Introduction	Preliminaries	Building a QPTAS	$O(\sqrt{\log n})$ -approximation algorithm	Conclusion and Perspectiv	
A	pproximation		or Generalized Binary S Ited Trees	Search in	

Dariusz Dereniowski¹, Adrian Kosowski², Przemysław Uznański³, Mengchuan Zou²

[1]Gdańsk University of Technology, Poland

[2]Inria Paris and IRIF, France

[3]ETH Zürich, Switzerland

ANR DESCARTES, Poitier Oct. 4th, 2017

Introduction	Preliminaries	Building a QPTAS	$O(\sqrt{\log n})$ -approximation algorithm	Conclusion and Perspective
Content				

1 Introduction

- 2 Preliminaries
- 3 Building a QPTAS
- 4 $O(\sqrt{\log n})$ -approximation algorithm
- 5 Conclusion and Perspective

I	ntroduction	Preliminaries	Building a QPTAS	$O(\sqrt{\log n})$ -approximation algorithm	Conclusion and Perspective
	Introductio	n			

General Configuration of Searching Problem

A set of data organized in some structure

Introduction	Preliminaries	Building a QPTAS	$O(\sqrt{\log n})$ -approximation algorithm	Conclusion and Perspective
Introduc	tion			

General Configuration of Searching Problem

- A set of data organized in some structure
- An oracle replies to queries on the data

Introduction	Preliminaries	Building a QPTAS	$O(\sqrt{\log n})$ -approximation algorithm	Conclusion and Perspective
Introduc	tion			

General Configuration of Searching Problem

- A set of data organized in some structure
- An oracle replies to queries on the data
- The oracle returns a subset of the data set which contains the target element

Binary Search

For an ordered array (or totally ordered set)

Binary Search

For an ordered array (or totally ordered set)

Binary Search

For an ordered array (or totally ordered set)

Binary Search

For an ordered array (or totally ordered set)

Binary Search

For an ordered array (or totally ordered set)

target x: 11

Binary Search

For an ordered array (or totally ordered set)

Our problem : Searching in Trees

- Data organized into a tree
- Target node x is known to the oracle, but not to the search algorithm
- The oracle returns the subtree in which the target lies

- Query : a node v

- Query : a node v

- Reply :
 - **true**, if *v* is the target

target is v

true, if *v* is the target

target is v

otherwise, return a neighbor u of v which is closer to the target x

Introduction	Preliminaries	Building a QPTAS	$O(\sqrt{\log n})$ -approximation algorithm	Conclusion and Perspective
Example	1			

Query e

Target : f

Introduction	Preliminaries	Building a QPTAS	$O(\sqrt{\log n})$ -approximation algorithm	Conclusion and Perspective
Example	1			

Query e

Target : f

Introduction	Preliminaries	Building a QPTAS	$O(\sqrt{\log n})$ -approximation algorithm	Conclusion and Perspective
Example	1			

Query c

Target : f

Introduction	Preliminaries	Building a QPTAS	$O(\sqrt{\log n})$ -approximation algorithm	Conclusion and Perspective
Example	1			

Query c

Target : f

Introduction	Preliminaries	Building a QPTAS	$O(\sqrt{\log n})$ -approximation algorithm	Conclusion and Perspective
Example	1			

Query g

Target : f

Introduction	Preliminaries	Building a QPTAS	$O(\sqrt{\log n})$ -approximation algorithm	Conclusion and Perspective
Example	1			

Query g

Target : f

Introduction	Preliminaries	Building a QPTAS	$O(\sqrt{\log n})$ -approximation algorithm	Conclusion and Perspective
Example	1			

Query f

Target : f

Introduction	Preliminaries	Building a QPTAS	$O(\sqrt{\log n})$ -approximation algorithm	Conclusion and Perspective
Example	1			

Found

Target : f

Example 1 : cost of locating the target

Unweighted variant

Total of 4 queries to locate target: e, c, g, f

Example 1 : cost of locating the target

Unweighted variant

Total of 4 queries to locate target: e, c, g, f

Weighted variant

Cost of locating target = w(e)+w(c)+w(g)+w(f)= 5+3+1+4=13

General Graph Variation

General Graph :

Query u

General Graph Variation

General Graph :

