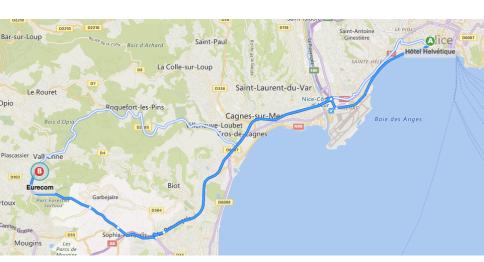
Beyond highway dimension: small distance labels using tree skeletons

Adrian Kosowski and Laurent Viennot

Inria - Univ. Paris Diderot (Irif lab.)

Context: shortest path queries



Context: shortest path queries

Recent progress, in particular for transportation networks.

Two ingredients:

- Tool: precompute small "hub sets".
- Graph property: small "hub sets" do exist, e.g. in road networks.

£? ⇒

Context: shortest path queries

Recent progress, in particular for transportation networks.

Two ingredients:

- Tool: precompute small "hub sets".
- Graph property: small "hub sets" do exist, e.g. in road networks.

Problem:

- A graph G is given.
- Make any usefull pre-computation.
- · Answer queries : shortest path from s to t?

```
Trivial solution : pre-compute for all s, t... but O(n^2) space!!! (1 Po for n = 20m)
```

Recent progress, e.g. in road networks (20m nodes):

- Dijkstra (1959): 4s
- Bidirectional Dijkstra: 1s
- Bidirectional A* (1968): 100ms
- * Reach-Pruning, Contraction Hierarchies (2005): 10 ms
- Hub labeling (2010-13): 10 μ s

= ? ⇒

Problem:

- A graph G is given.
- Make any usefull pre-computation.
- · Answer queries : shortest path from s to t?

```
Trivial solution : pre-compute for all s, t... but O(n^2) space!!! (1 Po for n = 20m)
```

Recent progress, e.g. in road networks (20m nodes):

- Dijkstra (1959): 4s
- Bidirectional Dijkstra: 1s
- · Bidirectional A* (1968): 100ms
- * Reach-Pruning, Contraction Hierarchies (2005): 10 ms
- Hub labeling (2010–13) : 10 μ s

Problem:

- A graph G is given.
- · Make any usefull pre-computation.
- · Answer queries: shortest path from s to t?

```
Trivial solution : pre-compute for all s, t... but O(n^2) space!!! (1 Po for n = 20m)
```

Recent progress, e.g. in road networks (20m nodes):

- Dijkstra (1959): 4s
- Bidirectional Dijkstra: 1s
- Bidirectional A* (1968): 100ms
- Reach-Pruning, Contraction Hierarchies (2005): 10 ms
- Hub labeling (2010-13) : 10 μs

Problem:

- A graph G is given.
- Make any usefull pre-computation.
- Answer queries : shortest path from s to t?

```
Trivial solution : pre-compute for all s, t... but O(n^2) space!!! (1 Po for n = 20m)
```

Recent progress, e.g. in road networks (20m nodes):

- Dijkstra (1959): 4s
- Bidirectional Dijkstra: 1s
- Bidirectional A* (1968): 100ms
- Reach-Pruning, Contraction Hierarchies (2005): 10 ms
- Hub labeling (2010-13): 10 μ s

Problem:

- A graph G is given.
- Make any usefull pre-computation.
- Answer queries: shortest path from s to t?

```
Trivial solution : pre-compute for all s, t... but O(n^2) space!!! (1 Po for n = 20m)
```

Recent progress, e.g. in road networks (20m nodes):

- Dijkstra (1959) : 4s
- Bidirectional Dijkstra: 1s
- Bidirectional A* (1968): 100ms
- Reach-Pruning, Contraction Hierarchies (2005): 10 ms
- Hub labeling (2010-13) : 10 μ s

Problem:

- A graph G is given.
- · Make any usefull pre-computation.
- Answer queries: shortest path from s to t?

```
Trivial solution : pre-compute for all s, t... but O(n^2) space!!! (1 Po for n = 20m)
```

Recent progress, e.g. in road networks (20m nodes):

- Dijkstra (1959) : 4s
- Bidirectional Dijkstra: 1s
- Bidirectional A* (1968): 100ms
- · Reach-Pruning, Contraction Hierarchies (2005): 10 ms
- Hub labeling (2010-13) : 10 μ s

Problem:

- A graph G is given.
- Make any usefull pre-computation.
- Answer queries: shortest path from s to t?

```
Trivial solution : pre-compute for all s, t... but O(n^2) space!!! (1 Po for n = 20m)
```

Recent progress, e.g. in road networks (20m nodes):

- Dijkstra (1959): 4s
- Bidirectional Dijkstra: 1s
- Bidirectional A* (1968): 100ms
- · Reach-Pruning, Contraction Hierarchies (2005): 10 ms
- Hub labeling (2010-13) : 10 μ s

Problem:

- A graph G is given.
- Make any usefull pre-computation.
- Answer queries: shortest path from s to t?

```
Trivial solution : pre-compute for all s, t... but O(n^2) space!!! (1 Po for n = 20m)
```

Recent progress, e.g. in road networks (20m nodes):

- Dijkstra (1959): 4s
- Bidirectional Dijkstra: 1s
- Bidirectional A* (1968): 100ms
- Reach-Pruning, Contraction Hierarchies (2005): 10 ms
- Hub labeling (2010-13): 10 μ s

Problem:

- A graph G is given.
- Make any usefull pre-computation.
- Answer queries: shortest path from s to t?

```
Trivial solution : pre-compute for all s, t... but O(n^2) space!!! (1 Po for n = 20m)
```

Recent progress, e.g. in road networks (20m nodes):

- Dijkstra (1959): 4s
- Bidirectional Dijkstra: 1s
- Bidirectional A* (1968): 100ms
- Reach-Pruning, Contraction Hierarchies (2005): 10 ms
- Hub labeling (2010-13): 10 μ s

Problem:

- A graph G is given.
- Make any usefull pre-computation.
- Answer queries: shortest path from s to t?

```
Trivial solution : pre-compute for all s, t... but O(n^2) space!!! (1 Po for n = 20m)
```

