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Context : shortest path queries

Recent progress, in particular for transportation networks.

Two ingredients :
* Tool : precompute small “hub sets".

* Graph property : small “hub sets” do exist, e.g. in road
networks.
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Shortest path queries

Problem :
* A graph G is given.
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Shortest path queries

Problem :
* A graph G is given.
* Make any usefull pre-computation.
* Answer queries : shortest path from s to 1?

Trivial solution : pre-compute for all s, t...
but O(n?) space!ll (1 Po for h = 20m)

Recent progress, e.g. in road networks (20m nodes) :

* Dijkstra (1959) : 4s
* Bidirectional Dijkstra : 1s
* Bidirectional A* (1968) : 100ms

* Reach-Pruning, Contraction Hierarchies (2005) : 10 ms
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Shortest path queries

Problem :
* A graph G is given.
* Make any usefull pre-computation.
* Answer queries : shortest path from s to ?

Trivial solution : pre-compute for all s, t...
but O(n?) space!ll (1 Po for h = 20m)
Recent progress, e.g. in road networks (20m nodes) :
* Dijkstra (1959) : 4s
* Bidirectional Dijkstra : 1s
* Bidirectional A* (1968) : 100ms
* Reach-Pruning, Contraction Hierarchies (2005) : 10 ms
* Hub labeling (2010-13) : 10 us
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Distance from sorted hub sets
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Da| 42|12 13|70 | 8| 19
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Distance from sorted hub sets

!

Ha 2| 5| 6| 8|11 22

D42 121370 8] 19
!
Ho | 3] 4] 8[15[18[22] 31
Dg |[50 |47 (31| 7| 3|80 1002

Dist(A,B)=19 + 80 = 99
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Hub sets
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Problem

Given a graph G, assign a hub set H, C V(6) to each node u,

s.t. for all u,v there exists w € H, N Hy with w € P,.

Application : Distance labels : L, = {(w,d(u,w)) : w € Hy}
Distance query : Dist (Ly, Lv) = mingey,qn, d(u, w) +d(w, v)
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Hub sets

Problem
Given a graph G, assign a hub set H, C V(6) to each node u,

s.t. for all u,v there exists w € H, N Hy with w € P,.

Application : Distance labels : L, = {(w,d(u,w)) : w € Hy}
Distance query : Dist (Ly, Lv) = mingey,qn, d(u, w) +d(w, v)

Introduced by [Gavoille et al. ‘04 Cohen et al. 2003],
applied to road networks [Abraham et al. 2010-2013],

and other practical networks [Akiba et al. 2013].
Approximability results : [Babenko et al. 2013, Angelidakis
et al. 2017].
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Problem

Given a graph G, assign a hub set H, C V(6) to each node u,

s.t. for all u,v there exists w € H, N Hy with w € P,.

Application : Distance labels : L, = {(w,d(u,w)) : w € Hy}
Distance query : Dist (Ly, Lv) = mingey,qn, d(u, w) +d(w, v)
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What graph property guaranties small hub sets?
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What graph property guaranties small hub sets?

[Abraham et al. 2010] : Small highway dimension!

This talk : More generally, small skeleton dimension!
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Skeleton dimension

The skeleton dimension k of G is the maximum “width" of a
"pruned” shortest path tree.
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Barcelona shortest path tree
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Barcelona tree skeleton : prune last third
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Barcelona tree skeleton : prune last third
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Assumptions

A directed graph G with
unique shortest paths
and integer edge lengths (aspect ratio is O(D)).

In the presentation : unweighted undirected graph G.
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Tree skeleton
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Tree skeleton

Width (E") = max | Cu, (1]
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Tree skeleton

S‘KJ Jxm 1( = max N‘J\H\*\T‘f)
w
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Main result

Theorem

Given a graph G with skeleton dimension k and diameter D, a
simple random sampling technique allows to find in
polynomial time hub sets with size O(klogD) on average and
maximum size O(kloglogklog D) with high probability.
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Main result

Theorem

Given a graph G with skeleton dimension k and diameter D, a
simple random sampling technique allows to find in
polynomial time hub sets with size O(klogD) on average and
maximum size O(kloglogklog D) with high probability.