Query uReply a $v \in N(u)$, s.t. v is on the shortest path to the target

Search Strategy Problem in Trees

Setting

- Tree T = (V, E, w) with root r(T)
- **Cost of query** to vertex $v : w : V \to \mathbb{R}_+$, $\max_v w(v) = 1$
- **Cost of search strategy** A on tree T : worst-case cost of finding a target
- **Optimal strategy** : search strategy with minimal cost on *T*, costs *OPT*(*T*)

Search Strategy Problem in Trees

Setting

- Tree T = (V, E, w) with root r(T)
- Cost of query to vertex $v : w : V \to \mathbb{R}_+$, max_v w(v) = 1
- Cost of search strategy A on tree T : worst-case cost of finding a target
- **Optimal strategy** : search strategy with minimal cost on *T*, costs *OPT*(*T*)

Our Problem :

- Input : tree T = (V, E, w)
- Compute : Optimal strategy for generalized binary search query model

Search Strategy Problem in Trees

Setting

- Tree T = (V, E, w) with root r(T)
- **Cost of query** to vertex $v : w : V \to \mathbb{R}_+$, max_v w(v) = 1
- Cost of search strategy A on tree T : worst-case cost of finding a target
- **Optimal strategy** : search strategy with minimal cost on *T*, costs *OPT*(*T*)

Our Problem :

- Input : tree T = (V, E, w)
- Compute : Optimal strategy for generalized binary search query model

Application Aspects

- Locating buggy nodes in network models
- Finding specific data in organized databases

Introduction P	Building a QPTAS	$O(\sqrt{\log n})$ -approximation algorithm	Conclusion and Perspective

State-of-the-Art

Time complexity to compute optimal search strategy in different graphs

Graph class	unweighted	weighted
Path	O(n) time	O(n ²) time [1]
Tree	O(n) time [2]	NP-hard [3]
Undirected Graph	$m^{\Theta(\log n)}$ under ETH [4]	PSPACE-complete [4]
Directed Graph	PSPACE-complete [4]	PSPACE-complete [4]

[1] Cicalese, Jacobs, Laber, Valentin, 2012

[2] Onak, Parys, 2006

[3] Dereniowski, Nadolski, 2006

[4] Emamjomeh-Zadeh, Kempe, Singhal, 2016

Our scenario : Weighted trees

- NP-hard, O(log n)-approximation algorithm. [Dereniowski, 2006]
- O(log log n log log n)-approximation. [Cicalese, Jacobs, Laber, Valentin, 2012]
- O(log n / log log n)-approximation. [Cicalese, Keszegh, Lidický, Pálvölgyi, Valla, 2015]

Introduction	Preliminaries	Building a QPTAS	$O(\sqrt{\log n})$ -approximation algorithm	Conclusion and Perspective
Our Res	ults			

Results for the Search Strategy Problem in Weighted Trees :

Introduction	Preliminaries	Building a QPTAS	$O(\sqrt{\log n})$ -approximation algorithm	Conclusion and Perspective
Our Res	ults			

Results for the Search Strategy Problem in Weighted Trees :

Theorem 1. The problem admits a QPTAS.

- **QPTAS** : Quasi-Polynomial-Time Approximation Scheme, $(1 + \varepsilon)$ -approximation algorithm running in $n^{\text{polylog}(n)}$ time, for any given $\epsilon > 0$.
- which implies that the problem is not APX-hard unless $NP \subseteq DTIME(n^{O(\log n)})$

Introduction	Preliminaries	Building a QPTAS	$O(\sqrt{\log n})$ -approximation algorithm	Conclusion and Perspective
Our Res	ults			

Results for the Search Strategy Problem in Weighted Trees :

Theorem 1. The problem admits a QPTAS.

