Perfectly Secure Message Transmission in Two Rounds

Gabriele Spini, Gilles Zémor

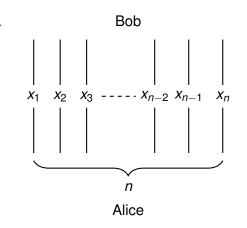
Bordeaux Mathematics Institute

October 2017, Descartes meeting

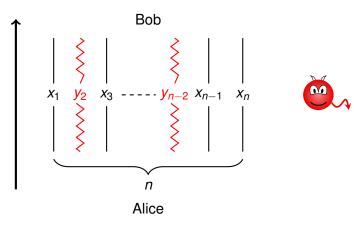
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The problem: Alice wants to send private message to Bob through *n* parallel channels

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@



The problem: Alice wants to send private message to Bob through *n* parallel channels



in presence of active adversary who controls *t* channels.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

PSMT

Introduced by Dolev, Dwork, Waarts, Yung 1993.

Communication from Alice to Bob. Easy coding theory solution:

Alice sends $\mathbf{x} = [x_1 \dots x_n]$ random word of *t*-error correcting code *C* such that the linear combination $\mathbf{s} = \langle \mathbf{h}, \mathbf{x} \rangle = h_1 x_1 + h_2 x_2 + \dots + h_n x_n$ is the secret message.

 $x_i, h_i, s \in \mathbb{F}_q.$

Wiretap II channel technique. Works as long as dim C > t, imposes $n \ge 3t + 1$.

What if *n* < 3*t* + 1 ?

PSMT in two rounds: n=2t+1

Allow two-way communication. First Bob sends message to Alice, then Alice to Bob.

Reliable and Private transmission of a secret from Alice to Bob is possible as long as $n \ge 2t + 1$.

Do so constructively and efficiently.

Efficiency:

 $Rate = \frac{\text{total number of transmitted bits}}{\text{number of bits of secret message}}$

Complexity = number of transmitted bits to convey 1-bit secret

Results

Previous work:

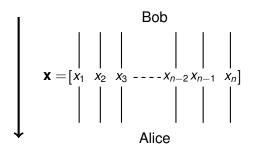
Sayeed and Abou-Amara 1996, Srinathan, Narayanan, and Rangan (Crypto 2004) Agarwal, Cramer, and de Haan (Crypto 2006) Kurosawa and Suzuki (Eurocrypt 2008).

(ロ) (同) (三) (三) (三) (○) (○)

Best previous protocol, Kurosawa and Suzuki: Rate = λn , Complexity = $\lambda n^3 \log n$.

This contribution: Complexity = $\lambda n^2 \log n$. (Also improved λ for the rate)

Results

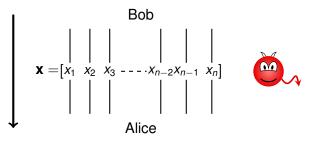


Novel defining feature of protocol: *simplicity*.

Bob only sends x codeword of fixed MDS code.

(ロ) (同) (三) (三) (三) (○) (○)

Simplified scenario



Adversary is passive during first Bob \rightarrow Alice phase. Alice \rightarrow Bob phase: Alice *broadcasts*

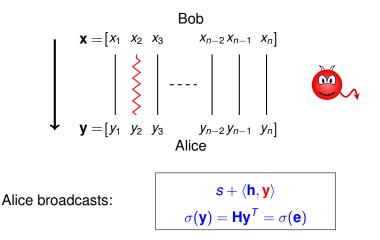
 $\boldsymbol{s} + \langle \boldsymbol{h}, \boldsymbol{x} \rangle = \boldsymbol{s} + h_1 x_1 + h_2 x_2 + \cdots + h_n x_n$

(broadcast x: send $[x, x, \ldots, x]$)

 $s \in \mathbb{F}_q$ is secret message. **x** is random codeword of *C* [n = 2t + 1, t + 1, t + 1] MDS code.

Simplified scenario II

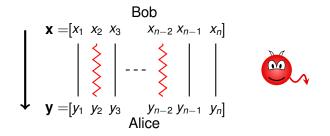
Adversary is active during Bob \rightarrow Alice phase, but *not too much*, introduces at most t/2 errors.