Recent progress, e.g. in road networks (20m nodes):

- Dijkstra (1959): 4s
- Bidirectional Dijkstra: 1s
- Bidirectional A* (1968): 100ms
- Reach-Pruning, Contraction Hierarchies (2005): 10 ms

• Hub labeling (2010-13) : 10 μ s

Problem:

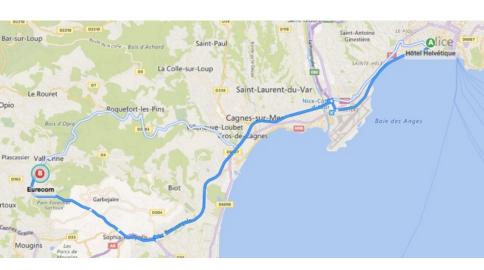
- A graph G is given.
- Make any usefull pre-computation.
- Answer queries: shortest path from s to t?

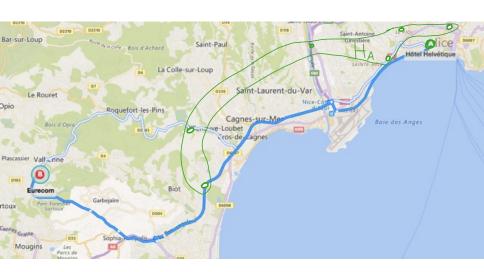
```
Trivial solution : pre-compute for all s, t... but O(n^2) space!!! (1 Po for n = 20m)
```

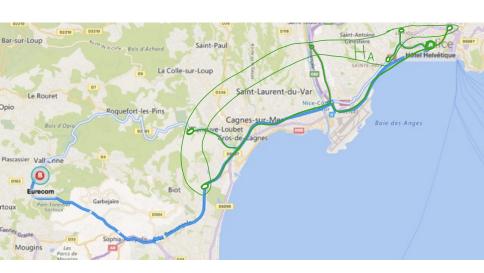
Recent progress, e.g. in road networks (20m nodes):

- Dijkstra (1959): 4s
- Bidirectional Dijkstra: 1s
- Bidirectional A* (1968): 100ms
- Reach-Pruning, Contraction Hierarchies (2005): 10 ms
- Hub labeling (2010-13): 10 μ s

€?⇒







H_A			6			22
D_A	42	12	13	70	8	19

H_{B}	3	4	8	15	18	22	31
D _B	50	47	31	7	3	80	1002

	\downarrow					
H_A	2	5	6	8	11	22
D_A	42	12	13	70	8	19

	\downarrow						
H _B	3	4	8	15	18	22	31
DB	50	47	31	7	3	80	1002

		\downarrow				
H_A			l	8		
D_A	42	12	13	70	8	19

	\downarrow						
H_{B}	3	4	8	15	18	22	31
D _B	50	47	31	7	3	80	1002

		\downarrow				
H_A	2	5	6	8	11	22
D_A	42	12	13	70	8	19

		\downarrow					
H _B	3	4	8	15	18	22	31
DB	50	47	31	7	3	80	1002

		\downarrow				
H_A	1		1	8		
D_A	42	12	13	70	8	19

			\downarrow				
H_{B}	3	4	8	15	18	22	31
D _B	50	47	31	7	3	80	1002

			\downarrow			
H_A						
D_A	42	12	13	70	8	19

			\downarrow				
H_{B}	3	4	8	15	18	22	31
DB	50	47	31	7	3	80	1002

 $Dist(A,B) = \infty$

				\downarrow		
H_A				8		
D_A	42	12	13	70	8	19

			\downarrow				
H_{B}	3	4	8	15	18	22	31
D _B	50	47	31	7	3	80	1002

 $Dist(A,B) = \infty$

				\downarrow		
H_A				8		
D_A	42	12	13	70	8	19

			\downarrow				
H_{B}	3	4	8	15	18	22	31
DB	50	47	31	7	3	80	1002

Dist(A,B) = 70 + 31 = 101

				\downarrow		
H_A				8		
D_A	42	12	13	70	8	19

				\downarrow			
H _B	3	4	8	15	18	22	31
DB	50	47	31	7	3	80	1002

Dist(A,B) = 70 + 31 = 101

					\downarrow	
H_A		5	l			22
D_{A}	42	12	13	70	8	19

				\downarrow			
H_{B}	3	4	8	15	18	22	31
D _B	50	47	31	7	3	80	1002

Dist(A,B) = 70 + 31 = 101

						\downarrow
H_A			l	8		
D_A	42	12	13	70	8	19

				\downarrow			
H _B	3	4	8	15	18	22	31
DB	50	47	31	7	3	80	1002

Dist(A,B) = 70 + 31 = 101

						\downarrow
H_A						
D_A	42	12	13	70	8	19

					\downarrow		
H_{B}	3	4	8	15	18	22	31
DB	50	47	31	7	3	80	1002

Dist(A,B) = 70 + 31 = 101

						\downarrow
H_A						
D_A	42	12	13	70	8	19

						\downarrow	
H _B	3	4	8	15	18	22	31
D _B	50	47	31	7	3	80	1002

Dist(A,B) = 19 + 80 = 99

						\downarrow
H_A	2	5	6	8	11	22
D_{A}	42	12	13	70	8	19

							\downarrow
H _B	3	4	8	15	18	22	31
DB	50	47	31	7	3	80	1002

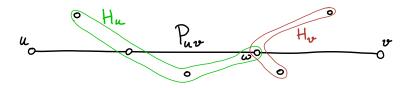
Dist(A,B) = 19 + 80 = 99

 \Leftarrow ? \Rightarrow

Hub sets

Problem

Given a graph G, assign a hub set $H_u \subseteq V(G)$ to each node u, s.t. for all u, v there exists $w \in H_u \cap H_v$ with $w \in P_{uv}$.