- **QPTAS** : Quasi-Polynomial-Time Approximation Scheme, $(1 + \varepsilon)$ -approximation algorithm running in $n^{polylog(n)}$ time, for any given $\epsilon > 0$.
- which implies that the problem is not APX-hard unless $NP \subseteq DTIME(n^{O(\log n)})$

Theorem 2. The problem admits a poly-time $O(\sqrt{\log n})$ -approximation algorithm. improves previous approximation ratio

[ICALP 2017, Dereniowski, Kosowski, Uznański, Zou]

Preliminaries : Characterization of a Valid Search Strategy

Characterization of a Search Strategy

- A query ⇔ an interval of time
 - length of interval : l(v) = w(v)
 - beginning time of v : when node v is queried during the search(if it is queried)
 - this time interval do not depend on the replies to other queries

Preliminaries : Characterization of a Valid Search Strategy

Characterization of a Search Strategy

- A query ⇔ an interval of time
 - length of interval : l(v) = w(v)
 - beginning time of v : when node v is queried during the search(if it is queried)
 - this time interval do not depend on the replies to other queries
- A query sequence \Leftrightarrow intervals of time I(v) for all $v \in V$

Preliminaries : Characterization of a Valid Search Strategy

Valid Search Strategy

■ If the intervals of nodes *u*, *v* overlap, some node on the u–v path in the tree must be queried before both *u* and *v*.

Extension of idea of : [Dereniowski, 2006]

Preliminaries : Characterization of a Valid Search Strategy

Valid Search Strategy

If the intervals of nodes u, v overlap, some node on the u-v path in the tree must be queried before both u and v.

Lemma. There is a equivalence between optimizing search strategy and the following problem :

Assign intervals l(v) = [a, b] to $v \in V$, where |[a, b]| = w(v), s.t. $\forall u, v \in V$, $l(u) \cap l(v) \neq \emptyset \Rightarrow \exists z$ on the path from u to v and $max(l(t)) \leq min(l(u), l(v))$

Introduction	Preliminaries	Building a QPTAS	$O(\sqrt{\log n})$ -approximation algorithm	Conclusion and Perspective
Schedul	e assignme	nts		

Schedule assignments :

- Schedule S(v) : set of time intervals of "uncovered" nodes in the subtree of v
- The interval I(u) is "covered" by an ancestor x if x is assigned an earlier interval i.e. $(\max I(x) \le \min I(u))$.
- Schedule assignment : schedule S(v) for all $v \in V$

Constraints

No two interval in the schedule of a node could overlap

Schedule assignments :

- Schedule S(v) : set of time intervals of "uncovered" nodes in the subtree of v
- The interval *l(u)* is "covered" by an ancestor *x* if *x* a strictly earlier interval, e.g. (max *l(x)* <= min *l(u)*).
- Schedule assignment : schedule S(v) for all $v \in V$

Introduction	Preliminaries	Building a QPTAS	$O(\sqrt{\log n})$ -approximation algorithm	Conclusion and Perspective
Roundin	g and Align	ment		
A		d slot veen integer multipl veen integer multipl	- 5	
		bo	x slot	

Rounding and Alignment: Time intervals of vertices are rounded and aligned to boxes or slots depending on their weight ("heavy": $w(v) > \frac{1}{\log n}$, "light": $w(v) \le \frac{1}{\log n}$)

Lemma. Given tree T, there is an aligned schedule assignment S' with $cost_{S'}(T) \leq (1 + 11\varepsilon)OPT(T)$

- Assume node v has children u₁,...u_l
- Store all valid aligned schedules S(v) for every node
- Compute in bottom-up manner :

- Assume node v has children u₁,...u_l
- Store all valid aligned schedules S(v) for every node
- Compute in bottom-up manner :
 - Construct all valid aligned schedules for children u₁,...u_l

- Assume node v has children u₁,...u_l
- Store all valid aligned schedules S(v) for every node
- Compute in bottom-up manner :
 - Construct all valid aligned schedules for children u₁,...u_l
 - 2 Enumerate all possible start times of *v*

- Assume node v has children u₁,...u_l
- Store all valid aligned schedules S(v) for every node
- Compute in bottom-up manner :
 - Construct all valid aligned schedules for children u₁,...u_l
 - Enumerate all possible start times of v
 - 3 Obtain all possible schedules for v

Introduction	Preliminaries	Building a QPTAS	$O(\sqrt{\log n})$ -approximation algorithm	Conclusion and Perspective
Running	Time			

Fact. We have $1 \leq OPT(T) \leq \lceil log_2n \rceil$.

 \Rightarrow In Dynamic Programming, only consider aligned schedules of duration <= $O(\log n)$.

Introduction	Preliminaries	Building a QPTAS	$O(\sqrt{\log n})$ -approximation algorithm	Conclusion and Perspective
Running	Time			

Fact. We have $1 \leq OPT(T) \leq \lceil log_2n \rceil$.

