTES 2017

Building a QPTAS

Speed up Running Time

Relaxation : disregarding order of queries strictly inside a box

O(log n) length

log2n
|||||||| '*||| O(E)boxes
box length= Iog -

For each box, store only number of full slots in this box.

possibilities for

n
? | e{. A logn \, onebox
[= n

} (Iog2n)
<n & ' possibilities

ANR DESCARTES 2017

Building a QPTAS

Speed up Running Time

Relaxation computed by dynamic programming :

I 2
= can be computed exactly in n°C5") time

log n
% running time can be reduced to noz) by adaptively choosing box sizes

= not worse cost than optimal schedule

= not a valid schedule assignment
* but : can be fixed at small extra cost [non-trivial, based on solution of optimal
strategy in unweighted trees]

ANR DESCARTES 2017

Building a QPTAS

&+ — solution by DP routine disregarding orders of light queries strictly inside a box.
R — an subsequence of nodes based on optimal solution for unweighted trees
St —avalid (1 +) approximation

A
DP ® S
polylog(n) infeasible
n time cost < (1+€)OPT

ANR DESCARTES 2017

Building a QPTAS

&+ — solution by DP routine disregarding orders of light queries strictly inside a box.
R — an subsequence of nodes based on optimal solution for unweighted trees
St —avalid (1 +) approximation

cost < O(g)
poly-time

solve problem of » R

unweighted tree

D P » infe?si:e

n pmylcg(n)ﬁme cost < (1+4€)OPT

ANR DESCARTES 2017

Building a QPTAS

&+ — solution by DP routine disregarding orders of light queries strictly inside a box.
R — an subsequence of nodes based on optimal solution for unweighted trees
St —avalid (1 +) approximation

cost < O(e)

poly-time .
solve problem of » R feasible
unweighted tree S+

» cost < (1+0(€))OPT

polylog(n)
n time

pP B S QPTAS

n poWlag(n)time cost < (1+4€)OPT

ANR DESCARTES 2017

O(+/log n)-approximation algorithm

From QPTAS to O(/log n)-approximation algorithm

Corollary of QPTAS

m sete = 1 = n°(°9") rynning time constant-factor approximation

Recursive decomposition with central subtree T*

Cost on T = Cost of locating x’ in T* + Cost of executing the strategy in T,/

ANR DESCARTES 2017

O(+/log n)-approximation algorithm

From QPTAS to O(+/log n)-approximation algorithm

Corollary of QPTAS

= sete = 1 = n©0°9" rynning time constant-factor approximation

Recursive decomposition with central subtree T*

Cost on T = Cost of locating x’ in T* + Cost of executing the strategy in T,,

= We can choose T*, such that :
m Running time of every recursion level is poly(n), constant factor approximation
m Recursion depth is bounded by O(+/log n)

m Approximation factors add up along recursions
= Results in a polynomial-time O(+/log n)-approximation algorithm

ANR DESCARTES 2017

Conclusion and Perspective

Conclusion

Main Results

= A QPTAS (quasi-polynomial-time approximation scheme) for strategies of
generalized binary search in weighted trees

m implies the problem is not APX-hard unless NP C DTIME(n©("°3 ")

= An O(4/log n)-approximation polynomial-time algorithm for strategies of
generalized binary search in weighted trees
B improves previous approximation ratio

Open Questions

Find constant-factor approximation ?
Results for other classes of graphs ?
Oracle with error-reply rate ?

ANR DESCARTES 2017

Conclusion and Perspective

Conclusion

Main Results

= A QPTAS (quasi-polynomial-time approximation scheme) for strategies of
generalized binary search in weighted trees

m implies the problem is not APX-hard unless NP C DTIME(n©("°3 ")

= An O(4/log n)-approximation polynomial-time algorithm for strategies of
generalized binary search in weighted trees
B improves previous approximation ratio

Open Questions

Find constant-factor approximation ?
Results for other classes of graphs ?
Oracle with error-reply rate ?

Thanks!

ANR DESCARTES 2017

Conclusion and Perspective

Thanks

Thanks!

ANR DESCARTES

	Introduction
	Preliminaries
	Building a QPTAS
	O(logn)-approximation algorithm
	Conclusion and Perspective