 $\begin{array}{l} \textbf{Application: Distance labels:} \ L_u = \{(w,d(u,w)): w \in H_u\} \\ \textbf{Distance query: Dist} \ (L_u,L_v) = min_{w \in H_u \cap H_v} \ d(u,w) + d(w,v) \end{array}$

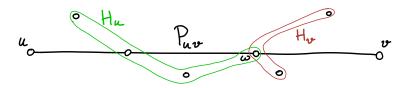
Introduced by [Gavoille et al. '04; Cohen et al. 2003], applied to road networks [Abraham et al. 2010-2013], and other practical networks [Akiba et al. 2013]. Approximability results: [Babenko et al. 2013, Angelidakis et al. 2017].

⇒ 1/3 7 / 26

Hub sets

Problem

Given a graph G, assign a hub set $H_u \subseteq V(G)$ to each node u, s.t. for all u, v there exists $w \in H_u \cap H_v$ with $w \in P_{uv}$.



 $\begin{array}{l} \textbf{Application}: \textbf{Distance labels}: L_u = \{(w,d(u,w)): w \in H_u\} \\ \textbf{Distance query}: \textbf{Dist}\; (L_u,L_v) = min_{w \in H_u \cap H_v} \, d(u,w) + d(w,v) \\ \end{array}$

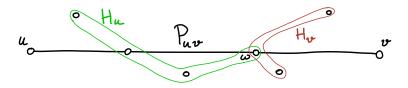
Introduced by [Gavoille et al. '04; Cohen et al. 2003], applied to road networks [Abraham et al. 2010-2013], and other practical networks [Akiba et al. 2013]. Approximability results: [Babenko et al. 2013, Angelidakis et al. 2017].

?'⇒ 2/3 7 / 26

Hub sets

Problem

Given a graph G, assign a hub set $H_u \subseteq V(G)$ to each node u, s.t. for all u, v there exists $w \in H_u \cap H_v$ with $w \in P_{uv}$.



Introduced by [Gavoille et al. '04; Cohen et al. 2003], applied to road networks [Abraham et al. 2010-2013], and other practical networks [Akiba et al. 2013]. Approximability results: [Babenko et al. 2013, Angelidakis et al. 2017].

? ⇒

What graph property guaranties small hub sets?

[Abraham et al. 2010]: Small highway dimension!

This talk: More generally, small skeleton dimension!

 \Leftarrow ? \Rightarrow

What graph property guaranties small hub sets?

[Abraham et al. 2010]: Small highway dimension!

This talk: More generally, small skeleton dimension!

What graph property guaranties small hub sets?

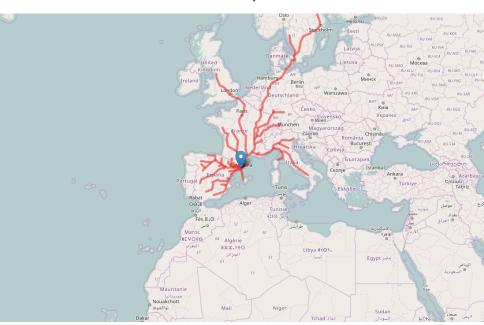
[Abraham et al. 2010]: Small highway dimension!

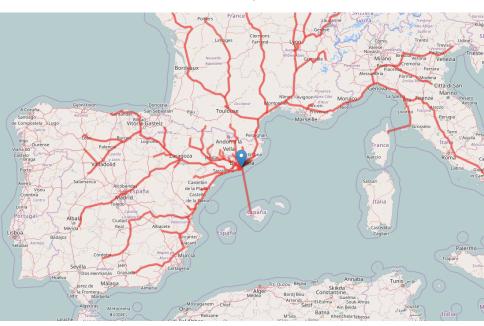
This talk: More generally, small skeleton dimension!

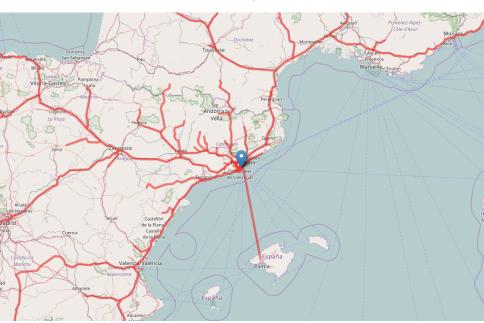
Skeleton dimension

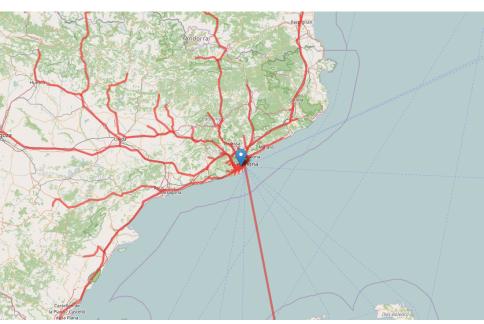
The skeleton dimension k of G is the maximum "width" of a "pruned" shortest path tree.