Comparision with highway dimension h :
* more general : k <h
(some graphs have h = Q(y/n) and k = O(logn)),
* naturally extends to directed graphs,
* shorter : O(kloglogklogD) vs O(hloghlogD)
(for polynomial time construction),

* road networks : insight on grids (Manhattan like
networks).
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Hub set selection

\/a

3/ 2/3
w At P(w) min in Evzﬂ?m
2/3

3/6 14/ 26



Hub set selection

476 14/ 26



Hub set selection

5/6 14/ 26



Hub set selection

6/6 14/ 26



Hub set selection

Draw p(w) € [0,1] u.a.r. for all w € V(6G).
Hu = {w | p(w) min. in Px,w} U {xy | p(xy) min.in Py}

(Can be computed in O(n + m) separately for each node with
shared randomness.)
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Hub set selection

Draw p(w) € [0,1] u.a.r. for all w € V(6G).
Hu = {w | p(w) min. in Px,w} U {xy | p(xy) min.in Py}

(Can be computed in O(n + m) separately for each node with
shared randomness.)

d(uy)
6

A sub-path Py y has length and generates a hub in H,

with probability at most 4.2

ElIHul] < Xyevirs) any < 2o [Cute(TE)| 2 = O(klog D)
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Technicalities

Branching intfroduces non-trivial correlations between
sub-paths.
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Technicalities
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Technicalities

Branching intfroduces non-trivial correlations between
sub-paths.
Doubling metric argument : O(klog D log log k)

An edge of length ¢ is virtually subdivided into an
unweighted path of length 12¢.

We construct edge hub sets.

Naturally extends to directed graphs.
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Highway dimension

A graph G has small highway dimension h if "long” paths in a
given region go through “few" transit nodes.
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Highway dimension > skeleton dimension

Pur = {P||P| > 5 and PN B(u,r) # 0}
H hits Py if HNP # 0 for all P € Py
Highway dim. h = maxy- miny pits .. [H

k<h:
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Highway dimension > skeleton dimension

Pur = {P||P| > 5 and PN B(u,r) # 0} ‘
H hits Py. if HNP # 0 for all P € Py
Highway dim. h = maxy- miny pis p,. HI

k < h: Cut.(T;) induces a packing in Py
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Highway dimension > skeleton dimension

Pur = {P||P| > 5 and PN B(u,r) # 0}
H hits Py if HNP # () for all P € Py,

Highway dim. h = maxy- miny pis p,. HI

k < h: Cut.(T;) induces a packing in Pyr,
and |Cut.(T)| < [H|.
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Highway vs skeleton w.r.t. doubling property

A graph G is y-doubling if any ball B(u,r) can be covered by
at most v balls with radius § : 3H s.¥. B(u,r) € U,c4B(v. 5)
and [H| <.
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A graph G is y-doubling if any ball B(u,r) can be covered by
at most v balls with radius § : 3H s.+. B(u,r) € U,c4B(v. §)
and [H| <.

n = |B(u,D)| < »'*legb
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ghway vs skeleton w.r.t. doubling property

A graph G is y-doubling if any ball B(u,r) can be covered by
at most v balls with radius § : 3H s.+. B(u,r) € U,c4B(v. [)
and |H| <.

logn = O(log D log k) when v = O(k)
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Highway vs skeleton w.r.t. doubling property

Proposition

Any graph with highway dimension h and skeleton dimension
kis min{h + 1,2k + 1}-doubling.
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Highway vs skeleton in Brooklyn

Packing of 172 paths Skeleton width 48
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Summary

Theorem : Hub sets of size O(klog D max {1, log %}) can

be constructed in randomized polynomial time for
skeleton-dimension-k graphs.

Bonus : improvement of d-preserving distance labeling in
unweighted graphs (building block for o(n) distance labeling
in sparse graphs [Alstrup et al. 2010]) :

For r >0, we have |Cut.(T)| = O(}), and we obtain hub sets
of size O35 ) = O(3).
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Perspectives

Other types of transportation networks?

Skeleton dimension of random spatial networks? [Aldous
2014]
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Perspectives

Other types of transportation networks?

Skeleton dimension of random spatial networks? [Aldous
2014]

Beyond skeleton dimension?

* Small hub sets imply intersecting sub-strees with few
leaves.

* Fast computation : additional property (low treewidth,
small reach?).
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Thanks.
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