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Simplified Scenario III

Adversary is fully active during $Bob \rightarrow Alice$ phase, but a genie tells Bob what are the channels on which the adversary has introduced errors.

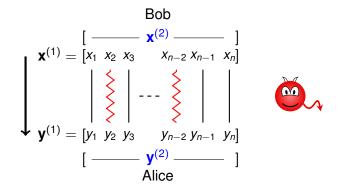


As before, Alice sends $s + \langle \mathbf{h}, \mathbf{y} \rangle$, $\sigma(\mathbf{y}) = \mathbf{H}\mathbf{y}^T$.

Genie has transformed Bob's error decoding from syndrome problem into an *erasure* decoding from the syndrome problem. Code C can correct t erasures.

Almost complete scenario

Adversary corrupts every symbol of $\mathbf{x}^{(1)}$ on every one of the *t* channels it controls.



Alice broadcasts $s + \langle \mathbf{h}, \mathbf{y}^{(2)} \rangle$, $\sigma(\mathbf{y}^{(2)})$, and $\mathbf{y}^{(1)}$.

 $\mathbf{y}^{(1)}$ reveals corrupted channels to Bob. *Alice* is the genie.

Complete scenario

Alice finds *proper* subset *I* of $\{1, 2, ..., t + 1\}$ such that *every channel* used to corrupt *any* $\mathbf{x}^{(j)}$, $j \notin I$, was also used to corrupt some $\mathbf{x}^{(i)}$, $i \in I$.

Alice broadcasts all $\mathbf{y}^{(i)}$, $i \in I$. This reveals to Bob *all* channels used to corrupt *all* codewords **x**. Alice does the genie's work.

Alice broadcasts (as before), for some $(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^{(j)}, \mathbf{y}^{(j)}), j \notin I$,

 $s + \langle \mathbf{h}, \mathbf{y} \rangle, \ \sigma(\mathbf{y})$

How does Alice find the set / ??

Finding the set *I*

E vector space of \mathbb{F}_q^n generated by all errors introduced by adversary. Syndrome function

$$\sigma : E \to \mathbb{F}_q^{t+1}$$

is *injective* on *E*. So, $(\mathbf{e}_i)_{i \in I}$ basis of *E* iff $\sigma(\mathbf{e}_i)_{i \in I}$ basis of $\sigma(E)$. Since for $\mathbf{y} = \mathbf{x} + \mathbf{e}$, $\sigma(\mathbf{y}) = \sigma(\mathbf{e})$,

Alice computes $\sigma(\mathbf{y}_1), \sigma(\mathbf{y}_2), \ldots, \sigma(\mathbf{y}_{t+1})$, finds a basis

$$(\sigma(\mathbf{y}^{(i)}))_{i\in I}$$

gives the required set of revealing vectors $(\mathbf{y}^{(i)})_{i \in I}$.

(Pseudo-basis of the set of received vectors **y**).

Efficient transmission of pseudo-basis

Broadcasting a symbol x as [x, x, ... x,] costs *n*, broadcasting a vector costs n^2 , broadcasting *t* vectors costs n^3 .

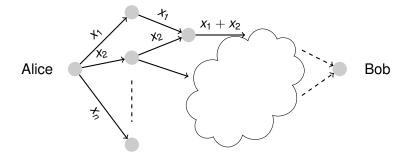
Generalized broadcast:

- [*x*, *x*, ... *x*,] is [*n*, 1, *n*] repetition code.
- After having sent first vector y, at least one corrupted channel is revealed. So Bob needs to correct at worst *t* − 1 errors and 1 erasure. Use [*n*, 2, *n* − 1] code.

- After having sent second vector **y** use [n, 3, n-2] code.
- And so on.

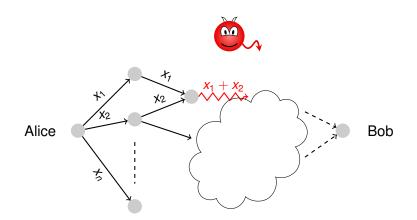
requires sending $n^2 \log n$ symbols overall.

Application to Network Coding



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Application to Network Coding



Adversary intercepts *t* arbitrary linear forms in coordinates x_1, \ldots, x_n of **x**.

Present PSMT protocol adapts.