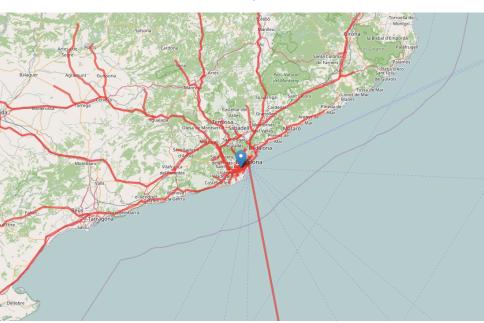
Barcelona shortest path tree

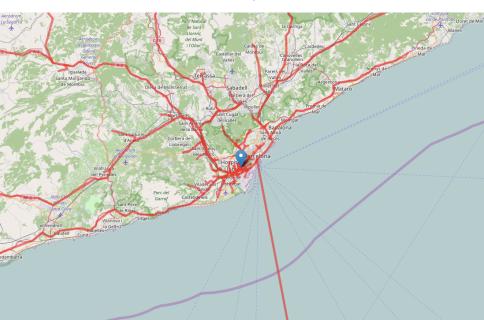


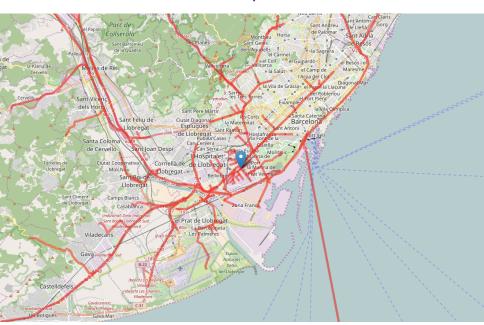














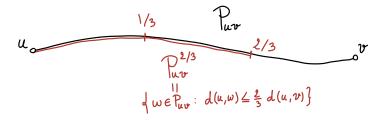
Assumptions

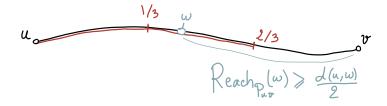
A directed graph G with

unique shortest paths

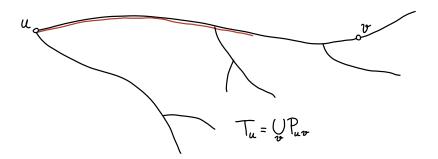
and integer edge lengths (aspect ratio is O(D)).

In the presentation: unweighted undirected graph G.

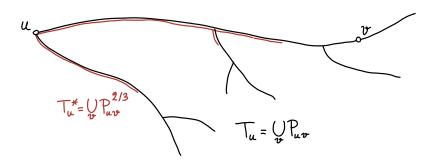


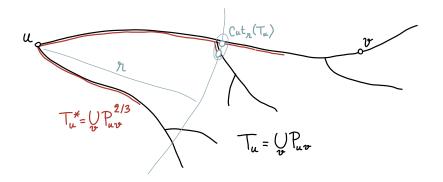


 \Leftarrow ? \Rightarrow

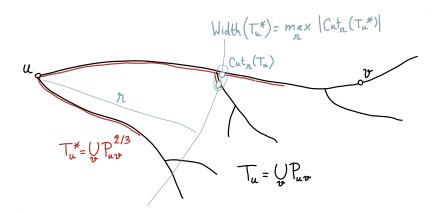


← : →

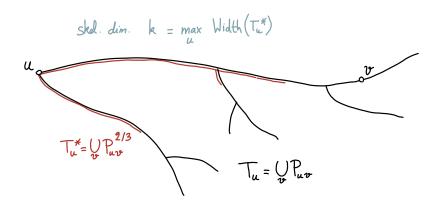




 \Leftarrow ? \Rightarrow



= ? ⇒



 \Leftarrow ? \Rightarrow

Theorem

Given a graph G with skeleton dimension k and diameter D, a simple random sampling technique allows to find in polynomial time hub sets with size $O(k \log D)$ on average and maximum size $O(k \log \log k \log D)$ with high probability.

Comparision with highway dimension h:

- more general : k < h
 - (some graphs have $h = \Omega(\sqrt{n})$ and $k = O(\log n)$),
 - naturally extends to directed graphs
 - shorter: O(k log log k log D) vs O(h log h log D) (for polynomial time construction).
 - road networks: insight on grids (Manhattan like networks).

Theorem

Given a graph G with skeleton dimension k and diameter D, a simple random sampling technique allows to find in polynomial time hub sets with size $O(k \log D)$ on average and maximum size $O(k \log \log k \log D)$ with high probability.

Comparision with highway dimension h:

- more general : $\mathbf{k} \leq \mathbf{h}$ (some graphs have $\mathbf{h} = \Omega(\sqrt{\mathbf{n}})$ and $\mathbf{k} = O(\log \mathbf{n})$),
- naturally extends to directed graphs,
- shorter: O(k log log k log D) vs O(h log h log D) (for polynomial time construction),
- road networks: insight on grids (Manhattan like networks).

≥ ? ⇒

Theorem

Given a graph G with skeleton dimension k and diameter D, a simple random sampling technique allows to find in polynomial time hub sets with size $O(k \log D)$ on average and maximum size $O(k \log \log k \log D)$ with high probability.

Comparision with highway dimension h:

- more general : $\mathbf{k} \leq \mathbf{h}$ (some graphs have $\mathbf{h} = \Omega(\sqrt{\mathbf{n}})$ and $\mathbf{k} = O(\log \mathbf{n})$),
- naturally extends to directed graphs,
- shorter: O(k log log k log D) vs O(h log h log D) (for polynomial time construction),
- road networks: insight on grids (Manhattan like networks).

Theorem

Given a graph G with skeleton dimension k and diameter D, a simple random sampling technique allows to find in polynomial time hub sets with size $O(k \log D)$ on average and maximum size $O(k \log \log k \log D)$ with high probability.

Comparision with highway dimension h:

- more general : $\mathbf{k} \leq \mathbf{h}$ (some graphs have $\mathbf{h} = \Omega(\sqrt{\mathbf{n}})$ and $\mathbf{k} = O(\log \mathbf{n})$),
- naturally extends to directed graphs,
- shorter: O(k log log k log D) vs O(h log h log D) (for polynomial time construction),
- road networks: insight on grids (Manhattan like networks).

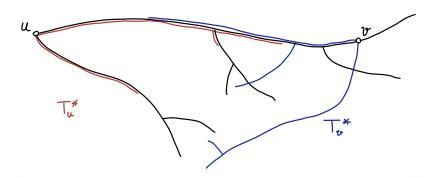
Theorem

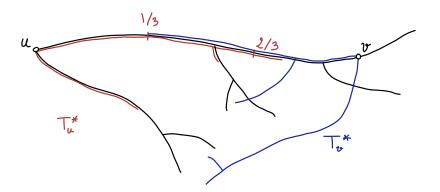
Given a graph G with skeleton dimension k and diameter D, a simple random sampling technique allows to find in polynomial time hub sets with size $O(k \log D)$ on average and maximum size $O(k \log \log k \log D)$ with high probability.