 \Rightarrow In Dynamic Programming, only consider aligned schedules of duration <= $O(\log n)$.

For each box, store only number of full slots in this box.

Speed up Running Time

Relaxation computed by dynamic programming :

- can be computed exactly in n^{O(log² n)} time
 * running time can be reduced to n^{O(log n}/e²) by adaptively choosing box sizes
- not worse cost than optimal schedule
- not a valid schedule assignment
 * but : can be fixed at small extra cost [non-trivial, based on solution of optimal strategy in unweighted trees]

QPTAS	Introduction	Preliminaries	Building a QPTAS	$O(\sqrt{\log n})$ -approximation algorithm	Conclusion and Perspective
QPTAS					
	QPTAS				

 \hat{S}^* – solution by DP routine disregarding orders of light queries strictly inside a box. R – an subsequence of nodes based on optimal solution for unweighted trees S^+ – a valid (1 + ε) approximation

QPTAS	Introduction	Preliminaries	Building a QPTAS	$O(\sqrt{\log n})$ -approximation algorithm	Conclusion and Perspective
QPTAS					
	QPTAS				

 \hat{S}^* – solution by DP routine disregarding orders of light queries strictly inside a box. R – an subsequence of nodes based on optimal solution for unweighted trees S^+ – a valid (1 + ε) approximation

QPTAS	Introduction	Preliminaries	Building a QPTAS	$O(\sqrt{\log n})$ -approximation algorithm	Conclusion and Perspective
QPTAS					
	QPTAS				

 \hat{S}^* – solution by DP routine disregarding orders of light queries strictly inside a box. R – an subsequence of nodes based on optimal solution for unweighted trees S^+ – a valid (1 + ε) approximation

From QPTAS to $O(\sqrt{\log n})$ -approximation algorithm

Corollary of QPTAS

set $\varepsilon = 1 \Rightarrow n^{O(\log n)}$ running time constant-factor approximation

Recursive decomposition with central subtree T^*

Cost on T = Cost of locating x' in T* + Cost of executing the strategy in $T_{x'}$

From QPTAS to $O(\sqrt{\log n})$ -approximation algorithm

Corollary of QPTAS

set $\varepsilon = 1 \Rightarrow n^{O(\log n)}$ running time constant-factor approximation

Recursive decomposition with central subtree T^*

Cost on T = Cost of locating x' in T* + Cost of executing the strategy in $T_{x'}$

Result

- We can choose *T**, such that :
 - Running time of every recursion level is poly(n), constant factor approximation
 - Recursion depth is bounded by $O(\sqrt{\log n})$
- Approximation factors add up along recursions
- Results in a polynomial-time O(\sqrt{log n})-approximation algorithm

Introduction	Preliminaries	Building a QPTAS	$O(\sqrt{\log n})$ -approximation algorithm	Conclusion and Perspective

Conclusion

Main Results

- A QPTAS (quasi-polynomial-time approximation scheme) for strategies of generalized binary search in weighted trees
 - implies the problem is not APX-hard unless $NP \subseteq DTIME(n^{O(\log n)})$
- An O(\sqrt{log n})-approximation polynomial-time algorithm for strategies of generalized binary search in weighted trees
 - improves previous approximation ratio

Open Questions

- Find constant-factor approximation?
- Results for other classes of graphs?
- Oracle with error-reply rate?

Introduction	Preliminaries	Building a QPTAS	$O(\sqrt{\log n})$ -approximation algorithm	Conclusion and Perspective

Conclusion

Main Results

- A QPTAS (quasi-polynomial-time approximation scheme) for strategies of generalized binary search in weighted trees
 - implies the problem is not APX-hard unless $NP \subseteq DTIME(n^{O(\log n)})$
- An O(\sqrt{log n})-approximation polynomial-time algorithm for strategies of generalized binary search in weighted trees
 - improves previous approximation ratio

Open Questions

- Find constant-factor approximation?
- Results for other classes of graphs?
- Oracle with error-reply rate?

Thanks!

Introduction	Preliminaries	Building a QPTAS	$O(\sqrt{\log n})$ -approximation algorithm	Conclusion and Perspective
Thanks				

Thanks!

57°