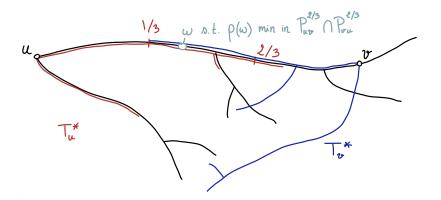
Comparision with highway dimension h:

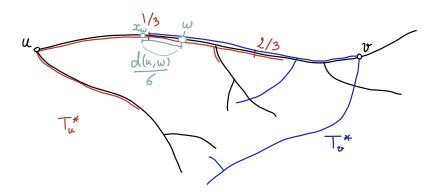
- more general : $\mathbf{k} \leq \mathbf{h}$ (some graphs have $\mathbf{h} = \Omega(\sqrt{\mathbf{n}})$ and $\mathbf{k} = O(\log \mathbf{n})$),
- naturally extends to directed graphs,
- shorter: O(k log log k log D) vs O(h log h log D) (for polynomial time construction),
- road networks: insight on grids (Manhattan like networks).

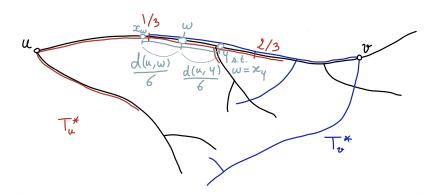
= ? ⇒

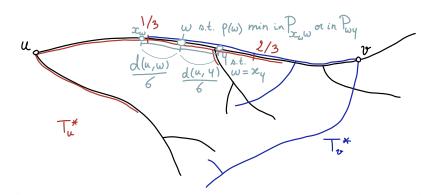












 \Leftarrow ? \Rightarrow

Draw $\rho(\mathbf{w}) \in [0,1]$ u.a.r. for all $\mathbf{w} \in \mathbf{V}(\mathbf{G})$.

$$H_u = \{ w \mid \rho(w) \text{ min. in } P_{x_ww} \} \cup \left\{ x_y \mid \rho(x_y) \text{ min. in } P_{x_yy} \right\}$$

(Can be computed in $\widetilde{O}(n+m)$ separately for each node with shared randomness.)

A sub-path P_{xyy} has length $\frac{d(u,y)}{6}$ and generates a hub in H_u with probability at most $\frac{12}{d(u,y)}.$

$$\textstyle \mathsf{E}[|\mathsf{H}_u|] \leq \sum_{y \in V(\mathsf{T}_u^*)} \frac{12}{\mathsf{d}(u,v)} \leq \sum_r |\mathcal{C}\mathsf{ut}_r(\mathsf{T}_u^*)| \, \frac{12}{r} = O(k \log D)$$

← ? ⇒

1/3 15 / 26

Draw $\rho(\mathbf{w}) \in [0,1]$ u.a.r. for all $\mathbf{w} \in \mathbf{V}(\mathbf{G})$.

$$H_{u} = \{ w \mid \rho(w) \text{ min. in } P_{x_{w}w} \} \cup \{ x_{y} \mid \rho(x_{y}) \text{ min. in } P_{x_{y}y} \}$$

(Can be computed in $\widetilde{O}(n+m)$ separately for each node with shared randomness.)

A sub-path P_{xyy} has length $\frac{d(u,y)}{6}$ and generates a hub in H_u with probability at most $\frac{12}{d(u,y)}$.

$$\textstyle \mathsf{E}[|\mathsf{H}_u|] \leq \sum_{y \in V(\mathsf{T}_u^*)} \frac{12}{\mathsf{d}(u,v)} \leq \sum_r |\mathcal{C}\mathsf{ut}_r(\mathsf{T}_u^*)| \, \frac{12}{r} = O(k \log D)$$

Draw $\rho(\mathbf{w}) \in [0,1]$ u.a.r. for all $\mathbf{w} \in \mathbf{V}(\mathbf{G})$.

$$H_{u} = \{ w \mid \rho(w) \text{ min. in } P_{x_{w}w} \} \cup \{ x_{y} \mid \rho(x_{y}) \text{ min. in } P_{x_{y}y} \}$$

(Can be computed in $\widetilde{O}(n+m)$ separately for each node with shared randomness.)

A sub-path P_{xyy} has length $\frac{d(u,y)}{6}$ and generates a hub in H_u with probability at most $\frac{12}{d(u,y)}$.

$$\textstyle E[|H_u|] \leq \sum_{y \in V(T_u^*)} \frac{12}{d(u,y)} \leq \sum_r |\textit{C}ut_r(T_u^*)| \, \frac{12}{r} = O(k \log D)$$

Road networks: two tree skeletons

Branching introduces non-trivial correlations between sub-paths.

An edge of length ℓ is virtually subdivided into an unweighted path of length 12ℓ .

We construct edge hub sets.

Naturally extends to directed graphs.

Branching introduces non-trivial correlations between sub-paths.

Chernoff bounds: O(k log D log log n)

An edge of length ℓ is virtually subdivided into an unweighted path of length 12ℓ .

We construct edge hub sets.

Naturally extends to directed graphs.

Branching introduces non-trivial correlations between sub-paths.

An edge of length ℓ is virtually subdivided into an unweighted path of length 12ℓ .

We construct edge hub sets.

Naturally extends to directed graphs.

Branching introduces non-trivial correlations between sub-paths.

Doubling metric argument : $O(k \log D \log \log k)$

An edge of length ℓ is virtually subdivided into an unweighted path of length 12ℓ .

We construct edge hub sets.

Naturally extends to directed graphs.

Branching introduces non-trivial correlations between sub-paths.

Doubling metric argument : $O(k \log D \log \log k)$

An edge of length ℓ is virtually subdivided into an unweighted path of length 12ℓ .

We construct edge hub sets.

Naturally extends to directed graphs.

Branching introduces non-trivial correlations between sub-paths.

Doubling metric argument : $O(k \log D \log \log k)$

An edge of length ℓ is virtually subdivided into an unweighted path of length 12ℓ .

We construct edge hub sets.

Naturally extends to directed graphs.

Branching introduces non-trivial correlations between sub-paths.

Doubling metric argument : $O(k \log D \log \log k)$

An edge of length ℓ is virtually subdivided into an unweighted path of length 12ℓ .

We construct edge hub sets.

Naturally extends to directed graphs.

← ? ⇒ 7/7 17 / 26

Highway dimension

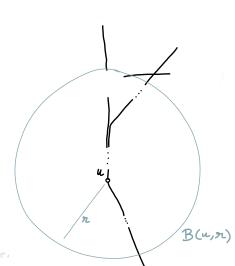
A graph G has small highway dimension h if "long" paths in a given region go through "few" transit nodes.

$$\mathcal{P}_{\mathsf{ur}} = \left\{ \mathsf{P} \mid |\mathsf{P}| > rac{\mathsf{r}}{2} \; \mathsf{and} \; \mathsf{P} \cap \mathsf{B}(\mathsf{u},\mathsf{r})
eq \emptyset
ight\}$$

H hits \mathcal{P}_{ur} if $H\cap P\neq\emptyset$ for all $P\in\mathcal{P}_{ur}$

Highway dim. $h = \max_{ur} \min_{H \text{ hits } \mathcal{D}_{ur}} |H|$

 $k \leq h: \text{Cut}_r(T_u^*) \text{ induces a packing in } \mathcal{P}_{ur},$

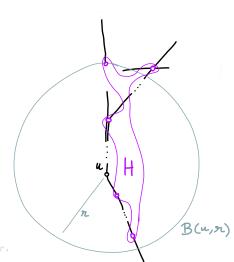


$$\mathcal{P}_{\mathsf{ur}} = \left\{ \mathsf{P} \mid |\mathsf{P}| > rac{\mathsf{r}}{2} \; \mathsf{and} \; \mathsf{P} \cap \mathsf{B}(\mathsf{u},\mathsf{r})
eq \emptyset
ight\}$$

H hits \mathcal{P}_{ur} if $H\cap P\neq\emptyset$ for all $P\in\mathcal{P}_{\text{ur}}$

 $\textbf{Highway dim. h} = \max_{ur} \min_{H \text{ hits } \mathcal{P}_{ur}} |H|$

 $k \le h : Cut_r(T_u^*)$ induces a packing in \mathcal{P}_{ur} , and $|Cut_r(T^*)| \le |H|$



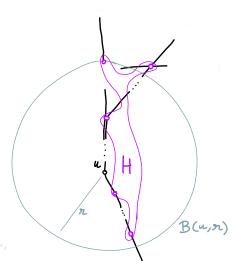
$\textbf{Highway dimension} \geq \textbf{skeleton dimension}$

$$\mathcal{P}_{\mathsf{ur}} = \left\{\mathsf{P} \mid |\mathsf{P}| > rac{\mathsf{r}}{2} \; \mathsf{and} \; \mathsf{P} \cap \mathsf{B}(\mathsf{u},\mathsf{r})
eq \emptyset
ight\}$$

H hits \mathcal{P}_{ur} if $H \cap P \neq \emptyset$ for all $P \in \mathcal{P}_{ur}$

Highway dim. $h = \max_{ur} \min_{H \text{ hits } \mathcal{P}_{ur}} |H|$

 $k \le h : Cut_r(T_u^*)$ induces a packing in \mathcal{P}_{ur} , and $|Cut_r(T^*)| \le |H|$



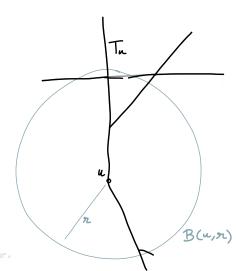
$\label{eq:highway} \textbf{Highway dimension} \geq \textbf{skeleton dimension}$

$$\mathcal{P}_{\mathsf{ur}} = \left\{ \mathsf{P} \mid |\mathsf{P}| > rac{\mathsf{r}}{2} \; \mathsf{and} \; \mathsf{P} \cap \mathsf{B}(\mathsf{u},\mathsf{r})
eq \emptyset
ight\}$$

H hits \mathcal{P}_{ur} if $H\cap P\neq\emptyset$ for all $P\in\mathcal{P}_{\text{ur}}$

 $\textbf{Highway dim. h} = \max_{ur} \min_{H \text{ hits } \mathcal{P}_{ur}} |H|$

 $k \leq h : Cut_r(T_u^*)$ induces a packing in \mathcal{P}_{ur} , and $|Cut_r(T^*)| \leq |H|$



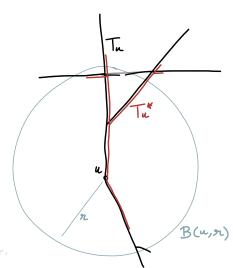
$\label{eq:highway} \textbf{Highway dimension} \geq \textbf{skeleton dimension}$

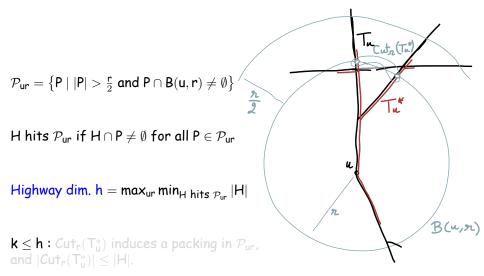
$$\mathcal{P}_{\mathsf{ur}} = \left\{\mathsf{P} \mid |\mathsf{P}| > rac{\mathsf{r}}{2} \; \mathsf{and} \; \mathsf{P} \cap \mathsf{B}(\mathsf{u},\mathsf{r})
eq \emptyset
ight\}$$

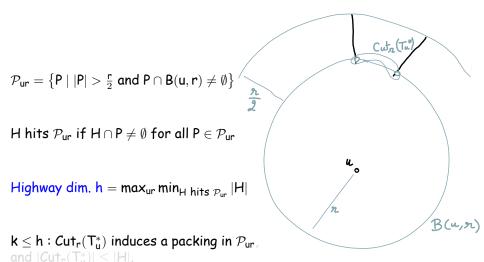
H hits \mathcal{P}_{ur} if $H\cap P\neq\emptyset$ for all $P\in\mathcal{P}_{ur}$

 $\textbf{Highway dim. h} = \max_{ur} \min_{H \text{ hits } \mathcal{P}_{ur}} |H|$

 $k \leq h : Cut_r(T_u^*)$ induces a packing in \mathcal{P}_{ur} , and $|Cut_r(T_u^*)| \leq |H|$.





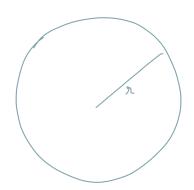


 \Leftarrow ? \Rightarrow

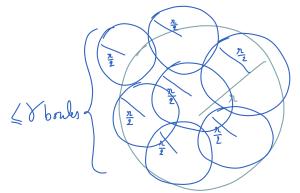
$$\mathcal{P}_{ur} = \left\{P \mid |P| > \frac{r}{2} \text{ and } P \cap B(u,r) \neq \emptyset\right\}$$
 H hits \mathcal{P}_{ur} if $H \cap P \neq \emptyset$ for all $P \in \mathcal{P}_{ur}$ Highway dim. $h = \max_{ur} \min_{H \text{ hits } \mathcal{P}_{ur}} |H|$
$$k \leq h : Cut_r(T_u^*) \text{ induces a packing in } \mathcal{P}_{ur},$$

and $|Cut_r(T_u^*)| \leq |H|$.

A graph G is γ -doubling if any ball B(u,r) can be covered by at most γ balls with radius $\frac{r}{2}$: $\exists H$ s.t. B(u,r) $\subseteq \cup_{v \in H} B(v, \frac{r}{2})$ and $|H| \leq \gamma$.

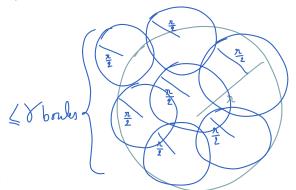


A graph G is γ -doubling if any ball B(u,r) can be covered by at most γ balls with radius $\frac{r}{2}$: $\exists H$ s.t. B(u,r) $\subseteq \cup_{v \in H} B(v, \frac{r}{2})$ and $|H| \leq \gamma$.



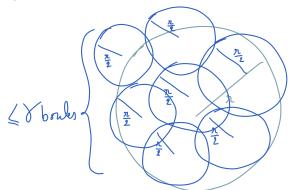
← ? ⇒
 2 / 8 20 / 26

A graph G is γ -doubling if any ball B(u,r) can be covered by at most γ balls with radius $\frac{r}{2}$: $\exists H$ s.t. B(u,r) $\subseteq \cup_{v \in H} B(v, \frac{r}{2})$ and $|H| \leq \gamma$.



 $B(u,r) \subseteq \gamma^2$ balls with radius $\frac{r}{4}$.

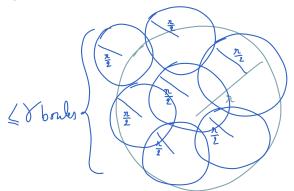
A graph G is γ -doubling if any ball B(u,r) can be covered by at most γ balls with radius $\frac{r}{2}$: $\exists H$ s.t. B(u,r) $\subseteq \cup_{v \in H} B(v, \frac{r}{2})$ and $|H| \leq \gamma$.



 $B(u,r) \subseteq \gamma^{1+\log r}$ balls with radius $\frac{1}{2}$.

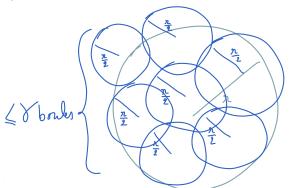
← ? ⇒ 4/8 20 / 26

A graph G is γ -doubling if any ball B(u,r) can be covered by at most γ balls with radius $\frac{r}{2}$: $\exists H$ s.t. B(u,r) $\subseteq \cup_{v \in H} B(v, \frac{r}{2})$ and $|H| \leq \gamma$.



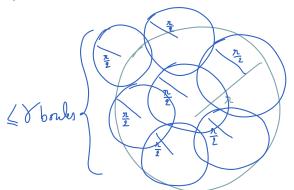
 $|\mathsf{B}(\mathsf{u},\mathsf{r})| \leq \gamma^{1 + \log \mathsf{r}}$

A graph G is γ -doubling if any ball B(u,r) can be covered by at most γ balls with radius $\frac{r}{2}$: $\exists H$ s.t. B(u,r) $\subseteq \cup_{v \in H} B(v, \frac{r}{2})$ and $|H| \leq \gamma$.



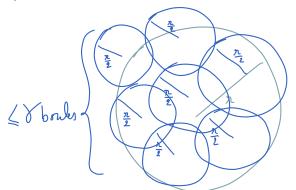
$$\mathbf{n} = |\mathbf{B}(\mathbf{u}, \mathbf{D})| \leq \gamma^{1 + \log \mathbf{D}}$$

A graph G is γ -doubling if any ball B(u,r) can be covered by at most γ balls with radius $\frac{r}{2}$: $\exists H$ s.t. B(u,r) $\subseteq \cup_{v \in H} B(v, \frac{r}{2})$ and $|H| \leq \gamma$.



 $\log n = O(\log D \log \gamma)$

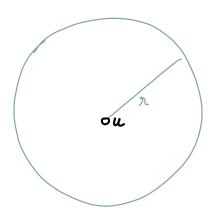
A graph G is γ -doubling if any ball B(u,r) can be covered by at most γ balls with radius $\frac{r}{2}$: $\exists H$ s.t. B(u,r) $\subseteq \cup_{v \in H} B(v, \frac{r}{2})$ and $|H| \leq \gamma$.



 $\log n = O(\log D \log k)$ when $\gamma = O(k)$

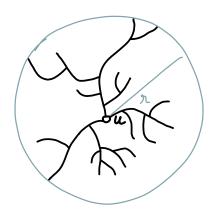
Proposition

Any graph with highway dimension h and skeleton dimension k is min $\{h+1, 2k+1\}$ -doubling.



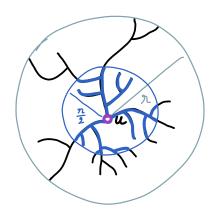
Proposition

Any graph with highway dimension h and skeleton dimension k is min $\{h+1, 2k+1\}$ -doubling.



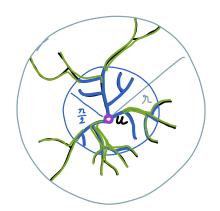
Proposition

Any graph with highway dimension h and skeleton dimension k is min $\{h+1, 2k+1\}$ -doubling.



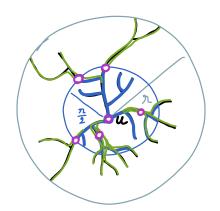
Proposition

Any graph with highway dimension h and skeleton dimension k is min $\{h+1, 2k+1\}$ -doubling.



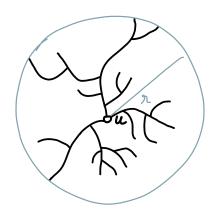
Proposition

Any graph with highway dimension h and skeleton dimension k is min $\{h+1, 2k+1\}$ -doubling.



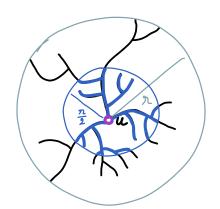
Proposition

Any graph with highway dimension h and skeleton dimension k is min $\{h+1, 2k+1\}$ -doubling.



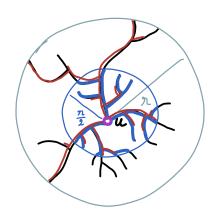
Proposition

Any graph with highway dimension h and skeleton dimension k is $\min\{h+1, 2k+1\}$ -doubling.



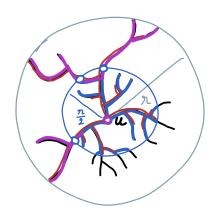
Proposition

Any graph with highway dimension h and skeleton dimension k is min $\{h+1, 2k+1\}$ -doubling.



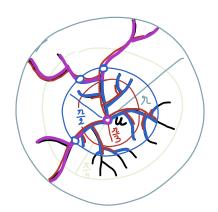
Proposition

Any graph with highway dimension h and skeleton dimension k is min $\{h+1, 2k+1\}$ -doubling.



Proposition

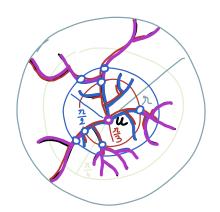
Any graph with highway dimension h and skeleton dimension k is $\min\{h+1, 2k+1\}$ -doubling.



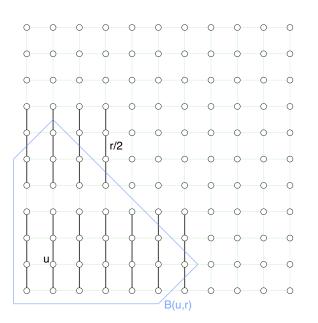
←?⇒

Proposition

Any graph with highway dimension h and skeleton dimension k is min $\{h+1, 2k+1\}$ -doubling.

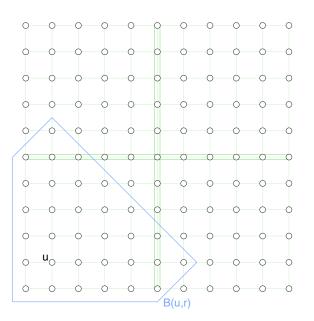


← ? ⇒ n/n 21/26



$$\mathbf{h} = \Theta(\sqrt{\mathbf{n}})$$

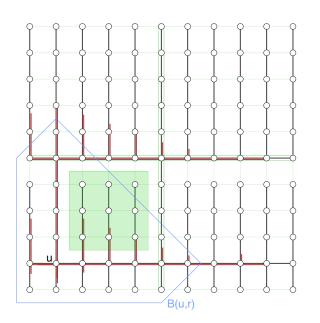
$$k = \Theta(\log n)$$



$$\mathbf{h} = \Theta(\sqrt{\mathbf{n}})$$

$$k = \Theta(\log n)$$

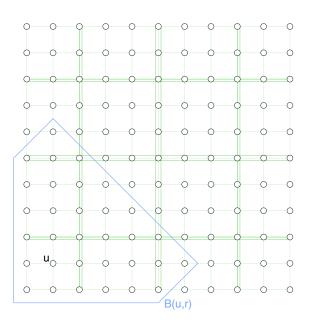
 \Leftarrow ? \Rightarrow



$$\mathbf{h} = \Theta(\sqrt{\mathbf{n}})$$

$$k = \Theta(\log n)$$

= ? ⇒



$$h = \Theta(\sqrt{n})$$

$$\mathbf{k} = \Theta(\log \mathbf{n})$$

 \Leftarrow ? \Rightarrow

Highway vs skeleton in Brooklyn

Packing of 172 paths

Skeleton width 48

Summary

Theorem : Hub sets of size $O(k \log D \max \left\{1, \log \frac{\log n}{\log D}\right\})$ can be constructed in randomized polynomial time for skeleton-dimension-k graphs.

Bonus : improvement of δ -preserving distance labeling in unweighted graphs (building block for o(n) distance labeling in sparse graphs [Alstrup et al. 2010]) :

For $r \geq \delta$, we have $|\text{Cut}_r(T_u^*)| = O(\frac{n}{r})$, and we obtain hub sets of size $O(\sum_{r > \delta} \frac{n}{r^2}) = O(\frac{n}{\delta})$.

Other types of transportation networks?

Skeleton dimension of random spatial networks? [Aldous 2014]

Beyond skeleton dimension?

- Small hub sets imply intersecting sub-strees with few leaves.
- Fast computation: additional property (low treewidth, small reach?).

Other types of transportation networks?

Skeleton dimension of random spatial networks? [Aldous 2014]

Beyond skeleton dimension?

- Small hub sets imply intersecting sub-strees with few leaves.
- Fast computation: additional property (low treewidth, small reach?).

Other types of transportation networks?

Skeleton dimension of random spatial networks? [Aldous 2014]

Beyond skeleton dimension?

- Small hub sets imply intersecting sub-strees with few leaves.
- Fast computation: additional property (low treewidth, small reach?).

Other types of transportation networks?

Skeleton dimension of random spatial networks? [Aldous 2014]

Beyond skeleton dimension?

- Small hub sets imply intersecting sub-strees with few leaves.
- Fast computation: additional property (low treewidth, small reach?).

Thanks.

More to see at gang.inria.fr/road/:

←?⇒